xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 7132fe4f)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 #ifdef CONFIG_64BIT
42 	pud = vmem_alloc_pages(2);
43 	if (!pud)
44 		return NULL;
45 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47 	return pud;
48 }
49 
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52 	pmd_t *pmd = NULL;
53 
54 #ifdef CONFIG_64BIT
55 	pmd = vmem_alloc_pages(2);
56 	if (!pmd)
57 		return NULL;
58 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60 	return pmd;
61 }
62 
63 static pte_t __ref *vmem_pte_alloc(unsigned long address)
64 {
65 	pte_t *pte;
66 
67 	if (slab_is_available())
68 		pte = (pte_t *) page_table_alloc(&init_mm, address);
69 	else
70 		pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
71 					  PTRS_PER_PTE * sizeof(pte_t));
72 	if (!pte)
73 		return NULL;
74 	clear_table((unsigned long *) pte, _PAGE_INVALID,
75 		    PTRS_PER_PTE * sizeof(pte_t));
76 	return pte;
77 }
78 
79 /*
80  * Add a physical memory range to the 1:1 mapping.
81  */
82 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 {
84 	unsigned long end = start + size;
85 	unsigned long address = start;
86 	pgd_t *pg_dir;
87 	pud_t *pu_dir;
88 	pmd_t *pm_dir;
89 	pte_t *pt_dir;
90 	int ret = -ENOMEM;
91 
92 	while (address < end) {
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			pu_dir = vmem_pud_alloc();
96 			if (!pu_dir)
97 				goto out;
98 			pgd_populate(&init_mm, pg_dir, pu_dir);
99 		}
100 		pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104 			pud_val(*pu_dir) = __pa(address) |
105 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
106 				(ro ? _REGION_ENTRY_PROTECT : 0);
107 			address += PUD_SIZE;
108 			continue;
109 		}
110 #endif
111 		if (pud_none(*pu_dir)) {
112 			pm_dir = vmem_pmd_alloc();
113 			if (!pm_dir)
114 				goto out;
115 			pud_populate(&init_mm, pu_dir, pm_dir);
116 		}
117 		pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121 			pmd_val(*pm_dir) = __pa(address) |
122 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
123 				_SEGMENT_ENTRY_YOUNG |
124 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
125 			address += PMD_SIZE;
126 			continue;
127 		}
128 #endif
129 		if (pmd_none(*pm_dir)) {
130 			pt_dir = vmem_pte_alloc(address);
131 			if (!pt_dir)
132 				goto out;
133 			pmd_populate(&init_mm, pm_dir, pt_dir);
134 		}
135 
136 		pt_dir = pte_offset_kernel(pm_dir, address);
137 		pte_val(*pt_dir) = __pa(address) |
138 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
139 		address += PAGE_SIZE;
140 	}
141 	ret = 0;
142 out:
143 	return ret;
144 }
145 
146 /*
147  * Remove a physical memory range from the 1:1 mapping.
148  * Currently only invalidates page table entries.
149  */
150 static void vmem_remove_range(unsigned long start, unsigned long size)
151 {
152 	unsigned long end = start + size;
153 	unsigned long address = start;
154 	pgd_t *pg_dir;
155 	pud_t *pu_dir;
156 	pmd_t *pm_dir;
157 	pte_t *pt_dir;
158 	pte_t  pte;
159 
160 	pte_val(pte) = _PAGE_INVALID;
161 	while (address < end) {
162 		pg_dir = pgd_offset_k(address);
163 		if (pgd_none(*pg_dir)) {
164 			address += PGDIR_SIZE;
165 			continue;
166 		}
167 		pu_dir = pud_offset(pg_dir, address);
168 		if (pud_none(*pu_dir)) {
169 			address += PUD_SIZE;
170 			continue;
171 		}
172 		if (pud_large(*pu_dir)) {
173 			pud_clear(pu_dir);
174 			address += PUD_SIZE;
175 			continue;
176 		}
177 		pm_dir = pmd_offset(pu_dir, address);
178 		if (pmd_none(*pm_dir)) {
179 			address += PMD_SIZE;
180 			continue;
181 		}
182 		if (pmd_large(*pm_dir)) {
183 			pmd_clear(pm_dir);
184 			address += PMD_SIZE;
185 			continue;
186 		}
187 		pt_dir = pte_offset_kernel(pm_dir, address);
188 		*pt_dir = pte;
189 		address += PAGE_SIZE;
190 	}
191 	flush_tlb_kernel_range(start, end);
192 }
193 
194 /*
195  * Add a backed mem_map array to the virtual mem_map array.
196  */
197 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
198 {
199 	unsigned long address = start;
200 	pgd_t *pg_dir;
201 	pud_t *pu_dir;
202 	pmd_t *pm_dir;
203 	pte_t *pt_dir;
204 	int ret = -ENOMEM;
205 
206 	for (address = start; address < end;) {
207 		pg_dir = pgd_offset_k(address);
208 		if (pgd_none(*pg_dir)) {
209 			pu_dir = vmem_pud_alloc();
210 			if (!pu_dir)
211 				goto out;
212 			pgd_populate(&init_mm, pg_dir, pu_dir);
213 		}
214 
215 		pu_dir = pud_offset(pg_dir, address);
216 		if (pud_none(*pu_dir)) {
217 			pm_dir = vmem_pmd_alloc();
218 			if (!pm_dir)
219 				goto out;
220 			pud_populate(&init_mm, pu_dir, pm_dir);
221 		}
222 
223 		pm_dir = pmd_offset(pu_dir, address);
224 		if (pmd_none(*pm_dir)) {
225 #ifdef CONFIG_64BIT
226 			/* Use 1MB frames for vmemmap if available. We always
227 			 * use large frames even if they are only partially
228 			 * used.
229 			 * Otherwise we would have also page tables since
230 			 * vmemmap_populate gets called for each section
231 			 * separately. */
232 			if (MACHINE_HAS_EDAT1) {
233 				void *new_page;
234 
235 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
236 				if (!new_page)
237 					goto out;
238 				pmd_val(*pm_dir) = __pa(new_page) |
239 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
240 					_SEGMENT_ENTRY_CO;
241 				address = (address + PMD_SIZE) & PMD_MASK;
242 				continue;
243 			}
244 #endif
245 			pt_dir = vmem_pte_alloc(address);
246 			if (!pt_dir)
247 				goto out;
248 			pmd_populate(&init_mm, pm_dir, pt_dir);
249 		} else if (pmd_large(*pm_dir)) {
250 			address = (address + PMD_SIZE) & PMD_MASK;
251 			continue;
252 		}
253 
254 		pt_dir = pte_offset_kernel(pm_dir, address);
255 		if (pte_none(*pt_dir)) {
256 			unsigned long new_page;
257 
258 			new_page =__pa(vmem_alloc_pages(0));
259 			if (!new_page)
260 				goto out;
261 			pte_val(*pt_dir) =
262 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
263 		}
264 		address += PAGE_SIZE;
265 	}
266 	memset((void *)start, 0, end - start);
267 	ret = 0;
268 out:
269 	return ret;
270 }
271 
272 void vmemmap_free(unsigned long start, unsigned long end)
273 {
274 }
275 
276 /*
277  * Add memory segment to the segment list if it doesn't overlap with
278  * an already present segment.
279  */
280 static int insert_memory_segment(struct memory_segment *seg)
281 {
282 	struct memory_segment *tmp;
283 
284 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
285 	    seg->start + seg->size < seg->start)
286 		return -ERANGE;
287 
288 	list_for_each_entry(tmp, &mem_segs, list) {
289 		if (seg->start >= tmp->start + tmp->size)
290 			continue;
291 		if (seg->start + seg->size <= tmp->start)
292 			continue;
293 		return -ENOSPC;
294 	}
295 	list_add(&seg->list, &mem_segs);
296 	return 0;
297 }
298 
299 /*
300  * Remove memory segment from the segment list.
301  */
302 static void remove_memory_segment(struct memory_segment *seg)
303 {
304 	list_del(&seg->list);
305 }
306 
307 static void __remove_shared_memory(struct memory_segment *seg)
308 {
309 	remove_memory_segment(seg);
310 	vmem_remove_range(seg->start, seg->size);
311 }
312 
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
314 {
315 	struct memory_segment *seg;
316 	int ret;
317 
318 	mutex_lock(&vmem_mutex);
319 
320 	ret = -ENOENT;
321 	list_for_each_entry(seg, &mem_segs, list) {
322 		if (seg->start == start && seg->size == size)
323 			break;
324 	}
325 
326 	if (seg->start != start || seg->size != size)
327 		goto out;
328 
329 	ret = 0;
330 	__remove_shared_memory(seg);
331 	kfree(seg);
332 out:
333 	mutex_unlock(&vmem_mutex);
334 	return ret;
335 }
336 
337 int vmem_add_mapping(unsigned long start, unsigned long size)
338 {
339 	struct memory_segment *seg;
340 	int ret;
341 
342 	mutex_lock(&vmem_mutex);
343 	ret = -ENOMEM;
344 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345 	if (!seg)
346 		goto out;
347 	seg->start = start;
348 	seg->size = size;
349 
350 	ret = insert_memory_segment(seg);
351 	if (ret)
352 		goto out_free;
353 
354 	ret = vmem_add_mem(start, size, 0);
355 	if (ret)
356 		goto out_remove;
357 	goto out;
358 
359 out_remove:
360 	__remove_shared_memory(seg);
361 out_free:
362 	kfree(seg);
363 out:
364 	mutex_unlock(&vmem_mutex);
365 	return ret;
366 }
367 
368 /*
369  * map whole physical memory to virtual memory (identity mapping)
370  * we reserve enough space in the vmalloc area for vmemmap to hotplug
371  * additional memory segments.
372  */
373 void __init vmem_map_init(void)
374 {
375 	unsigned long ro_start, ro_end;
376 	struct memblock_region *reg;
377 	phys_addr_t start, end;
378 
379 	ro_start = PFN_ALIGN((unsigned long)&_stext);
380 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
381 	for_each_memblock(memory, reg) {
382 		start = reg->base;
383 		end = reg->base + reg->size - 1;
384 		if (start >= ro_end || end <= ro_start)
385 			vmem_add_mem(start, end - start, 0);
386 		else if (start >= ro_start && end <= ro_end)
387 			vmem_add_mem(start, end - start, 1);
388 		else if (start >= ro_start) {
389 			vmem_add_mem(start, ro_end - start, 1);
390 			vmem_add_mem(ro_end, end - ro_end, 0);
391 		} else if (end < ro_end) {
392 			vmem_add_mem(start, ro_start - start, 0);
393 			vmem_add_mem(ro_start, end - ro_start, 1);
394 		} else {
395 			vmem_add_mem(start, ro_start - start, 0);
396 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
397 			vmem_add_mem(ro_end, end - ro_end, 0);
398 		}
399 	}
400 }
401 
402 /*
403  * Convert memblock.memory  to a memory segment list so there is a single
404  * list that contains all memory segments.
405  */
406 static int __init vmem_convert_memory_chunk(void)
407 {
408 	struct memblock_region *reg;
409 	struct memory_segment *seg;
410 
411 	mutex_lock(&vmem_mutex);
412 	for_each_memblock(memory, reg) {
413 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
414 		if (!seg)
415 			panic("Out of memory...\n");
416 		seg->start = reg->base;
417 		seg->size = reg->size;
418 		insert_memory_segment(seg);
419 	}
420 	mutex_unlock(&vmem_mutex);
421 	return 0;
422 }
423 
424 core_initcall(vmem_convert_memory_chunk);
425