xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 5bd8e16d)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18 
19 static DEFINE_MUTEX(vmem_mutex);
20 
21 struct memory_segment {
22 	struct list_head list;
23 	unsigned long start;
24 	unsigned long size;
25 };
26 
27 static LIST_HEAD(mem_segs);
28 
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31 	if (slab_is_available())
32 		return (void *)__get_free_pages(GFP_KERNEL, order);
33 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35 
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38 	pud_t *pud = NULL;
39 
40 #ifdef CONFIG_64BIT
41 	pud = vmem_alloc_pages(2);
42 	if (!pud)
43 		return NULL;
44 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 	return pud;
47 }
48 
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51 	pmd_t *pmd = NULL;
52 
53 #ifdef CONFIG_64BIT
54 	pmd = vmem_alloc_pages(2);
55 	if (!pmd)
56 		return NULL;
57 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 	return pmd;
60 }
61 
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64 	pte_t *pte;
65 
66 	if (slab_is_available())
67 		pte = (pte_t *) page_table_alloc(&init_mm, address);
68 	else
69 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 	if (!pte)
71 		return NULL;
72 	clear_table((unsigned long *) pte, _PAGE_INVALID,
73 		    PTRS_PER_PTE * sizeof(pte_t));
74 	return pte;
75 }
76 
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82 	unsigned long end = start + size;
83 	unsigned long address = start;
84 	pgd_t *pg_dir;
85 	pud_t *pu_dir;
86 	pmd_t *pm_dir;
87 	pte_t *pt_dir;
88 	int ret = -ENOMEM;
89 
90 	while (address < end) {
91 		pg_dir = pgd_offset_k(address);
92 		if (pgd_none(*pg_dir)) {
93 			pu_dir = vmem_pud_alloc();
94 			if (!pu_dir)
95 				goto out;
96 			pgd_populate(&init_mm, pg_dir, pu_dir);
97 		}
98 		pu_dir = pud_offset(pg_dir, address);
99 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
100 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
101 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
102 			pud_val(*pu_dir) = __pa(address) |
103 				_REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
104 				(ro ? _REGION_ENTRY_PROTECT : 0);
105 			address += PUD_SIZE;
106 			continue;
107 		}
108 #endif
109 		if (pud_none(*pu_dir)) {
110 			pm_dir = vmem_pmd_alloc();
111 			if (!pm_dir)
112 				goto out;
113 			pud_populate(&init_mm, pu_dir, pm_dir);
114 		}
115 		pm_dir = pmd_offset(pu_dir, address);
116 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
117 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
118 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
119 			pmd_val(*pm_dir) = __pa(address) |
120 				_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
121 				_SEGMENT_ENTRY_YOUNG |
122 				(ro ? _SEGMENT_ENTRY_PROTECT : 0);
123 			address += PMD_SIZE;
124 			continue;
125 		}
126 #endif
127 		if (pmd_none(*pm_dir)) {
128 			pt_dir = vmem_pte_alloc(address);
129 			if (!pt_dir)
130 				goto out;
131 			pmd_populate(&init_mm, pm_dir, pt_dir);
132 		}
133 
134 		pt_dir = pte_offset_kernel(pm_dir, address);
135 		pte_val(*pt_dir) = __pa(address) |
136 			pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
137 		address += PAGE_SIZE;
138 	}
139 	ret = 0;
140 out:
141 	flush_tlb_kernel_range(start, end);
142 	return ret;
143 }
144 
145 /*
146  * Remove a physical memory range from the 1:1 mapping.
147  * Currently only invalidates page table entries.
148  */
149 static void vmem_remove_range(unsigned long start, unsigned long size)
150 {
151 	unsigned long end = start + size;
152 	unsigned long address = start;
153 	pgd_t *pg_dir;
154 	pud_t *pu_dir;
155 	pmd_t *pm_dir;
156 	pte_t *pt_dir;
157 	pte_t  pte;
158 
159 	pte_val(pte) = _PAGE_INVALID;
160 	while (address < end) {
161 		pg_dir = pgd_offset_k(address);
162 		if (pgd_none(*pg_dir)) {
163 			address += PGDIR_SIZE;
164 			continue;
165 		}
166 		pu_dir = pud_offset(pg_dir, address);
167 		if (pud_none(*pu_dir)) {
168 			address += PUD_SIZE;
169 			continue;
170 		}
171 		if (pud_large(*pu_dir)) {
172 			pud_clear(pu_dir);
173 			address += PUD_SIZE;
174 			continue;
175 		}
176 		pm_dir = pmd_offset(pu_dir, address);
177 		if (pmd_none(*pm_dir)) {
178 			address += PMD_SIZE;
179 			continue;
180 		}
181 		if (pmd_large(*pm_dir)) {
182 			pmd_clear(pm_dir);
183 			address += PMD_SIZE;
184 			continue;
185 		}
186 		pt_dir = pte_offset_kernel(pm_dir, address);
187 		*pt_dir = pte;
188 		address += PAGE_SIZE;
189 	}
190 	flush_tlb_kernel_range(start, end);
191 }
192 
193 /*
194  * Add a backed mem_map array to the virtual mem_map array.
195  */
196 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
197 {
198 	unsigned long address = start;
199 	pgd_t *pg_dir;
200 	pud_t *pu_dir;
201 	pmd_t *pm_dir;
202 	pte_t *pt_dir;
203 	int ret = -ENOMEM;
204 
205 	for (address = start; address < end;) {
206 		pg_dir = pgd_offset_k(address);
207 		if (pgd_none(*pg_dir)) {
208 			pu_dir = vmem_pud_alloc();
209 			if (!pu_dir)
210 				goto out;
211 			pgd_populate(&init_mm, pg_dir, pu_dir);
212 		}
213 
214 		pu_dir = pud_offset(pg_dir, address);
215 		if (pud_none(*pu_dir)) {
216 			pm_dir = vmem_pmd_alloc();
217 			if (!pm_dir)
218 				goto out;
219 			pud_populate(&init_mm, pu_dir, pm_dir);
220 		}
221 
222 		pm_dir = pmd_offset(pu_dir, address);
223 		if (pmd_none(*pm_dir)) {
224 #ifdef CONFIG_64BIT
225 			/* Use 1MB frames for vmemmap if available. We always
226 			 * use large frames even if they are only partially
227 			 * used.
228 			 * Otherwise we would have also page tables since
229 			 * vmemmap_populate gets called for each section
230 			 * separately. */
231 			if (MACHINE_HAS_EDAT1) {
232 				void *new_page;
233 
234 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
235 				if (!new_page)
236 					goto out;
237 				pmd_val(*pm_dir) = __pa(new_page) |
238 					_SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
239 					_SEGMENT_ENTRY_CO;
240 				address = (address + PMD_SIZE) & PMD_MASK;
241 				continue;
242 			}
243 #endif
244 			pt_dir = vmem_pte_alloc(address);
245 			if (!pt_dir)
246 				goto out;
247 			pmd_populate(&init_mm, pm_dir, pt_dir);
248 		} else if (pmd_large(*pm_dir)) {
249 			address = (address + PMD_SIZE) & PMD_MASK;
250 			continue;
251 		}
252 
253 		pt_dir = pte_offset_kernel(pm_dir, address);
254 		if (pte_none(*pt_dir)) {
255 			unsigned long new_page;
256 
257 			new_page =__pa(vmem_alloc_pages(0));
258 			if (!new_page)
259 				goto out;
260 			pte_val(*pt_dir) =
261 				__pa(new_page) | pgprot_val(PAGE_KERNEL);
262 		}
263 		address += PAGE_SIZE;
264 	}
265 	memset((void *)start, 0, end - start);
266 	ret = 0;
267 out:
268 	flush_tlb_kernel_range(start, end);
269 	return ret;
270 }
271 
272 void vmemmap_free(unsigned long start, unsigned long end)
273 {
274 }
275 
276 /*
277  * Add memory segment to the segment list if it doesn't overlap with
278  * an already present segment.
279  */
280 static int insert_memory_segment(struct memory_segment *seg)
281 {
282 	struct memory_segment *tmp;
283 
284 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
285 	    seg->start + seg->size < seg->start)
286 		return -ERANGE;
287 
288 	list_for_each_entry(tmp, &mem_segs, list) {
289 		if (seg->start >= tmp->start + tmp->size)
290 			continue;
291 		if (seg->start + seg->size <= tmp->start)
292 			continue;
293 		return -ENOSPC;
294 	}
295 	list_add(&seg->list, &mem_segs);
296 	return 0;
297 }
298 
299 /*
300  * Remove memory segment from the segment list.
301  */
302 static void remove_memory_segment(struct memory_segment *seg)
303 {
304 	list_del(&seg->list);
305 }
306 
307 static void __remove_shared_memory(struct memory_segment *seg)
308 {
309 	remove_memory_segment(seg);
310 	vmem_remove_range(seg->start, seg->size);
311 }
312 
313 int vmem_remove_mapping(unsigned long start, unsigned long size)
314 {
315 	struct memory_segment *seg;
316 	int ret;
317 
318 	mutex_lock(&vmem_mutex);
319 
320 	ret = -ENOENT;
321 	list_for_each_entry(seg, &mem_segs, list) {
322 		if (seg->start == start && seg->size == size)
323 			break;
324 	}
325 
326 	if (seg->start != start || seg->size != size)
327 		goto out;
328 
329 	ret = 0;
330 	__remove_shared_memory(seg);
331 	kfree(seg);
332 out:
333 	mutex_unlock(&vmem_mutex);
334 	return ret;
335 }
336 
337 int vmem_add_mapping(unsigned long start, unsigned long size)
338 {
339 	struct memory_segment *seg;
340 	int ret;
341 
342 	mutex_lock(&vmem_mutex);
343 	ret = -ENOMEM;
344 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
345 	if (!seg)
346 		goto out;
347 	seg->start = start;
348 	seg->size = size;
349 
350 	ret = insert_memory_segment(seg);
351 	if (ret)
352 		goto out_free;
353 
354 	ret = vmem_add_mem(start, size, 0);
355 	if (ret)
356 		goto out_remove;
357 	goto out;
358 
359 out_remove:
360 	__remove_shared_memory(seg);
361 out_free:
362 	kfree(seg);
363 out:
364 	mutex_unlock(&vmem_mutex);
365 	return ret;
366 }
367 
368 /*
369  * map whole physical memory to virtual memory (identity mapping)
370  * we reserve enough space in the vmalloc area for vmemmap to hotplug
371  * additional memory segments.
372  */
373 void __init vmem_map_init(void)
374 {
375 	unsigned long ro_start, ro_end;
376 	unsigned long start, end;
377 	int i;
378 
379 	ro_start = PFN_ALIGN((unsigned long)&_stext);
380 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
381 	for (i = 0; i < MEMORY_CHUNKS; i++) {
382 		if (!memory_chunk[i].size)
383 			continue;
384 		start = memory_chunk[i].addr;
385 		end = memory_chunk[i].addr + memory_chunk[i].size;
386 		if (start >= ro_end || end <= ro_start)
387 			vmem_add_mem(start, end - start, 0);
388 		else if (start >= ro_start && end <= ro_end)
389 			vmem_add_mem(start, end - start, 1);
390 		else if (start >= ro_start) {
391 			vmem_add_mem(start, ro_end - start, 1);
392 			vmem_add_mem(ro_end, end - ro_end, 0);
393 		} else if (end < ro_end) {
394 			vmem_add_mem(start, ro_start - start, 0);
395 			vmem_add_mem(ro_start, end - ro_start, 1);
396 		} else {
397 			vmem_add_mem(start, ro_start - start, 0);
398 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
399 			vmem_add_mem(ro_end, end - ro_end, 0);
400 		}
401 	}
402 }
403 
404 /*
405  * Convert memory chunk array to a memory segment list so there is a single
406  * list that contains both r/w memory and shared memory segments.
407  */
408 static int __init vmem_convert_memory_chunk(void)
409 {
410 	struct memory_segment *seg;
411 	int i;
412 
413 	mutex_lock(&vmem_mutex);
414 	for (i = 0; i < MEMORY_CHUNKS; i++) {
415 		if (!memory_chunk[i].size)
416 			continue;
417 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
418 		if (!seg)
419 			panic("Out of memory...\n");
420 		seg->start = memory_chunk[i].addr;
421 		seg->size = memory_chunk[i].size;
422 		insert_memory_segment(seg);
423 	}
424 	mutex_unlock(&vmem_mutex);
425 	return 0;
426 }
427 
428 core_initcall(vmem_convert_memory_chunk);
429