xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 22246614)
1 /*
2  *  arch/s390/mm/vmem.c
3  *
4  *    Copyright IBM Corp. 2006
5  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
6  */
7 
8 #include <linux/bootmem.h>
9 #include <linux/pfn.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/hugetlb.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19 
20 static DEFINE_MUTEX(vmem_mutex);
21 
22 struct memory_segment {
23 	struct list_head list;
24 	unsigned long start;
25 	unsigned long size;
26 };
27 
28 static LIST_HEAD(mem_segs);
29 
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32 	if (slab_is_available())
33 		return (void *)__get_free_pages(GFP_KERNEL, order);
34 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36 
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39 	pud_t *pud = NULL;
40 
41 #ifdef CONFIG_64BIT
42 	pud = vmem_alloc_pages(2);
43 	if (!pud)
44 		return NULL;
45 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47 	return pud;
48 }
49 
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52 	pmd_t *pmd = NULL;
53 
54 #ifdef CONFIG_64BIT
55 	pmd = vmem_alloc_pages(2);
56 	if (!pmd)
57 		return NULL;
58 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60 	return pmd;
61 }
62 
63 static pte_t __init_refok *vmem_pte_alloc(void)
64 {
65 	pte_t *pte;
66 
67 	if (slab_is_available())
68 		pte = (pte_t *) page_table_alloc(&init_mm);
69 	else
70 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
71 	if (!pte)
72 		return NULL;
73 	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
74 		    PTRS_PER_PTE * sizeof(pte_t));
75 	return pte;
76 }
77 
78 /*
79  * Add a physical memory range to the 1:1 mapping.
80  */
81 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
82 {
83 	unsigned long address;
84 	pgd_t *pg_dir;
85 	pud_t *pu_dir;
86 	pmd_t *pm_dir;
87 	pte_t *pt_dir;
88 	pte_t  pte;
89 	int ret = -ENOMEM;
90 
91 	for (address = start; address < start + size; address += PAGE_SIZE) {
92 		pg_dir = pgd_offset_k(address);
93 		if (pgd_none(*pg_dir)) {
94 			pu_dir = vmem_pud_alloc();
95 			if (!pu_dir)
96 				goto out;
97 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
98 		}
99 
100 		pu_dir = pud_offset(pg_dir, address);
101 		if (pud_none(*pu_dir)) {
102 			pm_dir = vmem_pmd_alloc();
103 			if (!pm_dir)
104 				goto out;
105 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
106 		}
107 
108 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
109 		pm_dir = pmd_offset(pu_dir, address);
110 
111 #ifdef __s390x__
112 		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
113 		    (address + HPAGE_SIZE <= start + size) &&
114 		    (address >= HPAGE_SIZE)) {
115 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
116 			pmd_val(*pm_dir) = pte_val(pte);
117 			address += HPAGE_SIZE - PAGE_SIZE;
118 			continue;
119 		}
120 #endif
121 		if (pmd_none(*pm_dir)) {
122 			pt_dir = vmem_pte_alloc();
123 			if (!pt_dir)
124 				goto out;
125 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
126 		}
127 
128 		pt_dir = pte_offset_kernel(pm_dir, address);
129 		*pt_dir = pte;
130 	}
131 	ret = 0;
132 out:
133 	flush_tlb_kernel_range(start, start + size);
134 	return ret;
135 }
136 
137 /*
138  * Remove a physical memory range from the 1:1 mapping.
139  * Currently only invalidates page table entries.
140  */
141 static void vmem_remove_range(unsigned long start, unsigned long size)
142 {
143 	unsigned long address;
144 	pgd_t *pg_dir;
145 	pud_t *pu_dir;
146 	pmd_t *pm_dir;
147 	pte_t *pt_dir;
148 	pte_t  pte;
149 
150 	pte_val(pte) = _PAGE_TYPE_EMPTY;
151 	for (address = start; address < start + size; address += PAGE_SIZE) {
152 		pg_dir = pgd_offset_k(address);
153 		pu_dir = pud_offset(pg_dir, address);
154 		if (pud_none(*pu_dir))
155 			continue;
156 		pm_dir = pmd_offset(pu_dir, address);
157 		if (pmd_none(*pm_dir))
158 			continue;
159 
160 		if (pmd_huge(*pm_dir)) {
161 			pmd_clear_kernel(pm_dir);
162 			address += HPAGE_SIZE - PAGE_SIZE;
163 			continue;
164 		}
165 
166 		pt_dir = pte_offset_kernel(pm_dir, address);
167 		*pt_dir = pte;
168 	}
169 	flush_tlb_kernel_range(start, start + size);
170 }
171 
172 /*
173  * Add a backed mem_map array to the virtual mem_map array.
174  */
175 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
176 {
177 	unsigned long address, start_addr, end_addr;
178 	pgd_t *pg_dir;
179 	pud_t *pu_dir;
180 	pmd_t *pm_dir;
181 	pte_t *pt_dir;
182 	pte_t  pte;
183 	int ret = -ENOMEM;
184 
185 	start_addr = (unsigned long) start;
186 	end_addr = (unsigned long) (start + nr);
187 
188 	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
189 		pg_dir = pgd_offset_k(address);
190 		if (pgd_none(*pg_dir)) {
191 			pu_dir = vmem_pud_alloc();
192 			if (!pu_dir)
193 				goto out;
194 			pgd_populate_kernel(&init_mm, pg_dir, pu_dir);
195 		}
196 
197 		pu_dir = pud_offset(pg_dir, address);
198 		if (pud_none(*pu_dir)) {
199 			pm_dir = vmem_pmd_alloc();
200 			if (!pm_dir)
201 				goto out;
202 			pud_populate_kernel(&init_mm, pu_dir, pm_dir);
203 		}
204 
205 		pm_dir = pmd_offset(pu_dir, address);
206 		if (pmd_none(*pm_dir)) {
207 			pt_dir = vmem_pte_alloc();
208 			if (!pt_dir)
209 				goto out;
210 			pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
211 		}
212 
213 		pt_dir = pte_offset_kernel(pm_dir, address);
214 		if (pte_none(*pt_dir)) {
215 			unsigned long new_page;
216 
217 			new_page =__pa(vmem_alloc_pages(0));
218 			if (!new_page)
219 				goto out;
220 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
221 			*pt_dir = pte;
222 		}
223 	}
224 	ret = 0;
225 out:
226 	flush_tlb_kernel_range(start_addr, end_addr);
227 	return ret;
228 }
229 
230 /*
231  * Add memory segment to the segment list if it doesn't overlap with
232  * an already present segment.
233  */
234 static int insert_memory_segment(struct memory_segment *seg)
235 {
236 	struct memory_segment *tmp;
237 
238 	if (seg->start + seg->size >= VMEM_MAX_PHYS ||
239 	    seg->start + seg->size < seg->start)
240 		return -ERANGE;
241 
242 	list_for_each_entry(tmp, &mem_segs, list) {
243 		if (seg->start >= tmp->start + tmp->size)
244 			continue;
245 		if (seg->start + seg->size <= tmp->start)
246 			continue;
247 		return -ENOSPC;
248 	}
249 	list_add(&seg->list, &mem_segs);
250 	return 0;
251 }
252 
253 /*
254  * Remove memory segment from the segment list.
255  */
256 static void remove_memory_segment(struct memory_segment *seg)
257 {
258 	list_del(&seg->list);
259 }
260 
261 static void __remove_shared_memory(struct memory_segment *seg)
262 {
263 	remove_memory_segment(seg);
264 	vmem_remove_range(seg->start, seg->size);
265 }
266 
267 int vmem_remove_mapping(unsigned long start, unsigned long size)
268 {
269 	struct memory_segment *seg;
270 	int ret;
271 
272 	mutex_lock(&vmem_mutex);
273 
274 	ret = -ENOENT;
275 	list_for_each_entry(seg, &mem_segs, list) {
276 		if (seg->start == start && seg->size == size)
277 			break;
278 	}
279 
280 	if (seg->start != start || seg->size != size)
281 		goto out;
282 
283 	ret = 0;
284 	__remove_shared_memory(seg);
285 	kfree(seg);
286 out:
287 	mutex_unlock(&vmem_mutex);
288 	return ret;
289 }
290 
291 int vmem_add_mapping(unsigned long start, unsigned long size)
292 {
293 	struct memory_segment *seg;
294 	int ret;
295 
296 	mutex_lock(&vmem_mutex);
297 	ret = -ENOMEM;
298 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
299 	if (!seg)
300 		goto out;
301 	seg->start = start;
302 	seg->size = size;
303 
304 	ret = insert_memory_segment(seg);
305 	if (ret)
306 		goto out_free;
307 
308 	ret = vmem_add_mem(start, size, 0);
309 	if (ret)
310 		goto out_remove;
311 	goto out;
312 
313 out_remove:
314 	__remove_shared_memory(seg);
315 out_free:
316 	kfree(seg);
317 out:
318 	mutex_unlock(&vmem_mutex);
319 	return ret;
320 }
321 
322 /*
323  * map whole physical memory to virtual memory (identity mapping)
324  * we reserve enough space in the vmalloc area for vmemmap to hotplug
325  * additional memory segments.
326  */
327 void __init vmem_map_init(void)
328 {
329 	unsigned long ro_start, ro_end;
330 	unsigned long start, end;
331 	int i;
332 
333 	INIT_LIST_HEAD(&init_mm.context.crst_list);
334 	INIT_LIST_HEAD(&init_mm.context.pgtable_list);
335 	init_mm.context.noexec = 0;
336 	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
337 	ro_end = PFN_ALIGN((unsigned long)&_eshared);
338 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
339 		start = memory_chunk[i].addr;
340 		end = memory_chunk[i].addr + memory_chunk[i].size;
341 		if (start >= ro_end || end <= ro_start)
342 			vmem_add_mem(start, end - start, 0);
343 		else if (start >= ro_start && end <= ro_end)
344 			vmem_add_mem(start, end - start, 1);
345 		else if (start >= ro_start) {
346 			vmem_add_mem(start, ro_end - start, 1);
347 			vmem_add_mem(ro_end, end - ro_end, 0);
348 		} else if (end < ro_end) {
349 			vmem_add_mem(start, ro_start - start, 0);
350 			vmem_add_mem(ro_start, end - ro_start, 1);
351 		} else {
352 			vmem_add_mem(start, ro_start - start, 0);
353 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
354 			vmem_add_mem(ro_end, end - ro_end, 0);
355 		}
356 	}
357 }
358 
359 /*
360  * Convert memory chunk array to a memory segment list so there is a single
361  * list that contains both r/w memory and shared memory segments.
362  */
363 static int __init vmem_convert_memory_chunk(void)
364 {
365 	struct memory_segment *seg;
366 	int i;
367 
368 	mutex_lock(&vmem_mutex);
369 	for (i = 0; i < MEMORY_CHUNKS; i++) {
370 		if (!memory_chunk[i].size)
371 			continue;
372 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
373 		if (!seg)
374 			panic("Out of memory...\n");
375 		seg->start = memory_chunk[i].addr;
376 		seg->size = memory_chunk[i].size;
377 		insert_memory_segment(seg);
378 	}
379 	mutex_unlock(&vmem_mutex);
380 	return 0;
381 }
382 
383 core_initcall(vmem_convert_memory_chunk);
384