xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 20a2742e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2006
4  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
5  */
6 
7 #include <linux/bootmem.h>
8 #include <linux/pfn.h>
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/list.h>
12 #include <linux/hugetlb.h>
13 #include <linux/slab.h>
14 #include <linux/memblock.h>
15 #include <asm/cacheflush.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/set_memory.h>
22 
23 static DEFINE_MUTEX(vmem_mutex);
24 
25 struct memory_segment {
26 	struct list_head list;
27 	unsigned long start;
28 	unsigned long size;
29 };
30 
31 static LIST_HEAD(mem_segs);
32 
33 static void __ref *vmem_alloc_pages(unsigned int order)
34 {
35 	unsigned long size = PAGE_SIZE << order;
36 
37 	if (slab_is_available())
38 		return (void *)__get_free_pages(GFP_KERNEL, order);
39 	return (void *) memblock_alloc(size, size);
40 }
41 
42 void *vmem_crst_alloc(unsigned long val)
43 {
44 	unsigned long *table;
45 
46 	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
47 	if (table)
48 		crst_table_init(table, val);
49 	return table;
50 }
51 
52 pte_t __ref *vmem_pte_alloc(void)
53 {
54 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
55 	pte_t *pte;
56 
57 	if (slab_is_available())
58 		pte = (pte_t *) page_table_alloc(&init_mm);
59 	else
60 		pte = (pte_t *) memblock_alloc(size, size);
61 	if (!pte)
62 		return NULL;
63 	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
64 	return pte;
65 }
66 
67 /*
68  * Add a physical memory range to the 1:1 mapping.
69  */
70 static int vmem_add_mem(unsigned long start, unsigned long size)
71 {
72 	unsigned long pgt_prot, sgt_prot, r3_prot;
73 	unsigned long pages4k, pages1m, pages2g;
74 	unsigned long end = start + size;
75 	unsigned long address = start;
76 	pgd_t *pg_dir;
77 	p4d_t *p4_dir;
78 	pud_t *pu_dir;
79 	pmd_t *pm_dir;
80 	pte_t *pt_dir;
81 	int ret = -ENOMEM;
82 
83 	pgt_prot = pgprot_val(PAGE_KERNEL);
84 	sgt_prot = pgprot_val(SEGMENT_KERNEL);
85 	r3_prot = pgprot_val(REGION3_KERNEL);
86 	if (!MACHINE_HAS_NX) {
87 		pgt_prot &= ~_PAGE_NOEXEC;
88 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
89 		r3_prot &= ~_REGION_ENTRY_NOEXEC;
90 	}
91 	pages4k = pages1m = pages2g = 0;
92 	while (address < end) {
93 		pg_dir = pgd_offset_k(address);
94 		if (pgd_none(*pg_dir)) {
95 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
96 			if (!p4_dir)
97 				goto out;
98 			pgd_populate(&init_mm, pg_dir, p4_dir);
99 		}
100 		p4_dir = p4d_offset(pg_dir, address);
101 		if (p4d_none(*p4_dir)) {
102 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
103 			if (!pu_dir)
104 				goto out;
105 			p4d_populate(&init_mm, p4_dir, pu_dir);
106 		}
107 		pu_dir = pud_offset(p4_dir, address);
108 		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
109 		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
110 		     !debug_pagealloc_enabled()) {
111 			pud_val(*pu_dir) = address | r3_prot;
112 			address += PUD_SIZE;
113 			pages2g++;
114 			continue;
115 		}
116 		if (pud_none(*pu_dir)) {
117 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
118 			if (!pm_dir)
119 				goto out;
120 			pud_populate(&init_mm, pu_dir, pm_dir);
121 		}
122 		pm_dir = pmd_offset(pu_dir, address);
123 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
124 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
125 		    !debug_pagealloc_enabled()) {
126 			pmd_val(*pm_dir) = address | sgt_prot;
127 			address += PMD_SIZE;
128 			pages1m++;
129 			continue;
130 		}
131 		if (pmd_none(*pm_dir)) {
132 			pt_dir = vmem_pte_alloc();
133 			if (!pt_dir)
134 				goto out;
135 			pmd_populate(&init_mm, pm_dir, pt_dir);
136 		}
137 
138 		pt_dir = pte_offset_kernel(pm_dir, address);
139 		pte_val(*pt_dir) = address | pgt_prot;
140 		address += PAGE_SIZE;
141 		pages4k++;
142 	}
143 	ret = 0;
144 out:
145 	update_page_count(PG_DIRECT_MAP_4K, pages4k);
146 	update_page_count(PG_DIRECT_MAP_1M, pages1m);
147 	update_page_count(PG_DIRECT_MAP_2G, pages2g);
148 	return ret;
149 }
150 
151 /*
152  * Remove a physical memory range from the 1:1 mapping.
153  * Currently only invalidates page table entries.
154  */
155 static void vmem_remove_range(unsigned long start, unsigned long size)
156 {
157 	unsigned long pages4k, pages1m, pages2g;
158 	unsigned long end = start + size;
159 	unsigned long address = start;
160 	pgd_t *pg_dir;
161 	p4d_t *p4_dir;
162 	pud_t *pu_dir;
163 	pmd_t *pm_dir;
164 	pte_t *pt_dir;
165 
166 	pages4k = pages1m = pages2g = 0;
167 	while (address < end) {
168 		pg_dir = pgd_offset_k(address);
169 		if (pgd_none(*pg_dir)) {
170 			address += PGDIR_SIZE;
171 			continue;
172 		}
173 		p4_dir = p4d_offset(pg_dir, address);
174 		if (p4d_none(*p4_dir)) {
175 			address += P4D_SIZE;
176 			continue;
177 		}
178 		pu_dir = pud_offset(p4_dir, address);
179 		if (pud_none(*pu_dir)) {
180 			address += PUD_SIZE;
181 			continue;
182 		}
183 		if (pud_large(*pu_dir)) {
184 			pud_clear(pu_dir);
185 			address += PUD_SIZE;
186 			pages2g++;
187 			continue;
188 		}
189 		pm_dir = pmd_offset(pu_dir, address);
190 		if (pmd_none(*pm_dir)) {
191 			address += PMD_SIZE;
192 			continue;
193 		}
194 		if (pmd_large(*pm_dir)) {
195 			pmd_clear(pm_dir);
196 			address += PMD_SIZE;
197 			pages1m++;
198 			continue;
199 		}
200 		pt_dir = pte_offset_kernel(pm_dir, address);
201 		pte_clear(&init_mm, address, pt_dir);
202 		address += PAGE_SIZE;
203 		pages4k++;
204 	}
205 	flush_tlb_kernel_range(start, end);
206 	update_page_count(PG_DIRECT_MAP_4K, -pages4k);
207 	update_page_count(PG_DIRECT_MAP_1M, -pages1m);
208 	update_page_count(PG_DIRECT_MAP_2G, -pages2g);
209 }
210 
211 /*
212  * Add a backed mem_map array to the virtual mem_map array.
213  */
214 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
215 {
216 	unsigned long pgt_prot, sgt_prot;
217 	unsigned long address = start;
218 	pgd_t *pg_dir;
219 	p4d_t *p4_dir;
220 	pud_t *pu_dir;
221 	pmd_t *pm_dir;
222 	pte_t *pt_dir;
223 	int ret = -ENOMEM;
224 
225 	pgt_prot = pgprot_val(PAGE_KERNEL);
226 	sgt_prot = pgprot_val(SEGMENT_KERNEL);
227 	if (!MACHINE_HAS_NX) {
228 		pgt_prot &= ~_PAGE_NOEXEC;
229 		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
230 	}
231 	for (address = start; address < end;) {
232 		pg_dir = pgd_offset_k(address);
233 		if (pgd_none(*pg_dir)) {
234 			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
235 			if (!p4_dir)
236 				goto out;
237 			pgd_populate(&init_mm, pg_dir, p4_dir);
238 		}
239 
240 		p4_dir = p4d_offset(pg_dir, address);
241 		if (p4d_none(*p4_dir)) {
242 			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
243 			if (!pu_dir)
244 				goto out;
245 			p4d_populate(&init_mm, p4_dir, pu_dir);
246 		}
247 
248 		pu_dir = pud_offset(p4_dir, address);
249 		if (pud_none(*pu_dir)) {
250 			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
251 			if (!pm_dir)
252 				goto out;
253 			pud_populate(&init_mm, pu_dir, pm_dir);
254 		}
255 
256 		pm_dir = pmd_offset(pu_dir, address);
257 		if (pmd_none(*pm_dir)) {
258 			/* Use 1MB frames for vmemmap if available. We always
259 			 * use large frames even if they are only partially
260 			 * used.
261 			 * Otherwise we would have also page tables since
262 			 * vmemmap_populate gets called for each section
263 			 * separately. */
264 			if (MACHINE_HAS_EDAT1) {
265 				void *new_page;
266 
267 				new_page = vmemmap_alloc_block(PMD_SIZE, node);
268 				if (!new_page)
269 					goto out;
270 				pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
271 				address = (address + PMD_SIZE) & PMD_MASK;
272 				continue;
273 			}
274 			pt_dir = vmem_pte_alloc();
275 			if (!pt_dir)
276 				goto out;
277 			pmd_populate(&init_mm, pm_dir, pt_dir);
278 		} else if (pmd_large(*pm_dir)) {
279 			address = (address + PMD_SIZE) & PMD_MASK;
280 			continue;
281 		}
282 
283 		pt_dir = pte_offset_kernel(pm_dir, address);
284 		if (pte_none(*pt_dir)) {
285 			void *new_page;
286 
287 			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
288 			if (!new_page)
289 				goto out;
290 			pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
291 		}
292 		address += PAGE_SIZE;
293 	}
294 	ret = 0;
295 out:
296 	return ret;
297 }
298 
299 void vmemmap_free(unsigned long start, unsigned long end)
300 {
301 }
302 
303 /*
304  * Add memory segment to the segment list if it doesn't overlap with
305  * an already present segment.
306  */
307 static int insert_memory_segment(struct memory_segment *seg)
308 {
309 	struct memory_segment *tmp;
310 
311 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
312 	    seg->start + seg->size < seg->start)
313 		return -ERANGE;
314 
315 	list_for_each_entry(tmp, &mem_segs, list) {
316 		if (seg->start >= tmp->start + tmp->size)
317 			continue;
318 		if (seg->start + seg->size <= tmp->start)
319 			continue;
320 		return -ENOSPC;
321 	}
322 	list_add(&seg->list, &mem_segs);
323 	return 0;
324 }
325 
326 /*
327  * Remove memory segment from the segment list.
328  */
329 static void remove_memory_segment(struct memory_segment *seg)
330 {
331 	list_del(&seg->list);
332 }
333 
334 static void __remove_shared_memory(struct memory_segment *seg)
335 {
336 	remove_memory_segment(seg);
337 	vmem_remove_range(seg->start, seg->size);
338 }
339 
340 int vmem_remove_mapping(unsigned long start, unsigned long size)
341 {
342 	struct memory_segment *seg;
343 	int ret;
344 
345 	mutex_lock(&vmem_mutex);
346 
347 	ret = -ENOENT;
348 	list_for_each_entry(seg, &mem_segs, list) {
349 		if (seg->start == start && seg->size == size)
350 			break;
351 	}
352 
353 	if (seg->start != start || seg->size != size)
354 		goto out;
355 
356 	ret = 0;
357 	__remove_shared_memory(seg);
358 	kfree(seg);
359 out:
360 	mutex_unlock(&vmem_mutex);
361 	return ret;
362 }
363 
364 int vmem_add_mapping(unsigned long start, unsigned long size)
365 {
366 	struct memory_segment *seg;
367 	int ret;
368 
369 	mutex_lock(&vmem_mutex);
370 	ret = -ENOMEM;
371 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372 	if (!seg)
373 		goto out;
374 	seg->start = start;
375 	seg->size = size;
376 
377 	ret = insert_memory_segment(seg);
378 	if (ret)
379 		goto out_free;
380 
381 	ret = vmem_add_mem(start, size);
382 	if (ret)
383 		goto out_remove;
384 	goto out;
385 
386 out_remove:
387 	__remove_shared_memory(seg);
388 out_free:
389 	kfree(seg);
390 out:
391 	mutex_unlock(&vmem_mutex);
392 	return ret;
393 }
394 
395 /*
396  * map whole physical memory to virtual memory (identity mapping)
397  * we reserve enough space in the vmalloc area for vmemmap to hotplug
398  * additional memory segments.
399  */
400 void __init vmem_map_init(void)
401 {
402 	struct memblock_region *reg;
403 
404 	for_each_memblock(memory, reg)
405 		vmem_add_mem(reg->base, reg->size);
406 	__set_memory((unsigned long)_stext,
407 		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
408 		     SET_MEMORY_RO | SET_MEMORY_X);
409 	__set_memory((unsigned long)_etext,
410 		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
411 		     SET_MEMORY_RO);
412 	__set_memory((unsigned long)_sinittext,
413 		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
414 		     SET_MEMORY_RO | SET_MEMORY_X);
415 	pr_info("Write protected kernel read-only data: %luk\n",
416 		(unsigned long)(__end_rodata - _stext) >> 10);
417 }
418 
419 /*
420  * Convert memblock.memory  to a memory segment list so there is a single
421  * list that contains all memory segments.
422  */
423 static int __init vmem_convert_memory_chunk(void)
424 {
425 	struct memblock_region *reg;
426 	struct memory_segment *seg;
427 
428 	mutex_lock(&vmem_mutex);
429 	for_each_memblock(memory, reg) {
430 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
431 		if (!seg)
432 			panic("Out of memory...\n");
433 		seg->start = reg->base;
434 		seg->size = reg->size;
435 		insert_memory_segment(seg);
436 	}
437 	mutex_unlock(&vmem_mutex);
438 	return 0;
439 }
440 
441 core_initcall(vmem_convert_memory_chunk);
442