xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 1bffcea4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Copyright IBM Corp. 2006
4  */
5 
6 #include <linux/memory_hotplug.h>
7 #include <linux/memblock.h>
8 #include <linux/pfn.h>
9 #include <linux/mm.h>
10 #include <linux/init.h>
11 #include <linux/list.h>
12 #include <linux/hugetlb.h>
13 #include <linux/slab.h>
14 #include <linux/sort.h>
15 #include <asm/cacheflush.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/pgalloc.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/sections.h>
21 #include <asm/set_memory.h>
22 
23 static DEFINE_MUTEX(vmem_mutex);
24 
25 static void __ref *vmem_alloc_pages(unsigned int order)
26 {
27 	unsigned long size = PAGE_SIZE << order;
28 
29 	if (slab_is_available())
30 		return (void *)__get_free_pages(GFP_KERNEL, order);
31 	return memblock_alloc(size, size);
32 }
33 
34 static void vmem_free_pages(unsigned long addr, int order)
35 {
36 	/* We don't expect boot memory to be removed ever. */
37 	if (!slab_is_available() ||
38 	    WARN_ON_ONCE(PageReserved(virt_to_page(addr))))
39 		return;
40 	free_pages(addr, order);
41 }
42 
43 void *vmem_crst_alloc(unsigned long val)
44 {
45 	unsigned long *table;
46 
47 	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
48 	if (table)
49 		crst_table_init(table, val);
50 	return table;
51 }
52 
53 pte_t __ref *vmem_pte_alloc(void)
54 {
55 	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
56 	pte_t *pte;
57 
58 	if (slab_is_available())
59 		pte = (pte_t *) page_table_alloc(&init_mm);
60 	else
61 		pte = (pte_t *) memblock_alloc(size, size);
62 	if (!pte)
63 		return NULL;
64 	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
65 	return pte;
66 }
67 
68 static void vmem_pte_free(unsigned long *table)
69 {
70 	/* We don't expect boot memory to be removed ever. */
71 	if (!slab_is_available() ||
72 	    WARN_ON_ONCE(PageReserved(virt_to_page(table))))
73 		return;
74 	page_table_free(&init_mm, table);
75 }
76 
77 #define PAGE_UNUSED 0xFD
78 
79 /*
80  * The unused vmemmap range, which was not yet memset(PAGE_UNUSED) ranges
81  * from unused_sub_pmd_start to next PMD_SIZE boundary.
82  */
83 static unsigned long unused_sub_pmd_start;
84 
85 static void vmemmap_flush_unused_sub_pmd(void)
86 {
87 	if (!unused_sub_pmd_start)
88 		return;
89 	memset((void *)unused_sub_pmd_start, PAGE_UNUSED,
90 	       ALIGN(unused_sub_pmd_start, PMD_SIZE) - unused_sub_pmd_start);
91 	unused_sub_pmd_start = 0;
92 }
93 
94 static void vmemmap_mark_sub_pmd_used(unsigned long start, unsigned long end)
95 {
96 	/*
97 	 * As we expect to add in the same granularity as we remove, it's
98 	 * sufficient to mark only some piece used to block the memmap page from
99 	 * getting removed (just in case the memmap never gets initialized,
100 	 * e.g., because the memory block never gets onlined).
101 	 */
102 	memset((void *)start, 0, sizeof(struct page));
103 }
104 
105 static void vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
106 {
107 	/*
108 	 * We only optimize if the new used range directly follows the
109 	 * previously unused range (esp., when populating consecutive sections).
110 	 */
111 	if (unused_sub_pmd_start == start) {
112 		unused_sub_pmd_start = end;
113 		if (likely(IS_ALIGNED(unused_sub_pmd_start, PMD_SIZE)))
114 			unused_sub_pmd_start = 0;
115 		return;
116 	}
117 	vmemmap_flush_unused_sub_pmd();
118 	vmemmap_mark_sub_pmd_used(start, end);
119 }
120 
121 static void vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
122 {
123 	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
124 
125 	vmemmap_flush_unused_sub_pmd();
126 
127 	/* Could be our memmap page is filled with PAGE_UNUSED already ... */
128 	vmemmap_mark_sub_pmd_used(start, end);
129 
130 	/* Mark the unused parts of the new memmap page PAGE_UNUSED. */
131 	if (!IS_ALIGNED(start, PMD_SIZE))
132 		memset((void *)page, PAGE_UNUSED, start - page);
133 	/*
134 	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
135 	 * consecutive sections. Remember for the last added PMD the last
136 	 * unused range in the populated PMD.
137 	 */
138 	if (!IS_ALIGNED(end, PMD_SIZE))
139 		unused_sub_pmd_start = end;
140 }
141 
142 /* Returns true if the PMD is completely unused and can be freed. */
143 static bool vmemmap_unuse_sub_pmd(unsigned long start, unsigned long end)
144 {
145 	unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
146 
147 	vmemmap_flush_unused_sub_pmd();
148 	memset((void *)start, PAGE_UNUSED, end - start);
149 	return !memchr_inv((void *)page, PAGE_UNUSED, PMD_SIZE);
150 }
151 
152 /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
153 static int __ref modify_pte_table(pmd_t *pmd, unsigned long addr,
154 				  unsigned long end, bool add, bool direct)
155 {
156 	unsigned long prot, pages = 0;
157 	int ret = -ENOMEM;
158 	pte_t *pte;
159 
160 	prot = pgprot_val(PAGE_KERNEL);
161 	if (!MACHINE_HAS_NX)
162 		prot &= ~_PAGE_NOEXEC;
163 
164 	pte = pte_offset_kernel(pmd, addr);
165 	for (; addr < end; addr += PAGE_SIZE, pte++) {
166 		if (!add) {
167 			if (pte_none(*pte))
168 				continue;
169 			if (!direct)
170 				vmem_free_pages((unsigned long) pfn_to_virt(pte_pfn(*pte)), 0);
171 			pte_clear(&init_mm, addr, pte);
172 		} else if (pte_none(*pte)) {
173 			if (!direct) {
174 				void *new_page = vmemmap_alloc_block(PAGE_SIZE, NUMA_NO_NODE);
175 
176 				if (!new_page)
177 					goto out;
178 				set_pte(pte, __pte(__pa(new_page) | prot));
179 			} else {
180 				set_pte(pte, __pte(__pa(addr) | prot));
181 			}
182 		} else {
183 			continue;
184 		}
185 		pages++;
186 	}
187 	ret = 0;
188 out:
189 	if (direct)
190 		update_page_count(PG_DIRECT_MAP_4K, add ? pages : -pages);
191 	return ret;
192 }
193 
194 static void try_free_pte_table(pmd_t *pmd, unsigned long start)
195 {
196 	pte_t *pte;
197 	int i;
198 
199 	/* We can safely assume this is fully in 1:1 mapping & vmemmap area */
200 	pte = pte_offset_kernel(pmd, start);
201 	for (i = 0; i < PTRS_PER_PTE; i++, pte++) {
202 		if (!pte_none(*pte))
203 			return;
204 	}
205 	vmem_pte_free((unsigned long *) pmd_deref(*pmd));
206 	pmd_clear(pmd);
207 }
208 
209 /* __ref: we'll only call vmemmap_alloc_block() via vmemmap_populate() */
210 static int __ref modify_pmd_table(pud_t *pud, unsigned long addr,
211 				  unsigned long end, bool add, bool direct)
212 {
213 	unsigned long next, prot, pages = 0;
214 	int ret = -ENOMEM;
215 	pmd_t *pmd;
216 	pte_t *pte;
217 
218 	prot = pgprot_val(SEGMENT_KERNEL);
219 	if (!MACHINE_HAS_NX)
220 		prot &= ~_SEGMENT_ENTRY_NOEXEC;
221 
222 	pmd = pmd_offset(pud, addr);
223 	for (; addr < end; addr = next, pmd++) {
224 		next = pmd_addr_end(addr, end);
225 		if (!add) {
226 			if (pmd_none(*pmd))
227 				continue;
228 			if (pmd_large(*pmd)) {
229 				if (IS_ALIGNED(addr, PMD_SIZE) &&
230 				    IS_ALIGNED(next, PMD_SIZE)) {
231 					if (!direct)
232 						vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
233 					pmd_clear(pmd);
234 					pages++;
235 				} else if (!direct && vmemmap_unuse_sub_pmd(addr, next)) {
236 					vmem_free_pages(pmd_deref(*pmd), get_order(PMD_SIZE));
237 					pmd_clear(pmd);
238 				}
239 				continue;
240 			}
241 		} else if (pmd_none(*pmd)) {
242 			if (IS_ALIGNED(addr, PMD_SIZE) &&
243 			    IS_ALIGNED(next, PMD_SIZE) &&
244 			    MACHINE_HAS_EDAT1 && direct &&
245 			    !debug_pagealloc_enabled()) {
246 				set_pmd(pmd, __pmd(__pa(addr) | prot));
247 				pages++;
248 				continue;
249 			} else if (!direct && MACHINE_HAS_EDAT1) {
250 				void *new_page;
251 
252 				/*
253 				 * Use 1MB frames for vmemmap if available. We
254 				 * always use large frames even if they are only
255 				 * partially used. Otherwise we would have also
256 				 * page tables since vmemmap_populate gets
257 				 * called for each section separately.
258 				 */
259 				new_page = vmemmap_alloc_block(PMD_SIZE, NUMA_NO_NODE);
260 				if (new_page) {
261 					set_pmd(pmd, __pmd(__pa(new_page) | prot));
262 					if (!IS_ALIGNED(addr, PMD_SIZE) ||
263 					    !IS_ALIGNED(next, PMD_SIZE)) {
264 						vmemmap_use_new_sub_pmd(addr, next);
265 					}
266 					continue;
267 				}
268 			}
269 			pte = vmem_pte_alloc();
270 			if (!pte)
271 				goto out;
272 			pmd_populate(&init_mm, pmd, pte);
273 		} else if (pmd_large(*pmd)) {
274 			if (!direct)
275 				vmemmap_use_sub_pmd(addr, next);
276 			continue;
277 		}
278 		ret = modify_pte_table(pmd, addr, next, add, direct);
279 		if (ret)
280 			goto out;
281 		if (!add)
282 			try_free_pte_table(pmd, addr & PMD_MASK);
283 	}
284 	ret = 0;
285 out:
286 	if (direct)
287 		update_page_count(PG_DIRECT_MAP_1M, add ? pages : -pages);
288 	return ret;
289 }
290 
291 static void try_free_pmd_table(pud_t *pud, unsigned long start)
292 {
293 	const unsigned long end = start + PUD_SIZE;
294 	pmd_t *pmd;
295 	int i;
296 
297 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
298 	if (end > VMALLOC_START)
299 		return;
300 
301 	pmd = pmd_offset(pud, start);
302 	for (i = 0; i < PTRS_PER_PMD; i++, pmd++)
303 		if (!pmd_none(*pmd))
304 			return;
305 	vmem_free_pages(pud_deref(*pud), CRST_ALLOC_ORDER);
306 	pud_clear(pud);
307 }
308 
309 static int modify_pud_table(p4d_t *p4d, unsigned long addr, unsigned long end,
310 			    bool add, bool direct)
311 {
312 	unsigned long next, prot, pages = 0;
313 	int ret = -ENOMEM;
314 	pud_t *pud;
315 	pmd_t *pmd;
316 
317 	prot = pgprot_val(REGION3_KERNEL);
318 	if (!MACHINE_HAS_NX)
319 		prot &= ~_REGION_ENTRY_NOEXEC;
320 	pud = pud_offset(p4d, addr);
321 	for (; addr < end; addr = next, pud++) {
322 		next = pud_addr_end(addr, end);
323 		if (!add) {
324 			if (pud_none(*pud))
325 				continue;
326 			if (pud_large(*pud)) {
327 				if (IS_ALIGNED(addr, PUD_SIZE) &&
328 				    IS_ALIGNED(next, PUD_SIZE)) {
329 					pud_clear(pud);
330 					pages++;
331 				}
332 				continue;
333 			}
334 		} else if (pud_none(*pud)) {
335 			if (IS_ALIGNED(addr, PUD_SIZE) &&
336 			    IS_ALIGNED(next, PUD_SIZE) &&
337 			    MACHINE_HAS_EDAT2 && direct &&
338 			    !debug_pagealloc_enabled()) {
339 				set_pud(pud, __pud(__pa(addr) | prot));
340 				pages++;
341 				continue;
342 			}
343 			pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
344 			if (!pmd)
345 				goto out;
346 			pud_populate(&init_mm, pud, pmd);
347 		} else if (pud_large(*pud)) {
348 			continue;
349 		}
350 		ret = modify_pmd_table(pud, addr, next, add, direct);
351 		if (ret)
352 			goto out;
353 		if (!add)
354 			try_free_pmd_table(pud, addr & PUD_MASK);
355 	}
356 	ret = 0;
357 out:
358 	if (direct)
359 		update_page_count(PG_DIRECT_MAP_2G, add ? pages : -pages);
360 	return ret;
361 }
362 
363 static void try_free_pud_table(p4d_t *p4d, unsigned long start)
364 {
365 	const unsigned long end = start + P4D_SIZE;
366 	pud_t *pud;
367 	int i;
368 
369 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
370 	if (end > VMALLOC_START)
371 		return;
372 
373 	pud = pud_offset(p4d, start);
374 	for (i = 0; i < PTRS_PER_PUD; i++, pud++) {
375 		if (!pud_none(*pud))
376 			return;
377 	}
378 	vmem_free_pages(p4d_deref(*p4d), CRST_ALLOC_ORDER);
379 	p4d_clear(p4d);
380 }
381 
382 static int modify_p4d_table(pgd_t *pgd, unsigned long addr, unsigned long end,
383 			    bool add, bool direct)
384 {
385 	unsigned long next;
386 	int ret = -ENOMEM;
387 	p4d_t *p4d;
388 	pud_t *pud;
389 
390 	p4d = p4d_offset(pgd, addr);
391 	for (; addr < end; addr = next, p4d++) {
392 		next = p4d_addr_end(addr, end);
393 		if (!add) {
394 			if (p4d_none(*p4d))
395 				continue;
396 		} else if (p4d_none(*p4d)) {
397 			pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
398 			if (!pud)
399 				goto out;
400 			p4d_populate(&init_mm, p4d, pud);
401 		}
402 		ret = modify_pud_table(p4d, addr, next, add, direct);
403 		if (ret)
404 			goto out;
405 		if (!add)
406 			try_free_pud_table(p4d, addr & P4D_MASK);
407 	}
408 	ret = 0;
409 out:
410 	return ret;
411 }
412 
413 static void try_free_p4d_table(pgd_t *pgd, unsigned long start)
414 {
415 	const unsigned long end = start + PGDIR_SIZE;
416 	p4d_t *p4d;
417 	int i;
418 
419 	/* Don't mess with any tables not fully in 1:1 mapping & vmemmap area */
420 	if (end > VMALLOC_START)
421 		return;
422 
423 	p4d = p4d_offset(pgd, start);
424 	for (i = 0; i < PTRS_PER_P4D; i++, p4d++) {
425 		if (!p4d_none(*p4d))
426 			return;
427 	}
428 	vmem_free_pages(pgd_deref(*pgd), CRST_ALLOC_ORDER);
429 	pgd_clear(pgd);
430 }
431 
432 static int modify_pagetable(unsigned long start, unsigned long end, bool add,
433 			    bool direct)
434 {
435 	unsigned long addr, next;
436 	int ret = -ENOMEM;
437 	pgd_t *pgd;
438 	p4d_t *p4d;
439 
440 	if (WARN_ON_ONCE(!PAGE_ALIGNED(start | end)))
441 		return -EINVAL;
442 	for (addr = start; addr < end; addr = next) {
443 		next = pgd_addr_end(addr, end);
444 		pgd = pgd_offset_k(addr);
445 
446 		if (!add) {
447 			if (pgd_none(*pgd))
448 				continue;
449 		} else if (pgd_none(*pgd)) {
450 			p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
451 			if (!p4d)
452 				goto out;
453 			pgd_populate(&init_mm, pgd, p4d);
454 		}
455 		ret = modify_p4d_table(pgd, addr, next, add, direct);
456 		if (ret)
457 			goto out;
458 		if (!add)
459 			try_free_p4d_table(pgd, addr & PGDIR_MASK);
460 	}
461 	ret = 0;
462 out:
463 	if (!add)
464 		flush_tlb_kernel_range(start, end);
465 	return ret;
466 }
467 
468 static int add_pagetable(unsigned long start, unsigned long end, bool direct)
469 {
470 	return modify_pagetable(start, end, true, direct);
471 }
472 
473 static int remove_pagetable(unsigned long start, unsigned long end, bool direct)
474 {
475 	return modify_pagetable(start, end, false, direct);
476 }
477 
478 /*
479  * Add a physical memory range to the 1:1 mapping.
480  */
481 static int vmem_add_range(unsigned long start, unsigned long size)
482 {
483 	return add_pagetable(start, start + size, true);
484 }
485 
486 /*
487  * Remove a physical memory range from the 1:1 mapping.
488  */
489 static void vmem_remove_range(unsigned long start, unsigned long size)
490 {
491 	remove_pagetable(start, start + size, true);
492 }
493 
494 /*
495  * Add a backed mem_map array to the virtual mem_map array.
496  */
497 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
498 			       struct vmem_altmap *altmap)
499 {
500 	int ret;
501 
502 	mutex_lock(&vmem_mutex);
503 	/* We don't care about the node, just use NUMA_NO_NODE on allocations */
504 	ret = add_pagetable(start, end, false);
505 	if (ret)
506 		remove_pagetable(start, end, false);
507 	mutex_unlock(&vmem_mutex);
508 	return ret;
509 }
510 
511 void vmemmap_free(unsigned long start, unsigned long end,
512 		  struct vmem_altmap *altmap)
513 {
514 	mutex_lock(&vmem_mutex);
515 	remove_pagetable(start, end, false);
516 	mutex_unlock(&vmem_mutex);
517 }
518 
519 void vmem_remove_mapping(unsigned long start, unsigned long size)
520 {
521 	mutex_lock(&vmem_mutex);
522 	vmem_remove_range(start, size);
523 	mutex_unlock(&vmem_mutex);
524 }
525 
526 struct range arch_get_mappable_range(void)
527 {
528 	struct range mhp_range;
529 
530 	mhp_range.start = 0;
531 	mhp_range.end =  VMEM_MAX_PHYS - 1;
532 	return mhp_range;
533 }
534 
535 int vmem_add_mapping(unsigned long start, unsigned long size)
536 {
537 	struct range range = arch_get_mappable_range();
538 	int ret;
539 
540 	if (start < range.start ||
541 	    start + size > range.end + 1 ||
542 	    start + size < start)
543 		return -ERANGE;
544 
545 	mutex_lock(&vmem_mutex);
546 	ret = vmem_add_range(start, size);
547 	if (ret)
548 		vmem_remove_range(start, size);
549 	mutex_unlock(&vmem_mutex);
550 	return ret;
551 }
552 
553 /*
554  * Allocate new or return existing page-table entry, but do not map it
555  * to any physical address. If missing, allocate segment- and region-
556  * table entries along. Meeting a large segment- or region-table entry
557  * while traversing is an error, since the function is expected to be
558  * called against virtual regions reserverd for 4KB mappings only.
559  */
560 pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc)
561 {
562 	pte_t *ptep = NULL;
563 	pgd_t *pgd;
564 	p4d_t *p4d;
565 	pud_t *pud;
566 	pmd_t *pmd;
567 	pte_t *pte;
568 
569 	pgd = pgd_offset_k(addr);
570 	if (pgd_none(*pgd)) {
571 		if (!alloc)
572 			goto out;
573 		p4d = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
574 		if (!p4d)
575 			goto out;
576 		pgd_populate(&init_mm, pgd, p4d);
577 	}
578 	p4d = p4d_offset(pgd, addr);
579 	if (p4d_none(*p4d)) {
580 		if (!alloc)
581 			goto out;
582 		pud = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
583 		if (!pud)
584 			goto out;
585 		p4d_populate(&init_mm, p4d, pud);
586 	}
587 	pud = pud_offset(p4d, addr);
588 	if (pud_none(*pud)) {
589 		if (!alloc)
590 			goto out;
591 		pmd = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
592 		if (!pmd)
593 			goto out;
594 		pud_populate(&init_mm, pud, pmd);
595 	} else if (WARN_ON_ONCE(pud_large(*pud))) {
596 		goto out;
597 	}
598 	pmd = pmd_offset(pud, addr);
599 	if (pmd_none(*pmd)) {
600 		if (!alloc)
601 			goto out;
602 		pte = vmem_pte_alloc();
603 		if (!pte)
604 			goto out;
605 		pmd_populate(&init_mm, pmd, pte);
606 	} else if (WARN_ON_ONCE(pmd_large(*pmd))) {
607 		goto out;
608 	}
609 	ptep = pte_offset_kernel(pmd, addr);
610 out:
611 	return ptep;
612 }
613 
614 int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc)
615 {
616 	pte_t *ptep, pte;
617 
618 	if (!IS_ALIGNED(addr, PAGE_SIZE))
619 		return -EINVAL;
620 	ptep = vmem_get_alloc_pte(addr, alloc);
621 	if (!ptep)
622 		return -ENOMEM;
623 	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
624 	pte = mk_pte_phys(phys, prot);
625 	set_pte(ptep, pte);
626 	return 0;
627 }
628 
629 int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot)
630 {
631 	int rc;
632 
633 	mutex_lock(&vmem_mutex);
634 	rc = __vmem_map_4k_page(addr, phys, prot, true);
635 	mutex_unlock(&vmem_mutex);
636 	return rc;
637 }
638 
639 void vmem_unmap_4k_page(unsigned long addr)
640 {
641 	pte_t *ptep;
642 
643 	mutex_lock(&vmem_mutex);
644 	ptep = virt_to_kpte(addr);
645 	__ptep_ipte(addr, ptep, 0, 0, IPTE_GLOBAL);
646 	pte_clear(&init_mm, addr, ptep);
647 	mutex_unlock(&vmem_mutex);
648 }
649 
650 static int __init memblock_region_cmp(const void *a, const void *b)
651 {
652 	const struct memblock_region *r1 = a;
653 	const struct memblock_region *r2 = b;
654 
655 	if (r1->base < r2->base)
656 		return -1;
657 	if (r1->base > r2->base)
658 		return 1;
659 	return 0;
660 }
661 
662 static void __init memblock_region_swap(void *a, void *b, int size)
663 {
664 	swap(*(struct memblock_region *)a, *(struct memblock_region *)b);
665 }
666 
667 /*
668  * map whole physical memory to virtual memory (identity mapping)
669  * we reserve enough space in the vmalloc area for vmemmap to hotplug
670  * additional memory segments.
671  */
672 void __init vmem_map_init(void)
673 {
674 	struct memblock_region memory_rwx_regions[] = {
675 		{
676 			.base	= 0,
677 			.size	= sizeof(struct lowcore),
678 			.flags	= MEMBLOCK_NONE,
679 #ifdef CONFIG_NUMA
680 			.nid	= NUMA_NO_NODE,
681 #endif
682 		},
683 		{
684 			.base	= __pa(_stext),
685 			.size	= _etext - _stext,
686 			.flags	= MEMBLOCK_NONE,
687 #ifdef CONFIG_NUMA
688 			.nid	= NUMA_NO_NODE,
689 #endif
690 		},
691 		{
692 			.base	= __pa(_sinittext),
693 			.size	= _einittext - _sinittext,
694 			.flags	= MEMBLOCK_NONE,
695 #ifdef CONFIG_NUMA
696 			.nid	= NUMA_NO_NODE,
697 #endif
698 		},
699 		{
700 			.base	= __stext_amode31,
701 			.size	= __etext_amode31 - __stext_amode31,
702 			.flags	= MEMBLOCK_NONE,
703 #ifdef CONFIG_NUMA
704 			.nid	= NUMA_NO_NODE,
705 #endif
706 		},
707 	};
708 	struct memblock_type memory_rwx = {
709 		.regions	= memory_rwx_regions,
710 		.cnt		= ARRAY_SIZE(memory_rwx_regions),
711 		.max		= ARRAY_SIZE(memory_rwx_regions),
712 	};
713 	phys_addr_t base, end;
714 	u64 i;
715 
716 	/*
717 	 * Set RW+NX attribute on all memory, except regions enumerated with
718 	 * memory_rwx exclude type. These regions need different attributes,
719 	 * which are enforced afterwards.
720 	 *
721 	 * __for_each_mem_range() iterate and exclude types should be sorted.
722 	 * The relative location of _stext and _sinittext is hardcoded in the
723 	 * linker script. However a location of __stext_amode31 and the kernel
724 	 * image itself are chosen dynamically. Thus, sort the exclude type.
725 	 */
726 	sort(&memory_rwx_regions,
727 	     ARRAY_SIZE(memory_rwx_regions), sizeof(memory_rwx_regions[0]),
728 	     memblock_region_cmp, memblock_region_swap);
729 	__for_each_mem_range(i, &memblock.memory, &memory_rwx,
730 			     NUMA_NO_NODE, MEMBLOCK_NONE, &base, &end, NULL) {
731 		__set_memory((unsigned long)__va(base),
732 			     (end - base) >> PAGE_SHIFT,
733 			     SET_MEMORY_RW | SET_MEMORY_NX);
734 	}
735 
736 	__set_memory((unsigned long)_stext,
737 		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
738 		     SET_MEMORY_RO | SET_MEMORY_X);
739 	__set_memory((unsigned long)_etext,
740 		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
741 		     SET_MEMORY_RO);
742 	__set_memory((unsigned long)_sinittext,
743 		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
744 		     SET_MEMORY_RO | SET_MEMORY_X);
745 	__set_memory(__stext_amode31,
746 		     (__etext_amode31 - __stext_amode31) >> PAGE_SHIFT,
747 		     SET_MEMORY_RO | SET_MEMORY_X);
748 
749 	/* lowcore must be executable for LPSWE */
750 	if (static_key_enabled(&cpu_has_bear))
751 		set_memory_nx(0, 1);
752 	set_memory_nx(PAGE_SIZE, 1);
753 
754 	pr_info("Write protected kernel read-only data: %luk\n",
755 		(unsigned long)(__end_rodata - _stext) >> 10);
756 }
757