xref: /openbmc/linux/arch/s390/mm/vmem.c (revision 05bcf503)
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5 
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <asm/pgalloc.h>
14 #include <asm/pgtable.h>
15 #include <asm/setup.h>
16 #include <asm/tlbflush.h>
17 #include <asm/sections.h>
18 
19 static DEFINE_MUTEX(vmem_mutex);
20 
21 struct memory_segment {
22 	struct list_head list;
23 	unsigned long start;
24 	unsigned long size;
25 };
26 
27 static LIST_HEAD(mem_segs);
28 
29 static void __ref *vmem_alloc_pages(unsigned int order)
30 {
31 	if (slab_is_available())
32 		return (void *)__get_free_pages(GFP_KERNEL, order);
33 	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
34 }
35 
36 static inline pud_t *vmem_pud_alloc(void)
37 {
38 	pud_t *pud = NULL;
39 
40 #ifdef CONFIG_64BIT
41 	pud = vmem_alloc_pages(2);
42 	if (!pud)
43 		return NULL;
44 	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45 #endif
46 	return pud;
47 }
48 
49 static inline pmd_t *vmem_pmd_alloc(void)
50 {
51 	pmd_t *pmd = NULL;
52 
53 #ifdef CONFIG_64BIT
54 	pmd = vmem_alloc_pages(2);
55 	if (!pmd)
56 		return NULL;
57 	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
58 #endif
59 	return pmd;
60 }
61 
62 static pte_t __ref *vmem_pte_alloc(unsigned long address)
63 {
64 	pte_t *pte;
65 
66 	if (slab_is_available())
67 		pte = (pte_t *) page_table_alloc(&init_mm, address);
68 	else
69 		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
70 	if (!pte)
71 		return NULL;
72 	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
73 		    PTRS_PER_PTE * sizeof(pte_t));
74 	return pte;
75 }
76 
77 /*
78  * Add a physical memory range to the 1:1 mapping.
79  */
80 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
81 {
82 	unsigned long end = start + size;
83 	unsigned long address = start;
84 	pgd_t *pg_dir;
85 	pud_t *pu_dir;
86 	pmd_t *pm_dir;
87 	pte_t *pt_dir;
88 	pte_t  pte;
89 	int ret = -ENOMEM;
90 
91 	while (address < end) {
92 		pg_dir = pgd_offset_k(address);
93 		if (pgd_none(*pg_dir)) {
94 			pu_dir = vmem_pud_alloc();
95 			if (!pu_dir)
96 				goto out;
97 			pgd_populate(&init_mm, pg_dir, pu_dir);
98 		}
99 
100 		pu_dir = pud_offset(pg_dir, address);
101 		if (pud_none(*pu_dir)) {
102 			pm_dir = vmem_pmd_alloc();
103 			if (!pm_dir)
104 				goto out;
105 			pud_populate(&init_mm, pu_dir, pm_dir);
106 		}
107 
108 		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
109 		pm_dir = pmd_offset(pu_dir, address);
110 
111 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
112 		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
113 		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
114 			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
115 			pmd_val(*pm_dir) = pte_val(pte);
116 			address += PMD_SIZE;
117 			continue;
118 		}
119 #endif
120 		if (pmd_none(*pm_dir)) {
121 			pt_dir = vmem_pte_alloc(address);
122 			if (!pt_dir)
123 				goto out;
124 			pmd_populate(&init_mm, pm_dir, pt_dir);
125 		}
126 
127 		pt_dir = pte_offset_kernel(pm_dir, address);
128 		*pt_dir = pte;
129 		address += PAGE_SIZE;
130 	}
131 	ret = 0;
132 out:
133 	flush_tlb_kernel_range(start, end);
134 	return ret;
135 }
136 
137 /*
138  * Remove a physical memory range from the 1:1 mapping.
139  * Currently only invalidates page table entries.
140  */
141 static void vmem_remove_range(unsigned long start, unsigned long size)
142 {
143 	unsigned long end = start + size;
144 	unsigned long address = start;
145 	pgd_t *pg_dir;
146 	pud_t *pu_dir;
147 	pmd_t *pm_dir;
148 	pte_t *pt_dir;
149 	pte_t  pte;
150 
151 	pte_val(pte) = _PAGE_TYPE_EMPTY;
152 	while (address < end) {
153 		pg_dir = pgd_offset_k(address);
154 		if (pgd_none(*pg_dir)) {
155 			address += PGDIR_SIZE;
156 			continue;
157 		}
158 		pu_dir = pud_offset(pg_dir, address);
159 		if (pud_none(*pu_dir)) {
160 			address += PUD_SIZE;
161 			continue;
162 		}
163 		pm_dir = pmd_offset(pu_dir, address);
164 		if (pmd_none(*pm_dir)) {
165 			address += PMD_SIZE;
166 			continue;
167 		}
168 		if (pmd_large(*pm_dir)) {
169 			pmd_clear(pm_dir);
170 			address += PMD_SIZE;
171 			continue;
172 		}
173 		pt_dir = pte_offset_kernel(pm_dir, address);
174 		*pt_dir = pte;
175 		address += PAGE_SIZE;
176 	}
177 	flush_tlb_kernel_range(start, end);
178 }
179 
180 /*
181  * Add a backed mem_map array to the virtual mem_map array.
182  */
183 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
184 {
185 	unsigned long address, start_addr, end_addr;
186 	pgd_t *pg_dir;
187 	pud_t *pu_dir;
188 	pmd_t *pm_dir;
189 	pte_t *pt_dir;
190 	pte_t  pte;
191 	int ret = -ENOMEM;
192 
193 	start_addr = (unsigned long) start;
194 	end_addr = (unsigned long) (start + nr);
195 
196 	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
197 		pg_dir = pgd_offset_k(address);
198 		if (pgd_none(*pg_dir)) {
199 			pu_dir = vmem_pud_alloc();
200 			if (!pu_dir)
201 				goto out;
202 			pgd_populate(&init_mm, pg_dir, pu_dir);
203 		}
204 
205 		pu_dir = pud_offset(pg_dir, address);
206 		if (pud_none(*pu_dir)) {
207 			pm_dir = vmem_pmd_alloc();
208 			if (!pm_dir)
209 				goto out;
210 			pud_populate(&init_mm, pu_dir, pm_dir);
211 		}
212 
213 		pm_dir = pmd_offset(pu_dir, address);
214 		if (pmd_none(*pm_dir)) {
215 			pt_dir = vmem_pte_alloc(address);
216 			if (!pt_dir)
217 				goto out;
218 			pmd_populate(&init_mm, pm_dir, pt_dir);
219 		}
220 
221 		pt_dir = pte_offset_kernel(pm_dir, address);
222 		if (pte_none(*pt_dir)) {
223 			unsigned long new_page;
224 
225 			new_page =__pa(vmem_alloc_pages(0));
226 			if (!new_page)
227 				goto out;
228 			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
229 			*pt_dir = pte;
230 		}
231 	}
232 	memset(start, 0, nr * sizeof(struct page));
233 	ret = 0;
234 out:
235 	flush_tlb_kernel_range(start_addr, end_addr);
236 	return ret;
237 }
238 
239 /*
240  * Add memory segment to the segment list if it doesn't overlap with
241  * an already present segment.
242  */
243 static int insert_memory_segment(struct memory_segment *seg)
244 {
245 	struct memory_segment *tmp;
246 
247 	if (seg->start + seg->size > VMEM_MAX_PHYS ||
248 	    seg->start + seg->size < seg->start)
249 		return -ERANGE;
250 
251 	list_for_each_entry(tmp, &mem_segs, list) {
252 		if (seg->start >= tmp->start + tmp->size)
253 			continue;
254 		if (seg->start + seg->size <= tmp->start)
255 			continue;
256 		return -ENOSPC;
257 	}
258 	list_add(&seg->list, &mem_segs);
259 	return 0;
260 }
261 
262 /*
263  * Remove memory segment from the segment list.
264  */
265 static void remove_memory_segment(struct memory_segment *seg)
266 {
267 	list_del(&seg->list);
268 }
269 
270 static void __remove_shared_memory(struct memory_segment *seg)
271 {
272 	remove_memory_segment(seg);
273 	vmem_remove_range(seg->start, seg->size);
274 }
275 
276 int vmem_remove_mapping(unsigned long start, unsigned long size)
277 {
278 	struct memory_segment *seg;
279 	int ret;
280 
281 	mutex_lock(&vmem_mutex);
282 
283 	ret = -ENOENT;
284 	list_for_each_entry(seg, &mem_segs, list) {
285 		if (seg->start == start && seg->size == size)
286 			break;
287 	}
288 
289 	if (seg->start != start || seg->size != size)
290 		goto out;
291 
292 	ret = 0;
293 	__remove_shared_memory(seg);
294 	kfree(seg);
295 out:
296 	mutex_unlock(&vmem_mutex);
297 	return ret;
298 }
299 
300 int vmem_add_mapping(unsigned long start, unsigned long size)
301 {
302 	struct memory_segment *seg;
303 	int ret;
304 
305 	mutex_lock(&vmem_mutex);
306 	ret = -ENOMEM;
307 	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
308 	if (!seg)
309 		goto out;
310 	seg->start = start;
311 	seg->size = size;
312 
313 	ret = insert_memory_segment(seg);
314 	if (ret)
315 		goto out_free;
316 
317 	ret = vmem_add_mem(start, size, 0);
318 	if (ret)
319 		goto out_remove;
320 	goto out;
321 
322 out_remove:
323 	__remove_shared_memory(seg);
324 out_free:
325 	kfree(seg);
326 out:
327 	mutex_unlock(&vmem_mutex);
328 	return ret;
329 }
330 
331 /*
332  * map whole physical memory to virtual memory (identity mapping)
333  * we reserve enough space in the vmalloc area for vmemmap to hotplug
334  * additional memory segments.
335  */
336 void __init vmem_map_init(void)
337 {
338 	unsigned long ro_start, ro_end;
339 	unsigned long start, end;
340 	int i;
341 
342 	ro_start = PFN_ALIGN((unsigned long)&_stext);
343 	ro_end = (unsigned long)&_eshared & PAGE_MASK;
344 	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
345 		if (memory_chunk[i].type == CHUNK_CRASHK ||
346 		    memory_chunk[i].type == CHUNK_OLDMEM)
347 			continue;
348 		start = memory_chunk[i].addr;
349 		end = memory_chunk[i].addr + memory_chunk[i].size;
350 		if (start >= ro_end || end <= ro_start)
351 			vmem_add_mem(start, end - start, 0);
352 		else if (start >= ro_start && end <= ro_end)
353 			vmem_add_mem(start, end - start, 1);
354 		else if (start >= ro_start) {
355 			vmem_add_mem(start, ro_end - start, 1);
356 			vmem_add_mem(ro_end, end - ro_end, 0);
357 		} else if (end < ro_end) {
358 			vmem_add_mem(start, ro_start - start, 0);
359 			vmem_add_mem(ro_start, end - ro_start, 1);
360 		} else {
361 			vmem_add_mem(start, ro_start - start, 0);
362 			vmem_add_mem(ro_start, ro_end - ro_start, 1);
363 			vmem_add_mem(ro_end, end - ro_end, 0);
364 		}
365 	}
366 }
367 
368 /*
369  * Convert memory chunk array to a memory segment list so there is a single
370  * list that contains both r/w memory and shared memory segments.
371  */
372 static int __init vmem_convert_memory_chunk(void)
373 {
374 	struct memory_segment *seg;
375 	int i;
376 
377 	mutex_lock(&vmem_mutex);
378 	for (i = 0; i < MEMORY_CHUNKS; i++) {
379 		if (!memory_chunk[i].size)
380 			continue;
381 		if (memory_chunk[i].type == CHUNK_CRASHK ||
382 		    memory_chunk[i].type == CHUNK_OLDMEM)
383 			continue;
384 		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
385 		if (!seg)
386 			panic("Out of memory...\n");
387 		seg->start = memory_chunk[i].addr;
388 		seg->size = memory_chunk[i].size;
389 		insert_memory_segment(seg);
390 	}
391 	mutex_unlock(&vmem_mutex);
392 	return 0;
393 }
394 
395 core_initcall(vmem_convert_memory_chunk);
396