xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision bbde9fc1824aab58bc78c084163007dd6c03fe5b)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 #include <linux/sysctl.h>
22 #include <linux/ksm.h>
23 #include <linux/mman.h>
24 
25 #include <asm/pgtable.h>
26 #include <asm/pgalloc.h>
27 #include <asm/tlb.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 
31 #define ALLOC_ORDER	2
32 #define FRAG_MASK	0x03
33 
34 unsigned long *crst_table_alloc(struct mm_struct *mm)
35 {
36 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
37 
38 	if (!page)
39 		return NULL;
40 	return (unsigned long *) page_to_phys(page);
41 }
42 
43 void crst_table_free(struct mm_struct *mm, unsigned long *table)
44 {
45 	free_pages((unsigned long) table, ALLOC_ORDER);
46 }
47 
48 static void __crst_table_upgrade(void *arg)
49 {
50 	struct mm_struct *mm = arg;
51 
52 	if (current->active_mm == mm) {
53 		clear_user_asce();
54 		set_user_asce(mm);
55 	}
56 	__tlb_flush_local();
57 }
58 
59 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
60 {
61 	unsigned long *table, *pgd;
62 	unsigned long entry;
63 	int flush;
64 
65 	BUG_ON(limit > (1UL << 53));
66 	flush = 0;
67 repeat:
68 	table = crst_table_alloc(mm);
69 	if (!table)
70 		return -ENOMEM;
71 	spin_lock_bh(&mm->page_table_lock);
72 	if (mm->context.asce_limit < limit) {
73 		pgd = (unsigned long *) mm->pgd;
74 		if (mm->context.asce_limit <= (1UL << 31)) {
75 			entry = _REGION3_ENTRY_EMPTY;
76 			mm->context.asce_limit = 1UL << 42;
77 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
78 						_ASCE_USER_BITS |
79 						_ASCE_TYPE_REGION3;
80 		} else {
81 			entry = _REGION2_ENTRY_EMPTY;
82 			mm->context.asce_limit = 1UL << 53;
83 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
84 						_ASCE_USER_BITS |
85 						_ASCE_TYPE_REGION2;
86 		}
87 		crst_table_init(table, entry);
88 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
89 		mm->pgd = (pgd_t *) table;
90 		mm->task_size = mm->context.asce_limit;
91 		table = NULL;
92 		flush = 1;
93 	}
94 	spin_unlock_bh(&mm->page_table_lock);
95 	if (table)
96 		crst_table_free(mm, table);
97 	if (mm->context.asce_limit < limit)
98 		goto repeat;
99 	if (flush)
100 		on_each_cpu(__crst_table_upgrade, mm, 0);
101 	return 0;
102 }
103 
104 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
105 {
106 	pgd_t *pgd;
107 
108 	if (current->active_mm == mm) {
109 		clear_user_asce();
110 		__tlb_flush_mm(mm);
111 	}
112 	while (mm->context.asce_limit > limit) {
113 		pgd = mm->pgd;
114 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
115 		case _REGION_ENTRY_TYPE_R2:
116 			mm->context.asce_limit = 1UL << 42;
117 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
118 						_ASCE_USER_BITS |
119 						_ASCE_TYPE_REGION3;
120 			break;
121 		case _REGION_ENTRY_TYPE_R3:
122 			mm->context.asce_limit = 1UL << 31;
123 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
124 						_ASCE_USER_BITS |
125 						_ASCE_TYPE_SEGMENT;
126 			break;
127 		default:
128 			BUG();
129 		}
130 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
131 		mm->task_size = mm->context.asce_limit;
132 		crst_table_free(mm, (unsigned long *) pgd);
133 	}
134 	if (current->active_mm == mm)
135 		set_user_asce(mm);
136 }
137 
138 #ifdef CONFIG_PGSTE
139 
140 /**
141  * gmap_alloc - allocate a guest address space
142  * @mm: pointer to the parent mm_struct
143  * @limit: maximum size of the gmap address space
144  *
145  * Returns a guest address space structure.
146  */
147 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
148 {
149 	struct gmap *gmap;
150 	struct page *page;
151 	unsigned long *table;
152 	unsigned long etype, atype;
153 
154 	if (limit < (1UL << 31)) {
155 		limit = (1UL << 31) - 1;
156 		atype = _ASCE_TYPE_SEGMENT;
157 		etype = _SEGMENT_ENTRY_EMPTY;
158 	} else if (limit < (1UL << 42)) {
159 		limit = (1UL << 42) - 1;
160 		atype = _ASCE_TYPE_REGION3;
161 		etype = _REGION3_ENTRY_EMPTY;
162 	} else if (limit < (1UL << 53)) {
163 		limit = (1UL << 53) - 1;
164 		atype = _ASCE_TYPE_REGION2;
165 		etype = _REGION2_ENTRY_EMPTY;
166 	} else {
167 		limit = -1UL;
168 		atype = _ASCE_TYPE_REGION1;
169 		etype = _REGION1_ENTRY_EMPTY;
170 	}
171 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
172 	if (!gmap)
173 		goto out;
174 	INIT_LIST_HEAD(&gmap->crst_list);
175 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
176 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
177 	spin_lock_init(&gmap->guest_table_lock);
178 	gmap->mm = mm;
179 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
180 	if (!page)
181 		goto out_free;
182 	page->index = 0;
183 	list_add(&page->lru, &gmap->crst_list);
184 	table = (unsigned long *) page_to_phys(page);
185 	crst_table_init(table, etype);
186 	gmap->table = table;
187 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
188 		_ASCE_USER_BITS | __pa(table);
189 	gmap->asce_end = limit;
190 	down_write(&mm->mmap_sem);
191 	list_add(&gmap->list, &mm->context.gmap_list);
192 	up_write(&mm->mmap_sem);
193 	return gmap;
194 
195 out_free:
196 	kfree(gmap);
197 out:
198 	return NULL;
199 }
200 EXPORT_SYMBOL_GPL(gmap_alloc);
201 
202 static void gmap_flush_tlb(struct gmap *gmap)
203 {
204 	if (MACHINE_HAS_IDTE)
205 		__tlb_flush_asce(gmap->mm, gmap->asce);
206 	else
207 		__tlb_flush_global();
208 }
209 
210 static void gmap_radix_tree_free(struct radix_tree_root *root)
211 {
212 	struct radix_tree_iter iter;
213 	unsigned long indices[16];
214 	unsigned long index;
215 	void **slot;
216 	int i, nr;
217 
218 	/* A radix tree is freed by deleting all of its entries */
219 	index = 0;
220 	do {
221 		nr = 0;
222 		radix_tree_for_each_slot(slot, root, &iter, index) {
223 			indices[nr] = iter.index;
224 			if (++nr == 16)
225 				break;
226 		}
227 		for (i = 0; i < nr; i++) {
228 			index = indices[i];
229 			radix_tree_delete(root, index);
230 		}
231 	} while (nr > 0);
232 }
233 
234 /**
235  * gmap_free - free a guest address space
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_free(struct gmap *gmap)
239 {
240 	struct page *page, *next;
241 
242 	/* Flush tlb. */
243 	if (MACHINE_HAS_IDTE)
244 		__tlb_flush_asce(gmap->mm, gmap->asce);
245 	else
246 		__tlb_flush_global();
247 
248 	/* Free all segment & region tables. */
249 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
250 		__free_pages(page, ALLOC_ORDER);
251 	gmap_radix_tree_free(&gmap->guest_to_host);
252 	gmap_radix_tree_free(&gmap->host_to_guest);
253 	down_write(&gmap->mm->mmap_sem);
254 	list_del(&gmap->list);
255 	up_write(&gmap->mm->mmap_sem);
256 	kfree(gmap);
257 }
258 EXPORT_SYMBOL_GPL(gmap_free);
259 
260 /**
261  * gmap_enable - switch primary space to the guest address space
262  * @gmap: pointer to the guest address space structure
263  */
264 void gmap_enable(struct gmap *gmap)
265 {
266 	S390_lowcore.gmap = (unsigned long) gmap;
267 }
268 EXPORT_SYMBOL_GPL(gmap_enable);
269 
270 /**
271  * gmap_disable - switch back to the standard primary address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_disable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = 0UL;
277 }
278 EXPORT_SYMBOL_GPL(gmap_disable);
279 
280 /*
281  * gmap_alloc_table is assumed to be called with mmap_sem held
282  */
283 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
284 			    unsigned long init, unsigned long gaddr)
285 {
286 	struct page *page;
287 	unsigned long *new;
288 
289 	/* since we dont free the gmap table until gmap_free we can unlock */
290 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
291 	if (!page)
292 		return -ENOMEM;
293 	new = (unsigned long *) page_to_phys(page);
294 	crst_table_init(new, init);
295 	spin_lock(&gmap->mm->page_table_lock);
296 	if (*table & _REGION_ENTRY_INVALID) {
297 		list_add(&page->lru, &gmap->crst_list);
298 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
299 			(*table & _REGION_ENTRY_TYPE_MASK);
300 		page->index = gaddr;
301 		page = NULL;
302 	}
303 	spin_unlock(&gmap->mm->page_table_lock);
304 	if (page)
305 		__free_pages(page, ALLOC_ORDER);
306 	return 0;
307 }
308 
309 /**
310  * __gmap_segment_gaddr - find virtual address from segment pointer
311  * @entry: pointer to a segment table entry in the guest address space
312  *
313  * Returns the virtual address in the guest address space for the segment
314  */
315 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
316 {
317 	struct page *page;
318 	unsigned long offset, mask;
319 
320 	offset = (unsigned long) entry / sizeof(unsigned long);
321 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
322 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
323 	page = virt_to_page((void *)((unsigned long) entry & mask));
324 	return page->index + offset;
325 }
326 
327 /**
328  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
329  * @gmap: pointer to the guest address space structure
330  * @vmaddr: address in the host process address space
331  *
332  * Returns 1 if a TLB flush is required
333  */
334 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
335 {
336 	unsigned long *entry;
337 	int flush = 0;
338 
339 	spin_lock(&gmap->guest_table_lock);
340 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
341 	if (entry) {
342 		flush = (*entry != _SEGMENT_ENTRY_INVALID);
343 		*entry = _SEGMENT_ENTRY_INVALID;
344 	}
345 	spin_unlock(&gmap->guest_table_lock);
346 	return flush;
347 }
348 
349 /**
350  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
351  * @gmap: pointer to the guest address space structure
352  * @gaddr: address in the guest address space
353  *
354  * Returns 1 if a TLB flush is required
355  */
356 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
357 {
358 	unsigned long vmaddr;
359 
360 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
361 						   gaddr >> PMD_SHIFT);
362 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
363 }
364 
365 /**
366  * gmap_unmap_segment - unmap segment from the guest address space
367  * @gmap: pointer to the guest address space structure
368  * @to: address in the guest address space
369  * @len: length of the memory area to unmap
370  *
371  * Returns 0 if the unmap succeeded, -EINVAL if not.
372  */
373 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
374 {
375 	unsigned long off;
376 	int flush;
377 
378 	if ((to | len) & (PMD_SIZE - 1))
379 		return -EINVAL;
380 	if (len == 0 || to + len < to)
381 		return -EINVAL;
382 
383 	flush = 0;
384 	down_write(&gmap->mm->mmap_sem);
385 	for (off = 0; off < len; off += PMD_SIZE)
386 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
387 	up_write(&gmap->mm->mmap_sem);
388 	if (flush)
389 		gmap_flush_tlb(gmap);
390 	return 0;
391 }
392 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
393 
394 /**
395  * gmap_mmap_segment - map a segment to the guest address space
396  * @gmap: pointer to the guest address space structure
397  * @from: source address in the parent address space
398  * @to: target address in the guest address space
399  * @len: length of the memory area to map
400  *
401  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
402  */
403 int gmap_map_segment(struct gmap *gmap, unsigned long from,
404 		     unsigned long to, unsigned long len)
405 {
406 	unsigned long off;
407 	int flush;
408 
409 	if ((from | to | len) & (PMD_SIZE - 1))
410 		return -EINVAL;
411 	if (len == 0 || from + len < from || to + len < to ||
412 	    from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
413 		return -EINVAL;
414 
415 	flush = 0;
416 	down_write(&gmap->mm->mmap_sem);
417 	for (off = 0; off < len; off += PMD_SIZE) {
418 		/* Remove old translation */
419 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
420 		/* Store new translation */
421 		if (radix_tree_insert(&gmap->guest_to_host,
422 				      (to + off) >> PMD_SHIFT,
423 				      (void *) from + off))
424 			break;
425 	}
426 	up_write(&gmap->mm->mmap_sem);
427 	if (flush)
428 		gmap_flush_tlb(gmap);
429 	if (off >= len)
430 		return 0;
431 	gmap_unmap_segment(gmap, to, len);
432 	return -ENOMEM;
433 }
434 EXPORT_SYMBOL_GPL(gmap_map_segment);
435 
436 /**
437  * __gmap_translate - translate a guest address to a user space address
438  * @gmap: pointer to guest mapping meta data structure
439  * @gaddr: guest address
440  *
441  * Returns user space address which corresponds to the guest address or
442  * -EFAULT if no such mapping exists.
443  * This function does not establish potentially missing page table entries.
444  * The mmap_sem of the mm that belongs to the address space must be held
445  * when this function gets called.
446  */
447 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
448 {
449 	unsigned long vmaddr;
450 
451 	vmaddr = (unsigned long)
452 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
453 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
454 }
455 EXPORT_SYMBOL_GPL(__gmap_translate);
456 
457 /**
458  * gmap_translate - translate a guest address to a user space address
459  * @gmap: pointer to guest mapping meta data structure
460  * @gaddr: guest address
461  *
462  * Returns user space address which corresponds to the guest address or
463  * -EFAULT if no such mapping exists.
464  * This function does not establish potentially missing page table entries.
465  */
466 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
467 {
468 	unsigned long rc;
469 
470 	down_read(&gmap->mm->mmap_sem);
471 	rc = __gmap_translate(gmap, gaddr);
472 	up_read(&gmap->mm->mmap_sem);
473 	return rc;
474 }
475 EXPORT_SYMBOL_GPL(gmap_translate);
476 
477 /**
478  * gmap_unlink - disconnect a page table from the gmap shadow tables
479  * @gmap: pointer to guest mapping meta data structure
480  * @table: pointer to the host page table
481  * @vmaddr: vm address associated with the host page table
482  */
483 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
484 			unsigned long vmaddr)
485 {
486 	struct gmap *gmap;
487 	int flush;
488 
489 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
490 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
491 		if (flush)
492 			gmap_flush_tlb(gmap);
493 	}
494 }
495 
496 /**
497  * gmap_link - set up shadow page tables to connect a host to a guest address
498  * @gmap: pointer to guest mapping meta data structure
499  * @gaddr: guest address
500  * @vmaddr: vm address
501  *
502  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
503  * if the vm address is already mapped to a different guest segment.
504  * The mmap_sem of the mm that belongs to the address space must be held
505  * when this function gets called.
506  */
507 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
508 {
509 	struct mm_struct *mm;
510 	unsigned long *table;
511 	spinlock_t *ptl;
512 	pgd_t *pgd;
513 	pud_t *pud;
514 	pmd_t *pmd;
515 	int rc;
516 
517 	/* Create higher level tables in the gmap page table */
518 	table = gmap->table;
519 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
520 		table += (gaddr >> 53) & 0x7ff;
521 		if ((*table & _REGION_ENTRY_INVALID) &&
522 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
523 				     gaddr & 0xffe0000000000000UL))
524 			return -ENOMEM;
525 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
526 	}
527 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
528 		table += (gaddr >> 42) & 0x7ff;
529 		if ((*table & _REGION_ENTRY_INVALID) &&
530 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
531 				     gaddr & 0xfffffc0000000000UL))
532 			return -ENOMEM;
533 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
534 	}
535 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
536 		table += (gaddr >> 31) & 0x7ff;
537 		if ((*table & _REGION_ENTRY_INVALID) &&
538 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
539 				     gaddr & 0xffffffff80000000UL))
540 			return -ENOMEM;
541 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
542 	}
543 	table += (gaddr >> 20) & 0x7ff;
544 	/* Walk the parent mm page table */
545 	mm = gmap->mm;
546 	pgd = pgd_offset(mm, vmaddr);
547 	VM_BUG_ON(pgd_none(*pgd));
548 	pud = pud_offset(pgd, vmaddr);
549 	VM_BUG_ON(pud_none(*pud));
550 	pmd = pmd_offset(pud, vmaddr);
551 	VM_BUG_ON(pmd_none(*pmd));
552 	/* large pmds cannot yet be handled */
553 	if (pmd_large(*pmd))
554 		return -EFAULT;
555 	/* Link gmap segment table entry location to page table. */
556 	rc = radix_tree_preload(GFP_KERNEL);
557 	if (rc)
558 		return rc;
559 	ptl = pmd_lock(mm, pmd);
560 	spin_lock(&gmap->guest_table_lock);
561 	if (*table == _SEGMENT_ENTRY_INVALID) {
562 		rc = radix_tree_insert(&gmap->host_to_guest,
563 				       vmaddr >> PMD_SHIFT, table);
564 		if (!rc)
565 			*table = pmd_val(*pmd);
566 	} else
567 		rc = 0;
568 	spin_unlock(&gmap->guest_table_lock);
569 	spin_unlock(ptl);
570 	radix_tree_preload_end();
571 	return rc;
572 }
573 
574 /**
575  * gmap_fault - resolve a fault on a guest address
576  * @gmap: pointer to guest mapping meta data structure
577  * @gaddr: guest address
578  * @fault_flags: flags to pass down to handle_mm_fault()
579  *
580  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
581  * if the vm address is already mapped to a different guest segment.
582  */
583 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
584 	       unsigned int fault_flags)
585 {
586 	unsigned long vmaddr;
587 	int rc;
588 
589 	down_read(&gmap->mm->mmap_sem);
590 	vmaddr = __gmap_translate(gmap, gaddr);
591 	if (IS_ERR_VALUE(vmaddr)) {
592 		rc = vmaddr;
593 		goto out_up;
594 	}
595 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
596 		rc = -EFAULT;
597 		goto out_up;
598 	}
599 	rc = __gmap_link(gmap, gaddr, vmaddr);
600 out_up:
601 	up_read(&gmap->mm->mmap_sem);
602 	return rc;
603 }
604 EXPORT_SYMBOL_GPL(gmap_fault);
605 
606 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
607 {
608 	if (!non_swap_entry(entry))
609 		dec_mm_counter(mm, MM_SWAPENTS);
610 	else if (is_migration_entry(entry)) {
611 		struct page *page = migration_entry_to_page(entry);
612 
613 		if (PageAnon(page))
614 			dec_mm_counter(mm, MM_ANONPAGES);
615 		else
616 			dec_mm_counter(mm, MM_FILEPAGES);
617 	}
618 	free_swap_and_cache(entry);
619 }
620 
621 /*
622  * this function is assumed to be called with mmap_sem held
623  */
624 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
625 {
626 	unsigned long vmaddr, ptev, pgstev;
627 	pte_t *ptep, pte;
628 	spinlock_t *ptl;
629 	pgste_t pgste;
630 
631 	/* Find the vm address for the guest address */
632 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
633 						   gaddr >> PMD_SHIFT);
634 	if (!vmaddr)
635 		return;
636 	vmaddr |= gaddr & ~PMD_MASK;
637 	/* Get pointer to the page table entry */
638 	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
639 	if (unlikely(!ptep))
640 		return;
641 	pte = *ptep;
642 	if (!pte_swap(pte))
643 		goto out_pte;
644 	/* Zap unused and logically-zero pages */
645 	pgste = pgste_get_lock(ptep);
646 	pgstev = pgste_val(pgste);
647 	ptev = pte_val(pte);
648 	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
649 	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
650 		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
651 		pte_clear(gmap->mm, vmaddr, ptep);
652 	}
653 	pgste_set_unlock(ptep, pgste);
654 out_pte:
655 	pte_unmap_unlock(ptep, ptl);
656 }
657 EXPORT_SYMBOL_GPL(__gmap_zap);
658 
659 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
660 {
661 	unsigned long gaddr, vmaddr, size;
662 	struct vm_area_struct *vma;
663 
664 	down_read(&gmap->mm->mmap_sem);
665 	for (gaddr = from; gaddr < to;
666 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
667 		/* Find the vm address for the guest address */
668 		vmaddr = (unsigned long)
669 			radix_tree_lookup(&gmap->guest_to_host,
670 					  gaddr >> PMD_SHIFT);
671 		if (!vmaddr)
672 			continue;
673 		vmaddr |= gaddr & ~PMD_MASK;
674 		/* Find vma in the parent mm */
675 		vma = find_vma(gmap->mm, vmaddr);
676 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
677 		zap_page_range(vma, vmaddr, size, NULL);
678 	}
679 	up_read(&gmap->mm->mmap_sem);
680 }
681 EXPORT_SYMBOL_GPL(gmap_discard);
682 
683 static LIST_HEAD(gmap_notifier_list);
684 static DEFINE_SPINLOCK(gmap_notifier_lock);
685 
686 /**
687  * gmap_register_ipte_notifier - register a pte invalidation callback
688  * @nb: pointer to the gmap notifier block
689  */
690 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
691 {
692 	spin_lock(&gmap_notifier_lock);
693 	list_add(&nb->list, &gmap_notifier_list);
694 	spin_unlock(&gmap_notifier_lock);
695 }
696 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
697 
698 /**
699  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
700  * @nb: pointer to the gmap notifier block
701  */
702 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
703 {
704 	spin_lock(&gmap_notifier_lock);
705 	list_del_init(&nb->list);
706 	spin_unlock(&gmap_notifier_lock);
707 }
708 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
709 
710 /**
711  * gmap_ipte_notify - mark a range of ptes for invalidation notification
712  * @gmap: pointer to guest mapping meta data structure
713  * @gaddr: virtual address in the guest address space
714  * @len: size of area
715  *
716  * Returns 0 if for each page in the given range a gmap mapping exists and
717  * the invalidation notification could be set. If the gmap mapping is missing
718  * for one or more pages -EFAULT is returned. If no memory could be allocated
719  * -ENOMEM is returned. This function establishes missing page table entries.
720  */
721 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
722 {
723 	unsigned long addr;
724 	spinlock_t *ptl;
725 	pte_t *ptep, entry;
726 	pgste_t pgste;
727 	int rc = 0;
728 
729 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
730 		return -EINVAL;
731 	down_read(&gmap->mm->mmap_sem);
732 	while (len) {
733 		/* Convert gmap address and connect the page tables */
734 		addr = __gmap_translate(gmap, gaddr);
735 		if (IS_ERR_VALUE(addr)) {
736 			rc = addr;
737 			break;
738 		}
739 		/* Get the page mapped */
740 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
741 			rc = -EFAULT;
742 			break;
743 		}
744 		rc = __gmap_link(gmap, gaddr, addr);
745 		if (rc)
746 			break;
747 		/* Walk the process page table, lock and get pte pointer */
748 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
749 		VM_BUG_ON(!ptep);
750 		/* Set notification bit in the pgste of the pte */
751 		entry = *ptep;
752 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
753 			pgste = pgste_get_lock(ptep);
754 			pgste_val(pgste) |= PGSTE_IN_BIT;
755 			pgste_set_unlock(ptep, pgste);
756 			gaddr += PAGE_SIZE;
757 			len -= PAGE_SIZE;
758 		}
759 		pte_unmap_unlock(ptep, ptl);
760 	}
761 	up_read(&gmap->mm->mmap_sem);
762 	return rc;
763 }
764 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
765 
766 /**
767  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
768  * @mm: pointer to the process mm_struct
769  * @addr: virtual address in the process address space
770  * @pte: pointer to the page table entry
771  *
772  * This function is assumed to be called with the page table lock held
773  * for the pte to notify.
774  */
775 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
776 {
777 	unsigned long offset, gaddr;
778 	unsigned long *table;
779 	struct gmap_notifier *nb;
780 	struct gmap *gmap;
781 
782 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
783 	offset = offset * (4096 / sizeof(pte_t));
784 	spin_lock(&gmap_notifier_lock);
785 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
786 		table = radix_tree_lookup(&gmap->host_to_guest,
787 					  vmaddr >> PMD_SHIFT);
788 		if (!table)
789 			continue;
790 		gaddr = __gmap_segment_gaddr(table) + offset;
791 		list_for_each_entry(nb, &gmap_notifier_list, list)
792 			nb->notifier_call(gmap, gaddr);
793 	}
794 	spin_unlock(&gmap_notifier_lock);
795 }
796 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
797 
798 static inline int page_table_with_pgste(struct page *page)
799 {
800 	return atomic_read(&page->_mapcount) == 0;
801 }
802 
803 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
804 {
805 	struct page *page;
806 	unsigned long *table;
807 
808 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
809 	if (!page)
810 		return NULL;
811 	if (!pgtable_page_ctor(page)) {
812 		__free_page(page);
813 		return NULL;
814 	}
815 	atomic_set(&page->_mapcount, 0);
816 	table = (unsigned long *) page_to_phys(page);
817 	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
818 	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
819 	return table;
820 }
821 
822 static inline void page_table_free_pgste(unsigned long *table)
823 {
824 	struct page *page;
825 
826 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
827 	pgtable_page_dtor(page);
828 	atomic_set(&page->_mapcount, -1);
829 	__free_page(page);
830 }
831 
832 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
833 			  unsigned long key, bool nq)
834 {
835 	spinlock_t *ptl;
836 	pgste_t old, new;
837 	pte_t *ptep;
838 
839 	down_read(&mm->mmap_sem);
840 retry:
841 	ptep = get_locked_pte(mm, addr, &ptl);
842 	if (unlikely(!ptep)) {
843 		up_read(&mm->mmap_sem);
844 		return -EFAULT;
845 	}
846 	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
847 	     (pte_val(*ptep) & _PAGE_PROTECT)) {
848 		pte_unmap_unlock(ptep, ptl);
849 		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
850 			up_read(&mm->mmap_sem);
851 			return -EFAULT;
852 		}
853 		goto retry;
854 	}
855 
856 	new = old = pgste_get_lock(ptep);
857 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
858 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
859 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
860 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
861 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
862 		unsigned long address, bits, skey;
863 
864 		address = pte_val(*ptep) & PAGE_MASK;
865 		skey = (unsigned long) page_get_storage_key(address);
866 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
867 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
868 		/* Set storage key ACC and FP */
869 		page_set_storage_key(address, skey, !nq);
870 		/* Merge host changed & referenced into pgste  */
871 		pgste_val(new) |= bits << 52;
872 	}
873 	/* changing the guest storage key is considered a change of the page */
874 	if ((pgste_val(new) ^ pgste_val(old)) &
875 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
876 		pgste_val(new) |= PGSTE_UC_BIT;
877 
878 	pgste_set_unlock(ptep, new);
879 	pte_unmap_unlock(ptep, ptl);
880 	up_read(&mm->mmap_sem);
881 	return 0;
882 }
883 EXPORT_SYMBOL(set_guest_storage_key);
884 
885 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
886 {
887 	spinlock_t *ptl;
888 	pgste_t pgste;
889 	pte_t *ptep;
890 	uint64_t physaddr;
891 	unsigned long key = 0;
892 
893 	down_read(&mm->mmap_sem);
894 	ptep = get_locked_pte(mm, addr, &ptl);
895 	if (unlikely(!ptep)) {
896 		up_read(&mm->mmap_sem);
897 		return -EFAULT;
898 	}
899 	pgste = pgste_get_lock(ptep);
900 
901 	if (pte_val(*ptep) & _PAGE_INVALID) {
902 		key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
903 		key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
904 		key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
905 		key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
906 	} else {
907 		physaddr = pte_val(*ptep) & PAGE_MASK;
908 		key = page_get_storage_key(physaddr);
909 
910 		/* Reflect guest's logical view, not physical */
911 		if (pgste_val(pgste) & PGSTE_GR_BIT)
912 			key |= _PAGE_REFERENCED;
913 		if (pgste_val(pgste) & PGSTE_GC_BIT)
914 			key |= _PAGE_CHANGED;
915 	}
916 
917 	pgste_set_unlock(ptep, pgste);
918 	pte_unmap_unlock(ptep, ptl);
919 	up_read(&mm->mmap_sem);
920 	return key;
921 }
922 EXPORT_SYMBOL(get_guest_storage_key);
923 
924 static int page_table_allocate_pgste_min = 0;
925 static int page_table_allocate_pgste_max = 1;
926 int page_table_allocate_pgste = 0;
927 EXPORT_SYMBOL(page_table_allocate_pgste);
928 
929 static struct ctl_table page_table_sysctl[] = {
930 	{
931 		.procname	= "allocate_pgste",
932 		.data		= &page_table_allocate_pgste,
933 		.maxlen		= sizeof(int),
934 		.mode		= S_IRUGO | S_IWUSR,
935 		.proc_handler	= proc_dointvec,
936 		.extra1		= &page_table_allocate_pgste_min,
937 		.extra2		= &page_table_allocate_pgste_max,
938 	},
939 	{ }
940 };
941 
942 static struct ctl_table page_table_sysctl_dir[] = {
943 	{
944 		.procname	= "vm",
945 		.maxlen		= 0,
946 		.mode		= 0555,
947 		.child		= page_table_sysctl,
948 	},
949 	{ }
950 };
951 
952 static int __init page_table_register_sysctl(void)
953 {
954 	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
955 }
956 __initcall(page_table_register_sysctl);
957 
958 #else /* CONFIG_PGSTE */
959 
960 static inline int page_table_with_pgste(struct page *page)
961 {
962 	return 0;
963 }
964 
965 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
966 {
967 	return NULL;
968 }
969 
970 static inline void page_table_free_pgste(unsigned long *table)
971 {
972 }
973 
974 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
975 			unsigned long vmaddr)
976 {
977 }
978 
979 #endif /* CONFIG_PGSTE */
980 
981 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
982 {
983 	unsigned int old, new;
984 
985 	do {
986 		old = atomic_read(v);
987 		new = old ^ bits;
988 	} while (atomic_cmpxchg(v, old, new) != old);
989 	return new;
990 }
991 
992 /*
993  * page table entry allocation/free routines.
994  */
995 unsigned long *page_table_alloc(struct mm_struct *mm)
996 {
997 	unsigned long *uninitialized_var(table);
998 	struct page *uninitialized_var(page);
999 	unsigned int mask, bit;
1000 
1001 	if (mm_alloc_pgste(mm))
1002 		return page_table_alloc_pgste(mm);
1003 	/* Allocate fragments of a 4K page as 1K/2K page table */
1004 	spin_lock_bh(&mm->context.list_lock);
1005 	mask = FRAG_MASK;
1006 	if (!list_empty(&mm->context.pgtable_list)) {
1007 		page = list_first_entry(&mm->context.pgtable_list,
1008 					struct page, lru);
1009 		table = (unsigned long *) page_to_phys(page);
1010 		mask = atomic_read(&page->_mapcount);
1011 		mask = mask | (mask >> 4);
1012 	}
1013 	if ((mask & FRAG_MASK) == FRAG_MASK) {
1014 		spin_unlock_bh(&mm->context.list_lock);
1015 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
1016 		if (!page)
1017 			return NULL;
1018 		if (!pgtable_page_ctor(page)) {
1019 			__free_page(page);
1020 			return NULL;
1021 		}
1022 		atomic_set(&page->_mapcount, 1);
1023 		table = (unsigned long *) page_to_phys(page);
1024 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1025 		spin_lock_bh(&mm->context.list_lock);
1026 		list_add(&page->lru, &mm->context.pgtable_list);
1027 	} else {
1028 		for (bit = 1; mask & bit; bit <<= 1)
1029 			table += PTRS_PER_PTE;
1030 		mask = atomic_xor_bits(&page->_mapcount, bit);
1031 		if ((mask & FRAG_MASK) == FRAG_MASK)
1032 			list_del(&page->lru);
1033 	}
1034 	spin_unlock_bh(&mm->context.list_lock);
1035 	return table;
1036 }
1037 
1038 void page_table_free(struct mm_struct *mm, unsigned long *table)
1039 {
1040 	struct page *page;
1041 	unsigned int bit, mask;
1042 
1043 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1044 	if (page_table_with_pgste(page))
1045 		return page_table_free_pgste(table);
1046 	/* Free 1K/2K page table fragment of a 4K page */
1047 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1048 	spin_lock_bh(&mm->context.list_lock);
1049 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1050 		list_del(&page->lru);
1051 	mask = atomic_xor_bits(&page->_mapcount, bit);
1052 	if (mask & FRAG_MASK)
1053 		list_add(&page->lru, &mm->context.pgtable_list);
1054 	spin_unlock_bh(&mm->context.list_lock);
1055 	if (mask == 0) {
1056 		pgtable_page_dtor(page);
1057 		atomic_set(&page->_mapcount, -1);
1058 		__free_page(page);
1059 	}
1060 }
1061 
1062 static void __page_table_free_rcu(void *table, unsigned bit)
1063 {
1064 	struct page *page;
1065 
1066 	if (bit == FRAG_MASK)
1067 		return page_table_free_pgste(table);
1068 	/* Free 1K/2K page table fragment of a 4K page */
1069 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1070 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1071 		pgtable_page_dtor(page);
1072 		atomic_set(&page->_mapcount, -1);
1073 		__free_page(page);
1074 	}
1075 }
1076 
1077 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1078 			 unsigned long vmaddr)
1079 {
1080 	struct mm_struct *mm;
1081 	struct page *page;
1082 	unsigned int bit, mask;
1083 
1084 	mm = tlb->mm;
1085 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1086 	if (page_table_with_pgste(page)) {
1087 		gmap_unlink(mm, table, vmaddr);
1088 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
1089 		tlb_remove_table(tlb, table);
1090 		return;
1091 	}
1092 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1093 	spin_lock_bh(&mm->context.list_lock);
1094 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1095 		list_del(&page->lru);
1096 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1097 	if (mask & FRAG_MASK)
1098 		list_add_tail(&page->lru, &mm->context.pgtable_list);
1099 	spin_unlock_bh(&mm->context.list_lock);
1100 	table = (unsigned long *) (__pa(table) | (bit << 4));
1101 	tlb_remove_table(tlb, table);
1102 }
1103 
1104 static void __tlb_remove_table(void *_table)
1105 {
1106 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1107 	void *table = (void *)((unsigned long) _table & ~mask);
1108 	unsigned type = (unsigned long) _table & mask;
1109 
1110 	if (type)
1111 		__page_table_free_rcu(table, type);
1112 	else
1113 		free_pages((unsigned long) table, ALLOC_ORDER);
1114 }
1115 
1116 static void tlb_remove_table_smp_sync(void *arg)
1117 {
1118 	/* Simply deliver the interrupt */
1119 }
1120 
1121 static void tlb_remove_table_one(void *table)
1122 {
1123 	/*
1124 	 * This isn't an RCU grace period and hence the page-tables cannot be
1125 	 * assumed to be actually RCU-freed.
1126 	 *
1127 	 * It is however sufficient for software page-table walkers that rely
1128 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
1129 	 */
1130 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1131 	__tlb_remove_table(table);
1132 }
1133 
1134 static void tlb_remove_table_rcu(struct rcu_head *head)
1135 {
1136 	struct mmu_table_batch *batch;
1137 	int i;
1138 
1139 	batch = container_of(head, struct mmu_table_batch, rcu);
1140 
1141 	for (i = 0; i < batch->nr; i++)
1142 		__tlb_remove_table(batch->tables[i]);
1143 
1144 	free_page((unsigned long)batch);
1145 }
1146 
1147 void tlb_table_flush(struct mmu_gather *tlb)
1148 {
1149 	struct mmu_table_batch **batch = &tlb->batch;
1150 
1151 	if (*batch) {
1152 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1153 		*batch = NULL;
1154 	}
1155 }
1156 
1157 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1158 {
1159 	struct mmu_table_batch **batch = &tlb->batch;
1160 
1161 	tlb->mm->context.flush_mm = 1;
1162 	if (*batch == NULL) {
1163 		*batch = (struct mmu_table_batch *)
1164 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1165 		if (*batch == NULL) {
1166 			__tlb_flush_mm_lazy(tlb->mm);
1167 			tlb_remove_table_one(table);
1168 			return;
1169 		}
1170 		(*batch)->nr = 0;
1171 	}
1172 	(*batch)->tables[(*batch)->nr++] = table;
1173 	if ((*batch)->nr == MAX_TABLE_BATCH)
1174 		tlb_flush_mmu(tlb);
1175 }
1176 
1177 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1178 static inline void thp_split_vma(struct vm_area_struct *vma)
1179 {
1180 	unsigned long addr;
1181 
1182 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1183 		follow_page(vma, addr, FOLL_SPLIT);
1184 }
1185 
1186 static inline void thp_split_mm(struct mm_struct *mm)
1187 {
1188 	struct vm_area_struct *vma;
1189 
1190 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1191 		thp_split_vma(vma);
1192 		vma->vm_flags &= ~VM_HUGEPAGE;
1193 		vma->vm_flags |= VM_NOHUGEPAGE;
1194 	}
1195 	mm->def_flags |= VM_NOHUGEPAGE;
1196 }
1197 #else
1198 static inline void thp_split_mm(struct mm_struct *mm)
1199 {
1200 }
1201 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1202 
1203 /*
1204  * switch on pgstes for its userspace process (for kvm)
1205  */
1206 int s390_enable_sie(void)
1207 {
1208 	struct mm_struct *mm = current->mm;
1209 
1210 	/* Do we have pgstes? if yes, we are done */
1211 	if (mm_has_pgste(mm))
1212 		return 0;
1213 	/* Fail if the page tables are 2K */
1214 	if (!mm_alloc_pgste(mm))
1215 		return -EINVAL;
1216 	down_write(&mm->mmap_sem);
1217 	mm->context.has_pgste = 1;
1218 	/* split thp mappings and disable thp for future mappings */
1219 	thp_split_mm(mm);
1220 	up_write(&mm->mmap_sem);
1221 	return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(s390_enable_sie);
1224 
1225 /*
1226  * Enable storage key handling from now on and initialize the storage
1227  * keys with the default key.
1228  */
1229 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1230 			      unsigned long next, struct mm_walk *walk)
1231 {
1232 	unsigned long ptev;
1233 	pgste_t pgste;
1234 
1235 	pgste = pgste_get_lock(pte);
1236 	/*
1237 	 * Remove all zero page mappings,
1238 	 * after establishing a policy to forbid zero page mappings
1239 	 * following faults for that page will get fresh anonymous pages
1240 	 */
1241 	if (is_zero_pfn(pte_pfn(*pte))) {
1242 		ptep_flush_direct(walk->mm, addr, pte);
1243 		pte_val(*pte) = _PAGE_INVALID;
1244 	}
1245 	/* Clear storage key */
1246 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1247 			      PGSTE_GR_BIT | PGSTE_GC_BIT);
1248 	ptev = pte_val(*pte);
1249 	if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1250 		page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1251 	pgste_set_unlock(pte, pgste);
1252 	return 0;
1253 }
1254 
1255 int s390_enable_skey(void)
1256 {
1257 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1258 	struct mm_struct *mm = current->mm;
1259 	struct vm_area_struct *vma;
1260 	int rc = 0;
1261 
1262 	down_write(&mm->mmap_sem);
1263 	if (mm_use_skey(mm))
1264 		goto out_up;
1265 
1266 	mm->context.use_skey = 1;
1267 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1268 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1269 				MADV_UNMERGEABLE, &vma->vm_flags)) {
1270 			mm->context.use_skey = 0;
1271 			rc = -ENOMEM;
1272 			goto out_up;
1273 		}
1274 	}
1275 	mm->def_flags &= ~VM_MERGEABLE;
1276 
1277 	walk.mm = mm;
1278 	walk_page_range(0, TASK_SIZE, &walk);
1279 
1280 out_up:
1281 	up_write(&mm->mmap_sem);
1282 	return rc;
1283 }
1284 EXPORT_SYMBOL_GPL(s390_enable_skey);
1285 
1286 /*
1287  * Reset CMMA state, make all pages stable again.
1288  */
1289 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1290 			     unsigned long next, struct mm_walk *walk)
1291 {
1292 	pgste_t pgste;
1293 
1294 	pgste = pgste_get_lock(pte);
1295 	pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1296 	pgste_set_unlock(pte, pgste);
1297 	return 0;
1298 }
1299 
1300 void s390_reset_cmma(struct mm_struct *mm)
1301 {
1302 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1303 
1304 	down_write(&mm->mmap_sem);
1305 	walk.mm = mm;
1306 	walk_page_range(0, TASK_SIZE, &walk);
1307 	up_write(&mm->mmap_sem);
1308 }
1309 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1310 
1311 /*
1312  * Test and reset if a guest page is dirty
1313  */
1314 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1315 {
1316 	pte_t *pte;
1317 	spinlock_t *ptl;
1318 	bool dirty = false;
1319 
1320 	pte = get_locked_pte(gmap->mm, address, &ptl);
1321 	if (unlikely(!pte))
1322 		return false;
1323 
1324 	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1325 		dirty = true;
1326 
1327 	spin_unlock(ptl);
1328 	return dirty;
1329 }
1330 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1331 
1332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1333 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1334 			   pmd_t *pmdp)
1335 {
1336 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1337 	/* No need to flush TLB
1338 	 * On s390 reference bits are in storage key and never in TLB */
1339 	return pmdp_test_and_clear_young(vma, address, pmdp);
1340 }
1341 
1342 int pmdp_set_access_flags(struct vm_area_struct *vma,
1343 			  unsigned long address, pmd_t *pmdp,
1344 			  pmd_t entry, int dirty)
1345 {
1346 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1347 
1348 	entry = pmd_mkyoung(entry);
1349 	if (dirty)
1350 		entry = pmd_mkdirty(entry);
1351 	if (pmd_same(*pmdp, entry))
1352 		return 0;
1353 	pmdp_invalidate(vma, address, pmdp);
1354 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1355 	return 1;
1356 }
1357 
1358 static void pmdp_splitting_flush_sync(void *arg)
1359 {
1360 	/* Simply deliver the interrupt */
1361 }
1362 
1363 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1364 			  pmd_t *pmdp)
1365 {
1366 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1367 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1368 			      (unsigned long *) pmdp)) {
1369 		/* need to serialize against gup-fast (IRQ disabled) */
1370 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1371 	}
1372 }
1373 
1374 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1375 				pgtable_t pgtable)
1376 {
1377 	struct list_head *lh = (struct list_head *) pgtable;
1378 
1379 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1380 
1381 	/* FIFO */
1382 	if (!pmd_huge_pte(mm, pmdp))
1383 		INIT_LIST_HEAD(lh);
1384 	else
1385 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1386 	pmd_huge_pte(mm, pmdp) = pgtable;
1387 }
1388 
1389 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1390 {
1391 	struct list_head *lh;
1392 	pgtable_t pgtable;
1393 	pte_t *ptep;
1394 
1395 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1396 
1397 	/* FIFO */
1398 	pgtable = pmd_huge_pte(mm, pmdp);
1399 	lh = (struct list_head *) pgtable;
1400 	if (list_empty(lh))
1401 		pmd_huge_pte(mm, pmdp) = NULL;
1402 	else {
1403 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1404 		list_del(lh);
1405 	}
1406 	ptep = (pte_t *) pgtable;
1407 	pte_val(*ptep) = _PAGE_INVALID;
1408 	ptep++;
1409 	pte_val(*ptep) = _PAGE_INVALID;
1410 	return pgtable;
1411 }
1412 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1413