xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 8c0b9ee8)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 #include <linux/ksm.h>
22 #include <linux/mman.h>
23 
24 #include <asm/pgtable.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbflush.h>
28 #include <asm/mmu_context.h>
29 
30 #ifndef CONFIG_64BIT
31 #define ALLOC_ORDER	1
32 #define FRAG_MASK	0x0f
33 #else
34 #define ALLOC_ORDER	2
35 #define FRAG_MASK	0x03
36 #endif
37 
38 
39 unsigned long *crst_table_alloc(struct mm_struct *mm)
40 {
41 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
42 
43 	if (!page)
44 		return NULL;
45 	return (unsigned long *) page_to_phys(page);
46 }
47 
48 void crst_table_free(struct mm_struct *mm, unsigned long *table)
49 {
50 	free_pages((unsigned long) table, ALLOC_ORDER);
51 }
52 
53 #ifdef CONFIG_64BIT
54 static void __crst_table_upgrade(void *arg)
55 {
56 	struct mm_struct *mm = arg;
57 
58 	if (current->active_mm == mm) {
59 		clear_user_asce();
60 		set_user_asce(mm);
61 	}
62 	__tlb_flush_local();
63 }
64 
65 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
66 {
67 	unsigned long *table, *pgd;
68 	unsigned long entry;
69 	int flush;
70 
71 	BUG_ON(limit > (1UL << 53));
72 	flush = 0;
73 repeat:
74 	table = crst_table_alloc(mm);
75 	if (!table)
76 		return -ENOMEM;
77 	spin_lock_bh(&mm->page_table_lock);
78 	if (mm->context.asce_limit < limit) {
79 		pgd = (unsigned long *) mm->pgd;
80 		if (mm->context.asce_limit <= (1UL << 31)) {
81 			entry = _REGION3_ENTRY_EMPTY;
82 			mm->context.asce_limit = 1UL << 42;
83 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
84 						_ASCE_USER_BITS |
85 						_ASCE_TYPE_REGION3;
86 		} else {
87 			entry = _REGION2_ENTRY_EMPTY;
88 			mm->context.asce_limit = 1UL << 53;
89 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
90 						_ASCE_USER_BITS |
91 						_ASCE_TYPE_REGION2;
92 		}
93 		crst_table_init(table, entry);
94 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
95 		mm->pgd = (pgd_t *) table;
96 		mm->task_size = mm->context.asce_limit;
97 		table = NULL;
98 		flush = 1;
99 	}
100 	spin_unlock_bh(&mm->page_table_lock);
101 	if (table)
102 		crst_table_free(mm, table);
103 	if (mm->context.asce_limit < limit)
104 		goto repeat;
105 	if (flush)
106 		on_each_cpu(__crst_table_upgrade, mm, 0);
107 	return 0;
108 }
109 
110 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
111 {
112 	pgd_t *pgd;
113 
114 	if (current->active_mm == mm) {
115 		clear_user_asce();
116 		__tlb_flush_mm(mm);
117 	}
118 	while (mm->context.asce_limit > limit) {
119 		pgd = mm->pgd;
120 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
121 		case _REGION_ENTRY_TYPE_R2:
122 			mm->context.asce_limit = 1UL << 42;
123 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
124 						_ASCE_USER_BITS |
125 						_ASCE_TYPE_REGION3;
126 			break;
127 		case _REGION_ENTRY_TYPE_R3:
128 			mm->context.asce_limit = 1UL << 31;
129 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
130 						_ASCE_USER_BITS |
131 						_ASCE_TYPE_SEGMENT;
132 			break;
133 		default:
134 			BUG();
135 		}
136 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
137 		mm->task_size = mm->context.asce_limit;
138 		crst_table_free(mm, (unsigned long *) pgd);
139 	}
140 	if (current->active_mm == mm)
141 		set_user_asce(mm);
142 }
143 #endif
144 
145 #ifdef CONFIG_PGSTE
146 
147 /**
148  * gmap_alloc - allocate a guest address space
149  * @mm: pointer to the parent mm_struct
150  * @limit: maximum size of the gmap address space
151  *
152  * Returns a guest address space structure.
153  */
154 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
155 {
156 	struct gmap *gmap;
157 	struct page *page;
158 	unsigned long *table;
159 	unsigned long etype, atype;
160 
161 	if (limit < (1UL << 31)) {
162 		limit = (1UL << 31) - 1;
163 		atype = _ASCE_TYPE_SEGMENT;
164 		etype = _SEGMENT_ENTRY_EMPTY;
165 	} else if (limit < (1UL << 42)) {
166 		limit = (1UL << 42) - 1;
167 		atype = _ASCE_TYPE_REGION3;
168 		etype = _REGION3_ENTRY_EMPTY;
169 	} else if (limit < (1UL << 53)) {
170 		limit = (1UL << 53) - 1;
171 		atype = _ASCE_TYPE_REGION2;
172 		etype = _REGION2_ENTRY_EMPTY;
173 	} else {
174 		limit = -1UL;
175 		atype = _ASCE_TYPE_REGION1;
176 		etype = _REGION1_ENTRY_EMPTY;
177 	}
178 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
179 	if (!gmap)
180 		goto out;
181 	INIT_LIST_HEAD(&gmap->crst_list);
182 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
183 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
184 	spin_lock_init(&gmap->guest_table_lock);
185 	gmap->mm = mm;
186 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
187 	if (!page)
188 		goto out_free;
189 	page->index = 0;
190 	list_add(&page->lru, &gmap->crst_list);
191 	table = (unsigned long *) page_to_phys(page);
192 	crst_table_init(table, etype);
193 	gmap->table = table;
194 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
195 		_ASCE_USER_BITS | __pa(table);
196 	gmap->asce_end = limit;
197 	down_write(&mm->mmap_sem);
198 	list_add(&gmap->list, &mm->context.gmap_list);
199 	up_write(&mm->mmap_sem);
200 	return gmap;
201 
202 out_free:
203 	kfree(gmap);
204 out:
205 	return NULL;
206 }
207 EXPORT_SYMBOL_GPL(gmap_alloc);
208 
209 static void gmap_flush_tlb(struct gmap *gmap)
210 {
211 	if (MACHINE_HAS_IDTE)
212 		__tlb_flush_asce(gmap->mm, gmap->asce);
213 	else
214 		__tlb_flush_global();
215 }
216 
217 static void gmap_radix_tree_free(struct radix_tree_root *root)
218 {
219 	struct radix_tree_iter iter;
220 	unsigned long indices[16];
221 	unsigned long index;
222 	void **slot;
223 	int i, nr;
224 
225 	/* A radix tree is freed by deleting all of its entries */
226 	index = 0;
227 	do {
228 		nr = 0;
229 		radix_tree_for_each_slot(slot, root, &iter, index) {
230 			indices[nr] = iter.index;
231 			if (++nr == 16)
232 				break;
233 		}
234 		for (i = 0; i < nr; i++) {
235 			index = indices[i];
236 			radix_tree_delete(root, index);
237 		}
238 	} while (nr > 0);
239 }
240 
241 /**
242  * gmap_free - free a guest address space
243  * @gmap: pointer to the guest address space structure
244  */
245 void gmap_free(struct gmap *gmap)
246 {
247 	struct page *page, *next;
248 
249 	/* Flush tlb. */
250 	if (MACHINE_HAS_IDTE)
251 		__tlb_flush_asce(gmap->mm, gmap->asce);
252 	else
253 		__tlb_flush_global();
254 
255 	/* Free all segment & region tables. */
256 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
257 		__free_pages(page, ALLOC_ORDER);
258 	gmap_radix_tree_free(&gmap->guest_to_host);
259 	gmap_radix_tree_free(&gmap->host_to_guest);
260 	down_write(&gmap->mm->mmap_sem);
261 	list_del(&gmap->list);
262 	up_write(&gmap->mm->mmap_sem);
263 	kfree(gmap);
264 }
265 EXPORT_SYMBOL_GPL(gmap_free);
266 
267 /**
268  * gmap_enable - switch primary space to the guest address space
269  * @gmap: pointer to the guest address space structure
270  */
271 void gmap_enable(struct gmap *gmap)
272 {
273 	S390_lowcore.gmap = (unsigned long) gmap;
274 }
275 EXPORT_SYMBOL_GPL(gmap_enable);
276 
277 /**
278  * gmap_disable - switch back to the standard primary address space
279  * @gmap: pointer to the guest address space structure
280  */
281 void gmap_disable(struct gmap *gmap)
282 {
283 	S390_lowcore.gmap = 0UL;
284 }
285 EXPORT_SYMBOL_GPL(gmap_disable);
286 
287 /*
288  * gmap_alloc_table is assumed to be called with mmap_sem held
289  */
290 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
291 			    unsigned long init, unsigned long gaddr)
292 {
293 	struct page *page;
294 	unsigned long *new;
295 
296 	/* since we dont free the gmap table until gmap_free we can unlock */
297 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
298 	if (!page)
299 		return -ENOMEM;
300 	new = (unsigned long *) page_to_phys(page);
301 	crst_table_init(new, init);
302 	spin_lock(&gmap->mm->page_table_lock);
303 	if (*table & _REGION_ENTRY_INVALID) {
304 		list_add(&page->lru, &gmap->crst_list);
305 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
306 			(*table & _REGION_ENTRY_TYPE_MASK);
307 		page->index = gaddr;
308 		page = NULL;
309 	}
310 	spin_unlock(&gmap->mm->page_table_lock);
311 	if (page)
312 		__free_pages(page, ALLOC_ORDER);
313 	return 0;
314 }
315 
316 /**
317  * __gmap_segment_gaddr - find virtual address from segment pointer
318  * @entry: pointer to a segment table entry in the guest address space
319  *
320  * Returns the virtual address in the guest address space for the segment
321  */
322 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
323 {
324 	struct page *page;
325 	unsigned long offset, mask;
326 
327 	offset = (unsigned long) entry / sizeof(unsigned long);
328 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
329 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
330 	page = virt_to_page((void *)((unsigned long) entry & mask));
331 	return page->index + offset;
332 }
333 
334 /**
335  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
336  * @gmap: pointer to the guest address space structure
337  * @vmaddr: address in the host process address space
338  *
339  * Returns 1 if a TLB flush is required
340  */
341 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
342 {
343 	unsigned long *entry;
344 	int flush = 0;
345 
346 	spin_lock(&gmap->guest_table_lock);
347 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
348 	if (entry) {
349 		flush = (*entry != _SEGMENT_ENTRY_INVALID);
350 		*entry = _SEGMENT_ENTRY_INVALID;
351 	}
352 	spin_unlock(&gmap->guest_table_lock);
353 	return flush;
354 }
355 
356 /**
357  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
358  * @gmap: pointer to the guest address space structure
359  * @gaddr: address in the guest address space
360  *
361  * Returns 1 if a TLB flush is required
362  */
363 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
364 {
365 	unsigned long vmaddr;
366 
367 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
368 						   gaddr >> PMD_SHIFT);
369 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
370 }
371 
372 /**
373  * gmap_unmap_segment - unmap segment from the guest address space
374  * @gmap: pointer to the guest address space structure
375  * @to: address in the guest address space
376  * @len: length of the memory area to unmap
377  *
378  * Returns 0 if the unmap succeeded, -EINVAL if not.
379  */
380 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
381 {
382 	unsigned long off;
383 	int flush;
384 
385 	if ((to | len) & (PMD_SIZE - 1))
386 		return -EINVAL;
387 	if (len == 0 || to + len < to)
388 		return -EINVAL;
389 
390 	flush = 0;
391 	down_write(&gmap->mm->mmap_sem);
392 	for (off = 0; off < len; off += PMD_SIZE)
393 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
394 	up_write(&gmap->mm->mmap_sem);
395 	if (flush)
396 		gmap_flush_tlb(gmap);
397 	return 0;
398 }
399 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
400 
401 /**
402  * gmap_mmap_segment - map a segment to the guest address space
403  * @gmap: pointer to the guest address space structure
404  * @from: source address in the parent address space
405  * @to: target address in the guest address space
406  * @len: length of the memory area to map
407  *
408  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
409  */
410 int gmap_map_segment(struct gmap *gmap, unsigned long from,
411 		     unsigned long to, unsigned long len)
412 {
413 	unsigned long off;
414 	int flush;
415 
416 	if ((from | to | len) & (PMD_SIZE - 1))
417 		return -EINVAL;
418 	if (len == 0 || from + len < from || to + len < to ||
419 	    from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
420 		return -EINVAL;
421 
422 	flush = 0;
423 	down_write(&gmap->mm->mmap_sem);
424 	for (off = 0; off < len; off += PMD_SIZE) {
425 		/* Remove old translation */
426 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
427 		/* Store new translation */
428 		if (radix_tree_insert(&gmap->guest_to_host,
429 				      (to + off) >> PMD_SHIFT,
430 				      (void *) from + off))
431 			break;
432 	}
433 	up_write(&gmap->mm->mmap_sem);
434 	if (flush)
435 		gmap_flush_tlb(gmap);
436 	if (off >= len)
437 		return 0;
438 	gmap_unmap_segment(gmap, to, len);
439 	return -ENOMEM;
440 }
441 EXPORT_SYMBOL_GPL(gmap_map_segment);
442 
443 /**
444  * __gmap_translate - translate a guest address to a user space address
445  * @gmap: pointer to guest mapping meta data structure
446  * @gaddr: guest address
447  *
448  * Returns user space address which corresponds to the guest address or
449  * -EFAULT if no such mapping exists.
450  * This function does not establish potentially missing page table entries.
451  * The mmap_sem of the mm that belongs to the address space must be held
452  * when this function gets called.
453  */
454 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
455 {
456 	unsigned long vmaddr;
457 
458 	vmaddr = (unsigned long)
459 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
460 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
461 }
462 EXPORT_SYMBOL_GPL(__gmap_translate);
463 
464 /**
465  * gmap_translate - translate a guest address to a user space address
466  * @gmap: pointer to guest mapping meta data structure
467  * @gaddr: guest address
468  *
469  * Returns user space address which corresponds to the guest address or
470  * -EFAULT if no such mapping exists.
471  * This function does not establish potentially missing page table entries.
472  */
473 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
474 {
475 	unsigned long rc;
476 
477 	down_read(&gmap->mm->mmap_sem);
478 	rc = __gmap_translate(gmap, gaddr);
479 	up_read(&gmap->mm->mmap_sem);
480 	return rc;
481 }
482 EXPORT_SYMBOL_GPL(gmap_translate);
483 
484 /**
485  * gmap_unlink - disconnect a page table from the gmap shadow tables
486  * @gmap: pointer to guest mapping meta data structure
487  * @table: pointer to the host page table
488  * @vmaddr: vm address associated with the host page table
489  */
490 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
491 			unsigned long vmaddr)
492 {
493 	struct gmap *gmap;
494 	int flush;
495 
496 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
497 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
498 		if (flush)
499 			gmap_flush_tlb(gmap);
500 	}
501 }
502 
503 /**
504  * gmap_link - set up shadow page tables to connect a host to a guest address
505  * @gmap: pointer to guest mapping meta data structure
506  * @gaddr: guest address
507  * @vmaddr: vm address
508  *
509  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
510  * if the vm address is already mapped to a different guest segment.
511  * The mmap_sem of the mm that belongs to the address space must be held
512  * when this function gets called.
513  */
514 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
515 {
516 	struct mm_struct *mm;
517 	unsigned long *table;
518 	spinlock_t *ptl;
519 	pgd_t *pgd;
520 	pud_t *pud;
521 	pmd_t *pmd;
522 	int rc;
523 
524 	/* Create higher level tables in the gmap page table */
525 	table = gmap->table;
526 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
527 		table += (gaddr >> 53) & 0x7ff;
528 		if ((*table & _REGION_ENTRY_INVALID) &&
529 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
530 				     gaddr & 0xffe0000000000000UL))
531 			return -ENOMEM;
532 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
533 	}
534 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
535 		table += (gaddr >> 42) & 0x7ff;
536 		if ((*table & _REGION_ENTRY_INVALID) &&
537 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
538 				     gaddr & 0xfffffc0000000000UL))
539 			return -ENOMEM;
540 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
541 	}
542 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
543 		table += (gaddr >> 31) & 0x7ff;
544 		if ((*table & _REGION_ENTRY_INVALID) &&
545 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
546 				     gaddr & 0xffffffff80000000UL))
547 			return -ENOMEM;
548 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
549 	}
550 	table += (gaddr >> 20) & 0x7ff;
551 	/* Walk the parent mm page table */
552 	mm = gmap->mm;
553 	pgd = pgd_offset(mm, vmaddr);
554 	VM_BUG_ON(pgd_none(*pgd));
555 	pud = pud_offset(pgd, vmaddr);
556 	VM_BUG_ON(pud_none(*pud));
557 	pmd = pmd_offset(pud, vmaddr);
558 	VM_BUG_ON(pmd_none(*pmd));
559 	/* large pmds cannot yet be handled */
560 	if (pmd_large(*pmd))
561 		return -EFAULT;
562 	/* Link gmap segment table entry location to page table. */
563 	rc = radix_tree_preload(GFP_KERNEL);
564 	if (rc)
565 		return rc;
566 	ptl = pmd_lock(mm, pmd);
567 	spin_lock(&gmap->guest_table_lock);
568 	if (*table == _SEGMENT_ENTRY_INVALID) {
569 		rc = radix_tree_insert(&gmap->host_to_guest,
570 				       vmaddr >> PMD_SHIFT, table);
571 		if (!rc)
572 			*table = pmd_val(*pmd);
573 	} else
574 		rc = 0;
575 	spin_unlock(&gmap->guest_table_lock);
576 	spin_unlock(ptl);
577 	radix_tree_preload_end();
578 	return rc;
579 }
580 
581 /**
582  * gmap_fault - resolve a fault on a guest address
583  * @gmap: pointer to guest mapping meta data structure
584  * @gaddr: guest address
585  * @fault_flags: flags to pass down to handle_mm_fault()
586  *
587  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
588  * if the vm address is already mapped to a different guest segment.
589  */
590 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
591 	       unsigned int fault_flags)
592 {
593 	unsigned long vmaddr;
594 	int rc;
595 
596 	down_read(&gmap->mm->mmap_sem);
597 	vmaddr = __gmap_translate(gmap, gaddr);
598 	if (IS_ERR_VALUE(vmaddr)) {
599 		rc = vmaddr;
600 		goto out_up;
601 	}
602 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
603 		rc = -EFAULT;
604 		goto out_up;
605 	}
606 	rc = __gmap_link(gmap, gaddr, vmaddr);
607 out_up:
608 	up_read(&gmap->mm->mmap_sem);
609 	return rc;
610 }
611 EXPORT_SYMBOL_GPL(gmap_fault);
612 
613 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
614 {
615 	if (!non_swap_entry(entry))
616 		dec_mm_counter(mm, MM_SWAPENTS);
617 	else if (is_migration_entry(entry)) {
618 		struct page *page = migration_entry_to_page(entry);
619 
620 		if (PageAnon(page))
621 			dec_mm_counter(mm, MM_ANONPAGES);
622 		else
623 			dec_mm_counter(mm, MM_FILEPAGES);
624 	}
625 	free_swap_and_cache(entry);
626 }
627 
628 /*
629  * this function is assumed to be called with mmap_sem held
630  */
631 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
632 {
633 	unsigned long vmaddr, ptev, pgstev;
634 	pte_t *ptep, pte;
635 	spinlock_t *ptl;
636 	pgste_t pgste;
637 
638 	/* Find the vm address for the guest address */
639 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
640 						   gaddr >> PMD_SHIFT);
641 	if (!vmaddr)
642 		return;
643 	vmaddr |= gaddr & ~PMD_MASK;
644 	/* Get pointer to the page table entry */
645 	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
646 	if (unlikely(!ptep))
647 		return;
648 	pte = *ptep;
649 	if (!pte_swap(pte))
650 		goto out_pte;
651 	/* Zap unused and logically-zero pages */
652 	pgste = pgste_get_lock(ptep);
653 	pgstev = pgste_val(pgste);
654 	ptev = pte_val(pte);
655 	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
656 	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
657 		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
658 		pte_clear(gmap->mm, vmaddr, ptep);
659 	}
660 	pgste_set_unlock(ptep, pgste);
661 out_pte:
662 	pte_unmap_unlock(ptep, ptl);
663 }
664 EXPORT_SYMBOL_GPL(__gmap_zap);
665 
666 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
667 {
668 	unsigned long gaddr, vmaddr, size;
669 	struct vm_area_struct *vma;
670 
671 	down_read(&gmap->mm->mmap_sem);
672 	for (gaddr = from; gaddr < to;
673 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
674 		/* Find the vm address for the guest address */
675 		vmaddr = (unsigned long)
676 			radix_tree_lookup(&gmap->guest_to_host,
677 					  gaddr >> PMD_SHIFT);
678 		if (!vmaddr)
679 			continue;
680 		vmaddr |= gaddr & ~PMD_MASK;
681 		/* Find vma in the parent mm */
682 		vma = find_vma(gmap->mm, vmaddr);
683 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
684 		zap_page_range(vma, vmaddr, size, NULL);
685 	}
686 	up_read(&gmap->mm->mmap_sem);
687 }
688 EXPORT_SYMBOL_GPL(gmap_discard);
689 
690 static LIST_HEAD(gmap_notifier_list);
691 static DEFINE_SPINLOCK(gmap_notifier_lock);
692 
693 /**
694  * gmap_register_ipte_notifier - register a pte invalidation callback
695  * @nb: pointer to the gmap notifier block
696  */
697 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
698 {
699 	spin_lock(&gmap_notifier_lock);
700 	list_add(&nb->list, &gmap_notifier_list);
701 	spin_unlock(&gmap_notifier_lock);
702 }
703 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
704 
705 /**
706  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
707  * @nb: pointer to the gmap notifier block
708  */
709 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
710 {
711 	spin_lock(&gmap_notifier_lock);
712 	list_del_init(&nb->list);
713 	spin_unlock(&gmap_notifier_lock);
714 }
715 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
716 
717 /**
718  * gmap_ipte_notify - mark a range of ptes for invalidation notification
719  * @gmap: pointer to guest mapping meta data structure
720  * @gaddr: virtual address in the guest address space
721  * @len: size of area
722  *
723  * Returns 0 if for each page in the given range a gmap mapping exists and
724  * the invalidation notification could be set. If the gmap mapping is missing
725  * for one or more pages -EFAULT is returned. If no memory could be allocated
726  * -ENOMEM is returned. This function establishes missing page table entries.
727  */
728 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
729 {
730 	unsigned long addr;
731 	spinlock_t *ptl;
732 	pte_t *ptep, entry;
733 	pgste_t pgste;
734 	int rc = 0;
735 
736 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
737 		return -EINVAL;
738 	down_read(&gmap->mm->mmap_sem);
739 	while (len) {
740 		/* Convert gmap address and connect the page tables */
741 		addr = __gmap_translate(gmap, gaddr);
742 		if (IS_ERR_VALUE(addr)) {
743 			rc = addr;
744 			break;
745 		}
746 		/* Get the page mapped */
747 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
748 			rc = -EFAULT;
749 			break;
750 		}
751 		rc = __gmap_link(gmap, gaddr, addr);
752 		if (rc)
753 			break;
754 		/* Walk the process page table, lock and get pte pointer */
755 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
756 		VM_BUG_ON(!ptep);
757 		/* Set notification bit in the pgste of the pte */
758 		entry = *ptep;
759 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
760 			pgste = pgste_get_lock(ptep);
761 			pgste_val(pgste) |= PGSTE_IN_BIT;
762 			pgste_set_unlock(ptep, pgste);
763 			gaddr += PAGE_SIZE;
764 			len -= PAGE_SIZE;
765 		}
766 		pte_unmap_unlock(ptep, ptl);
767 	}
768 	up_read(&gmap->mm->mmap_sem);
769 	return rc;
770 }
771 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
772 
773 /**
774  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
775  * @mm: pointer to the process mm_struct
776  * @addr: virtual address in the process address space
777  * @pte: pointer to the page table entry
778  *
779  * This function is assumed to be called with the page table lock held
780  * for the pte to notify.
781  */
782 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
783 {
784 	unsigned long offset, gaddr;
785 	unsigned long *table;
786 	struct gmap_notifier *nb;
787 	struct gmap *gmap;
788 
789 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
790 	offset = offset * (4096 / sizeof(pte_t));
791 	spin_lock(&gmap_notifier_lock);
792 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
793 		table = radix_tree_lookup(&gmap->host_to_guest,
794 					  vmaddr >> PMD_SHIFT);
795 		if (!table)
796 			continue;
797 		gaddr = __gmap_segment_gaddr(table) + offset;
798 		list_for_each_entry(nb, &gmap_notifier_list, list)
799 			nb->notifier_call(gmap, gaddr);
800 	}
801 	spin_unlock(&gmap_notifier_lock);
802 }
803 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
804 
805 static inline int page_table_with_pgste(struct page *page)
806 {
807 	return atomic_read(&page->_mapcount) == 0;
808 }
809 
810 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
811 {
812 	struct page *page;
813 	unsigned long *table;
814 
815 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
816 	if (!page)
817 		return NULL;
818 	if (!pgtable_page_ctor(page)) {
819 		__free_page(page);
820 		return NULL;
821 	}
822 	atomic_set(&page->_mapcount, 0);
823 	table = (unsigned long *) page_to_phys(page);
824 	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
825 	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
826 	return table;
827 }
828 
829 static inline void page_table_free_pgste(unsigned long *table)
830 {
831 	struct page *page;
832 
833 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
834 	pgtable_page_dtor(page);
835 	atomic_set(&page->_mapcount, -1);
836 	__free_page(page);
837 }
838 
839 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
840 			  unsigned long key, bool nq)
841 {
842 	spinlock_t *ptl;
843 	pgste_t old, new;
844 	pte_t *ptep;
845 
846 	down_read(&mm->mmap_sem);
847 retry:
848 	ptep = get_locked_pte(mm, addr, &ptl);
849 	if (unlikely(!ptep)) {
850 		up_read(&mm->mmap_sem);
851 		return -EFAULT;
852 	}
853 	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
854 	     (pte_val(*ptep) & _PAGE_PROTECT)) {
855 		pte_unmap_unlock(ptep, ptl);
856 		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
857 			up_read(&mm->mmap_sem);
858 			return -EFAULT;
859 		}
860 		goto retry;
861 	}
862 
863 	new = old = pgste_get_lock(ptep);
864 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
865 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
866 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
867 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
868 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
869 		unsigned long address, bits, skey;
870 
871 		address = pte_val(*ptep) & PAGE_MASK;
872 		skey = (unsigned long) page_get_storage_key(address);
873 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
874 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
875 		/* Set storage key ACC and FP */
876 		page_set_storage_key(address, skey, !nq);
877 		/* Merge host changed & referenced into pgste  */
878 		pgste_val(new) |= bits << 52;
879 	}
880 	/* changing the guest storage key is considered a change of the page */
881 	if ((pgste_val(new) ^ pgste_val(old)) &
882 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
883 		pgste_val(new) |= PGSTE_UC_BIT;
884 
885 	pgste_set_unlock(ptep, new);
886 	pte_unmap_unlock(ptep, ptl);
887 	up_read(&mm->mmap_sem);
888 	return 0;
889 }
890 EXPORT_SYMBOL(set_guest_storage_key);
891 
892 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
893 {
894 	spinlock_t *ptl;
895 	pgste_t pgste;
896 	pte_t *ptep;
897 	uint64_t physaddr;
898 	unsigned long key = 0;
899 
900 	down_read(&mm->mmap_sem);
901 	ptep = get_locked_pte(mm, addr, &ptl);
902 	if (unlikely(!ptep)) {
903 		up_read(&mm->mmap_sem);
904 		return -EFAULT;
905 	}
906 	pgste = pgste_get_lock(ptep);
907 
908 	if (pte_val(*ptep) & _PAGE_INVALID) {
909 		key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
910 		key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
911 		key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
912 		key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
913 	} else {
914 		physaddr = pte_val(*ptep) & PAGE_MASK;
915 		key = page_get_storage_key(physaddr);
916 
917 		/* Reflect guest's logical view, not physical */
918 		if (pgste_val(pgste) & PGSTE_GR_BIT)
919 			key |= _PAGE_REFERENCED;
920 		if (pgste_val(pgste) & PGSTE_GC_BIT)
921 			key |= _PAGE_CHANGED;
922 	}
923 
924 	pgste_set_unlock(ptep, pgste);
925 	pte_unmap_unlock(ptep, ptl);
926 	up_read(&mm->mmap_sem);
927 	return key;
928 }
929 EXPORT_SYMBOL(get_guest_storage_key);
930 
931 #else /* CONFIG_PGSTE */
932 
933 static inline int page_table_with_pgste(struct page *page)
934 {
935 	return 0;
936 }
937 
938 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
939 {
940 	return NULL;
941 }
942 
943 static inline void page_table_free_pgste(unsigned long *table)
944 {
945 }
946 
947 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
948 			unsigned long vmaddr)
949 {
950 }
951 
952 #endif /* CONFIG_PGSTE */
953 
954 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
955 {
956 	unsigned int old, new;
957 
958 	do {
959 		old = atomic_read(v);
960 		new = old ^ bits;
961 	} while (atomic_cmpxchg(v, old, new) != old);
962 	return new;
963 }
964 
965 /*
966  * page table entry allocation/free routines.
967  */
968 unsigned long *page_table_alloc(struct mm_struct *mm)
969 {
970 	unsigned long *uninitialized_var(table);
971 	struct page *uninitialized_var(page);
972 	unsigned int mask, bit;
973 
974 	if (mm_has_pgste(mm))
975 		return page_table_alloc_pgste(mm);
976 	/* Allocate fragments of a 4K page as 1K/2K page table */
977 	spin_lock_bh(&mm->context.list_lock);
978 	mask = FRAG_MASK;
979 	if (!list_empty(&mm->context.pgtable_list)) {
980 		page = list_first_entry(&mm->context.pgtable_list,
981 					struct page, lru);
982 		table = (unsigned long *) page_to_phys(page);
983 		mask = atomic_read(&page->_mapcount);
984 		mask = mask | (mask >> 4);
985 	}
986 	if ((mask & FRAG_MASK) == FRAG_MASK) {
987 		spin_unlock_bh(&mm->context.list_lock);
988 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
989 		if (!page)
990 			return NULL;
991 		if (!pgtable_page_ctor(page)) {
992 			__free_page(page);
993 			return NULL;
994 		}
995 		atomic_set(&page->_mapcount, 1);
996 		table = (unsigned long *) page_to_phys(page);
997 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
998 		spin_lock_bh(&mm->context.list_lock);
999 		list_add(&page->lru, &mm->context.pgtable_list);
1000 	} else {
1001 		for (bit = 1; mask & bit; bit <<= 1)
1002 			table += PTRS_PER_PTE;
1003 		mask = atomic_xor_bits(&page->_mapcount, bit);
1004 		if ((mask & FRAG_MASK) == FRAG_MASK)
1005 			list_del(&page->lru);
1006 	}
1007 	spin_unlock_bh(&mm->context.list_lock);
1008 	return table;
1009 }
1010 
1011 void page_table_free(struct mm_struct *mm, unsigned long *table)
1012 {
1013 	struct page *page;
1014 	unsigned int bit, mask;
1015 
1016 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1017 	if (page_table_with_pgste(page))
1018 		return page_table_free_pgste(table);
1019 	/* Free 1K/2K page table fragment of a 4K page */
1020 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1021 	spin_lock_bh(&mm->context.list_lock);
1022 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1023 		list_del(&page->lru);
1024 	mask = atomic_xor_bits(&page->_mapcount, bit);
1025 	if (mask & FRAG_MASK)
1026 		list_add(&page->lru, &mm->context.pgtable_list);
1027 	spin_unlock_bh(&mm->context.list_lock);
1028 	if (mask == 0) {
1029 		pgtable_page_dtor(page);
1030 		atomic_set(&page->_mapcount, -1);
1031 		__free_page(page);
1032 	}
1033 }
1034 
1035 static void __page_table_free_rcu(void *table, unsigned bit)
1036 {
1037 	struct page *page;
1038 
1039 	if (bit == FRAG_MASK)
1040 		return page_table_free_pgste(table);
1041 	/* Free 1K/2K page table fragment of a 4K page */
1042 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1043 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1044 		pgtable_page_dtor(page);
1045 		atomic_set(&page->_mapcount, -1);
1046 		__free_page(page);
1047 	}
1048 }
1049 
1050 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1051 			 unsigned long vmaddr)
1052 {
1053 	struct mm_struct *mm;
1054 	struct page *page;
1055 	unsigned int bit, mask;
1056 
1057 	mm = tlb->mm;
1058 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1059 	if (page_table_with_pgste(page)) {
1060 		gmap_unlink(mm, table, vmaddr);
1061 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
1062 		tlb_remove_table(tlb, table);
1063 		return;
1064 	}
1065 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1066 	spin_lock_bh(&mm->context.list_lock);
1067 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1068 		list_del(&page->lru);
1069 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1070 	if (mask & FRAG_MASK)
1071 		list_add_tail(&page->lru, &mm->context.pgtable_list);
1072 	spin_unlock_bh(&mm->context.list_lock);
1073 	table = (unsigned long *) (__pa(table) | (bit << 4));
1074 	tlb_remove_table(tlb, table);
1075 }
1076 
1077 static void __tlb_remove_table(void *_table)
1078 {
1079 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1080 	void *table = (void *)((unsigned long) _table & ~mask);
1081 	unsigned type = (unsigned long) _table & mask;
1082 
1083 	if (type)
1084 		__page_table_free_rcu(table, type);
1085 	else
1086 		free_pages((unsigned long) table, ALLOC_ORDER);
1087 }
1088 
1089 static void tlb_remove_table_smp_sync(void *arg)
1090 {
1091 	/* Simply deliver the interrupt */
1092 }
1093 
1094 static void tlb_remove_table_one(void *table)
1095 {
1096 	/*
1097 	 * This isn't an RCU grace period and hence the page-tables cannot be
1098 	 * assumed to be actually RCU-freed.
1099 	 *
1100 	 * It is however sufficient for software page-table walkers that rely
1101 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
1102 	 */
1103 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1104 	__tlb_remove_table(table);
1105 }
1106 
1107 static void tlb_remove_table_rcu(struct rcu_head *head)
1108 {
1109 	struct mmu_table_batch *batch;
1110 	int i;
1111 
1112 	batch = container_of(head, struct mmu_table_batch, rcu);
1113 
1114 	for (i = 0; i < batch->nr; i++)
1115 		__tlb_remove_table(batch->tables[i]);
1116 
1117 	free_page((unsigned long)batch);
1118 }
1119 
1120 void tlb_table_flush(struct mmu_gather *tlb)
1121 {
1122 	struct mmu_table_batch **batch = &tlb->batch;
1123 
1124 	if (*batch) {
1125 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1126 		*batch = NULL;
1127 	}
1128 }
1129 
1130 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1131 {
1132 	struct mmu_table_batch **batch = &tlb->batch;
1133 
1134 	tlb->mm->context.flush_mm = 1;
1135 	if (*batch == NULL) {
1136 		*batch = (struct mmu_table_batch *)
1137 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1138 		if (*batch == NULL) {
1139 			__tlb_flush_mm_lazy(tlb->mm);
1140 			tlb_remove_table_one(table);
1141 			return;
1142 		}
1143 		(*batch)->nr = 0;
1144 	}
1145 	(*batch)->tables[(*batch)->nr++] = table;
1146 	if ((*batch)->nr == MAX_TABLE_BATCH)
1147 		tlb_flush_mmu(tlb);
1148 }
1149 
1150 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1151 static inline void thp_split_vma(struct vm_area_struct *vma)
1152 {
1153 	unsigned long addr;
1154 
1155 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1156 		follow_page(vma, addr, FOLL_SPLIT);
1157 }
1158 
1159 static inline void thp_split_mm(struct mm_struct *mm)
1160 {
1161 	struct vm_area_struct *vma;
1162 
1163 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1164 		thp_split_vma(vma);
1165 		vma->vm_flags &= ~VM_HUGEPAGE;
1166 		vma->vm_flags |= VM_NOHUGEPAGE;
1167 	}
1168 	mm->def_flags |= VM_NOHUGEPAGE;
1169 }
1170 #else
1171 static inline void thp_split_mm(struct mm_struct *mm)
1172 {
1173 }
1174 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1175 
1176 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1177 				struct mm_struct *mm, pud_t *pud,
1178 				unsigned long addr, unsigned long end)
1179 {
1180 	unsigned long next, *table, *new;
1181 	struct page *page;
1182 	spinlock_t *ptl;
1183 	pmd_t *pmd;
1184 
1185 	pmd = pmd_offset(pud, addr);
1186 	do {
1187 		next = pmd_addr_end(addr, end);
1188 again:
1189 		if (pmd_none_or_clear_bad(pmd))
1190 			continue;
1191 		table = (unsigned long *) pmd_deref(*pmd);
1192 		page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1193 		if (page_table_with_pgste(page))
1194 			continue;
1195 		/* Allocate new page table with pgstes */
1196 		new = page_table_alloc_pgste(mm);
1197 		if (!new)
1198 			return -ENOMEM;
1199 
1200 		ptl = pmd_lock(mm, pmd);
1201 		if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1202 			/* Nuke pmd entry pointing to the "short" page table */
1203 			pmdp_flush_lazy(mm, addr, pmd);
1204 			pmd_clear(pmd);
1205 			/* Copy ptes from old table to new table */
1206 			memcpy(new, table, PAGE_SIZE/2);
1207 			clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1208 			/* Establish new table */
1209 			pmd_populate(mm, pmd, (pte_t *) new);
1210 			/* Free old table with rcu, there might be a walker! */
1211 			page_table_free_rcu(tlb, table, addr);
1212 			new = NULL;
1213 		}
1214 		spin_unlock(ptl);
1215 		if (new) {
1216 			page_table_free_pgste(new);
1217 			goto again;
1218 		}
1219 	} while (pmd++, addr = next, addr != end);
1220 
1221 	return addr;
1222 }
1223 
1224 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1225 				   struct mm_struct *mm, pgd_t *pgd,
1226 				   unsigned long addr, unsigned long end)
1227 {
1228 	unsigned long next;
1229 	pud_t *pud;
1230 
1231 	pud = pud_offset(pgd, addr);
1232 	do {
1233 		next = pud_addr_end(addr, end);
1234 		if (pud_none_or_clear_bad(pud))
1235 			continue;
1236 		next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1237 		if (unlikely(IS_ERR_VALUE(next)))
1238 			return next;
1239 	} while (pud++, addr = next, addr != end);
1240 
1241 	return addr;
1242 }
1243 
1244 static unsigned long page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1245 					unsigned long addr, unsigned long end)
1246 {
1247 	unsigned long next;
1248 	pgd_t *pgd;
1249 
1250 	pgd = pgd_offset(mm, addr);
1251 	do {
1252 		next = pgd_addr_end(addr, end);
1253 		if (pgd_none_or_clear_bad(pgd))
1254 			continue;
1255 		next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1256 		if (unlikely(IS_ERR_VALUE(next)))
1257 			return next;
1258 	} while (pgd++, addr = next, addr != end);
1259 
1260 	return 0;
1261 }
1262 
1263 /*
1264  * switch on pgstes for its userspace process (for kvm)
1265  */
1266 int s390_enable_sie(void)
1267 {
1268 	struct task_struct *tsk = current;
1269 	struct mm_struct *mm = tsk->mm;
1270 	struct mmu_gather tlb;
1271 
1272 	/* Do we have pgstes? if yes, we are done */
1273 	if (mm_has_pgste(tsk->mm))
1274 		return 0;
1275 
1276 	down_write(&mm->mmap_sem);
1277 	/* split thp mappings and disable thp for future mappings */
1278 	thp_split_mm(mm);
1279 	/* Reallocate the page tables with pgstes */
1280 	tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1281 	if (!page_table_realloc(&tlb, mm, 0, TASK_SIZE))
1282 		mm->context.has_pgste = 1;
1283 	tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1284 	up_write(&mm->mmap_sem);
1285 	return mm->context.has_pgste ? 0 : -ENOMEM;
1286 }
1287 EXPORT_SYMBOL_GPL(s390_enable_sie);
1288 
1289 /*
1290  * Enable storage key handling from now on and initialize the storage
1291  * keys with the default key.
1292  */
1293 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1294 			      unsigned long next, struct mm_walk *walk)
1295 {
1296 	unsigned long ptev;
1297 	pgste_t pgste;
1298 
1299 	pgste = pgste_get_lock(pte);
1300 	/*
1301 	 * Remove all zero page mappings,
1302 	 * after establishing a policy to forbid zero page mappings
1303 	 * following faults for that page will get fresh anonymous pages
1304 	 */
1305 	if (is_zero_pfn(pte_pfn(*pte))) {
1306 		ptep_flush_direct(walk->mm, addr, pte);
1307 		pte_val(*pte) = _PAGE_INVALID;
1308 	}
1309 	/* Clear storage key */
1310 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1311 			      PGSTE_GR_BIT | PGSTE_GC_BIT);
1312 	ptev = pte_val(*pte);
1313 	if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1314 		page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1315 	pgste_set_unlock(pte, pgste);
1316 	return 0;
1317 }
1318 
1319 int s390_enable_skey(void)
1320 {
1321 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1322 	struct mm_struct *mm = current->mm;
1323 	struct vm_area_struct *vma;
1324 	int rc = 0;
1325 
1326 	down_write(&mm->mmap_sem);
1327 	if (mm_use_skey(mm))
1328 		goto out_up;
1329 
1330 	mm->context.use_skey = 1;
1331 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1332 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1333 				MADV_UNMERGEABLE, &vma->vm_flags)) {
1334 			mm->context.use_skey = 0;
1335 			rc = -ENOMEM;
1336 			goto out_up;
1337 		}
1338 	}
1339 	mm->def_flags &= ~VM_MERGEABLE;
1340 
1341 	walk.mm = mm;
1342 	walk_page_range(0, TASK_SIZE, &walk);
1343 
1344 out_up:
1345 	up_write(&mm->mmap_sem);
1346 	return rc;
1347 }
1348 EXPORT_SYMBOL_GPL(s390_enable_skey);
1349 
1350 /*
1351  * Reset CMMA state, make all pages stable again.
1352  */
1353 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1354 			     unsigned long next, struct mm_walk *walk)
1355 {
1356 	pgste_t pgste;
1357 
1358 	pgste = pgste_get_lock(pte);
1359 	pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1360 	pgste_set_unlock(pte, pgste);
1361 	return 0;
1362 }
1363 
1364 void s390_reset_cmma(struct mm_struct *mm)
1365 {
1366 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1367 
1368 	down_write(&mm->mmap_sem);
1369 	walk.mm = mm;
1370 	walk_page_range(0, TASK_SIZE, &walk);
1371 	up_write(&mm->mmap_sem);
1372 }
1373 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1374 
1375 /*
1376  * Test and reset if a guest page is dirty
1377  */
1378 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1379 {
1380 	pte_t *pte;
1381 	spinlock_t *ptl;
1382 	bool dirty = false;
1383 
1384 	pte = get_locked_pte(gmap->mm, address, &ptl);
1385 	if (unlikely(!pte))
1386 		return false;
1387 
1388 	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1389 		dirty = true;
1390 
1391 	spin_unlock(ptl);
1392 	return dirty;
1393 }
1394 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1395 
1396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1397 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1398 			   pmd_t *pmdp)
1399 {
1400 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1401 	/* No need to flush TLB
1402 	 * On s390 reference bits are in storage key and never in TLB */
1403 	return pmdp_test_and_clear_young(vma, address, pmdp);
1404 }
1405 
1406 int pmdp_set_access_flags(struct vm_area_struct *vma,
1407 			  unsigned long address, pmd_t *pmdp,
1408 			  pmd_t entry, int dirty)
1409 {
1410 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1411 
1412 	entry = pmd_mkyoung(entry);
1413 	if (dirty)
1414 		entry = pmd_mkdirty(entry);
1415 	if (pmd_same(*pmdp, entry))
1416 		return 0;
1417 	pmdp_invalidate(vma, address, pmdp);
1418 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1419 	return 1;
1420 }
1421 
1422 static void pmdp_splitting_flush_sync(void *arg)
1423 {
1424 	/* Simply deliver the interrupt */
1425 }
1426 
1427 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1428 			  pmd_t *pmdp)
1429 {
1430 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1431 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1432 			      (unsigned long *) pmdp)) {
1433 		/* need to serialize against gup-fast (IRQ disabled) */
1434 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1435 	}
1436 }
1437 
1438 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1439 				pgtable_t pgtable)
1440 {
1441 	struct list_head *lh = (struct list_head *) pgtable;
1442 
1443 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1444 
1445 	/* FIFO */
1446 	if (!pmd_huge_pte(mm, pmdp))
1447 		INIT_LIST_HEAD(lh);
1448 	else
1449 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1450 	pmd_huge_pte(mm, pmdp) = pgtable;
1451 }
1452 
1453 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1454 {
1455 	struct list_head *lh;
1456 	pgtable_t pgtable;
1457 	pte_t *ptep;
1458 
1459 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1460 
1461 	/* FIFO */
1462 	pgtable = pmd_huge_pte(mm, pmdp);
1463 	lh = (struct list_head *) pgtable;
1464 	if (list_empty(lh))
1465 		pmd_huge_pte(mm, pmdp) = NULL;
1466 	else {
1467 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1468 		list_del(lh);
1469 	}
1470 	ptep = (pte_t *) pgtable;
1471 	pte_val(*ptep) = _PAGE_INVALID;
1472 	ptep++;
1473 	pte_val(*ptep) = _PAGE_INVALID;
1474 	return pgtable;
1475 }
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477