xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 781095f903f398148cd0b646d3984234a715f29e)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/swapops.h>
17 #include <linux/sysctl.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 
27 unsigned long *crst_table_alloc(struct mm_struct *mm)
28 {
29 	struct page *page = alloc_pages(GFP_KERNEL, 2);
30 
31 	if (!page)
32 		return NULL;
33 	return (unsigned long *) page_to_phys(page);
34 }
35 
36 void crst_table_free(struct mm_struct *mm, unsigned long *table)
37 {
38 	free_pages((unsigned long) table, 2);
39 }
40 
41 static void __crst_table_upgrade(void *arg)
42 {
43 	struct mm_struct *mm = arg;
44 
45 	if (current->active_mm == mm) {
46 		clear_user_asce();
47 		set_user_asce(mm);
48 	}
49 	__tlb_flush_local();
50 }
51 
52 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
53 {
54 	unsigned long *table, *pgd;
55 	unsigned long entry;
56 	int flush;
57 
58 	BUG_ON(limit > TASK_MAX_SIZE);
59 	flush = 0;
60 repeat:
61 	table = crst_table_alloc(mm);
62 	if (!table)
63 		return -ENOMEM;
64 	spin_lock_bh(&mm->page_table_lock);
65 	if (mm->context.asce_limit < limit) {
66 		pgd = (unsigned long *) mm->pgd;
67 		if (mm->context.asce_limit <= (1UL << 31)) {
68 			entry = _REGION3_ENTRY_EMPTY;
69 			mm->context.asce_limit = 1UL << 42;
70 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
71 						_ASCE_USER_BITS |
72 						_ASCE_TYPE_REGION3;
73 		} else {
74 			entry = _REGION2_ENTRY_EMPTY;
75 			mm->context.asce_limit = 1UL << 53;
76 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
77 						_ASCE_USER_BITS |
78 						_ASCE_TYPE_REGION2;
79 		}
80 		crst_table_init(table, entry);
81 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
82 		mm->pgd = (pgd_t *) table;
83 		mm->task_size = mm->context.asce_limit;
84 		table = NULL;
85 		flush = 1;
86 	}
87 	spin_unlock_bh(&mm->page_table_lock);
88 	if (table)
89 		crst_table_free(mm, table);
90 	if (mm->context.asce_limit < limit)
91 		goto repeat;
92 	if (flush)
93 		on_each_cpu(__crst_table_upgrade, mm, 0);
94 	return 0;
95 }
96 
97 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
98 {
99 	pgd_t *pgd;
100 
101 	if (current->active_mm == mm) {
102 		clear_user_asce();
103 		__tlb_flush_mm(mm);
104 	}
105 	while (mm->context.asce_limit > limit) {
106 		pgd = mm->pgd;
107 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
108 		case _REGION_ENTRY_TYPE_R2:
109 			mm->context.asce_limit = 1UL << 42;
110 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
111 						_ASCE_USER_BITS |
112 						_ASCE_TYPE_REGION3;
113 			break;
114 		case _REGION_ENTRY_TYPE_R3:
115 			mm->context.asce_limit = 1UL << 31;
116 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
117 						_ASCE_USER_BITS |
118 						_ASCE_TYPE_SEGMENT;
119 			break;
120 		default:
121 			BUG();
122 		}
123 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
124 		mm->task_size = mm->context.asce_limit;
125 		crst_table_free(mm, (unsigned long *) pgd);
126 	}
127 	if (current->active_mm == mm)
128 		set_user_asce(mm);
129 }
130 
131 #ifdef CONFIG_PGSTE
132 
133 /**
134  * gmap_alloc - allocate a guest address space
135  * @mm: pointer to the parent mm_struct
136  * @limit: maximum address of the gmap address space
137  *
138  * Returns a guest address space structure.
139  */
140 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
141 {
142 	struct gmap *gmap;
143 	struct page *page;
144 	unsigned long *table;
145 	unsigned long etype, atype;
146 
147 	if (limit < (1UL << 31)) {
148 		limit = (1UL << 31) - 1;
149 		atype = _ASCE_TYPE_SEGMENT;
150 		etype = _SEGMENT_ENTRY_EMPTY;
151 	} else if (limit < (1UL << 42)) {
152 		limit = (1UL << 42) - 1;
153 		atype = _ASCE_TYPE_REGION3;
154 		etype = _REGION3_ENTRY_EMPTY;
155 	} else if (limit < (1UL << 53)) {
156 		limit = (1UL << 53) - 1;
157 		atype = _ASCE_TYPE_REGION2;
158 		etype = _REGION2_ENTRY_EMPTY;
159 	} else {
160 		limit = -1UL;
161 		atype = _ASCE_TYPE_REGION1;
162 		etype = _REGION1_ENTRY_EMPTY;
163 	}
164 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
165 	if (!gmap)
166 		goto out;
167 	INIT_LIST_HEAD(&gmap->crst_list);
168 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
169 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
170 	spin_lock_init(&gmap->guest_table_lock);
171 	gmap->mm = mm;
172 	page = alloc_pages(GFP_KERNEL, 2);
173 	if (!page)
174 		goto out_free;
175 	page->index = 0;
176 	list_add(&page->lru, &gmap->crst_list);
177 	table = (unsigned long *) page_to_phys(page);
178 	crst_table_init(table, etype);
179 	gmap->table = table;
180 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
181 		_ASCE_USER_BITS | __pa(table);
182 	gmap->asce_end = limit;
183 	down_write(&mm->mmap_sem);
184 	list_add(&gmap->list, &mm->context.gmap_list);
185 	up_write(&mm->mmap_sem);
186 	return gmap;
187 
188 out_free:
189 	kfree(gmap);
190 out:
191 	return NULL;
192 }
193 EXPORT_SYMBOL_GPL(gmap_alloc);
194 
195 static void gmap_flush_tlb(struct gmap *gmap)
196 {
197 	if (MACHINE_HAS_IDTE)
198 		__tlb_flush_asce(gmap->mm, gmap->asce);
199 	else
200 		__tlb_flush_global();
201 }
202 
203 static void gmap_radix_tree_free(struct radix_tree_root *root)
204 {
205 	struct radix_tree_iter iter;
206 	unsigned long indices[16];
207 	unsigned long index;
208 	void **slot;
209 	int i, nr;
210 
211 	/* A radix tree is freed by deleting all of its entries */
212 	index = 0;
213 	do {
214 		nr = 0;
215 		radix_tree_for_each_slot(slot, root, &iter, index) {
216 			indices[nr] = iter.index;
217 			if (++nr == 16)
218 				break;
219 		}
220 		for (i = 0; i < nr; i++) {
221 			index = indices[i];
222 			radix_tree_delete(root, index);
223 		}
224 	} while (nr > 0);
225 }
226 
227 /**
228  * gmap_free - free a guest address space
229  * @gmap: pointer to the guest address space structure
230  */
231 void gmap_free(struct gmap *gmap)
232 {
233 	struct page *page, *next;
234 
235 	/* Flush tlb. */
236 	if (MACHINE_HAS_IDTE)
237 		__tlb_flush_asce(gmap->mm, gmap->asce);
238 	else
239 		__tlb_flush_global();
240 
241 	/* Free all segment & region tables. */
242 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
243 		__free_pages(page, 2);
244 	gmap_radix_tree_free(&gmap->guest_to_host);
245 	gmap_radix_tree_free(&gmap->host_to_guest);
246 	down_write(&gmap->mm->mmap_sem);
247 	list_del(&gmap->list);
248 	up_write(&gmap->mm->mmap_sem);
249 	kfree(gmap);
250 }
251 EXPORT_SYMBOL_GPL(gmap_free);
252 
253 /**
254  * gmap_enable - switch primary space to the guest address space
255  * @gmap: pointer to the guest address space structure
256  */
257 void gmap_enable(struct gmap *gmap)
258 {
259 	S390_lowcore.gmap = (unsigned long) gmap;
260 }
261 EXPORT_SYMBOL_GPL(gmap_enable);
262 
263 /**
264  * gmap_disable - switch back to the standard primary address space
265  * @gmap: pointer to the guest address space structure
266  */
267 void gmap_disable(struct gmap *gmap)
268 {
269 	S390_lowcore.gmap = 0UL;
270 }
271 EXPORT_SYMBOL_GPL(gmap_disable);
272 
273 /*
274  * gmap_alloc_table is assumed to be called with mmap_sem held
275  */
276 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
277 			    unsigned long init, unsigned long gaddr)
278 {
279 	struct page *page;
280 	unsigned long *new;
281 
282 	/* since we dont free the gmap table until gmap_free we can unlock */
283 	page = alloc_pages(GFP_KERNEL, 2);
284 	if (!page)
285 		return -ENOMEM;
286 	new = (unsigned long *) page_to_phys(page);
287 	crst_table_init(new, init);
288 	spin_lock(&gmap->mm->page_table_lock);
289 	if (*table & _REGION_ENTRY_INVALID) {
290 		list_add(&page->lru, &gmap->crst_list);
291 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
292 			(*table & _REGION_ENTRY_TYPE_MASK);
293 		page->index = gaddr;
294 		page = NULL;
295 	}
296 	spin_unlock(&gmap->mm->page_table_lock);
297 	if (page)
298 		__free_pages(page, 2);
299 	return 0;
300 }
301 
302 /**
303  * __gmap_segment_gaddr - find virtual address from segment pointer
304  * @entry: pointer to a segment table entry in the guest address space
305  *
306  * Returns the virtual address in the guest address space for the segment
307  */
308 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
309 {
310 	struct page *page;
311 	unsigned long offset, mask;
312 
313 	offset = (unsigned long) entry / sizeof(unsigned long);
314 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
315 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
316 	page = virt_to_page((void *)((unsigned long) entry & mask));
317 	return page->index + offset;
318 }
319 
320 /**
321  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
322  * @gmap: pointer to the guest address space structure
323  * @vmaddr: address in the host process address space
324  *
325  * Returns 1 if a TLB flush is required
326  */
327 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
328 {
329 	unsigned long *entry;
330 	int flush = 0;
331 
332 	spin_lock(&gmap->guest_table_lock);
333 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
334 	if (entry) {
335 		flush = (*entry != _SEGMENT_ENTRY_INVALID);
336 		*entry = _SEGMENT_ENTRY_INVALID;
337 	}
338 	spin_unlock(&gmap->guest_table_lock);
339 	return flush;
340 }
341 
342 /**
343  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
344  * @gmap: pointer to the guest address space structure
345  * @gaddr: address in the guest address space
346  *
347  * Returns 1 if a TLB flush is required
348  */
349 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
350 {
351 	unsigned long vmaddr;
352 
353 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
354 						   gaddr >> PMD_SHIFT);
355 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
356 }
357 
358 /**
359  * gmap_unmap_segment - unmap segment from the guest address space
360  * @gmap: pointer to the guest address space structure
361  * @to: address in the guest address space
362  * @len: length of the memory area to unmap
363  *
364  * Returns 0 if the unmap succeeded, -EINVAL if not.
365  */
366 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
367 {
368 	unsigned long off;
369 	int flush;
370 
371 	if ((to | len) & (PMD_SIZE - 1))
372 		return -EINVAL;
373 	if (len == 0 || to + len < to)
374 		return -EINVAL;
375 
376 	flush = 0;
377 	down_write(&gmap->mm->mmap_sem);
378 	for (off = 0; off < len; off += PMD_SIZE)
379 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
380 	up_write(&gmap->mm->mmap_sem);
381 	if (flush)
382 		gmap_flush_tlb(gmap);
383 	return 0;
384 }
385 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
386 
387 /**
388  * gmap_mmap_segment - map a segment to the guest address space
389  * @gmap: pointer to the guest address space structure
390  * @from: source address in the parent address space
391  * @to: target address in the guest address space
392  * @len: length of the memory area to map
393  *
394  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
395  */
396 int gmap_map_segment(struct gmap *gmap, unsigned long from,
397 		     unsigned long to, unsigned long len)
398 {
399 	unsigned long off;
400 	int flush;
401 
402 	if ((from | to | len) & (PMD_SIZE - 1))
403 		return -EINVAL;
404 	if (len == 0 || from + len < from || to + len < to ||
405 	    from + len - 1 > TASK_MAX_SIZE || to + len - 1 > gmap->asce_end)
406 		return -EINVAL;
407 
408 	flush = 0;
409 	down_write(&gmap->mm->mmap_sem);
410 	for (off = 0; off < len; off += PMD_SIZE) {
411 		/* Remove old translation */
412 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
413 		/* Store new translation */
414 		if (radix_tree_insert(&gmap->guest_to_host,
415 				      (to + off) >> PMD_SHIFT,
416 				      (void *) from + off))
417 			break;
418 	}
419 	up_write(&gmap->mm->mmap_sem);
420 	if (flush)
421 		gmap_flush_tlb(gmap);
422 	if (off >= len)
423 		return 0;
424 	gmap_unmap_segment(gmap, to, len);
425 	return -ENOMEM;
426 }
427 EXPORT_SYMBOL_GPL(gmap_map_segment);
428 
429 /**
430  * __gmap_translate - translate a guest address to a user space address
431  * @gmap: pointer to guest mapping meta data structure
432  * @gaddr: guest address
433  *
434  * Returns user space address which corresponds to the guest address or
435  * -EFAULT if no such mapping exists.
436  * This function does not establish potentially missing page table entries.
437  * The mmap_sem of the mm that belongs to the address space must be held
438  * when this function gets called.
439  */
440 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
441 {
442 	unsigned long vmaddr;
443 
444 	vmaddr = (unsigned long)
445 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
446 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
447 }
448 EXPORT_SYMBOL_GPL(__gmap_translate);
449 
450 /**
451  * gmap_translate - translate a guest address to a user space address
452  * @gmap: pointer to guest mapping meta data structure
453  * @gaddr: guest address
454  *
455  * Returns user space address which corresponds to the guest address or
456  * -EFAULT if no such mapping exists.
457  * This function does not establish potentially missing page table entries.
458  */
459 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
460 {
461 	unsigned long rc;
462 
463 	down_read(&gmap->mm->mmap_sem);
464 	rc = __gmap_translate(gmap, gaddr);
465 	up_read(&gmap->mm->mmap_sem);
466 	return rc;
467 }
468 EXPORT_SYMBOL_GPL(gmap_translate);
469 
470 /**
471  * gmap_unlink - disconnect a page table from the gmap shadow tables
472  * @gmap: pointer to guest mapping meta data structure
473  * @table: pointer to the host page table
474  * @vmaddr: vm address associated with the host page table
475  */
476 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
477 			unsigned long vmaddr)
478 {
479 	struct gmap *gmap;
480 	int flush;
481 
482 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
483 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
484 		if (flush)
485 			gmap_flush_tlb(gmap);
486 	}
487 }
488 
489 /**
490  * gmap_link - set up shadow page tables to connect a host to a guest address
491  * @gmap: pointer to guest mapping meta data structure
492  * @gaddr: guest address
493  * @vmaddr: vm address
494  *
495  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
496  * if the vm address is already mapped to a different guest segment.
497  * The mmap_sem of the mm that belongs to the address space must be held
498  * when this function gets called.
499  */
500 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
501 {
502 	struct mm_struct *mm;
503 	unsigned long *table;
504 	spinlock_t *ptl;
505 	pgd_t *pgd;
506 	pud_t *pud;
507 	pmd_t *pmd;
508 	int rc;
509 
510 	/* Create higher level tables in the gmap page table */
511 	table = gmap->table;
512 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
513 		table += (gaddr >> 53) & 0x7ff;
514 		if ((*table & _REGION_ENTRY_INVALID) &&
515 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
516 				     gaddr & 0xffe0000000000000UL))
517 			return -ENOMEM;
518 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
519 	}
520 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
521 		table += (gaddr >> 42) & 0x7ff;
522 		if ((*table & _REGION_ENTRY_INVALID) &&
523 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
524 				     gaddr & 0xfffffc0000000000UL))
525 			return -ENOMEM;
526 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
527 	}
528 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
529 		table += (gaddr >> 31) & 0x7ff;
530 		if ((*table & _REGION_ENTRY_INVALID) &&
531 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
532 				     gaddr & 0xffffffff80000000UL))
533 			return -ENOMEM;
534 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
535 	}
536 	table += (gaddr >> 20) & 0x7ff;
537 	/* Walk the parent mm page table */
538 	mm = gmap->mm;
539 	pgd = pgd_offset(mm, vmaddr);
540 	VM_BUG_ON(pgd_none(*pgd));
541 	pud = pud_offset(pgd, vmaddr);
542 	VM_BUG_ON(pud_none(*pud));
543 	pmd = pmd_offset(pud, vmaddr);
544 	VM_BUG_ON(pmd_none(*pmd));
545 	/* large pmds cannot yet be handled */
546 	if (pmd_large(*pmd))
547 		return -EFAULT;
548 	/* Link gmap segment table entry location to page table. */
549 	rc = radix_tree_preload(GFP_KERNEL);
550 	if (rc)
551 		return rc;
552 	ptl = pmd_lock(mm, pmd);
553 	spin_lock(&gmap->guest_table_lock);
554 	if (*table == _SEGMENT_ENTRY_INVALID) {
555 		rc = radix_tree_insert(&gmap->host_to_guest,
556 				       vmaddr >> PMD_SHIFT, table);
557 		if (!rc)
558 			*table = pmd_val(*pmd);
559 	} else
560 		rc = 0;
561 	spin_unlock(&gmap->guest_table_lock);
562 	spin_unlock(ptl);
563 	radix_tree_preload_end();
564 	return rc;
565 }
566 
567 /**
568  * gmap_fault - resolve a fault on a guest address
569  * @gmap: pointer to guest mapping meta data structure
570  * @gaddr: guest address
571  * @fault_flags: flags to pass down to handle_mm_fault()
572  *
573  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
574  * if the vm address is already mapped to a different guest segment.
575  */
576 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
577 	       unsigned int fault_flags)
578 {
579 	unsigned long vmaddr;
580 	int rc;
581 	bool unlocked;
582 
583 	down_read(&gmap->mm->mmap_sem);
584 
585 retry:
586 	unlocked = false;
587 	vmaddr = __gmap_translate(gmap, gaddr);
588 	if (IS_ERR_VALUE(vmaddr)) {
589 		rc = vmaddr;
590 		goto out_up;
591 	}
592 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
593 			     &unlocked)) {
594 		rc = -EFAULT;
595 		goto out_up;
596 	}
597 	/*
598 	 * In the case that fixup_user_fault unlocked the mmap_sem during
599 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
600 	 */
601 	if (unlocked)
602 		goto retry;
603 
604 	rc = __gmap_link(gmap, gaddr, vmaddr);
605 out_up:
606 	up_read(&gmap->mm->mmap_sem);
607 	return rc;
608 }
609 EXPORT_SYMBOL_GPL(gmap_fault);
610 
611 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
612 {
613 	if (!non_swap_entry(entry))
614 		dec_mm_counter(mm, MM_SWAPENTS);
615 	else if (is_migration_entry(entry)) {
616 		struct page *page = migration_entry_to_page(entry);
617 
618 		dec_mm_counter(mm, mm_counter(page));
619 	}
620 	free_swap_and_cache(entry);
621 }
622 
623 /*
624  * this function is assumed to be called with mmap_sem held
625  */
626 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
627 {
628 	unsigned long vmaddr, ptev, pgstev;
629 	pte_t *ptep, pte;
630 	spinlock_t *ptl;
631 	pgste_t pgste;
632 
633 	/* Find the vm address for the guest address */
634 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
635 						   gaddr >> PMD_SHIFT);
636 	if (!vmaddr)
637 		return;
638 	vmaddr |= gaddr & ~PMD_MASK;
639 	/* Get pointer to the page table entry */
640 	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
641 	if (unlikely(!ptep))
642 		return;
643 	pte = *ptep;
644 	if (!pte_swap(pte))
645 		goto out_pte;
646 	/* Zap unused and logically-zero pages */
647 	pgste = pgste_get_lock(ptep);
648 	pgstev = pgste_val(pgste);
649 	ptev = pte_val(pte);
650 	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
651 	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
652 		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
653 		pte_clear(gmap->mm, vmaddr, ptep);
654 	}
655 	pgste_set_unlock(ptep, pgste);
656 out_pte:
657 	pte_unmap_unlock(ptep, ptl);
658 }
659 EXPORT_SYMBOL_GPL(__gmap_zap);
660 
661 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
662 {
663 	unsigned long gaddr, vmaddr, size;
664 	struct vm_area_struct *vma;
665 
666 	down_read(&gmap->mm->mmap_sem);
667 	for (gaddr = from; gaddr < to;
668 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
669 		/* Find the vm address for the guest address */
670 		vmaddr = (unsigned long)
671 			radix_tree_lookup(&gmap->guest_to_host,
672 					  gaddr >> PMD_SHIFT);
673 		if (!vmaddr)
674 			continue;
675 		vmaddr |= gaddr & ~PMD_MASK;
676 		/* Find vma in the parent mm */
677 		vma = find_vma(gmap->mm, vmaddr);
678 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
679 		zap_page_range(vma, vmaddr, size, NULL);
680 	}
681 	up_read(&gmap->mm->mmap_sem);
682 }
683 EXPORT_SYMBOL_GPL(gmap_discard);
684 
685 static LIST_HEAD(gmap_notifier_list);
686 static DEFINE_SPINLOCK(gmap_notifier_lock);
687 
688 /**
689  * gmap_register_ipte_notifier - register a pte invalidation callback
690  * @nb: pointer to the gmap notifier block
691  */
692 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
693 {
694 	spin_lock(&gmap_notifier_lock);
695 	list_add(&nb->list, &gmap_notifier_list);
696 	spin_unlock(&gmap_notifier_lock);
697 }
698 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
699 
700 /**
701  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
702  * @nb: pointer to the gmap notifier block
703  */
704 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
705 {
706 	spin_lock(&gmap_notifier_lock);
707 	list_del_init(&nb->list);
708 	spin_unlock(&gmap_notifier_lock);
709 }
710 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
711 
712 /**
713  * gmap_ipte_notify - mark a range of ptes for invalidation notification
714  * @gmap: pointer to guest mapping meta data structure
715  * @gaddr: virtual address in the guest address space
716  * @len: size of area
717  *
718  * Returns 0 if for each page in the given range a gmap mapping exists and
719  * the invalidation notification could be set. If the gmap mapping is missing
720  * for one or more pages -EFAULT is returned. If no memory could be allocated
721  * -ENOMEM is returned. This function establishes missing page table entries.
722  */
723 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
724 {
725 	unsigned long addr;
726 	spinlock_t *ptl;
727 	pte_t *ptep, entry;
728 	pgste_t pgste;
729 	bool unlocked;
730 	int rc = 0;
731 
732 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
733 		return -EINVAL;
734 	down_read(&gmap->mm->mmap_sem);
735 	while (len) {
736 		unlocked = false;
737 		/* Convert gmap address and connect the page tables */
738 		addr = __gmap_translate(gmap, gaddr);
739 		if (IS_ERR_VALUE(addr)) {
740 			rc = addr;
741 			break;
742 		}
743 		/* Get the page mapped */
744 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE,
745 				     &unlocked)) {
746 			rc = -EFAULT;
747 			break;
748 		}
749 		/* While trying to map mmap_sem got unlocked. Let us retry */
750 		if (unlocked)
751 			continue;
752 		rc = __gmap_link(gmap, gaddr, addr);
753 		if (rc)
754 			break;
755 		/* Walk the process page table, lock and get pte pointer */
756 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
757 		VM_BUG_ON(!ptep);
758 		/* Set notification bit in the pgste of the pte */
759 		entry = *ptep;
760 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
761 			pgste = pgste_get_lock(ptep);
762 			pgste_val(pgste) |= PGSTE_IN_BIT;
763 			pgste_set_unlock(ptep, pgste);
764 			gaddr += PAGE_SIZE;
765 			len -= PAGE_SIZE;
766 		}
767 		pte_unmap_unlock(ptep, ptl);
768 	}
769 	up_read(&gmap->mm->mmap_sem);
770 	return rc;
771 }
772 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
773 
774 /**
775  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
776  * @mm: pointer to the process mm_struct
777  * @addr: virtual address in the process address space
778  * @pte: pointer to the page table entry
779  *
780  * This function is assumed to be called with the page table lock held
781  * for the pte to notify.
782  */
783 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
784 {
785 	unsigned long offset, gaddr;
786 	unsigned long *table;
787 	struct gmap_notifier *nb;
788 	struct gmap *gmap;
789 
790 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
791 	offset = offset * (4096 / sizeof(pte_t));
792 	spin_lock(&gmap_notifier_lock);
793 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
794 		table = radix_tree_lookup(&gmap->host_to_guest,
795 					  vmaddr >> PMD_SHIFT);
796 		if (!table)
797 			continue;
798 		gaddr = __gmap_segment_gaddr(table) + offset;
799 		list_for_each_entry(nb, &gmap_notifier_list, list)
800 			nb->notifier_call(gmap, gaddr);
801 	}
802 	spin_unlock(&gmap_notifier_lock);
803 }
804 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
805 
806 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
807 			  unsigned long key, bool nq)
808 {
809 	spinlock_t *ptl;
810 	pgste_t old, new;
811 	pte_t *ptep;
812 	bool unlocked;
813 
814 	down_read(&mm->mmap_sem);
815 retry:
816 	unlocked = false;
817 	ptep = get_locked_pte(mm, addr, &ptl);
818 	if (unlikely(!ptep)) {
819 		up_read(&mm->mmap_sem);
820 		return -EFAULT;
821 	}
822 	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
823 	     (pte_val(*ptep) & _PAGE_PROTECT)) {
824 		pte_unmap_unlock(ptep, ptl);
825 		/*
826 		 * We do not really care about unlocked. We will retry either
827 		 * way. But this allows fixup_user_fault to enable userfaultfd.
828 		 */
829 		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE,
830 				     &unlocked)) {
831 			up_read(&mm->mmap_sem);
832 			return -EFAULT;
833 		}
834 		goto retry;
835 	}
836 
837 	new = old = pgste_get_lock(ptep);
838 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
839 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
840 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
841 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
842 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
843 		unsigned long address, bits, skey;
844 
845 		address = pte_val(*ptep) & PAGE_MASK;
846 		skey = (unsigned long) page_get_storage_key(address);
847 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
848 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
849 		/* Set storage key ACC and FP */
850 		page_set_storage_key(address, skey, !nq);
851 		/* Merge host changed & referenced into pgste  */
852 		pgste_val(new) |= bits << 52;
853 	}
854 	/* changing the guest storage key is considered a change of the page */
855 	if ((pgste_val(new) ^ pgste_val(old)) &
856 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
857 		pgste_val(new) |= PGSTE_UC_BIT;
858 
859 	pgste_set_unlock(ptep, new);
860 	pte_unmap_unlock(ptep, ptl);
861 	up_read(&mm->mmap_sem);
862 	return 0;
863 }
864 EXPORT_SYMBOL(set_guest_storage_key);
865 
866 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
867 {
868 	spinlock_t *ptl;
869 	pgste_t pgste;
870 	pte_t *ptep;
871 	uint64_t physaddr;
872 	unsigned long key = 0;
873 
874 	down_read(&mm->mmap_sem);
875 	ptep = get_locked_pte(mm, addr, &ptl);
876 	if (unlikely(!ptep)) {
877 		up_read(&mm->mmap_sem);
878 		return -EFAULT;
879 	}
880 	pgste = pgste_get_lock(ptep);
881 
882 	if (pte_val(*ptep) & _PAGE_INVALID) {
883 		key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
884 		key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
885 		key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
886 		key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
887 	} else {
888 		physaddr = pte_val(*ptep) & PAGE_MASK;
889 		key = page_get_storage_key(physaddr);
890 
891 		/* Reflect guest's logical view, not physical */
892 		if (pgste_val(pgste) & PGSTE_GR_BIT)
893 			key |= _PAGE_REFERENCED;
894 		if (pgste_val(pgste) & PGSTE_GC_BIT)
895 			key |= _PAGE_CHANGED;
896 	}
897 
898 	pgste_set_unlock(ptep, pgste);
899 	pte_unmap_unlock(ptep, ptl);
900 	up_read(&mm->mmap_sem);
901 	return key;
902 }
903 EXPORT_SYMBOL(get_guest_storage_key);
904 
905 static int page_table_allocate_pgste_min = 0;
906 static int page_table_allocate_pgste_max = 1;
907 int page_table_allocate_pgste = 0;
908 EXPORT_SYMBOL(page_table_allocate_pgste);
909 
910 static struct ctl_table page_table_sysctl[] = {
911 	{
912 		.procname	= "allocate_pgste",
913 		.data		= &page_table_allocate_pgste,
914 		.maxlen		= sizeof(int),
915 		.mode		= S_IRUGO | S_IWUSR,
916 		.proc_handler	= proc_dointvec,
917 		.extra1		= &page_table_allocate_pgste_min,
918 		.extra2		= &page_table_allocate_pgste_max,
919 	},
920 	{ }
921 };
922 
923 static struct ctl_table page_table_sysctl_dir[] = {
924 	{
925 		.procname	= "vm",
926 		.maxlen		= 0,
927 		.mode		= 0555,
928 		.child		= page_table_sysctl,
929 	},
930 	{ }
931 };
932 
933 static int __init page_table_register_sysctl(void)
934 {
935 	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
936 }
937 __initcall(page_table_register_sysctl);
938 
939 #else /* CONFIG_PGSTE */
940 
941 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
942 			unsigned long vmaddr)
943 {
944 }
945 
946 #endif /* CONFIG_PGSTE */
947 
948 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
949 {
950 	unsigned int old, new;
951 
952 	do {
953 		old = atomic_read(v);
954 		new = old ^ bits;
955 	} while (atomic_cmpxchg(v, old, new) != old);
956 	return new;
957 }
958 
959 /*
960  * page table entry allocation/free routines.
961  */
962 unsigned long *page_table_alloc(struct mm_struct *mm)
963 {
964 	unsigned long *table;
965 	struct page *page;
966 	unsigned int mask, bit;
967 
968 	/* Try to get a fragment of a 4K page as a 2K page table */
969 	if (!mm_alloc_pgste(mm)) {
970 		table = NULL;
971 		spin_lock_bh(&mm->context.list_lock);
972 		if (!list_empty(&mm->context.pgtable_list)) {
973 			page = list_first_entry(&mm->context.pgtable_list,
974 						struct page, lru);
975 			mask = atomic_read(&page->_mapcount);
976 			mask = (mask | (mask >> 4)) & 3;
977 			if (mask != 3) {
978 				table = (unsigned long *) page_to_phys(page);
979 				bit = mask & 1;		/* =1 -> second 2K */
980 				if (bit)
981 					table += PTRS_PER_PTE;
982 				atomic_xor_bits(&page->_mapcount, 1U << bit);
983 				list_del(&page->lru);
984 			}
985 		}
986 		spin_unlock_bh(&mm->context.list_lock);
987 		if (table)
988 			return table;
989 	}
990 	/* Allocate a fresh page */
991 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
992 	if (!page)
993 		return NULL;
994 	if (!pgtable_page_ctor(page)) {
995 		__free_page(page);
996 		return NULL;
997 	}
998 	/* Initialize page table */
999 	table = (unsigned long *) page_to_phys(page);
1000 	if (mm_alloc_pgste(mm)) {
1001 		/* Return 4K page table with PGSTEs */
1002 		atomic_set(&page->_mapcount, 3);
1003 		clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1004 		clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
1005 	} else {
1006 		/* Return the first 2K fragment of the page */
1007 		atomic_set(&page->_mapcount, 1);
1008 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1009 		spin_lock_bh(&mm->context.list_lock);
1010 		list_add(&page->lru, &mm->context.pgtable_list);
1011 		spin_unlock_bh(&mm->context.list_lock);
1012 	}
1013 	return table;
1014 }
1015 
1016 void page_table_free(struct mm_struct *mm, unsigned long *table)
1017 {
1018 	struct page *page;
1019 	unsigned int bit, mask;
1020 
1021 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1022 	if (!mm_alloc_pgste(mm)) {
1023 		/* Free 2K page table fragment of a 4K page */
1024 		bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
1025 		spin_lock_bh(&mm->context.list_lock);
1026 		mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
1027 		if (mask & 3)
1028 			list_add(&page->lru, &mm->context.pgtable_list);
1029 		else
1030 			list_del(&page->lru);
1031 		spin_unlock_bh(&mm->context.list_lock);
1032 		if (mask != 0)
1033 			return;
1034 	}
1035 
1036 	pgtable_page_dtor(page);
1037 	atomic_set(&page->_mapcount, -1);
1038 	__free_page(page);
1039 }
1040 
1041 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1042 			 unsigned long vmaddr)
1043 {
1044 	struct mm_struct *mm;
1045 	struct page *page;
1046 	unsigned int bit, mask;
1047 
1048 	mm = tlb->mm;
1049 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1050 	if (mm_alloc_pgste(mm)) {
1051 		gmap_unlink(mm, table, vmaddr);
1052 		table = (unsigned long *) (__pa(table) | 3);
1053 		tlb_remove_table(tlb, table);
1054 		return;
1055 	}
1056 	bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
1057 	spin_lock_bh(&mm->context.list_lock);
1058 	mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
1059 	if (mask & 3)
1060 		list_add_tail(&page->lru, &mm->context.pgtable_list);
1061 	else
1062 		list_del(&page->lru);
1063 	spin_unlock_bh(&mm->context.list_lock);
1064 	table = (unsigned long *) (__pa(table) | (1U << bit));
1065 	tlb_remove_table(tlb, table);
1066 }
1067 
1068 static void __tlb_remove_table(void *_table)
1069 {
1070 	unsigned int mask = (unsigned long) _table & 3;
1071 	void *table = (void *)((unsigned long) _table ^ mask);
1072 	struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1073 
1074 	switch (mask) {
1075 	case 0:		/* pmd or pud */
1076 		free_pages((unsigned long) table, 2);
1077 		break;
1078 	case 1:		/* lower 2K of a 4K page table */
1079 	case 2:		/* higher 2K of a 4K page table */
1080 		if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0)
1081 			break;
1082 		/* fallthrough */
1083 	case 3:		/* 4K page table with pgstes */
1084 		pgtable_page_dtor(page);
1085 		atomic_set(&page->_mapcount, -1);
1086 		__free_page(page);
1087 		break;
1088 	}
1089 }
1090 
1091 static void tlb_remove_table_smp_sync(void *arg)
1092 {
1093 	/* Simply deliver the interrupt */
1094 }
1095 
1096 static void tlb_remove_table_one(void *table)
1097 {
1098 	/*
1099 	 * This isn't an RCU grace period and hence the page-tables cannot be
1100 	 * assumed to be actually RCU-freed.
1101 	 *
1102 	 * It is however sufficient for software page-table walkers that rely
1103 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
1104 	 */
1105 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1106 	__tlb_remove_table(table);
1107 }
1108 
1109 static void tlb_remove_table_rcu(struct rcu_head *head)
1110 {
1111 	struct mmu_table_batch *batch;
1112 	int i;
1113 
1114 	batch = container_of(head, struct mmu_table_batch, rcu);
1115 
1116 	for (i = 0; i < batch->nr; i++)
1117 		__tlb_remove_table(batch->tables[i]);
1118 
1119 	free_page((unsigned long)batch);
1120 }
1121 
1122 void tlb_table_flush(struct mmu_gather *tlb)
1123 {
1124 	struct mmu_table_batch **batch = &tlb->batch;
1125 
1126 	if (*batch) {
1127 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1128 		*batch = NULL;
1129 	}
1130 }
1131 
1132 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1133 {
1134 	struct mmu_table_batch **batch = &tlb->batch;
1135 
1136 	tlb->mm->context.flush_mm = 1;
1137 	if (*batch == NULL) {
1138 		*batch = (struct mmu_table_batch *)
1139 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1140 		if (*batch == NULL) {
1141 			__tlb_flush_mm_lazy(tlb->mm);
1142 			tlb_remove_table_one(table);
1143 			return;
1144 		}
1145 		(*batch)->nr = 0;
1146 	}
1147 	(*batch)->tables[(*batch)->nr++] = table;
1148 	if ((*batch)->nr == MAX_TABLE_BATCH)
1149 		tlb_flush_mmu(tlb);
1150 }
1151 
1152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1153 static inline void thp_split_vma(struct vm_area_struct *vma)
1154 {
1155 	unsigned long addr;
1156 
1157 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1158 		follow_page(vma, addr, FOLL_SPLIT);
1159 }
1160 
1161 static inline void thp_split_mm(struct mm_struct *mm)
1162 {
1163 	struct vm_area_struct *vma;
1164 
1165 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1166 		thp_split_vma(vma);
1167 		vma->vm_flags &= ~VM_HUGEPAGE;
1168 		vma->vm_flags |= VM_NOHUGEPAGE;
1169 	}
1170 	mm->def_flags |= VM_NOHUGEPAGE;
1171 }
1172 #else
1173 static inline void thp_split_mm(struct mm_struct *mm)
1174 {
1175 }
1176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1177 
1178 /*
1179  * switch on pgstes for its userspace process (for kvm)
1180  */
1181 int s390_enable_sie(void)
1182 {
1183 	struct mm_struct *mm = current->mm;
1184 
1185 	/* Do we have pgstes? if yes, we are done */
1186 	if (mm_has_pgste(mm))
1187 		return 0;
1188 	/* Fail if the page tables are 2K */
1189 	if (!mm_alloc_pgste(mm))
1190 		return -EINVAL;
1191 	down_write(&mm->mmap_sem);
1192 	mm->context.has_pgste = 1;
1193 	/* split thp mappings and disable thp for future mappings */
1194 	thp_split_mm(mm);
1195 	up_write(&mm->mmap_sem);
1196 	return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(s390_enable_sie);
1199 
1200 /*
1201  * Enable storage key handling from now on and initialize the storage
1202  * keys with the default key.
1203  */
1204 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1205 			      unsigned long next, struct mm_walk *walk)
1206 {
1207 	unsigned long ptev;
1208 	pgste_t pgste;
1209 
1210 	pgste = pgste_get_lock(pte);
1211 	/*
1212 	 * Remove all zero page mappings,
1213 	 * after establishing a policy to forbid zero page mappings
1214 	 * following faults for that page will get fresh anonymous pages
1215 	 */
1216 	if (is_zero_pfn(pte_pfn(*pte))) {
1217 		ptep_flush_direct(walk->mm, addr, pte);
1218 		pte_val(*pte) = _PAGE_INVALID;
1219 	}
1220 	/* Clear storage key */
1221 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1222 			      PGSTE_GR_BIT | PGSTE_GC_BIT);
1223 	ptev = pte_val(*pte);
1224 	if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1225 		page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1226 	pgste_set_unlock(pte, pgste);
1227 	return 0;
1228 }
1229 
1230 int s390_enable_skey(void)
1231 {
1232 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1233 	struct mm_struct *mm = current->mm;
1234 	struct vm_area_struct *vma;
1235 	int rc = 0;
1236 
1237 	down_write(&mm->mmap_sem);
1238 	if (mm_use_skey(mm))
1239 		goto out_up;
1240 
1241 	mm->context.use_skey = 1;
1242 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1243 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1244 				MADV_UNMERGEABLE, &vma->vm_flags)) {
1245 			mm->context.use_skey = 0;
1246 			rc = -ENOMEM;
1247 			goto out_up;
1248 		}
1249 	}
1250 	mm->def_flags &= ~VM_MERGEABLE;
1251 
1252 	walk.mm = mm;
1253 	walk_page_range(0, TASK_SIZE, &walk);
1254 
1255 out_up:
1256 	up_write(&mm->mmap_sem);
1257 	return rc;
1258 }
1259 EXPORT_SYMBOL_GPL(s390_enable_skey);
1260 
1261 /*
1262  * Reset CMMA state, make all pages stable again.
1263  */
1264 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1265 			     unsigned long next, struct mm_walk *walk)
1266 {
1267 	pgste_t pgste;
1268 
1269 	pgste = pgste_get_lock(pte);
1270 	pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1271 	pgste_set_unlock(pte, pgste);
1272 	return 0;
1273 }
1274 
1275 void s390_reset_cmma(struct mm_struct *mm)
1276 {
1277 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1278 
1279 	down_write(&mm->mmap_sem);
1280 	walk.mm = mm;
1281 	walk_page_range(0, TASK_SIZE, &walk);
1282 	up_write(&mm->mmap_sem);
1283 }
1284 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1285 
1286 /*
1287  * Test and reset if a guest page is dirty
1288  */
1289 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1290 {
1291 	pte_t *pte;
1292 	spinlock_t *ptl;
1293 	bool dirty = false;
1294 
1295 	pte = get_locked_pte(gmap->mm, address, &ptl);
1296 	if (unlikely(!pte))
1297 		return false;
1298 
1299 	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1300 		dirty = true;
1301 
1302 	spin_unlock(ptl);
1303 	return dirty;
1304 }
1305 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1306 
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1309 			   pmd_t *pmdp)
1310 {
1311 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1312 	/* No need to flush TLB
1313 	 * On s390 reference bits are in storage key and never in TLB */
1314 	return pmdp_test_and_clear_young(vma, address, pmdp);
1315 }
1316 
1317 int pmdp_set_access_flags(struct vm_area_struct *vma,
1318 			  unsigned long address, pmd_t *pmdp,
1319 			  pmd_t entry, int dirty)
1320 {
1321 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1322 
1323 	entry = pmd_mkyoung(entry);
1324 	if (dirty)
1325 		entry = pmd_mkdirty(entry);
1326 	if (pmd_same(*pmdp, entry))
1327 		return 0;
1328 	pmdp_invalidate(vma, address, pmdp);
1329 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1330 	return 1;
1331 }
1332 
1333 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1334 				pgtable_t pgtable)
1335 {
1336 	struct list_head *lh = (struct list_head *) pgtable;
1337 
1338 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1339 
1340 	/* FIFO */
1341 	if (!pmd_huge_pte(mm, pmdp))
1342 		INIT_LIST_HEAD(lh);
1343 	else
1344 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1345 	pmd_huge_pte(mm, pmdp) = pgtable;
1346 }
1347 
1348 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1349 {
1350 	struct list_head *lh;
1351 	pgtable_t pgtable;
1352 	pte_t *ptep;
1353 
1354 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1355 
1356 	/* FIFO */
1357 	pgtable = pmd_huge_pte(mm, pmdp);
1358 	lh = (struct list_head *) pgtable;
1359 	if (list_empty(lh))
1360 		pmd_huge_pte(mm, pmdp) = NULL;
1361 	else {
1362 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1363 		list_del(lh);
1364 	}
1365 	ptep = (pte_t *) pgtable;
1366 	pte_val(*ptep) = _PAGE_INVALID;
1367 	ptep++;
1368 	pte_val(*ptep) = _PAGE_INVALID;
1369 	return pgtable;
1370 }
1371 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1372