xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 6774def6)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include <asm/mmu_context.h>
27 
28 #ifndef CONFIG_64BIT
29 #define ALLOC_ORDER	1
30 #define FRAG_MASK	0x0f
31 #else
32 #define ALLOC_ORDER	2
33 #define FRAG_MASK	0x03
34 #endif
35 
36 
37 unsigned long *crst_table_alloc(struct mm_struct *mm)
38 {
39 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
40 
41 	if (!page)
42 		return NULL;
43 	return (unsigned long *) page_to_phys(page);
44 }
45 
46 void crst_table_free(struct mm_struct *mm, unsigned long *table)
47 {
48 	free_pages((unsigned long) table, ALLOC_ORDER);
49 }
50 
51 #ifdef CONFIG_64BIT
52 static void __crst_table_upgrade(void *arg)
53 {
54 	struct mm_struct *mm = arg;
55 
56 	if (current->active_mm == mm) {
57 		clear_user_asce();
58 		set_user_asce(mm);
59 	}
60 	__tlb_flush_local();
61 }
62 
63 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
64 {
65 	unsigned long *table, *pgd;
66 	unsigned long entry;
67 	int flush;
68 
69 	BUG_ON(limit > (1UL << 53));
70 	flush = 0;
71 repeat:
72 	table = crst_table_alloc(mm);
73 	if (!table)
74 		return -ENOMEM;
75 	spin_lock_bh(&mm->page_table_lock);
76 	if (mm->context.asce_limit < limit) {
77 		pgd = (unsigned long *) mm->pgd;
78 		if (mm->context.asce_limit <= (1UL << 31)) {
79 			entry = _REGION3_ENTRY_EMPTY;
80 			mm->context.asce_limit = 1UL << 42;
81 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
82 						_ASCE_USER_BITS |
83 						_ASCE_TYPE_REGION3;
84 		} else {
85 			entry = _REGION2_ENTRY_EMPTY;
86 			mm->context.asce_limit = 1UL << 53;
87 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
88 						_ASCE_USER_BITS |
89 						_ASCE_TYPE_REGION2;
90 		}
91 		crst_table_init(table, entry);
92 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
93 		mm->pgd = (pgd_t *) table;
94 		mm->task_size = mm->context.asce_limit;
95 		table = NULL;
96 		flush = 1;
97 	}
98 	spin_unlock_bh(&mm->page_table_lock);
99 	if (table)
100 		crst_table_free(mm, table);
101 	if (mm->context.asce_limit < limit)
102 		goto repeat;
103 	if (flush)
104 		on_each_cpu(__crst_table_upgrade, mm, 0);
105 	return 0;
106 }
107 
108 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
109 {
110 	pgd_t *pgd;
111 
112 	if (current->active_mm == mm) {
113 		clear_user_asce();
114 		__tlb_flush_mm(mm);
115 	}
116 	while (mm->context.asce_limit > limit) {
117 		pgd = mm->pgd;
118 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
119 		case _REGION_ENTRY_TYPE_R2:
120 			mm->context.asce_limit = 1UL << 42;
121 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
122 						_ASCE_USER_BITS |
123 						_ASCE_TYPE_REGION3;
124 			break;
125 		case _REGION_ENTRY_TYPE_R3:
126 			mm->context.asce_limit = 1UL << 31;
127 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
128 						_ASCE_USER_BITS |
129 						_ASCE_TYPE_SEGMENT;
130 			break;
131 		default:
132 			BUG();
133 		}
134 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
135 		mm->task_size = mm->context.asce_limit;
136 		crst_table_free(mm, (unsigned long *) pgd);
137 	}
138 	if (current->active_mm == mm)
139 		set_user_asce(mm);
140 }
141 #endif
142 
143 #ifdef CONFIG_PGSTE
144 
145 /**
146  * gmap_alloc - allocate a guest address space
147  * @mm: pointer to the parent mm_struct
148  * @limit: maximum size of the gmap address space
149  *
150  * Returns a guest address space structure.
151  */
152 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
153 {
154 	struct gmap *gmap;
155 	struct page *page;
156 	unsigned long *table;
157 	unsigned long etype, atype;
158 
159 	if (limit < (1UL << 31)) {
160 		limit = (1UL << 31) - 1;
161 		atype = _ASCE_TYPE_SEGMENT;
162 		etype = _SEGMENT_ENTRY_EMPTY;
163 	} else if (limit < (1UL << 42)) {
164 		limit = (1UL << 42) - 1;
165 		atype = _ASCE_TYPE_REGION3;
166 		etype = _REGION3_ENTRY_EMPTY;
167 	} else if (limit < (1UL << 53)) {
168 		limit = (1UL << 53) - 1;
169 		atype = _ASCE_TYPE_REGION2;
170 		etype = _REGION2_ENTRY_EMPTY;
171 	} else {
172 		limit = -1UL;
173 		atype = _ASCE_TYPE_REGION1;
174 		etype = _REGION1_ENTRY_EMPTY;
175 	}
176 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
177 	if (!gmap)
178 		goto out;
179 	INIT_LIST_HEAD(&gmap->crst_list);
180 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
181 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
182 	spin_lock_init(&gmap->guest_table_lock);
183 	gmap->mm = mm;
184 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
185 	if (!page)
186 		goto out_free;
187 	page->index = 0;
188 	list_add(&page->lru, &gmap->crst_list);
189 	table = (unsigned long *) page_to_phys(page);
190 	crst_table_init(table, etype);
191 	gmap->table = table;
192 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
193 		_ASCE_USER_BITS | __pa(table);
194 	gmap->asce_end = limit;
195 	down_write(&mm->mmap_sem);
196 	list_add(&gmap->list, &mm->context.gmap_list);
197 	up_write(&mm->mmap_sem);
198 	return gmap;
199 
200 out_free:
201 	kfree(gmap);
202 out:
203 	return NULL;
204 }
205 EXPORT_SYMBOL_GPL(gmap_alloc);
206 
207 static void gmap_flush_tlb(struct gmap *gmap)
208 {
209 	if (MACHINE_HAS_IDTE)
210 		__tlb_flush_asce(gmap->mm, gmap->asce);
211 	else
212 		__tlb_flush_global();
213 }
214 
215 static void gmap_radix_tree_free(struct radix_tree_root *root)
216 {
217 	struct radix_tree_iter iter;
218 	unsigned long indices[16];
219 	unsigned long index;
220 	void **slot;
221 	int i, nr;
222 
223 	/* A radix tree is freed by deleting all of its entries */
224 	index = 0;
225 	do {
226 		nr = 0;
227 		radix_tree_for_each_slot(slot, root, &iter, index) {
228 			indices[nr] = iter.index;
229 			if (++nr == 16)
230 				break;
231 		}
232 		for (i = 0; i < nr; i++) {
233 			index = indices[i];
234 			radix_tree_delete(root, index);
235 		}
236 	} while (nr > 0);
237 }
238 
239 /**
240  * gmap_free - free a guest address space
241  * @gmap: pointer to the guest address space structure
242  */
243 void gmap_free(struct gmap *gmap)
244 {
245 	struct page *page, *next;
246 
247 	/* Flush tlb. */
248 	if (MACHINE_HAS_IDTE)
249 		__tlb_flush_asce(gmap->mm, gmap->asce);
250 	else
251 		__tlb_flush_global();
252 
253 	/* Free all segment & region tables. */
254 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
255 		__free_pages(page, ALLOC_ORDER);
256 	gmap_radix_tree_free(&gmap->guest_to_host);
257 	gmap_radix_tree_free(&gmap->host_to_guest);
258 	down_write(&gmap->mm->mmap_sem);
259 	list_del(&gmap->list);
260 	up_write(&gmap->mm->mmap_sem);
261 	kfree(gmap);
262 }
263 EXPORT_SYMBOL_GPL(gmap_free);
264 
265 /**
266  * gmap_enable - switch primary space to the guest address space
267  * @gmap: pointer to the guest address space structure
268  */
269 void gmap_enable(struct gmap *gmap)
270 {
271 	S390_lowcore.gmap = (unsigned long) gmap;
272 }
273 EXPORT_SYMBOL_GPL(gmap_enable);
274 
275 /**
276  * gmap_disable - switch back to the standard primary address space
277  * @gmap: pointer to the guest address space structure
278  */
279 void gmap_disable(struct gmap *gmap)
280 {
281 	S390_lowcore.gmap = 0UL;
282 }
283 EXPORT_SYMBOL_GPL(gmap_disable);
284 
285 /*
286  * gmap_alloc_table is assumed to be called with mmap_sem held
287  */
288 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
289 			    unsigned long init, unsigned long gaddr)
290 {
291 	struct page *page;
292 	unsigned long *new;
293 
294 	/* since we dont free the gmap table until gmap_free we can unlock */
295 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
296 	if (!page)
297 		return -ENOMEM;
298 	new = (unsigned long *) page_to_phys(page);
299 	crst_table_init(new, init);
300 	spin_lock(&gmap->mm->page_table_lock);
301 	if (*table & _REGION_ENTRY_INVALID) {
302 		list_add(&page->lru, &gmap->crst_list);
303 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
304 			(*table & _REGION_ENTRY_TYPE_MASK);
305 		page->index = gaddr;
306 		page = NULL;
307 	}
308 	spin_unlock(&gmap->mm->page_table_lock);
309 	if (page)
310 		__free_pages(page, ALLOC_ORDER);
311 	return 0;
312 }
313 
314 /**
315  * __gmap_segment_gaddr - find virtual address from segment pointer
316  * @entry: pointer to a segment table entry in the guest address space
317  *
318  * Returns the virtual address in the guest address space for the segment
319  */
320 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
321 {
322 	struct page *page;
323 	unsigned long offset;
324 
325 	offset = (unsigned long) entry / sizeof(unsigned long);
326 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
327 	page = pmd_to_page((pmd_t *) entry);
328 	return page->index + offset;
329 }
330 
331 /**
332  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
333  * @gmap: pointer to the guest address space structure
334  * @vmaddr: address in the host process address space
335  *
336  * Returns 1 if a TLB flush is required
337  */
338 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
339 {
340 	unsigned long *entry;
341 	int flush = 0;
342 
343 	spin_lock(&gmap->guest_table_lock);
344 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
345 	if (entry) {
346 		flush = (*entry != _SEGMENT_ENTRY_INVALID);
347 		*entry = _SEGMENT_ENTRY_INVALID;
348 	}
349 	spin_unlock(&gmap->guest_table_lock);
350 	return flush;
351 }
352 
353 /**
354  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
355  * @gmap: pointer to the guest address space structure
356  * @gaddr: address in the guest address space
357  *
358  * Returns 1 if a TLB flush is required
359  */
360 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
361 {
362 	unsigned long vmaddr;
363 
364 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
365 						   gaddr >> PMD_SHIFT);
366 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
367 }
368 
369 /**
370  * gmap_unmap_segment - unmap segment from the guest address space
371  * @gmap: pointer to the guest address space structure
372  * @to: address in the guest address space
373  * @len: length of the memory area to unmap
374  *
375  * Returns 0 if the unmap succeeded, -EINVAL if not.
376  */
377 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
378 {
379 	unsigned long off;
380 	int flush;
381 
382 	if ((to | len) & (PMD_SIZE - 1))
383 		return -EINVAL;
384 	if (len == 0 || to + len < to)
385 		return -EINVAL;
386 
387 	flush = 0;
388 	down_write(&gmap->mm->mmap_sem);
389 	for (off = 0; off < len; off += PMD_SIZE)
390 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
391 	up_write(&gmap->mm->mmap_sem);
392 	if (flush)
393 		gmap_flush_tlb(gmap);
394 	return 0;
395 }
396 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
397 
398 /**
399  * gmap_mmap_segment - map a segment to the guest address space
400  * @gmap: pointer to the guest address space structure
401  * @from: source address in the parent address space
402  * @to: target address in the guest address space
403  * @len: length of the memory area to map
404  *
405  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
406  */
407 int gmap_map_segment(struct gmap *gmap, unsigned long from,
408 		     unsigned long to, unsigned long len)
409 {
410 	unsigned long off;
411 	int flush;
412 
413 	if ((from | to | len) & (PMD_SIZE - 1))
414 		return -EINVAL;
415 	if (len == 0 || from + len < from || to + len < to ||
416 	    from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
417 		return -EINVAL;
418 
419 	flush = 0;
420 	down_write(&gmap->mm->mmap_sem);
421 	for (off = 0; off < len; off += PMD_SIZE) {
422 		/* Remove old translation */
423 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
424 		/* Store new translation */
425 		if (radix_tree_insert(&gmap->guest_to_host,
426 				      (to + off) >> PMD_SHIFT,
427 				      (void *) from + off))
428 			break;
429 	}
430 	up_write(&gmap->mm->mmap_sem);
431 	if (flush)
432 		gmap_flush_tlb(gmap);
433 	if (off >= len)
434 		return 0;
435 	gmap_unmap_segment(gmap, to, len);
436 	return -ENOMEM;
437 }
438 EXPORT_SYMBOL_GPL(gmap_map_segment);
439 
440 /**
441  * __gmap_translate - translate a guest address to a user space address
442  * @gmap: pointer to guest mapping meta data structure
443  * @gaddr: guest address
444  *
445  * Returns user space address which corresponds to the guest address or
446  * -EFAULT if no such mapping exists.
447  * This function does not establish potentially missing page table entries.
448  * The mmap_sem of the mm that belongs to the address space must be held
449  * when this function gets called.
450  */
451 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
452 {
453 	unsigned long vmaddr;
454 
455 	vmaddr = (unsigned long)
456 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
457 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
458 }
459 EXPORT_SYMBOL_GPL(__gmap_translate);
460 
461 /**
462  * gmap_translate - translate a guest address to a user space address
463  * @gmap: pointer to guest mapping meta data structure
464  * @gaddr: guest address
465  *
466  * Returns user space address which corresponds to the guest address or
467  * -EFAULT if no such mapping exists.
468  * This function does not establish potentially missing page table entries.
469  */
470 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
471 {
472 	unsigned long rc;
473 
474 	down_read(&gmap->mm->mmap_sem);
475 	rc = __gmap_translate(gmap, gaddr);
476 	up_read(&gmap->mm->mmap_sem);
477 	return rc;
478 }
479 EXPORT_SYMBOL_GPL(gmap_translate);
480 
481 /**
482  * gmap_unlink - disconnect a page table from the gmap shadow tables
483  * @gmap: pointer to guest mapping meta data structure
484  * @table: pointer to the host page table
485  * @vmaddr: vm address associated with the host page table
486  */
487 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
488 			unsigned long vmaddr)
489 {
490 	struct gmap *gmap;
491 	int flush;
492 
493 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
494 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
495 		if (flush)
496 			gmap_flush_tlb(gmap);
497 	}
498 }
499 
500 /**
501  * gmap_link - set up shadow page tables to connect a host to a guest address
502  * @gmap: pointer to guest mapping meta data structure
503  * @gaddr: guest address
504  * @vmaddr: vm address
505  *
506  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
507  * if the vm address is already mapped to a different guest segment.
508  * The mmap_sem of the mm that belongs to the address space must be held
509  * when this function gets called.
510  */
511 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
512 {
513 	struct mm_struct *mm;
514 	unsigned long *table;
515 	spinlock_t *ptl;
516 	pgd_t *pgd;
517 	pud_t *pud;
518 	pmd_t *pmd;
519 	int rc;
520 
521 	/* Create higher level tables in the gmap page table */
522 	table = gmap->table;
523 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
524 		table += (gaddr >> 53) & 0x7ff;
525 		if ((*table & _REGION_ENTRY_INVALID) &&
526 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
527 				     gaddr & 0xffe0000000000000))
528 			return -ENOMEM;
529 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
530 	}
531 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
532 		table += (gaddr >> 42) & 0x7ff;
533 		if ((*table & _REGION_ENTRY_INVALID) &&
534 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
535 				     gaddr & 0xfffffc0000000000))
536 			return -ENOMEM;
537 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
538 	}
539 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
540 		table += (gaddr >> 31) & 0x7ff;
541 		if ((*table & _REGION_ENTRY_INVALID) &&
542 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
543 				     gaddr & 0xffffffff80000000))
544 			return -ENOMEM;
545 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
546 	}
547 	table += (gaddr >> 20) & 0x7ff;
548 	/* Walk the parent mm page table */
549 	mm = gmap->mm;
550 	pgd = pgd_offset(mm, vmaddr);
551 	VM_BUG_ON(pgd_none(*pgd));
552 	pud = pud_offset(pgd, vmaddr);
553 	VM_BUG_ON(pud_none(*pud));
554 	pmd = pmd_offset(pud, vmaddr);
555 	VM_BUG_ON(pmd_none(*pmd));
556 	/* large pmds cannot yet be handled */
557 	if (pmd_large(*pmd))
558 		return -EFAULT;
559 	/* Link gmap segment table entry location to page table. */
560 	rc = radix_tree_preload(GFP_KERNEL);
561 	if (rc)
562 		return rc;
563 	ptl = pmd_lock(mm, pmd);
564 	spin_lock(&gmap->guest_table_lock);
565 	if (*table == _SEGMENT_ENTRY_INVALID) {
566 		rc = radix_tree_insert(&gmap->host_to_guest,
567 				       vmaddr >> PMD_SHIFT, table);
568 		if (!rc)
569 			*table = pmd_val(*pmd);
570 	} else
571 		rc = 0;
572 	spin_unlock(&gmap->guest_table_lock);
573 	spin_unlock(ptl);
574 	radix_tree_preload_end();
575 	return rc;
576 }
577 
578 /**
579  * gmap_fault - resolve a fault on a guest address
580  * @gmap: pointer to guest mapping meta data structure
581  * @gaddr: guest address
582  * @fault_flags: flags to pass down to handle_mm_fault()
583  *
584  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
585  * if the vm address is already mapped to a different guest segment.
586  */
587 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
588 	       unsigned int fault_flags)
589 {
590 	unsigned long vmaddr;
591 	int rc;
592 
593 	down_read(&gmap->mm->mmap_sem);
594 	vmaddr = __gmap_translate(gmap, gaddr);
595 	if (IS_ERR_VALUE(vmaddr)) {
596 		rc = vmaddr;
597 		goto out_up;
598 	}
599 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
600 		rc = -EFAULT;
601 		goto out_up;
602 	}
603 	rc = __gmap_link(gmap, gaddr, vmaddr);
604 out_up:
605 	up_read(&gmap->mm->mmap_sem);
606 	return rc;
607 }
608 EXPORT_SYMBOL_GPL(gmap_fault);
609 
610 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
611 {
612 	if (!non_swap_entry(entry))
613 		dec_mm_counter(mm, MM_SWAPENTS);
614 	else if (is_migration_entry(entry)) {
615 		struct page *page = migration_entry_to_page(entry);
616 
617 		if (PageAnon(page))
618 			dec_mm_counter(mm, MM_ANONPAGES);
619 		else
620 			dec_mm_counter(mm, MM_FILEPAGES);
621 	}
622 	free_swap_and_cache(entry);
623 }
624 
625 /*
626  * this function is assumed to be called with mmap_sem held
627  */
628 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
629 {
630 	unsigned long vmaddr, ptev, pgstev;
631 	pte_t *ptep, pte;
632 	spinlock_t *ptl;
633 	pgste_t pgste;
634 
635 	/* Find the vm address for the guest address */
636 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
637 						   gaddr >> PMD_SHIFT);
638 	if (!vmaddr)
639 		return;
640 	vmaddr |= gaddr & ~PMD_MASK;
641 	/* Get pointer to the page table entry */
642 	ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
643 	if (unlikely(!ptep))
644 		return;
645 	pte = *ptep;
646 	if (!pte_swap(pte))
647 		goto out_pte;
648 	/* Zap unused and logically-zero pages */
649 	pgste = pgste_get_lock(ptep);
650 	pgstev = pgste_val(pgste);
651 	ptev = pte_val(pte);
652 	if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
653 	    ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
654 		gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
655 		pte_clear(gmap->mm, vmaddr, ptep);
656 	}
657 	pgste_set_unlock(ptep, pgste);
658 out_pte:
659 	pte_unmap_unlock(ptep, ptl);
660 }
661 EXPORT_SYMBOL_GPL(__gmap_zap);
662 
663 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
664 {
665 	unsigned long gaddr, vmaddr, size;
666 	struct vm_area_struct *vma;
667 
668 	down_read(&gmap->mm->mmap_sem);
669 	for (gaddr = from; gaddr < to;
670 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
671 		/* Find the vm address for the guest address */
672 		vmaddr = (unsigned long)
673 			radix_tree_lookup(&gmap->guest_to_host,
674 					  gaddr >> PMD_SHIFT);
675 		if (!vmaddr)
676 			continue;
677 		vmaddr |= gaddr & ~PMD_MASK;
678 		/* Find vma in the parent mm */
679 		vma = find_vma(gmap->mm, vmaddr);
680 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
681 		zap_page_range(vma, vmaddr, size, NULL);
682 	}
683 	up_read(&gmap->mm->mmap_sem);
684 }
685 EXPORT_SYMBOL_GPL(gmap_discard);
686 
687 static LIST_HEAD(gmap_notifier_list);
688 static DEFINE_SPINLOCK(gmap_notifier_lock);
689 
690 /**
691  * gmap_register_ipte_notifier - register a pte invalidation callback
692  * @nb: pointer to the gmap notifier block
693  */
694 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
695 {
696 	spin_lock(&gmap_notifier_lock);
697 	list_add(&nb->list, &gmap_notifier_list);
698 	spin_unlock(&gmap_notifier_lock);
699 }
700 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
701 
702 /**
703  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
704  * @nb: pointer to the gmap notifier block
705  */
706 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
707 {
708 	spin_lock(&gmap_notifier_lock);
709 	list_del_init(&nb->list);
710 	spin_unlock(&gmap_notifier_lock);
711 }
712 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
713 
714 /**
715  * gmap_ipte_notify - mark a range of ptes for invalidation notification
716  * @gmap: pointer to guest mapping meta data structure
717  * @gaddr: virtual address in the guest address space
718  * @len: size of area
719  *
720  * Returns 0 if for each page in the given range a gmap mapping exists and
721  * the invalidation notification could be set. If the gmap mapping is missing
722  * for one or more pages -EFAULT is returned. If no memory could be allocated
723  * -ENOMEM is returned. This function establishes missing page table entries.
724  */
725 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
726 {
727 	unsigned long addr;
728 	spinlock_t *ptl;
729 	pte_t *ptep, entry;
730 	pgste_t pgste;
731 	int rc = 0;
732 
733 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
734 		return -EINVAL;
735 	down_read(&gmap->mm->mmap_sem);
736 	while (len) {
737 		/* Convert gmap address and connect the page tables */
738 		addr = __gmap_translate(gmap, gaddr);
739 		if (IS_ERR_VALUE(addr)) {
740 			rc = addr;
741 			break;
742 		}
743 		/* Get the page mapped */
744 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
745 			rc = -EFAULT;
746 			break;
747 		}
748 		rc = __gmap_link(gmap, gaddr, addr);
749 		if (rc)
750 			break;
751 		/* Walk the process page table, lock and get pte pointer */
752 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
753 		if (unlikely(!ptep))
754 			continue;
755 		/* Set notification bit in the pgste of the pte */
756 		entry = *ptep;
757 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
758 			pgste = pgste_get_lock(ptep);
759 			pgste_val(pgste) |= PGSTE_IN_BIT;
760 			pgste_set_unlock(ptep, pgste);
761 			gaddr += PAGE_SIZE;
762 			len -= PAGE_SIZE;
763 		}
764 		spin_unlock(ptl);
765 	}
766 	up_read(&gmap->mm->mmap_sem);
767 	return rc;
768 }
769 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
770 
771 /**
772  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
773  * @mm: pointer to the process mm_struct
774  * @addr: virtual address in the process address space
775  * @pte: pointer to the page table entry
776  *
777  * This function is assumed to be called with the page table lock held
778  * for the pte to notify.
779  */
780 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
781 {
782 	unsigned long offset, gaddr;
783 	unsigned long *table;
784 	struct gmap_notifier *nb;
785 	struct gmap *gmap;
786 
787 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
788 	offset = offset * (4096 / sizeof(pte_t));
789 	spin_lock(&gmap_notifier_lock);
790 	list_for_each_entry(gmap, &mm->context.gmap_list, list) {
791 		table = radix_tree_lookup(&gmap->host_to_guest,
792 					  vmaddr >> PMD_SHIFT);
793 		if (!table)
794 			continue;
795 		gaddr = __gmap_segment_gaddr(table) + offset;
796 		list_for_each_entry(nb, &gmap_notifier_list, list)
797 			nb->notifier_call(gmap, gaddr);
798 	}
799 	spin_unlock(&gmap_notifier_lock);
800 }
801 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
802 
803 static inline int page_table_with_pgste(struct page *page)
804 {
805 	return atomic_read(&page->_mapcount) == 0;
806 }
807 
808 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
809 {
810 	struct page *page;
811 	unsigned long *table;
812 
813 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
814 	if (!page)
815 		return NULL;
816 	if (!pgtable_page_ctor(page)) {
817 		__free_page(page);
818 		return NULL;
819 	}
820 	atomic_set(&page->_mapcount, 0);
821 	table = (unsigned long *) page_to_phys(page);
822 	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
823 	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
824 	return table;
825 }
826 
827 static inline void page_table_free_pgste(unsigned long *table)
828 {
829 	struct page *page;
830 
831 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
832 	pgtable_page_dtor(page);
833 	atomic_set(&page->_mapcount, -1);
834 	__free_page(page);
835 }
836 
837 static inline unsigned long page_table_reset_pte(struct mm_struct *mm, pmd_t *pmd,
838 			unsigned long addr, unsigned long end, bool init_skey)
839 {
840 	pte_t *start_pte, *pte;
841 	spinlock_t *ptl;
842 	pgste_t pgste;
843 
844 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
845 	pte = start_pte;
846 	do {
847 		pgste = pgste_get_lock(pte);
848 		pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
849 		if (init_skey) {
850 			unsigned long address;
851 
852 			pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
853 					      PGSTE_GR_BIT | PGSTE_GC_BIT);
854 
855 			/* skip invalid and not writable pages */
856 			if (pte_val(*pte) & _PAGE_INVALID ||
857 			    !(pte_val(*pte) & _PAGE_WRITE)) {
858 				pgste_set_unlock(pte, pgste);
859 				continue;
860 			}
861 
862 			address = pte_val(*pte) & PAGE_MASK;
863 			page_set_storage_key(address, PAGE_DEFAULT_KEY, 1);
864 		}
865 		pgste_set_unlock(pte, pgste);
866 	} while (pte++, addr += PAGE_SIZE, addr != end);
867 	pte_unmap_unlock(start_pte, ptl);
868 
869 	return addr;
870 }
871 
872 static inline unsigned long page_table_reset_pmd(struct mm_struct *mm, pud_t *pud,
873 			unsigned long addr, unsigned long end, bool init_skey)
874 {
875 	unsigned long next;
876 	pmd_t *pmd;
877 
878 	pmd = pmd_offset(pud, addr);
879 	do {
880 		next = pmd_addr_end(addr, end);
881 		if (pmd_none_or_clear_bad(pmd))
882 			continue;
883 		next = page_table_reset_pte(mm, pmd, addr, next, init_skey);
884 	} while (pmd++, addr = next, addr != end);
885 
886 	return addr;
887 }
888 
889 static inline unsigned long page_table_reset_pud(struct mm_struct *mm, pgd_t *pgd,
890 			unsigned long addr, unsigned long end, bool init_skey)
891 {
892 	unsigned long next;
893 	pud_t *pud;
894 
895 	pud = pud_offset(pgd, addr);
896 	do {
897 		next = pud_addr_end(addr, end);
898 		if (pud_none_or_clear_bad(pud))
899 			continue;
900 		next = page_table_reset_pmd(mm, pud, addr, next, init_skey);
901 	} while (pud++, addr = next, addr != end);
902 
903 	return addr;
904 }
905 
906 void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
907 			    unsigned long end, bool init_skey)
908 {
909 	unsigned long addr, next;
910 	pgd_t *pgd;
911 
912 	down_write(&mm->mmap_sem);
913 	if (init_skey && mm_use_skey(mm))
914 		goto out_up;
915 	addr = start;
916 	pgd = pgd_offset(mm, addr);
917 	do {
918 		next = pgd_addr_end(addr, end);
919 		if (pgd_none_or_clear_bad(pgd))
920 			continue;
921 		next = page_table_reset_pud(mm, pgd, addr, next, init_skey);
922 	} while (pgd++, addr = next, addr != end);
923 	if (init_skey)
924 		current->mm->context.use_skey = 1;
925 out_up:
926 	up_write(&mm->mmap_sem);
927 }
928 EXPORT_SYMBOL(page_table_reset_pgste);
929 
930 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
931 			  unsigned long key, bool nq)
932 {
933 	spinlock_t *ptl;
934 	pgste_t old, new;
935 	pte_t *ptep;
936 
937 	down_read(&mm->mmap_sem);
938 retry:
939 	ptep = get_locked_pte(current->mm, addr, &ptl);
940 	if (unlikely(!ptep)) {
941 		up_read(&mm->mmap_sem);
942 		return -EFAULT;
943 	}
944 	if (!(pte_val(*ptep) & _PAGE_INVALID) &&
945 	     (pte_val(*ptep) & _PAGE_PROTECT)) {
946 		pte_unmap_unlock(ptep, ptl);
947 		if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
948 			up_read(&mm->mmap_sem);
949 			return -EFAULT;
950 		}
951 		goto retry;
952 	}
953 
954 	new = old = pgste_get_lock(ptep);
955 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
956 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
957 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
958 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
959 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
960 		unsigned long address, bits, skey;
961 
962 		address = pte_val(*ptep) & PAGE_MASK;
963 		skey = (unsigned long) page_get_storage_key(address);
964 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
965 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
966 		/* Set storage key ACC and FP */
967 		page_set_storage_key(address, skey, !nq);
968 		/* Merge host changed & referenced into pgste  */
969 		pgste_val(new) |= bits << 52;
970 	}
971 	/* changing the guest storage key is considered a change of the page */
972 	if ((pgste_val(new) ^ pgste_val(old)) &
973 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
974 		pgste_val(new) |= PGSTE_UC_BIT;
975 
976 	pgste_set_unlock(ptep, new);
977 	pte_unmap_unlock(ptep, ptl);
978 	up_read(&mm->mmap_sem);
979 	return 0;
980 }
981 EXPORT_SYMBOL(set_guest_storage_key);
982 
983 #else /* CONFIG_PGSTE */
984 
985 static inline int page_table_with_pgste(struct page *page)
986 {
987 	return 0;
988 }
989 
990 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
991 {
992 	return NULL;
993 }
994 
995 void page_table_reset_pgste(struct mm_struct *mm, unsigned long start,
996 			    unsigned long end, bool init_skey)
997 {
998 }
999 
1000 static inline void page_table_free_pgste(unsigned long *table)
1001 {
1002 }
1003 
1004 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
1005 			unsigned long vmaddr)
1006 {
1007 }
1008 
1009 #endif /* CONFIG_PGSTE */
1010 
1011 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
1012 {
1013 	unsigned int old, new;
1014 
1015 	do {
1016 		old = atomic_read(v);
1017 		new = old ^ bits;
1018 	} while (atomic_cmpxchg(v, old, new) != old);
1019 	return new;
1020 }
1021 
1022 /*
1023  * page table entry allocation/free routines.
1024  */
1025 unsigned long *page_table_alloc(struct mm_struct *mm)
1026 {
1027 	unsigned long *uninitialized_var(table);
1028 	struct page *uninitialized_var(page);
1029 	unsigned int mask, bit;
1030 
1031 	if (mm_has_pgste(mm))
1032 		return page_table_alloc_pgste(mm);
1033 	/* Allocate fragments of a 4K page as 1K/2K page table */
1034 	spin_lock_bh(&mm->context.list_lock);
1035 	mask = FRAG_MASK;
1036 	if (!list_empty(&mm->context.pgtable_list)) {
1037 		page = list_first_entry(&mm->context.pgtable_list,
1038 					struct page, lru);
1039 		table = (unsigned long *) page_to_phys(page);
1040 		mask = atomic_read(&page->_mapcount);
1041 		mask = mask | (mask >> 4);
1042 	}
1043 	if ((mask & FRAG_MASK) == FRAG_MASK) {
1044 		spin_unlock_bh(&mm->context.list_lock);
1045 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
1046 		if (!page)
1047 			return NULL;
1048 		if (!pgtable_page_ctor(page)) {
1049 			__free_page(page);
1050 			return NULL;
1051 		}
1052 		atomic_set(&page->_mapcount, 1);
1053 		table = (unsigned long *) page_to_phys(page);
1054 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1055 		spin_lock_bh(&mm->context.list_lock);
1056 		list_add(&page->lru, &mm->context.pgtable_list);
1057 	} else {
1058 		for (bit = 1; mask & bit; bit <<= 1)
1059 			table += PTRS_PER_PTE;
1060 		mask = atomic_xor_bits(&page->_mapcount, bit);
1061 		if ((mask & FRAG_MASK) == FRAG_MASK)
1062 			list_del(&page->lru);
1063 	}
1064 	spin_unlock_bh(&mm->context.list_lock);
1065 	return table;
1066 }
1067 
1068 void page_table_free(struct mm_struct *mm, unsigned long *table)
1069 {
1070 	struct page *page;
1071 	unsigned int bit, mask;
1072 
1073 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1074 	if (page_table_with_pgste(page))
1075 		return page_table_free_pgste(table);
1076 	/* Free 1K/2K page table fragment of a 4K page */
1077 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1078 	spin_lock_bh(&mm->context.list_lock);
1079 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1080 		list_del(&page->lru);
1081 	mask = atomic_xor_bits(&page->_mapcount, bit);
1082 	if (mask & FRAG_MASK)
1083 		list_add(&page->lru, &mm->context.pgtable_list);
1084 	spin_unlock_bh(&mm->context.list_lock);
1085 	if (mask == 0) {
1086 		pgtable_page_dtor(page);
1087 		atomic_set(&page->_mapcount, -1);
1088 		__free_page(page);
1089 	}
1090 }
1091 
1092 static void __page_table_free_rcu(void *table, unsigned bit)
1093 {
1094 	struct page *page;
1095 
1096 	if (bit == FRAG_MASK)
1097 		return page_table_free_pgste(table);
1098 	/* Free 1K/2K page table fragment of a 4K page */
1099 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1100 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1101 		pgtable_page_dtor(page);
1102 		atomic_set(&page->_mapcount, -1);
1103 		__free_page(page);
1104 	}
1105 }
1106 
1107 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1108 			 unsigned long vmaddr)
1109 {
1110 	struct mm_struct *mm;
1111 	struct page *page;
1112 	unsigned int bit, mask;
1113 
1114 	mm = tlb->mm;
1115 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1116 	if (page_table_with_pgste(page)) {
1117 		gmap_unlink(mm, table, vmaddr);
1118 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
1119 		tlb_remove_table(tlb, table);
1120 		return;
1121 	}
1122 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1123 	spin_lock_bh(&mm->context.list_lock);
1124 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1125 		list_del(&page->lru);
1126 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1127 	if (mask & FRAG_MASK)
1128 		list_add_tail(&page->lru, &mm->context.pgtable_list);
1129 	spin_unlock_bh(&mm->context.list_lock);
1130 	table = (unsigned long *) (__pa(table) | (bit << 4));
1131 	tlb_remove_table(tlb, table);
1132 }
1133 
1134 static void __tlb_remove_table(void *_table)
1135 {
1136 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1137 	void *table = (void *)((unsigned long) _table & ~mask);
1138 	unsigned type = (unsigned long) _table & mask;
1139 
1140 	if (type)
1141 		__page_table_free_rcu(table, type);
1142 	else
1143 		free_pages((unsigned long) table, ALLOC_ORDER);
1144 }
1145 
1146 static void tlb_remove_table_smp_sync(void *arg)
1147 {
1148 	/* Simply deliver the interrupt */
1149 }
1150 
1151 static void tlb_remove_table_one(void *table)
1152 {
1153 	/*
1154 	 * This isn't an RCU grace period and hence the page-tables cannot be
1155 	 * assumed to be actually RCU-freed.
1156 	 *
1157 	 * It is however sufficient for software page-table walkers that rely
1158 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
1159 	 */
1160 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1161 	__tlb_remove_table(table);
1162 }
1163 
1164 static void tlb_remove_table_rcu(struct rcu_head *head)
1165 {
1166 	struct mmu_table_batch *batch;
1167 	int i;
1168 
1169 	batch = container_of(head, struct mmu_table_batch, rcu);
1170 
1171 	for (i = 0; i < batch->nr; i++)
1172 		__tlb_remove_table(batch->tables[i]);
1173 
1174 	free_page((unsigned long)batch);
1175 }
1176 
1177 void tlb_table_flush(struct mmu_gather *tlb)
1178 {
1179 	struct mmu_table_batch **batch = &tlb->batch;
1180 
1181 	if (*batch) {
1182 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1183 		*batch = NULL;
1184 	}
1185 }
1186 
1187 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1188 {
1189 	struct mmu_table_batch **batch = &tlb->batch;
1190 
1191 	tlb->mm->context.flush_mm = 1;
1192 	if (*batch == NULL) {
1193 		*batch = (struct mmu_table_batch *)
1194 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1195 		if (*batch == NULL) {
1196 			__tlb_flush_mm_lazy(tlb->mm);
1197 			tlb_remove_table_one(table);
1198 			return;
1199 		}
1200 		(*batch)->nr = 0;
1201 	}
1202 	(*batch)->tables[(*batch)->nr++] = table;
1203 	if ((*batch)->nr == MAX_TABLE_BATCH)
1204 		tlb_flush_mmu(tlb);
1205 }
1206 
1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208 static inline void thp_split_vma(struct vm_area_struct *vma)
1209 {
1210 	unsigned long addr;
1211 
1212 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1213 		follow_page(vma, addr, FOLL_SPLIT);
1214 }
1215 
1216 static inline void thp_split_mm(struct mm_struct *mm)
1217 {
1218 	struct vm_area_struct *vma;
1219 
1220 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1221 		thp_split_vma(vma);
1222 		vma->vm_flags &= ~VM_HUGEPAGE;
1223 		vma->vm_flags |= VM_NOHUGEPAGE;
1224 	}
1225 	mm->def_flags |= VM_NOHUGEPAGE;
1226 }
1227 #else
1228 static inline void thp_split_mm(struct mm_struct *mm)
1229 {
1230 }
1231 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1232 
1233 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1234 				struct mm_struct *mm, pud_t *pud,
1235 				unsigned long addr, unsigned long end)
1236 {
1237 	unsigned long next, *table, *new;
1238 	struct page *page;
1239 	spinlock_t *ptl;
1240 	pmd_t *pmd;
1241 
1242 	pmd = pmd_offset(pud, addr);
1243 	do {
1244 		next = pmd_addr_end(addr, end);
1245 again:
1246 		if (pmd_none_or_clear_bad(pmd))
1247 			continue;
1248 		table = (unsigned long *) pmd_deref(*pmd);
1249 		page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1250 		if (page_table_with_pgste(page))
1251 			continue;
1252 		/* Allocate new page table with pgstes */
1253 		new = page_table_alloc_pgste(mm);
1254 		if (!new)
1255 			return -ENOMEM;
1256 
1257 		ptl = pmd_lock(mm, pmd);
1258 		if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1259 			/* Nuke pmd entry pointing to the "short" page table */
1260 			pmdp_flush_lazy(mm, addr, pmd);
1261 			pmd_clear(pmd);
1262 			/* Copy ptes from old table to new table */
1263 			memcpy(new, table, PAGE_SIZE/2);
1264 			clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1265 			/* Establish new table */
1266 			pmd_populate(mm, pmd, (pte_t *) new);
1267 			/* Free old table with rcu, there might be a walker! */
1268 			page_table_free_rcu(tlb, table, addr);
1269 			new = NULL;
1270 		}
1271 		spin_unlock(ptl);
1272 		if (new) {
1273 			page_table_free_pgste(new);
1274 			goto again;
1275 		}
1276 	} while (pmd++, addr = next, addr != end);
1277 
1278 	return addr;
1279 }
1280 
1281 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1282 				   struct mm_struct *mm, pgd_t *pgd,
1283 				   unsigned long addr, unsigned long end)
1284 {
1285 	unsigned long next;
1286 	pud_t *pud;
1287 
1288 	pud = pud_offset(pgd, addr);
1289 	do {
1290 		next = pud_addr_end(addr, end);
1291 		if (pud_none_or_clear_bad(pud))
1292 			continue;
1293 		next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1294 		if (unlikely(IS_ERR_VALUE(next)))
1295 			return next;
1296 	} while (pud++, addr = next, addr != end);
1297 
1298 	return addr;
1299 }
1300 
1301 static unsigned long page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1302 					unsigned long addr, unsigned long end)
1303 {
1304 	unsigned long next;
1305 	pgd_t *pgd;
1306 
1307 	pgd = pgd_offset(mm, addr);
1308 	do {
1309 		next = pgd_addr_end(addr, end);
1310 		if (pgd_none_or_clear_bad(pgd))
1311 			continue;
1312 		next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1313 		if (unlikely(IS_ERR_VALUE(next)))
1314 			return next;
1315 	} while (pgd++, addr = next, addr != end);
1316 
1317 	return 0;
1318 }
1319 
1320 /*
1321  * switch on pgstes for its userspace process (for kvm)
1322  */
1323 int s390_enable_sie(void)
1324 {
1325 	struct task_struct *tsk = current;
1326 	struct mm_struct *mm = tsk->mm;
1327 	struct mmu_gather tlb;
1328 
1329 	/* Do we have pgstes? if yes, we are done */
1330 	if (mm_has_pgste(tsk->mm))
1331 		return 0;
1332 
1333 	down_write(&mm->mmap_sem);
1334 	/* split thp mappings and disable thp for future mappings */
1335 	thp_split_mm(mm);
1336 	/* Reallocate the page tables with pgstes */
1337 	tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1338 	if (!page_table_realloc(&tlb, mm, 0, TASK_SIZE))
1339 		mm->context.has_pgste = 1;
1340 	tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1341 	up_write(&mm->mmap_sem);
1342 	return mm->context.has_pgste ? 0 : -ENOMEM;
1343 }
1344 EXPORT_SYMBOL_GPL(s390_enable_sie);
1345 
1346 /*
1347  * Enable storage key handling from now on and initialize the storage
1348  * keys with the default key.
1349  */
1350 void s390_enable_skey(void)
1351 {
1352 	page_table_reset_pgste(current->mm, 0, TASK_SIZE, true);
1353 }
1354 EXPORT_SYMBOL_GPL(s390_enable_skey);
1355 
1356 /*
1357  * Test and reset if a guest page is dirty
1358  */
1359 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1360 {
1361 	pte_t *pte;
1362 	spinlock_t *ptl;
1363 	bool dirty = false;
1364 
1365 	pte = get_locked_pte(gmap->mm, address, &ptl);
1366 	if (unlikely(!pte))
1367 		return false;
1368 
1369 	if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1370 		dirty = true;
1371 
1372 	spin_unlock(ptl);
1373 	return dirty;
1374 }
1375 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1376 
1377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1378 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1379 			   pmd_t *pmdp)
1380 {
1381 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1382 	/* No need to flush TLB
1383 	 * On s390 reference bits are in storage key and never in TLB */
1384 	return pmdp_test_and_clear_young(vma, address, pmdp);
1385 }
1386 
1387 int pmdp_set_access_flags(struct vm_area_struct *vma,
1388 			  unsigned long address, pmd_t *pmdp,
1389 			  pmd_t entry, int dirty)
1390 {
1391 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1392 
1393 	entry = pmd_mkyoung(entry);
1394 	if (dirty)
1395 		entry = pmd_mkdirty(entry);
1396 	if (pmd_same(*pmdp, entry))
1397 		return 0;
1398 	pmdp_invalidate(vma, address, pmdp);
1399 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1400 	return 1;
1401 }
1402 
1403 static void pmdp_splitting_flush_sync(void *arg)
1404 {
1405 	/* Simply deliver the interrupt */
1406 }
1407 
1408 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1409 			  pmd_t *pmdp)
1410 {
1411 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1412 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1413 			      (unsigned long *) pmdp)) {
1414 		/* need to serialize against gup-fast (IRQ disabled) */
1415 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1416 	}
1417 }
1418 
1419 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1420 				pgtable_t pgtable)
1421 {
1422 	struct list_head *lh = (struct list_head *) pgtable;
1423 
1424 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1425 
1426 	/* FIFO */
1427 	if (!pmd_huge_pte(mm, pmdp))
1428 		INIT_LIST_HEAD(lh);
1429 	else
1430 		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1431 	pmd_huge_pte(mm, pmdp) = pgtable;
1432 }
1433 
1434 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1435 {
1436 	struct list_head *lh;
1437 	pgtable_t pgtable;
1438 	pte_t *ptep;
1439 
1440 	assert_spin_locked(pmd_lockptr(mm, pmdp));
1441 
1442 	/* FIFO */
1443 	pgtable = pmd_huge_pte(mm, pmdp);
1444 	lh = (struct list_head *) pgtable;
1445 	if (list_empty(lh))
1446 		pmd_huge_pte(mm, pmdp) = NULL;
1447 	else {
1448 		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1449 		list_del(lh);
1450 	}
1451 	ptep = (pte_t *) pgtable;
1452 	pte_val(*ptep) = _PAGE_INVALID;
1453 	ptep++;
1454 	pte_val(*ptep) = _PAGE_INVALID;
1455 	return pgtable;
1456 }
1457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1458