xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 24b1944f)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 
27 #ifndef CONFIG_64BIT
28 #define ALLOC_ORDER	1
29 #define FRAG_MASK	0x0f
30 #else
31 #define ALLOC_ORDER	2
32 #define FRAG_MASK	0x03
33 #endif
34 
35 
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
37 {
38 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39 
40 	if (!page)
41 		return NULL;
42 	return (unsigned long *) page_to_phys(page);
43 }
44 
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
46 {
47 	free_pages((unsigned long) table, ALLOC_ORDER);
48 }
49 
50 #ifdef CONFIG_64BIT
51 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
52 {
53 	unsigned long *table, *pgd;
54 	unsigned long entry;
55 
56 	BUG_ON(limit > (1UL << 53));
57 repeat:
58 	table = crst_table_alloc(mm);
59 	if (!table)
60 		return -ENOMEM;
61 	spin_lock_bh(&mm->page_table_lock);
62 	if (mm->context.asce_limit < limit) {
63 		pgd = (unsigned long *) mm->pgd;
64 		if (mm->context.asce_limit <= (1UL << 31)) {
65 			entry = _REGION3_ENTRY_EMPTY;
66 			mm->context.asce_limit = 1UL << 42;
67 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68 						_ASCE_USER_BITS |
69 						_ASCE_TYPE_REGION3;
70 		} else {
71 			entry = _REGION2_ENTRY_EMPTY;
72 			mm->context.asce_limit = 1UL << 53;
73 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74 						_ASCE_USER_BITS |
75 						_ASCE_TYPE_REGION2;
76 		}
77 		crst_table_init(table, entry);
78 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79 		mm->pgd = (pgd_t *) table;
80 		mm->task_size = mm->context.asce_limit;
81 		table = NULL;
82 	}
83 	spin_unlock_bh(&mm->page_table_lock);
84 	if (table)
85 		crst_table_free(mm, table);
86 	if (mm->context.asce_limit < limit)
87 		goto repeat;
88 	return 0;
89 }
90 
91 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
92 {
93 	pgd_t *pgd;
94 
95 	while (mm->context.asce_limit > limit) {
96 		pgd = mm->pgd;
97 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98 		case _REGION_ENTRY_TYPE_R2:
99 			mm->context.asce_limit = 1UL << 42;
100 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101 						_ASCE_USER_BITS |
102 						_ASCE_TYPE_REGION3;
103 			break;
104 		case _REGION_ENTRY_TYPE_R3:
105 			mm->context.asce_limit = 1UL << 31;
106 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107 						_ASCE_USER_BITS |
108 						_ASCE_TYPE_SEGMENT;
109 			break;
110 		default:
111 			BUG();
112 		}
113 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114 		mm->task_size = mm->context.asce_limit;
115 		crst_table_free(mm, (unsigned long *) pgd);
116 	}
117 }
118 #endif
119 
120 #ifdef CONFIG_PGSTE
121 
122 /**
123  * gmap_alloc - allocate a guest address space
124  * @mm: pointer to the parent mm_struct
125  *
126  * Returns a guest address space structure.
127  */
128 struct gmap *gmap_alloc(struct mm_struct *mm)
129 {
130 	struct gmap *gmap;
131 	struct page *page;
132 	unsigned long *table;
133 
134 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135 	if (!gmap)
136 		goto out;
137 	INIT_LIST_HEAD(&gmap->crst_list);
138 	gmap->mm = mm;
139 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140 	if (!page)
141 		goto out_free;
142 	list_add(&page->lru, &gmap->crst_list);
143 	table = (unsigned long *) page_to_phys(page);
144 	crst_table_init(table, _REGION1_ENTRY_EMPTY);
145 	gmap->table = table;
146 	gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147 		     _ASCE_USER_BITS | __pa(table);
148 	list_add(&gmap->list, &mm->context.gmap_list);
149 	return gmap;
150 
151 out_free:
152 	kfree(gmap);
153 out:
154 	return NULL;
155 }
156 EXPORT_SYMBOL_GPL(gmap_alloc);
157 
158 static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
159 {
160 	struct gmap_pgtable *mp;
161 	struct gmap_rmap *rmap;
162 	struct page *page;
163 
164 	if (*table & _SEGMENT_ENTRY_INV)
165 		return 0;
166 	page = pfn_to_page(*table >> PAGE_SHIFT);
167 	mp = (struct gmap_pgtable *) page->index;
168 	list_for_each_entry(rmap, &mp->mapper, list) {
169 		if (rmap->entry != table)
170 			continue;
171 		list_del(&rmap->list);
172 		kfree(rmap);
173 		break;
174 	}
175 	*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
176 	return 1;
177 }
178 
179 static void gmap_flush_tlb(struct gmap *gmap)
180 {
181 	if (MACHINE_HAS_IDTE)
182 		__tlb_flush_idte((unsigned long) gmap->table |
183 				 _ASCE_TYPE_REGION1);
184 	else
185 		__tlb_flush_global();
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  */
192 void gmap_free(struct gmap *gmap)
193 {
194 	struct page *page, *next;
195 	unsigned long *table;
196 	int i;
197 
198 
199 	/* Flush tlb. */
200 	if (MACHINE_HAS_IDTE)
201 		__tlb_flush_idte((unsigned long) gmap->table |
202 				 _ASCE_TYPE_REGION1);
203 	else
204 		__tlb_flush_global();
205 
206 	/* Free all segment & region tables. */
207 	down_read(&gmap->mm->mmap_sem);
208 	spin_lock(&gmap->mm->page_table_lock);
209 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210 		table = (unsigned long *) page_to_phys(page);
211 		if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212 			/* Remove gmap rmap structures for segment table. */
213 			for (i = 0; i < PTRS_PER_PMD; i++, table++)
214 				gmap_unlink_segment(gmap, table);
215 		__free_pages(page, ALLOC_ORDER);
216 	}
217 	spin_unlock(&gmap->mm->page_table_lock);
218 	up_read(&gmap->mm->mmap_sem);
219 	list_del(&gmap->list);
220 	kfree(gmap);
221 }
222 EXPORT_SYMBOL_GPL(gmap_free);
223 
224 /**
225  * gmap_enable - switch primary space to the guest address space
226  * @gmap: pointer to the guest address space structure
227  */
228 void gmap_enable(struct gmap *gmap)
229 {
230 	S390_lowcore.gmap = (unsigned long) gmap;
231 }
232 EXPORT_SYMBOL_GPL(gmap_enable);
233 
234 /**
235  * gmap_disable - switch back to the standard primary address space
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_disable(struct gmap *gmap)
239 {
240 	S390_lowcore.gmap = 0UL;
241 }
242 EXPORT_SYMBOL_GPL(gmap_disable);
243 
244 /*
245  * gmap_alloc_table is assumed to be called with mmap_sem held
246  */
247 static int gmap_alloc_table(struct gmap *gmap,
248 			       unsigned long *table, unsigned long init)
249 {
250 	struct page *page;
251 	unsigned long *new;
252 
253 	/* since we dont free the gmap table until gmap_free we can unlock */
254 	spin_unlock(&gmap->mm->page_table_lock);
255 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
256 	spin_lock(&gmap->mm->page_table_lock);
257 	if (!page)
258 		return -ENOMEM;
259 	new = (unsigned long *) page_to_phys(page);
260 	crst_table_init(new, init);
261 	if (*table & _REGION_ENTRY_INV) {
262 		list_add(&page->lru, &gmap->crst_list);
263 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
264 			(*table & _REGION_ENTRY_TYPE_MASK);
265 	} else
266 		__free_pages(page, ALLOC_ORDER);
267 	return 0;
268 }
269 
270 /**
271  * gmap_unmap_segment - unmap segment from the guest address space
272  * @gmap: pointer to the guest address space structure
273  * @addr: address in the guest address space
274  * @len: length of the memory area to unmap
275  *
276  * Returns 0 if the unmap succeded, -EINVAL if not.
277  */
278 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
279 {
280 	unsigned long *table;
281 	unsigned long off;
282 	int flush;
283 
284 	if ((to | len) & (PMD_SIZE - 1))
285 		return -EINVAL;
286 	if (len == 0 || to + len < to)
287 		return -EINVAL;
288 
289 	flush = 0;
290 	down_read(&gmap->mm->mmap_sem);
291 	spin_lock(&gmap->mm->page_table_lock);
292 	for (off = 0; off < len; off += PMD_SIZE) {
293 		/* Walk the guest addr space page table */
294 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
295 		if (*table & _REGION_ENTRY_INV)
296 			goto out;
297 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
298 		table = table + (((to + off) >> 42) & 0x7ff);
299 		if (*table & _REGION_ENTRY_INV)
300 			goto out;
301 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
302 		table = table + (((to + off) >> 31) & 0x7ff);
303 		if (*table & _REGION_ENTRY_INV)
304 			goto out;
305 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
306 		table = table + (((to + off) >> 20) & 0x7ff);
307 
308 		/* Clear segment table entry in guest address space. */
309 		flush |= gmap_unlink_segment(gmap, table);
310 		*table = _SEGMENT_ENTRY_INV;
311 	}
312 out:
313 	spin_unlock(&gmap->mm->page_table_lock);
314 	up_read(&gmap->mm->mmap_sem);
315 	if (flush)
316 		gmap_flush_tlb(gmap);
317 	return 0;
318 }
319 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
320 
321 /**
322  * gmap_mmap_segment - map a segment to the guest address space
323  * @gmap: pointer to the guest address space structure
324  * @from: source address in the parent address space
325  * @to: target address in the guest address space
326  *
327  * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
328  */
329 int gmap_map_segment(struct gmap *gmap, unsigned long from,
330 		     unsigned long to, unsigned long len)
331 {
332 	unsigned long *table;
333 	unsigned long off;
334 	int flush;
335 
336 	if ((from | to | len) & (PMD_SIZE - 1))
337 		return -EINVAL;
338 	if (len == 0 || from + len > PGDIR_SIZE ||
339 	    from + len < from || to + len < to)
340 		return -EINVAL;
341 
342 	flush = 0;
343 	down_read(&gmap->mm->mmap_sem);
344 	spin_lock(&gmap->mm->page_table_lock);
345 	for (off = 0; off < len; off += PMD_SIZE) {
346 		/* Walk the gmap address space page table */
347 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
348 		if ((*table & _REGION_ENTRY_INV) &&
349 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
350 			goto out_unmap;
351 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
352 		table = table + (((to + off) >> 42) & 0x7ff);
353 		if ((*table & _REGION_ENTRY_INV) &&
354 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
355 			goto out_unmap;
356 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
357 		table = table + (((to + off) >> 31) & 0x7ff);
358 		if ((*table & _REGION_ENTRY_INV) &&
359 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
360 			goto out_unmap;
361 		table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
362 		table = table + (((to + off) >> 20) & 0x7ff);
363 
364 		/* Store 'from' address in an invalid segment table entry. */
365 		flush |= gmap_unlink_segment(gmap, table);
366 		*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
367 	}
368 	spin_unlock(&gmap->mm->page_table_lock);
369 	up_read(&gmap->mm->mmap_sem);
370 	if (flush)
371 		gmap_flush_tlb(gmap);
372 	return 0;
373 
374 out_unmap:
375 	spin_unlock(&gmap->mm->page_table_lock);
376 	up_read(&gmap->mm->mmap_sem);
377 	gmap_unmap_segment(gmap, to, len);
378 	return -ENOMEM;
379 }
380 EXPORT_SYMBOL_GPL(gmap_map_segment);
381 
382 static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap)
383 {
384 	unsigned long *table;
385 
386 	table = gmap->table + ((address >> 53) & 0x7ff);
387 	if (unlikely(*table & _REGION_ENTRY_INV))
388 		return ERR_PTR(-EFAULT);
389 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
390 	table = table + ((address >> 42) & 0x7ff);
391 	if (unlikely(*table & _REGION_ENTRY_INV))
392 		return ERR_PTR(-EFAULT);
393 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
394 	table = table + ((address >> 31) & 0x7ff);
395 	if (unlikely(*table & _REGION_ENTRY_INV))
396 		return ERR_PTR(-EFAULT);
397 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
398 	table = table + ((address >> 20) & 0x7ff);
399 	return table;
400 }
401 
402 /**
403  * __gmap_translate - translate a guest address to a user space address
404  * @address: guest address
405  * @gmap: pointer to guest mapping meta data structure
406  *
407  * Returns user space address which corresponds to the guest address or
408  * -EFAULT if no such mapping exists.
409  * This function does not establish potentially missing page table entries.
410  * The mmap_sem of the mm that belongs to the address space must be held
411  * when this function gets called.
412  */
413 unsigned long __gmap_translate(unsigned long address, struct gmap *gmap)
414 {
415 	unsigned long *segment_ptr, vmaddr, segment;
416 	struct gmap_pgtable *mp;
417 	struct page *page;
418 
419 	current->thread.gmap_addr = address;
420 	segment_ptr = gmap_table_walk(address, gmap);
421 	if (IS_ERR(segment_ptr))
422 		return PTR_ERR(segment_ptr);
423 	/* Convert the gmap address to an mm address. */
424 	segment = *segment_ptr;
425 	if (!(segment & _SEGMENT_ENTRY_INV)) {
426 		page = pfn_to_page(segment >> PAGE_SHIFT);
427 		mp = (struct gmap_pgtable *) page->index;
428 		return mp->vmaddr | (address & ~PMD_MASK);
429 	} else if (segment & _SEGMENT_ENTRY_RO) {
430 		vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
431 		return vmaddr | (address & ~PMD_MASK);
432 	}
433 	return -EFAULT;
434 }
435 EXPORT_SYMBOL_GPL(__gmap_translate);
436 
437 /**
438  * gmap_translate - translate a guest address to a user space address
439  * @address: guest address
440  * @gmap: pointer to guest mapping meta data structure
441  *
442  * Returns user space address which corresponds to the guest address or
443  * -EFAULT if no such mapping exists.
444  * This function does not establish potentially missing page table entries.
445  */
446 unsigned long gmap_translate(unsigned long address, struct gmap *gmap)
447 {
448 	unsigned long rc;
449 
450 	down_read(&gmap->mm->mmap_sem);
451 	rc = __gmap_translate(address, gmap);
452 	up_read(&gmap->mm->mmap_sem);
453 	return rc;
454 }
455 EXPORT_SYMBOL_GPL(gmap_translate);
456 
457 static int gmap_connect_pgtable(unsigned long address, unsigned long segment,
458 				unsigned long *segment_ptr, struct gmap *gmap)
459 {
460 	unsigned long vmaddr;
461 	struct vm_area_struct *vma;
462 	struct gmap_pgtable *mp;
463 	struct gmap_rmap *rmap;
464 	struct mm_struct *mm;
465 	struct page *page;
466 	pgd_t *pgd;
467 	pud_t *pud;
468 	pmd_t *pmd;
469 
470 	mm = gmap->mm;
471 	vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
472 	vma = find_vma(mm, vmaddr);
473 	if (!vma || vma->vm_start > vmaddr)
474 		return -EFAULT;
475 	/* Walk the parent mm page table */
476 	pgd = pgd_offset(mm, vmaddr);
477 	pud = pud_alloc(mm, pgd, vmaddr);
478 	if (!pud)
479 		return -ENOMEM;
480 	pmd = pmd_alloc(mm, pud, vmaddr);
481 	if (!pmd)
482 		return -ENOMEM;
483 	if (!pmd_present(*pmd) &&
484 	    __pte_alloc(mm, vma, pmd, vmaddr))
485 		return -ENOMEM;
486 	/* pmd now points to a valid segment table entry. */
487 	rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
488 	if (!rmap)
489 		return -ENOMEM;
490 	/* Link gmap segment table entry location to page table. */
491 	page = pmd_page(*pmd);
492 	mp = (struct gmap_pgtable *) page->index;
493 	rmap->gmap = gmap;
494 	rmap->entry = segment_ptr;
495 	rmap->vmaddr = address & PMD_MASK;
496 	spin_lock(&mm->page_table_lock);
497 	if (*segment_ptr == segment) {
498 		list_add(&rmap->list, &mp->mapper);
499 		/* Set gmap segment table entry to page table. */
500 		*segment_ptr = pmd_val(*pmd) & PAGE_MASK;
501 		rmap = NULL;
502 	}
503 	spin_unlock(&mm->page_table_lock);
504 	kfree(rmap);
505 	return 0;
506 }
507 
508 static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table)
509 {
510 	struct gmap_rmap *rmap, *next;
511 	struct gmap_pgtable *mp;
512 	struct page *page;
513 	int flush;
514 
515 	flush = 0;
516 	spin_lock(&mm->page_table_lock);
517 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
518 	mp = (struct gmap_pgtable *) page->index;
519 	list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
520 		*rmap->entry =
521 			_SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
522 		list_del(&rmap->list);
523 		kfree(rmap);
524 		flush = 1;
525 	}
526 	spin_unlock(&mm->page_table_lock);
527 	if (flush)
528 		__tlb_flush_global();
529 }
530 
531 /*
532  * this function is assumed to be called with mmap_sem held
533  */
534 unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
535 {
536 	unsigned long *segment_ptr, segment;
537 	struct gmap_pgtable *mp;
538 	struct page *page;
539 	int rc;
540 
541 	current->thread.gmap_addr = address;
542 	segment_ptr = gmap_table_walk(address, gmap);
543 	if (IS_ERR(segment_ptr))
544 		return -EFAULT;
545 	/* Convert the gmap address to an mm address. */
546 	while (1) {
547 		segment = *segment_ptr;
548 		if (!(segment & _SEGMENT_ENTRY_INV)) {
549 			/* Page table is present */
550 			page = pfn_to_page(segment >> PAGE_SHIFT);
551 			mp = (struct gmap_pgtable *) page->index;
552 			return mp->vmaddr | (address & ~PMD_MASK);
553 		}
554 		if (!(segment & _SEGMENT_ENTRY_RO))
555 			/* Nothing mapped in the gmap address space. */
556 			break;
557 		rc = gmap_connect_pgtable(address, segment, segment_ptr, gmap);
558 		if (rc)
559 			return rc;
560 	}
561 	return -EFAULT;
562 }
563 
564 unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
565 {
566 	unsigned long rc;
567 
568 	down_read(&gmap->mm->mmap_sem);
569 	rc = __gmap_fault(address, gmap);
570 	up_read(&gmap->mm->mmap_sem);
571 
572 	return rc;
573 }
574 EXPORT_SYMBOL_GPL(gmap_fault);
575 
576 void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
577 {
578 
579 	unsigned long *table, address, size;
580 	struct vm_area_struct *vma;
581 	struct gmap_pgtable *mp;
582 	struct page *page;
583 
584 	down_read(&gmap->mm->mmap_sem);
585 	address = from;
586 	while (address < to) {
587 		/* Walk the gmap address space page table */
588 		table = gmap->table + ((address >> 53) & 0x7ff);
589 		if (unlikely(*table & _REGION_ENTRY_INV)) {
590 			address = (address + PMD_SIZE) & PMD_MASK;
591 			continue;
592 		}
593 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
594 		table = table + ((address >> 42) & 0x7ff);
595 		if (unlikely(*table & _REGION_ENTRY_INV)) {
596 			address = (address + PMD_SIZE) & PMD_MASK;
597 			continue;
598 		}
599 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
600 		table = table + ((address >> 31) & 0x7ff);
601 		if (unlikely(*table & _REGION_ENTRY_INV)) {
602 			address = (address + PMD_SIZE) & PMD_MASK;
603 			continue;
604 		}
605 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
606 		table = table + ((address >> 20) & 0x7ff);
607 		if (unlikely(*table & _SEGMENT_ENTRY_INV)) {
608 			address = (address + PMD_SIZE) & PMD_MASK;
609 			continue;
610 		}
611 		page = pfn_to_page(*table >> PAGE_SHIFT);
612 		mp = (struct gmap_pgtable *) page->index;
613 		vma = find_vma(gmap->mm, mp->vmaddr);
614 		size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
615 		zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
616 			       size, NULL);
617 		address = (address + PMD_SIZE) & PMD_MASK;
618 	}
619 	up_read(&gmap->mm->mmap_sem);
620 }
621 EXPORT_SYMBOL_GPL(gmap_discard);
622 
623 static LIST_HEAD(gmap_notifier_list);
624 static DEFINE_SPINLOCK(gmap_notifier_lock);
625 
626 /**
627  * gmap_register_ipte_notifier - register a pte invalidation callback
628  * @nb: pointer to the gmap notifier block
629  */
630 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
631 {
632 	spin_lock(&gmap_notifier_lock);
633 	list_add(&nb->list, &gmap_notifier_list);
634 	spin_unlock(&gmap_notifier_lock);
635 }
636 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
637 
638 /**
639  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
640  * @nb: pointer to the gmap notifier block
641  */
642 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
643 {
644 	spin_lock(&gmap_notifier_lock);
645 	list_del_init(&nb->list);
646 	spin_unlock(&gmap_notifier_lock);
647 }
648 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
649 
650 /**
651  * gmap_ipte_notify - mark a range of ptes for invalidation notification
652  * @gmap: pointer to guest mapping meta data structure
653  * @address: virtual address in the guest address space
654  * @len: size of area
655  *
656  * Returns 0 if for each page in the given range a gmap mapping exists and
657  * the invalidation notification could be set. If the gmap mapping is missing
658  * for one or more pages -EFAULT is returned. If no memory could be allocated
659  * -ENOMEM is returned. This function establishes missing page table entries.
660  */
661 int gmap_ipte_notify(struct gmap *gmap, unsigned long start, unsigned long len)
662 {
663 	unsigned long addr;
664 	spinlock_t *ptl;
665 	pte_t *ptep, entry;
666 	pgste_t pgste;
667 	int rc = 0;
668 
669 	if ((start & ~PAGE_MASK) || (len & ~PAGE_MASK))
670 		return -EINVAL;
671 	down_read(&gmap->mm->mmap_sem);
672 	while (len) {
673 		/* Convert gmap address and connect the page tables */
674 		addr = __gmap_fault(start, gmap);
675 		if (IS_ERR_VALUE(addr)) {
676 			rc = addr;
677 			break;
678 		}
679 		/* Get the page mapped */
680 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
681 			rc = -EFAULT;
682 			break;
683 		}
684 		/* Walk the process page table, lock and get pte pointer */
685 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
686 		if (unlikely(!ptep))
687 			continue;
688 		/* Set notification bit in the pgste of the pte */
689 		entry = *ptep;
690 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_RO)) == 0) {
691 			pgste = pgste_get_lock(ptep);
692 			pgste_val(pgste) |= RCP_IN_BIT;
693 			pgste_set_unlock(ptep, pgste);
694 			start += PAGE_SIZE;
695 			len -= PAGE_SIZE;
696 		}
697 		spin_unlock(ptl);
698 	}
699 	up_read(&gmap->mm->mmap_sem);
700 	return rc;
701 }
702 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
703 
704 /**
705  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
706  * @mm: pointer to the process mm_struct
707  * @addr: virtual address in the process address space
708  * @pte: pointer to the page table entry
709  *
710  * This function is assumed to be called with the page table lock held
711  * for the pte to notify.
712  */
713 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *pte)
714 {
715 	unsigned long segment_offset;
716 	struct gmap_notifier *nb;
717 	struct gmap_pgtable *mp;
718 	struct gmap_rmap *rmap;
719 	struct page *page;
720 
721 	segment_offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
722 	segment_offset = segment_offset * (4096 / sizeof(pte_t));
723 	page = pfn_to_page(__pa(pte) >> PAGE_SHIFT);
724 	mp = (struct gmap_pgtable *) page->index;
725 	spin_lock(&gmap_notifier_lock);
726 	list_for_each_entry(rmap, &mp->mapper, list) {
727 		list_for_each_entry(nb, &gmap_notifier_list, list)
728 			nb->notifier_call(rmap->gmap,
729 					  rmap->vmaddr + segment_offset);
730 	}
731 	spin_unlock(&gmap_notifier_lock);
732 }
733 
734 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
735 						    unsigned long vmaddr)
736 {
737 	struct page *page;
738 	unsigned long *table;
739 	struct gmap_pgtable *mp;
740 
741 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
742 	if (!page)
743 		return NULL;
744 	mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
745 	if (!mp) {
746 		__free_page(page);
747 		return NULL;
748 	}
749 	pgtable_page_ctor(page);
750 	mp->vmaddr = vmaddr & PMD_MASK;
751 	INIT_LIST_HEAD(&mp->mapper);
752 	page->index = (unsigned long) mp;
753 	atomic_set(&page->_mapcount, 3);
754 	table = (unsigned long *) page_to_phys(page);
755 	clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
756 	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
757 	return table;
758 }
759 
760 static inline void page_table_free_pgste(unsigned long *table)
761 {
762 	struct page *page;
763 	struct gmap_pgtable *mp;
764 
765 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
766 	mp = (struct gmap_pgtable *) page->index;
767 	BUG_ON(!list_empty(&mp->mapper));
768 	pgtable_page_dtor(page);
769 	atomic_set(&page->_mapcount, -1);
770 	kfree(mp);
771 	__free_page(page);
772 }
773 
774 #else /* CONFIG_PGSTE */
775 
776 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
777 						    unsigned long vmaddr)
778 {
779 	return NULL;
780 }
781 
782 static inline void page_table_free_pgste(unsigned long *table)
783 {
784 }
785 
786 static inline void gmap_disconnect_pgtable(struct mm_struct *mm,
787 					   unsigned long *table)
788 {
789 }
790 
791 #endif /* CONFIG_PGSTE */
792 
793 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
794 {
795 	unsigned int old, new;
796 
797 	do {
798 		old = atomic_read(v);
799 		new = old ^ bits;
800 	} while (atomic_cmpxchg(v, old, new) != old);
801 	return new;
802 }
803 
804 /*
805  * page table entry allocation/free routines.
806  */
807 unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
808 {
809 	unsigned long *uninitialized_var(table);
810 	struct page *uninitialized_var(page);
811 	unsigned int mask, bit;
812 
813 	if (mm_has_pgste(mm))
814 		return page_table_alloc_pgste(mm, vmaddr);
815 	/* Allocate fragments of a 4K page as 1K/2K page table */
816 	spin_lock_bh(&mm->context.list_lock);
817 	mask = FRAG_MASK;
818 	if (!list_empty(&mm->context.pgtable_list)) {
819 		page = list_first_entry(&mm->context.pgtable_list,
820 					struct page, lru);
821 		table = (unsigned long *) page_to_phys(page);
822 		mask = atomic_read(&page->_mapcount);
823 		mask = mask | (mask >> 4);
824 	}
825 	if ((mask & FRAG_MASK) == FRAG_MASK) {
826 		spin_unlock_bh(&mm->context.list_lock);
827 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
828 		if (!page)
829 			return NULL;
830 		pgtable_page_ctor(page);
831 		atomic_set(&page->_mapcount, 1);
832 		table = (unsigned long *) page_to_phys(page);
833 		clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
834 		spin_lock_bh(&mm->context.list_lock);
835 		list_add(&page->lru, &mm->context.pgtable_list);
836 	} else {
837 		for (bit = 1; mask & bit; bit <<= 1)
838 			table += PTRS_PER_PTE;
839 		mask = atomic_xor_bits(&page->_mapcount, bit);
840 		if ((mask & FRAG_MASK) == FRAG_MASK)
841 			list_del(&page->lru);
842 	}
843 	spin_unlock_bh(&mm->context.list_lock);
844 	return table;
845 }
846 
847 void page_table_free(struct mm_struct *mm, unsigned long *table)
848 {
849 	struct page *page;
850 	unsigned int bit, mask;
851 
852 	if (mm_has_pgste(mm)) {
853 		gmap_disconnect_pgtable(mm, table);
854 		return page_table_free_pgste(table);
855 	}
856 	/* Free 1K/2K page table fragment of a 4K page */
857 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
858 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
859 	spin_lock_bh(&mm->context.list_lock);
860 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
861 		list_del(&page->lru);
862 	mask = atomic_xor_bits(&page->_mapcount, bit);
863 	if (mask & FRAG_MASK)
864 		list_add(&page->lru, &mm->context.pgtable_list);
865 	spin_unlock_bh(&mm->context.list_lock);
866 	if (mask == 0) {
867 		pgtable_page_dtor(page);
868 		atomic_set(&page->_mapcount, -1);
869 		__free_page(page);
870 	}
871 }
872 
873 static void __page_table_free_rcu(void *table, unsigned bit)
874 {
875 	struct page *page;
876 
877 	if (bit == FRAG_MASK)
878 		return page_table_free_pgste(table);
879 	/* Free 1K/2K page table fragment of a 4K page */
880 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
881 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
882 		pgtable_page_dtor(page);
883 		atomic_set(&page->_mapcount, -1);
884 		__free_page(page);
885 	}
886 }
887 
888 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
889 {
890 	struct mm_struct *mm;
891 	struct page *page;
892 	unsigned int bit, mask;
893 
894 	mm = tlb->mm;
895 	if (mm_has_pgste(mm)) {
896 		gmap_disconnect_pgtable(mm, table);
897 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
898 		tlb_remove_table(tlb, table);
899 		return;
900 	}
901 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
902 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
903 	spin_lock_bh(&mm->context.list_lock);
904 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
905 		list_del(&page->lru);
906 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
907 	if (mask & FRAG_MASK)
908 		list_add_tail(&page->lru, &mm->context.pgtable_list);
909 	spin_unlock_bh(&mm->context.list_lock);
910 	table = (unsigned long *) (__pa(table) | (bit << 4));
911 	tlb_remove_table(tlb, table);
912 }
913 
914 void __tlb_remove_table(void *_table)
915 {
916 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
917 	void *table = (void *)((unsigned long) _table & ~mask);
918 	unsigned type = (unsigned long) _table & mask;
919 
920 	if (type)
921 		__page_table_free_rcu(table, type);
922 	else
923 		free_pages((unsigned long) table, ALLOC_ORDER);
924 }
925 
926 static void tlb_remove_table_smp_sync(void *arg)
927 {
928 	/* Simply deliver the interrupt */
929 }
930 
931 static void tlb_remove_table_one(void *table)
932 {
933 	/*
934 	 * This isn't an RCU grace period and hence the page-tables cannot be
935 	 * assumed to be actually RCU-freed.
936 	 *
937 	 * It is however sufficient for software page-table walkers that rely
938 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
939 	 */
940 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
941 	__tlb_remove_table(table);
942 }
943 
944 static void tlb_remove_table_rcu(struct rcu_head *head)
945 {
946 	struct mmu_table_batch *batch;
947 	int i;
948 
949 	batch = container_of(head, struct mmu_table_batch, rcu);
950 
951 	for (i = 0; i < batch->nr; i++)
952 		__tlb_remove_table(batch->tables[i]);
953 
954 	free_page((unsigned long)batch);
955 }
956 
957 void tlb_table_flush(struct mmu_gather *tlb)
958 {
959 	struct mmu_table_batch **batch = &tlb->batch;
960 
961 	if (*batch) {
962 		__tlb_flush_mm(tlb->mm);
963 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
964 		*batch = NULL;
965 	}
966 }
967 
968 void tlb_remove_table(struct mmu_gather *tlb, void *table)
969 {
970 	struct mmu_table_batch **batch = &tlb->batch;
971 
972 	if (*batch == NULL) {
973 		*batch = (struct mmu_table_batch *)
974 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
975 		if (*batch == NULL) {
976 			__tlb_flush_mm(tlb->mm);
977 			tlb_remove_table_one(table);
978 			return;
979 		}
980 		(*batch)->nr = 0;
981 	}
982 	(*batch)->tables[(*batch)->nr++] = table;
983 	if ((*batch)->nr == MAX_TABLE_BATCH)
984 		tlb_table_flush(tlb);
985 }
986 
987 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
988 void thp_split_vma(struct vm_area_struct *vma)
989 {
990 	unsigned long addr;
991 	struct page *page;
992 
993 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
994 		page = follow_page(vma, addr, FOLL_SPLIT);
995 	}
996 }
997 
998 void thp_split_mm(struct mm_struct *mm)
999 {
1000 	struct vm_area_struct *vma = mm->mmap;
1001 
1002 	while (vma != NULL) {
1003 		thp_split_vma(vma);
1004 		vma->vm_flags &= ~VM_HUGEPAGE;
1005 		vma->vm_flags |= VM_NOHUGEPAGE;
1006 		vma = vma->vm_next;
1007 	}
1008 }
1009 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1010 
1011 /*
1012  * switch on pgstes for its userspace process (for kvm)
1013  */
1014 int s390_enable_sie(void)
1015 {
1016 	struct task_struct *tsk = current;
1017 	struct mm_struct *mm, *old_mm;
1018 
1019 	/* Do we have switched amode? If no, we cannot do sie */
1020 	if (s390_user_mode == HOME_SPACE_MODE)
1021 		return -EINVAL;
1022 
1023 	/* Do we have pgstes? if yes, we are done */
1024 	if (mm_has_pgste(tsk->mm))
1025 		return 0;
1026 
1027 	/* lets check if we are allowed to replace the mm */
1028 	task_lock(tsk);
1029 	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
1030 #ifdef CONFIG_AIO
1031 	    !hlist_empty(&tsk->mm->ioctx_list) ||
1032 #endif
1033 	    tsk->mm != tsk->active_mm) {
1034 		task_unlock(tsk);
1035 		return -EINVAL;
1036 	}
1037 	task_unlock(tsk);
1038 
1039 	/* we copy the mm and let dup_mm create the page tables with_pgstes */
1040 	tsk->mm->context.alloc_pgste = 1;
1041 	/* make sure that both mms have a correct rss state */
1042 	sync_mm_rss(tsk->mm);
1043 	mm = dup_mm(tsk);
1044 	tsk->mm->context.alloc_pgste = 0;
1045 	if (!mm)
1046 		return -ENOMEM;
1047 
1048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1049 	/* split thp mappings and disable thp for future mappings */
1050 	thp_split_mm(mm);
1051 	mm->def_flags |= VM_NOHUGEPAGE;
1052 #endif
1053 
1054 	/* Now lets check again if something happened */
1055 	task_lock(tsk);
1056 	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
1057 #ifdef CONFIG_AIO
1058 	    !hlist_empty(&tsk->mm->ioctx_list) ||
1059 #endif
1060 	    tsk->mm != tsk->active_mm) {
1061 		mmput(mm);
1062 		task_unlock(tsk);
1063 		return -EINVAL;
1064 	}
1065 
1066 	/* ok, we are alone. No ptrace, no threads, etc. */
1067 	old_mm = tsk->mm;
1068 	tsk->mm = tsk->active_mm = mm;
1069 	preempt_disable();
1070 	update_mm(mm, tsk);
1071 	atomic_inc(&mm->context.attach_count);
1072 	atomic_dec(&old_mm->context.attach_count);
1073 	cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
1074 	preempt_enable();
1075 	task_unlock(tsk);
1076 	mmput(old_mm);
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(s390_enable_sie);
1080 
1081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1082 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1083 			   pmd_t *pmdp)
1084 {
1085 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1086 	/* No need to flush TLB
1087 	 * On s390 reference bits are in storage key and never in TLB */
1088 	return pmdp_test_and_clear_young(vma, address, pmdp);
1089 }
1090 
1091 int pmdp_set_access_flags(struct vm_area_struct *vma,
1092 			  unsigned long address, pmd_t *pmdp,
1093 			  pmd_t entry, int dirty)
1094 {
1095 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1096 
1097 	if (pmd_same(*pmdp, entry))
1098 		return 0;
1099 	pmdp_invalidate(vma, address, pmdp);
1100 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1101 	return 1;
1102 }
1103 
1104 static void pmdp_splitting_flush_sync(void *arg)
1105 {
1106 	/* Simply deliver the interrupt */
1107 }
1108 
1109 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1110 			  pmd_t *pmdp)
1111 {
1112 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1113 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1114 			      (unsigned long *) pmdp)) {
1115 		/* need to serialize against gup-fast (IRQ disabled) */
1116 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1117 	}
1118 }
1119 
1120 void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
1121 {
1122 	struct list_head *lh = (struct list_head *) pgtable;
1123 
1124 	assert_spin_locked(&mm->page_table_lock);
1125 
1126 	/* FIFO */
1127 	if (!mm->pmd_huge_pte)
1128 		INIT_LIST_HEAD(lh);
1129 	else
1130 		list_add(lh, (struct list_head *) mm->pmd_huge_pte);
1131 	mm->pmd_huge_pte = pgtable;
1132 }
1133 
1134 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
1135 {
1136 	struct list_head *lh;
1137 	pgtable_t pgtable;
1138 	pte_t *ptep;
1139 
1140 	assert_spin_locked(&mm->page_table_lock);
1141 
1142 	/* FIFO */
1143 	pgtable = mm->pmd_huge_pte;
1144 	lh = (struct list_head *) pgtable;
1145 	if (list_empty(lh))
1146 		mm->pmd_huge_pte = NULL;
1147 	else {
1148 		mm->pmd_huge_pte = (pgtable_t) lh->next;
1149 		list_del(lh);
1150 	}
1151 	ptep = (pte_t *) pgtable;
1152 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1153 	ptep++;
1154 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1155 	return pgtable;
1156 }
1157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1158