xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 2223cbec)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 
27 #ifndef CONFIG_64BIT
28 #define ALLOC_ORDER	1
29 #define FRAG_MASK	0x0f
30 #else
31 #define ALLOC_ORDER	2
32 #define FRAG_MASK	0x03
33 #endif
34 
35 
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
37 {
38 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39 
40 	if (!page)
41 		return NULL;
42 	return (unsigned long *) page_to_phys(page);
43 }
44 
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
46 {
47 	free_pages((unsigned long) table, ALLOC_ORDER);
48 }
49 
50 #ifdef CONFIG_64BIT
51 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
52 {
53 	unsigned long *table, *pgd;
54 	unsigned long entry;
55 
56 	BUG_ON(limit > (1UL << 53));
57 repeat:
58 	table = crst_table_alloc(mm);
59 	if (!table)
60 		return -ENOMEM;
61 	spin_lock_bh(&mm->page_table_lock);
62 	if (mm->context.asce_limit < limit) {
63 		pgd = (unsigned long *) mm->pgd;
64 		if (mm->context.asce_limit <= (1UL << 31)) {
65 			entry = _REGION3_ENTRY_EMPTY;
66 			mm->context.asce_limit = 1UL << 42;
67 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68 						_ASCE_USER_BITS |
69 						_ASCE_TYPE_REGION3;
70 		} else {
71 			entry = _REGION2_ENTRY_EMPTY;
72 			mm->context.asce_limit = 1UL << 53;
73 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74 						_ASCE_USER_BITS |
75 						_ASCE_TYPE_REGION2;
76 		}
77 		crst_table_init(table, entry);
78 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79 		mm->pgd = (pgd_t *) table;
80 		mm->task_size = mm->context.asce_limit;
81 		table = NULL;
82 	}
83 	spin_unlock_bh(&mm->page_table_lock);
84 	if (table)
85 		crst_table_free(mm, table);
86 	if (mm->context.asce_limit < limit)
87 		goto repeat;
88 	return 0;
89 }
90 
91 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
92 {
93 	pgd_t *pgd;
94 
95 	while (mm->context.asce_limit > limit) {
96 		pgd = mm->pgd;
97 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98 		case _REGION_ENTRY_TYPE_R2:
99 			mm->context.asce_limit = 1UL << 42;
100 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101 						_ASCE_USER_BITS |
102 						_ASCE_TYPE_REGION3;
103 			break;
104 		case _REGION_ENTRY_TYPE_R3:
105 			mm->context.asce_limit = 1UL << 31;
106 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107 						_ASCE_USER_BITS |
108 						_ASCE_TYPE_SEGMENT;
109 			break;
110 		default:
111 			BUG();
112 		}
113 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114 		mm->task_size = mm->context.asce_limit;
115 		crst_table_free(mm, (unsigned long *) pgd);
116 	}
117 }
118 #endif
119 
120 #ifdef CONFIG_PGSTE
121 
122 /**
123  * gmap_alloc - allocate a guest address space
124  * @mm: pointer to the parent mm_struct
125  *
126  * Returns a guest address space structure.
127  */
128 struct gmap *gmap_alloc(struct mm_struct *mm)
129 {
130 	struct gmap *gmap;
131 	struct page *page;
132 	unsigned long *table;
133 
134 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135 	if (!gmap)
136 		goto out;
137 	INIT_LIST_HEAD(&gmap->crst_list);
138 	gmap->mm = mm;
139 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140 	if (!page)
141 		goto out_free;
142 	list_add(&page->lru, &gmap->crst_list);
143 	table = (unsigned long *) page_to_phys(page);
144 	crst_table_init(table, _REGION1_ENTRY_EMPTY);
145 	gmap->table = table;
146 	gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147 		     _ASCE_USER_BITS | __pa(table);
148 	list_add(&gmap->list, &mm->context.gmap_list);
149 	return gmap;
150 
151 out_free:
152 	kfree(gmap);
153 out:
154 	return NULL;
155 }
156 EXPORT_SYMBOL_GPL(gmap_alloc);
157 
158 static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
159 {
160 	struct gmap_pgtable *mp;
161 	struct gmap_rmap *rmap;
162 	struct page *page;
163 
164 	if (*table & _SEGMENT_ENTRY_INV)
165 		return 0;
166 	page = pfn_to_page(*table >> PAGE_SHIFT);
167 	mp = (struct gmap_pgtable *) page->index;
168 	list_for_each_entry(rmap, &mp->mapper, list) {
169 		if (rmap->entry != table)
170 			continue;
171 		list_del(&rmap->list);
172 		kfree(rmap);
173 		break;
174 	}
175 	*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
176 	return 1;
177 }
178 
179 static void gmap_flush_tlb(struct gmap *gmap)
180 {
181 	if (MACHINE_HAS_IDTE)
182 		__tlb_flush_idte((unsigned long) gmap->table |
183 				 _ASCE_TYPE_REGION1);
184 	else
185 		__tlb_flush_global();
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  */
192 void gmap_free(struct gmap *gmap)
193 {
194 	struct page *page, *next;
195 	unsigned long *table;
196 	int i;
197 
198 
199 	/* Flush tlb. */
200 	if (MACHINE_HAS_IDTE)
201 		__tlb_flush_idte((unsigned long) gmap->table |
202 				 _ASCE_TYPE_REGION1);
203 	else
204 		__tlb_flush_global();
205 
206 	/* Free all segment & region tables. */
207 	down_read(&gmap->mm->mmap_sem);
208 	spin_lock(&gmap->mm->page_table_lock);
209 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210 		table = (unsigned long *) page_to_phys(page);
211 		if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212 			/* Remove gmap rmap structures for segment table. */
213 			for (i = 0; i < PTRS_PER_PMD; i++, table++)
214 				gmap_unlink_segment(gmap, table);
215 		__free_pages(page, ALLOC_ORDER);
216 	}
217 	spin_unlock(&gmap->mm->page_table_lock);
218 	up_read(&gmap->mm->mmap_sem);
219 	list_del(&gmap->list);
220 	kfree(gmap);
221 }
222 EXPORT_SYMBOL_GPL(gmap_free);
223 
224 /**
225  * gmap_enable - switch primary space to the guest address space
226  * @gmap: pointer to the guest address space structure
227  */
228 void gmap_enable(struct gmap *gmap)
229 {
230 	S390_lowcore.gmap = (unsigned long) gmap;
231 }
232 EXPORT_SYMBOL_GPL(gmap_enable);
233 
234 /**
235  * gmap_disable - switch back to the standard primary address space
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_disable(struct gmap *gmap)
239 {
240 	S390_lowcore.gmap = 0UL;
241 }
242 EXPORT_SYMBOL_GPL(gmap_disable);
243 
244 /*
245  * gmap_alloc_table is assumed to be called with mmap_sem held
246  */
247 static int gmap_alloc_table(struct gmap *gmap,
248 			       unsigned long *table, unsigned long init)
249 {
250 	struct page *page;
251 	unsigned long *new;
252 
253 	/* since we dont free the gmap table until gmap_free we can unlock */
254 	spin_unlock(&gmap->mm->page_table_lock);
255 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
256 	spin_lock(&gmap->mm->page_table_lock);
257 	if (!page)
258 		return -ENOMEM;
259 	new = (unsigned long *) page_to_phys(page);
260 	crst_table_init(new, init);
261 	if (*table & _REGION_ENTRY_INV) {
262 		list_add(&page->lru, &gmap->crst_list);
263 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
264 			(*table & _REGION_ENTRY_TYPE_MASK);
265 	} else
266 		__free_pages(page, ALLOC_ORDER);
267 	return 0;
268 }
269 
270 /**
271  * gmap_unmap_segment - unmap segment from the guest address space
272  * @gmap: pointer to the guest address space structure
273  * @addr: address in the guest address space
274  * @len: length of the memory area to unmap
275  *
276  * Returns 0 if the unmap succeded, -EINVAL if not.
277  */
278 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
279 {
280 	unsigned long *table;
281 	unsigned long off;
282 	int flush;
283 
284 	if ((to | len) & (PMD_SIZE - 1))
285 		return -EINVAL;
286 	if (len == 0 || to + len < to)
287 		return -EINVAL;
288 
289 	flush = 0;
290 	down_read(&gmap->mm->mmap_sem);
291 	spin_lock(&gmap->mm->page_table_lock);
292 	for (off = 0; off < len; off += PMD_SIZE) {
293 		/* Walk the guest addr space page table */
294 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
295 		if (*table & _REGION_ENTRY_INV)
296 			goto out;
297 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
298 		table = table + (((to + off) >> 42) & 0x7ff);
299 		if (*table & _REGION_ENTRY_INV)
300 			goto out;
301 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
302 		table = table + (((to + off) >> 31) & 0x7ff);
303 		if (*table & _REGION_ENTRY_INV)
304 			goto out;
305 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
306 		table = table + (((to + off) >> 20) & 0x7ff);
307 
308 		/* Clear segment table entry in guest address space. */
309 		flush |= gmap_unlink_segment(gmap, table);
310 		*table = _SEGMENT_ENTRY_INV;
311 	}
312 out:
313 	spin_unlock(&gmap->mm->page_table_lock);
314 	up_read(&gmap->mm->mmap_sem);
315 	if (flush)
316 		gmap_flush_tlb(gmap);
317 	return 0;
318 }
319 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
320 
321 /**
322  * gmap_mmap_segment - map a segment to the guest address space
323  * @gmap: pointer to the guest address space structure
324  * @from: source address in the parent address space
325  * @to: target address in the guest address space
326  *
327  * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
328  */
329 int gmap_map_segment(struct gmap *gmap, unsigned long from,
330 		     unsigned long to, unsigned long len)
331 {
332 	unsigned long *table;
333 	unsigned long off;
334 	int flush;
335 
336 	if ((from | to | len) & (PMD_SIZE - 1))
337 		return -EINVAL;
338 	if (len == 0 || from + len > PGDIR_SIZE ||
339 	    from + len < from || to + len < to)
340 		return -EINVAL;
341 
342 	flush = 0;
343 	down_read(&gmap->mm->mmap_sem);
344 	spin_lock(&gmap->mm->page_table_lock);
345 	for (off = 0; off < len; off += PMD_SIZE) {
346 		/* Walk the gmap address space page table */
347 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
348 		if ((*table & _REGION_ENTRY_INV) &&
349 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
350 			goto out_unmap;
351 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
352 		table = table + (((to + off) >> 42) & 0x7ff);
353 		if ((*table & _REGION_ENTRY_INV) &&
354 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
355 			goto out_unmap;
356 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
357 		table = table + (((to + off) >> 31) & 0x7ff);
358 		if ((*table & _REGION_ENTRY_INV) &&
359 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
360 			goto out_unmap;
361 		table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
362 		table = table + (((to + off) >> 20) & 0x7ff);
363 
364 		/* Store 'from' address in an invalid segment table entry. */
365 		flush |= gmap_unlink_segment(gmap, table);
366 		*table = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | (from + off);
367 	}
368 	spin_unlock(&gmap->mm->page_table_lock);
369 	up_read(&gmap->mm->mmap_sem);
370 	if (flush)
371 		gmap_flush_tlb(gmap);
372 	return 0;
373 
374 out_unmap:
375 	spin_unlock(&gmap->mm->page_table_lock);
376 	up_read(&gmap->mm->mmap_sem);
377 	gmap_unmap_segment(gmap, to, len);
378 	return -ENOMEM;
379 }
380 EXPORT_SYMBOL_GPL(gmap_map_segment);
381 
382 /*
383  * this function is assumed to be called with mmap_sem held
384  */
385 unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
386 {
387 	unsigned long *table, vmaddr, segment;
388 	struct mm_struct *mm;
389 	struct gmap_pgtable *mp;
390 	struct gmap_rmap *rmap;
391 	struct vm_area_struct *vma;
392 	struct page *page;
393 	pgd_t *pgd;
394 	pud_t *pud;
395 	pmd_t *pmd;
396 
397 	current->thread.gmap_addr = address;
398 	mm = gmap->mm;
399 	/* Walk the gmap address space page table */
400 	table = gmap->table + ((address >> 53) & 0x7ff);
401 	if (unlikely(*table & _REGION_ENTRY_INV))
402 		return -EFAULT;
403 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
404 	table = table + ((address >> 42) & 0x7ff);
405 	if (unlikely(*table & _REGION_ENTRY_INV))
406 		return -EFAULT;
407 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
408 	table = table + ((address >> 31) & 0x7ff);
409 	if (unlikely(*table & _REGION_ENTRY_INV))
410 		return -EFAULT;
411 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
412 	table = table + ((address >> 20) & 0x7ff);
413 
414 	/* Convert the gmap address to an mm address. */
415 	segment = *table;
416 	if (likely(!(segment & _SEGMENT_ENTRY_INV))) {
417 		page = pfn_to_page(segment >> PAGE_SHIFT);
418 		mp = (struct gmap_pgtable *) page->index;
419 		return mp->vmaddr | (address & ~PMD_MASK);
420 	} else if (segment & _SEGMENT_ENTRY_RO) {
421 		vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
422 		vma = find_vma(mm, vmaddr);
423 		if (!vma || vma->vm_start > vmaddr)
424 			return -EFAULT;
425 
426 		/* Walk the parent mm page table */
427 		pgd = pgd_offset(mm, vmaddr);
428 		pud = pud_alloc(mm, pgd, vmaddr);
429 		if (!pud)
430 			return -ENOMEM;
431 		pmd = pmd_alloc(mm, pud, vmaddr);
432 		if (!pmd)
433 			return -ENOMEM;
434 		if (!pmd_present(*pmd) &&
435 		    __pte_alloc(mm, vma, pmd, vmaddr))
436 			return -ENOMEM;
437 		/* pmd now points to a valid segment table entry. */
438 		rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
439 		if (!rmap)
440 			return -ENOMEM;
441 		/* Link gmap segment table entry location to page table. */
442 		page = pmd_page(*pmd);
443 		mp = (struct gmap_pgtable *) page->index;
444 		rmap->entry = table;
445 		spin_lock(&mm->page_table_lock);
446 		list_add(&rmap->list, &mp->mapper);
447 		spin_unlock(&mm->page_table_lock);
448 		/* Set gmap segment table entry to page table. */
449 		*table = pmd_val(*pmd) & PAGE_MASK;
450 		return vmaddr | (address & ~PMD_MASK);
451 	}
452 	return -EFAULT;
453 }
454 
455 unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
456 {
457 	unsigned long rc;
458 
459 	down_read(&gmap->mm->mmap_sem);
460 	rc = __gmap_fault(address, gmap);
461 	up_read(&gmap->mm->mmap_sem);
462 
463 	return rc;
464 }
465 EXPORT_SYMBOL_GPL(gmap_fault);
466 
467 void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
468 {
469 
470 	unsigned long *table, address, size;
471 	struct vm_area_struct *vma;
472 	struct gmap_pgtable *mp;
473 	struct page *page;
474 
475 	down_read(&gmap->mm->mmap_sem);
476 	address = from;
477 	while (address < to) {
478 		/* Walk the gmap address space page table */
479 		table = gmap->table + ((address >> 53) & 0x7ff);
480 		if (unlikely(*table & _REGION_ENTRY_INV)) {
481 			address = (address + PMD_SIZE) & PMD_MASK;
482 			continue;
483 		}
484 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
485 		table = table + ((address >> 42) & 0x7ff);
486 		if (unlikely(*table & _REGION_ENTRY_INV)) {
487 			address = (address + PMD_SIZE) & PMD_MASK;
488 			continue;
489 		}
490 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
491 		table = table + ((address >> 31) & 0x7ff);
492 		if (unlikely(*table & _REGION_ENTRY_INV)) {
493 			address = (address + PMD_SIZE) & PMD_MASK;
494 			continue;
495 		}
496 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
497 		table = table + ((address >> 20) & 0x7ff);
498 		if (unlikely(*table & _SEGMENT_ENTRY_INV)) {
499 			address = (address + PMD_SIZE) & PMD_MASK;
500 			continue;
501 		}
502 		page = pfn_to_page(*table >> PAGE_SHIFT);
503 		mp = (struct gmap_pgtable *) page->index;
504 		vma = find_vma(gmap->mm, mp->vmaddr);
505 		size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
506 		zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
507 			       size, NULL);
508 		address = (address + PMD_SIZE) & PMD_MASK;
509 	}
510 	up_read(&gmap->mm->mmap_sem);
511 }
512 EXPORT_SYMBOL_GPL(gmap_discard);
513 
514 void gmap_unmap_notifier(struct mm_struct *mm, unsigned long *table)
515 {
516 	struct gmap_rmap *rmap, *next;
517 	struct gmap_pgtable *mp;
518 	struct page *page;
519 	int flush;
520 
521 	flush = 0;
522 	spin_lock(&mm->page_table_lock);
523 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
524 	mp = (struct gmap_pgtable *) page->index;
525 	list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
526 		*rmap->entry =
527 			_SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO | mp->vmaddr;
528 		list_del(&rmap->list);
529 		kfree(rmap);
530 		flush = 1;
531 	}
532 	spin_unlock(&mm->page_table_lock);
533 	if (flush)
534 		__tlb_flush_global();
535 }
536 
537 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
538 						    unsigned long vmaddr)
539 {
540 	struct page *page;
541 	unsigned long *table;
542 	struct gmap_pgtable *mp;
543 
544 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
545 	if (!page)
546 		return NULL;
547 	mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
548 	if (!mp) {
549 		__free_page(page);
550 		return NULL;
551 	}
552 	pgtable_page_ctor(page);
553 	mp->vmaddr = vmaddr & PMD_MASK;
554 	INIT_LIST_HEAD(&mp->mapper);
555 	page->index = (unsigned long) mp;
556 	atomic_set(&page->_mapcount, 3);
557 	table = (unsigned long *) page_to_phys(page);
558 	clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE/2);
559 	clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
560 	return table;
561 }
562 
563 static inline void page_table_free_pgste(unsigned long *table)
564 {
565 	struct page *page;
566 	struct gmap_pgtable *mp;
567 
568 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
569 	mp = (struct gmap_pgtable *) page->index;
570 	BUG_ON(!list_empty(&mp->mapper));
571 	pgtable_page_dtor(page);
572 	atomic_set(&page->_mapcount, -1);
573 	kfree(mp);
574 	__free_page(page);
575 }
576 
577 #else /* CONFIG_PGSTE */
578 
579 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
580 						    unsigned long vmaddr)
581 {
582 	return NULL;
583 }
584 
585 static inline void page_table_free_pgste(unsigned long *table)
586 {
587 }
588 
589 static inline void gmap_unmap_notifier(struct mm_struct *mm,
590 					  unsigned long *table)
591 {
592 }
593 
594 #endif /* CONFIG_PGSTE */
595 
596 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
597 {
598 	unsigned int old, new;
599 
600 	do {
601 		old = atomic_read(v);
602 		new = old ^ bits;
603 	} while (atomic_cmpxchg(v, old, new) != old);
604 	return new;
605 }
606 
607 /*
608  * page table entry allocation/free routines.
609  */
610 unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
611 {
612 	unsigned long *uninitialized_var(table);
613 	struct page *uninitialized_var(page);
614 	unsigned int mask, bit;
615 
616 	if (mm_has_pgste(mm))
617 		return page_table_alloc_pgste(mm, vmaddr);
618 	/* Allocate fragments of a 4K page as 1K/2K page table */
619 	spin_lock_bh(&mm->context.list_lock);
620 	mask = FRAG_MASK;
621 	if (!list_empty(&mm->context.pgtable_list)) {
622 		page = list_first_entry(&mm->context.pgtable_list,
623 					struct page, lru);
624 		table = (unsigned long *) page_to_phys(page);
625 		mask = atomic_read(&page->_mapcount);
626 		mask = mask | (mask >> 4);
627 	}
628 	if ((mask & FRAG_MASK) == FRAG_MASK) {
629 		spin_unlock_bh(&mm->context.list_lock);
630 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
631 		if (!page)
632 			return NULL;
633 		pgtable_page_ctor(page);
634 		atomic_set(&page->_mapcount, 1);
635 		table = (unsigned long *) page_to_phys(page);
636 		clear_table(table, _PAGE_TYPE_EMPTY, PAGE_SIZE);
637 		spin_lock_bh(&mm->context.list_lock);
638 		list_add(&page->lru, &mm->context.pgtable_list);
639 	} else {
640 		for (bit = 1; mask & bit; bit <<= 1)
641 			table += PTRS_PER_PTE;
642 		mask = atomic_xor_bits(&page->_mapcount, bit);
643 		if ((mask & FRAG_MASK) == FRAG_MASK)
644 			list_del(&page->lru);
645 	}
646 	spin_unlock_bh(&mm->context.list_lock);
647 	return table;
648 }
649 
650 void page_table_free(struct mm_struct *mm, unsigned long *table)
651 {
652 	struct page *page;
653 	unsigned int bit, mask;
654 
655 	if (mm_has_pgste(mm)) {
656 		gmap_unmap_notifier(mm, table);
657 		return page_table_free_pgste(table);
658 	}
659 	/* Free 1K/2K page table fragment of a 4K page */
660 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
661 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
662 	spin_lock_bh(&mm->context.list_lock);
663 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
664 		list_del(&page->lru);
665 	mask = atomic_xor_bits(&page->_mapcount, bit);
666 	if (mask & FRAG_MASK)
667 		list_add(&page->lru, &mm->context.pgtable_list);
668 	spin_unlock_bh(&mm->context.list_lock);
669 	if (mask == 0) {
670 		pgtable_page_dtor(page);
671 		atomic_set(&page->_mapcount, -1);
672 		__free_page(page);
673 	}
674 }
675 
676 static void __page_table_free_rcu(void *table, unsigned bit)
677 {
678 	struct page *page;
679 
680 	if (bit == FRAG_MASK)
681 		return page_table_free_pgste(table);
682 	/* Free 1K/2K page table fragment of a 4K page */
683 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
684 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
685 		pgtable_page_dtor(page);
686 		atomic_set(&page->_mapcount, -1);
687 		__free_page(page);
688 	}
689 }
690 
691 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
692 {
693 	struct mm_struct *mm;
694 	struct page *page;
695 	unsigned int bit, mask;
696 
697 	mm = tlb->mm;
698 	if (mm_has_pgste(mm)) {
699 		gmap_unmap_notifier(mm, table);
700 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
701 		tlb_remove_table(tlb, table);
702 		return;
703 	}
704 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
705 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
706 	spin_lock_bh(&mm->context.list_lock);
707 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
708 		list_del(&page->lru);
709 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
710 	if (mask & FRAG_MASK)
711 		list_add_tail(&page->lru, &mm->context.pgtable_list);
712 	spin_unlock_bh(&mm->context.list_lock);
713 	table = (unsigned long *) (__pa(table) | (bit << 4));
714 	tlb_remove_table(tlb, table);
715 }
716 
717 void __tlb_remove_table(void *_table)
718 {
719 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
720 	void *table = (void *)((unsigned long) _table & ~mask);
721 	unsigned type = (unsigned long) _table & mask;
722 
723 	if (type)
724 		__page_table_free_rcu(table, type);
725 	else
726 		free_pages((unsigned long) table, ALLOC_ORDER);
727 }
728 
729 static void tlb_remove_table_smp_sync(void *arg)
730 {
731 	/* Simply deliver the interrupt */
732 }
733 
734 static void tlb_remove_table_one(void *table)
735 {
736 	/*
737 	 * This isn't an RCU grace period and hence the page-tables cannot be
738 	 * assumed to be actually RCU-freed.
739 	 *
740 	 * It is however sufficient for software page-table walkers that rely
741 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
742 	 */
743 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
744 	__tlb_remove_table(table);
745 }
746 
747 static void tlb_remove_table_rcu(struct rcu_head *head)
748 {
749 	struct mmu_table_batch *batch;
750 	int i;
751 
752 	batch = container_of(head, struct mmu_table_batch, rcu);
753 
754 	for (i = 0; i < batch->nr; i++)
755 		__tlb_remove_table(batch->tables[i]);
756 
757 	free_page((unsigned long)batch);
758 }
759 
760 void tlb_table_flush(struct mmu_gather *tlb)
761 {
762 	struct mmu_table_batch **batch = &tlb->batch;
763 
764 	if (*batch) {
765 		__tlb_flush_mm(tlb->mm);
766 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
767 		*batch = NULL;
768 	}
769 }
770 
771 void tlb_remove_table(struct mmu_gather *tlb, void *table)
772 {
773 	struct mmu_table_batch **batch = &tlb->batch;
774 
775 	if (*batch == NULL) {
776 		*batch = (struct mmu_table_batch *)
777 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
778 		if (*batch == NULL) {
779 			__tlb_flush_mm(tlb->mm);
780 			tlb_remove_table_one(table);
781 			return;
782 		}
783 		(*batch)->nr = 0;
784 	}
785 	(*batch)->tables[(*batch)->nr++] = table;
786 	if ((*batch)->nr == MAX_TABLE_BATCH)
787 		tlb_table_flush(tlb);
788 }
789 
790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
791 void thp_split_vma(struct vm_area_struct *vma)
792 {
793 	unsigned long addr;
794 	struct page *page;
795 
796 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
797 		page = follow_page(vma, addr, FOLL_SPLIT);
798 	}
799 }
800 
801 void thp_split_mm(struct mm_struct *mm)
802 {
803 	struct vm_area_struct *vma = mm->mmap;
804 
805 	while (vma != NULL) {
806 		thp_split_vma(vma);
807 		vma->vm_flags &= ~VM_HUGEPAGE;
808 		vma->vm_flags |= VM_NOHUGEPAGE;
809 		vma = vma->vm_next;
810 	}
811 }
812 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
813 
814 /*
815  * switch on pgstes for its userspace process (for kvm)
816  */
817 int s390_enable_sie(void)
818 {
819 	struct task_struct *tsk = current;
820 	struct mm_struct *mm, *old_mm;
821 
822 	/* Do we have switched amode? If no, we cannot do sie */
823 	if (s390_user_mode == HOME_SPACE_MODE)
824 		return -EINVAL;
825 
826 	/* Do we have pgstes? if yes, we are done */
827 	if (mm_has_pgste(tsk->mm))
828 		return 0;
829 
830 	/* lets check if we are allowed to replace the mm */
831 	task_lock(tsk);
832 	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
833 #ifdef CONFIG_AIO
834 	    !hlist_empty(&tsk->mm->ioctx_list) ||
835 #endif
836 	    tsk->mm != tsk->active_mm) {
837 		task_unlock(tsk);
838 		return -EINVAL;
839 	}
840 	task_unlock(tsk);
841 
842 	/* we copy the mm and let dup_mm create the page tables with_pgstes */
843 	tsk->mm->context.alloc_pgste = 1;
844 	/* make sure that both mms have a correct rss state */
845 	sync_mm_rss(tsk->mm);
846 	mm = dup_mm(tsk);
847 	tsk->mm->context.alloc_pgste = 0;
848 	if (!mm)
849 		return -ENOMEM;
850 
851 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
852 	/* split thp mappings and disable thp for future mappings */
853 	thp_split_mm(mm);
854 	mm->def_flags |= VM_NOHUGEPAGE;
855 #endif
856 
857 	/* Now lets check again if something happened */
858 	task_lock(tsk);
859 	if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
860 #ifdef CONFIG_AIO
861 	    !hlist_empty(&tsk->mm->ioctx_list) ||
862 #endif
863 	    tsk->mm != tsk->active_mm) {
864 		mmput(mm);
865 		task_unlock(tsk);
866 		return -EINVAL;
867 	}
868 
869 	/* ok, we are alone. No ptrace, no threads, etc. */
870 	old_mm = tsk->mm;
871 	tsk->mm = tsk->active_mm = mm;
872 	preempt_disable();
873 	update_mm(mm, tsk);
874 	atomic_inc(&mm->context.attach_count);
875 	atomic_dec(&old_mm->context.attach_count);
876 	cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
877 	preempt_enable();
878 	task_unlock(tsk);
879 	mmput(old_mm);
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(s390_enable_sie);
883 
884 #if defined(CONFIG_DEBUG_PAGEALLOC) && defined(CONFIG_HIBERNATION)
885 bool kernel_page_present(struct page *page)
886 {
887 	unsigned long addr;
888 	int cc;
889 
890 	addr = page_to_phys(page);
891 	asm volatile(
892 		"	lra	%1,0(%1)\n"
893 		"	ipm	%0\n"
894 		"	srl	%0,28"
895 		: "=d" (cc), "+a" (addr) : : "cc");
896 	return cc == 0;
897 }
898 #endif /* CONFIG_HIBERNATION && CONFIG_DEBUG_PAGEALLOC */
899 
900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
901 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
902 			   pmd_t *pmdp)
903 {
904 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
905 	/* No need to flush TLB
906 	 * On s390 reference bits are in storage key and never in TLB */
907 	return pmdp_test_and_clear_young(vma, address, pmdp);
908 }
909 
910 int pmdp_set_access_flags(struct vm_area_struct *vma,
911 			  unsigned long address, pmd_t *pmdp,
912 			  pmd_t entry, int dirty)
913 {
914 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
915 
916 	if (pmd_same(*pmdp, entry))
917 		return 0;
918 	pmdp_invalidate(vma, address, pmdp);
919 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
920 	return 1;
921 }
922 
923 static void pmdp_splitting_flush_sync(void *arg)
924 {
925 	/* Simply deliver the interrupt */
926 }
927 
928 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
929 			  pmd_t *pmdp)
930 {
931 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
932 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
933 			      (unsigned long *) pmdp)) {
934 		/* need to serialize against gup-fast (IRQ disabled) */
935 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
936 	}
937 }
938 
939 void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
940 {
941 	struct list_head *lh = (struct list_head *) pgtable;
942 
943 	assert_spin_locked(&mm->page_table_lock);
944 
945 	/* FIFO */
946 	if (!mm->pmd_huge_pte)
947 		INIT_LIST_HEAD(lh);
948 	else
949 		list_add(lh, (struct list_head *) mm->pmd_huge_pte);
950 	mm->pmd_huge_pte = pgtable;
951 }
952 
953 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
954 {
955 	struct list_head *lh;
956 	pgtable_t pgtable;
957 	pte_t *ptep;
958 
959 	assert_spin_locked(&mm->page_table_lock);
960 
961 	/* FIFO */
962 	pgtable = mm->pmd_huge_pte;
963 	lh = (struct list_head *) pgtable;
964 	if (list_empty(lh))
965 		mm->pmd_huge_pte = NULL;
966 	else {
967 		mm->pmd_huge_pte = (pgtable_t) lh->next;
968 		list_del(lh);
969 	}
970 	ptep = (pte_t *) pgtable;
971 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
972 	ptep++;
973 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
974 	return pgtable;
975 }
976 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
977