xref: /openbmc/linux/arch/s390/mm/pgtable.c (revision 089a49b6)
1 /*
2  *    Copyright IBM Corp. 2007, 2011
3  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26 
27 #ifndef CONFIG_64BIT
28 #define ALLOC_ORDER	1
29 #define FRAG_MASK	0x0f
30 #else
31 #define ALLOC_ORDER	2
32 #define FRAG_MASK	0x03
33 #endif
34 
35 
36 unsigned long *crst_table_alloc(struct mm_struct *mm)
37 {
38 	struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
39 
40 	if (!page)
41 		return NULL;
42 	return (unsigned long *) page_to_phys(page);
43 }
44 
45 void crst_table_free(struct mm_struct *mm, unsigned long *table)
46 {
47 	free_pages((unsigned long) table, ALLOC_ORDER);
48 }
49 
50 #ifdef CONFIG_64BIT
51 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
52 {
53 	unsigned long *table, *pgd;
54 	unsigned long entry;
55 
56 	BUG_ON(limit > (1UL << 53));
57 repeat:
58 	table = crst_table_alloc(mm);
59 	if (!table)
60 		return -ENOMEM;
61 	spin_lock_bh(&mm->page_table_lock);
62 	if (mm->context.asce_limit < limit) {
63 		pgd = (unsigned long *) mm->pgd;
64 		if (mm->context.asce_limit <= (1UL << 31)) {
65 			entry = _REGION3_ENTRY_EMPTY;
66 			mm->context.asce_limit = 1UL << 42;
67 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
68 						_ASCE_USER_BITS |
69 						_ASCE_TYPE_REGION3;
70 		} else {
71 			entry = _REGION2_ENTRY_EMPTY;
72 			mm->context.asce_limit = 1UL << 53;
73 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
74 						_ASCE_USER_BITS |
75 						_ASCE_TYPE_REGION2;
76 		}
77 		crst_table_init(table, entry);
78 		pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
79 		mm->pgd = (pgd_t *) table;
80 		mm->task_size = mm->context.asce_limit;
81 		table = NULL;
82 	}
83 	spin_unlock_bh(&mm->page_table_lock);
84 	if (table)
85 		crst_table_free(mm, table);
86 	if (mm->context.asce_limit < limit)
87 		goto repeat;
88 	return 0;
89 }
90 
91 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
92 {
93 	pgd_t *pgd;
94 
95 	while (mm->context.asce_limit > limit) {
96 		pgd = mm->pgd;
97 		switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
98 		case _REGION_ENTRY_TYPE_R2:
99 			mm->context.asce_limit = 1UL << 42;
100 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
101 						_ASCE_USER_BITS |
102 						_ASCE_TYPE_REGION3;
103 			break;
104 		case _REGION_ENTRY_TYPE_R3:
105 			mm->context.asce_limit = 1UL << 31;
106 			mm->context.asce_bits = _ASCE_TABLE_LENGTH |
107 						_ASCE_USER_BITS |
108 						_ASCE_TYPE_SEGMENT;
109 			break;
110 		default:
111 			BUG();
112 		}
113 		mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
114 		mm->task_size = mm->context.asce_limit;
115 		crst_table_free(mm, (unsigned long *) pgd);
116 	}
117 }
118 #endif
119 
120 #ifdef CONFIG_PGSTE
121 
122 /**
123  * gmap_alloc - allocate a guest address space
124  * @mm: pointer to the parent mm_struct
125  *
126  * Returns a guest address space structure.
127  */
128 struct gmap *gmap_alloc(struct mm_struct *mm)
129 {
130 	struct gmap *gmap;
131 	struct page *page;
132 	unsigned long *table;
133 
134 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
135 	if (!gmap)
136 		goto out;
137 	INIT_LIST_HEAD(&gmap->crst_list);
138 	gmap->mm = mm;
139 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
140 	if (!page)
141 		goto out_free;
142 	list_add(&page->lru, &gmap->crst_list);
143 	table = (unsigned long *) page_to_phys(page);
144 	crst_table_init(table, _REGION1_ENTRY_EMPTY);
145 	gmap->table = table;
146 	gmap->asce = _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH |
147 		     _ASCE_USER_BITS | __pa(table);
148 	list_add(&gmap->list, &mm->context.gmap_list);
149 	return gmap;
150 
151 out_free:
152 	kfree(gmap);
153 out:
154 	return NULL;
155 }
156 EXPORT_SYMBOL_GPL(gmap_alloc);
157 
158 static int gmap_unlink_segment(struct gmap *gmap, unsigned long *table)
159 {
160 	struct gmap_pgtable *mp;
161 	struct gmap_rmap *rmap;
162 	struct page *page;
163 
164 	if (*table & _SEGMENT_ENTRY_INVALID)
165 		return 0;
166 	page = pfn_to_page(*table >> PAGE_SHIFT);
167 	mp = (struct gmap_pgtable *) page->index;
168 	list_for_each_entry(rmap, &mp->mapper, list) {
169 		if (rmap->entry != table)
170 			continue;
171 		list_del(&rmap->list);
172 		kfree(rmap);
173 		break;
174 	}
175 	*table = mp->vmaddr | _SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_PROTECT;
176 	return 1;
177 }
178 
179 static void gmap_flush_tlb(struct gmap *gmap)
180 {
181 	if (MACHINE_HAS_IDTE)
182 		__tlb_flush_idte((unsigned long) gmap->table |
183 				 _ASCE_TYPE_REGION1);
184 	else
185 		__tlb_flush_global();
186 }
187 
188 /**
189  * gmap_free - free a guest address space
190  * @gmap: pointer to the guest address space structure
191  */
192 void gmap_free(struct gmap *gmap)
193 {
194 	struct page *page, *next;
195 	unsigned long *table;
196 	int i;
197 
198 
199 	/* Flush tlb. */
200 	if (MACHINE_HAS_IDTE)
201 		__tlb_flush_idte((unsigned long) gmap->table |
202 				 _ASCE_TYPE_REGION1);
203 	else
204 		__tlb_flush_global();
205 
206 	/* Free all segment & region tables. */
207 	down_read(&gmap->mm->mmap_sem);
208 	spin_lock(&gmap->mm->page_table_lock);
209 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru) {
210 		table = (unsigned long *) page_to_phys(page);
211 		if ((*table & _REGION_ENTRY_TYPE_MASK) == 0)
212 			/* Remove gmap rmap structures for segment table. */
213 			for (i = 0; i < PTRS_PER_PMD; i++, table++)
214 				gmap_unlink_segment(gmap, table);
215 		__free_pages(page, ALLOC_ORDER);
216 	}
217 	spin_unlock(&gmap->mm->page_table_lock);
218 	up_read(&gmap->mm->mmap_sem);
219 	list_del(&gmap->list);
220 	kfree(gmap);
221 }
222 EXPORT_SYMBOL_GPL(gmap_free);
223 
224 /**
225  * gmap_enable - switch primary space to the guest address space
226  * @gmap: pointer to the guest address space structure
227  */
228 void gmap_enable(struct gmap *gmap)
229 {
230 	S390_lowcore.gmap = (unsigned long) gmap;
231 }
232 EXPORT_SYMBOL_GPL(gmap_enable);
233 
234 /**
235  * gmap_disable - switch back to the standard primary address space
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_disable(struct gmap *gmap)
239 {
240 	S390_lowcore.gmap = 0UL;
241 }
242 EXPORT_SYMBOL_GPL(gmap_disable);
243 
244 /*
245  * gmap_alloc_table is assumed to be called with mmap_sem held
246  */
247 static int gmap_alloc_table(struct gmap *gmap,
248 			    unsigned long *table, unsigned long init)
249 	__releases(&gmap->mm->page_table_lock)
250 	__acquires(&gmap->mm->page_table_lock)
251 {
252 	struct page *page;
253 	unsigned long *new;
254 
255 	/* since we dont free the gmap table until gmap_free we can unlock */
256 	spin_unlock(&gmap->mm->page_table_lock);
257 	page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
258 	spin_lock(&gmap->mm->page_table_lock);
259 	if (!page)
260 		return -ENOMEM;
261 	new = (unsigned long *) page_to_phys(page);
262 	crst_table_init(new, init);
263 	if (*table & _REGION_ENTRY_INVALID) {
264 		list_add(&page->lru, &gmap->crst_list);
265 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
266 			(*table & _REGION_ENTRY_TYPE_MASK);
267 	} else
268 		__free_pages(page, ALLOC_ORDER);
269 	return 0;
270 }
271 
272 /**
273  * gmap_unmap_segment - unmap segment from the guest address space
274  * @gmap: pointer to the guest address space structure
275  * @addr: address in the guest address space
276  * @len: length of the memory area to unmap
277  *
278  * Returns 0 if the unmap succeded, -EINVAL if not.
279  */
280 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
281 {
282 	unsigned long *table;
283 	unsigned long off;
284 	int flush;
285 
286 	if ((to | len) & (PMD_SIZE - 1))
287 		return -EINVAL;
288 	if (len == 0 || to + len < to)
289 		return -EINVAL;
290 
291 	flush = 0;
292 	down_read(&gmap->mm->mmap_sem);
293 	spin_lock(&gmap->mm->page_table_lock);
294 	for (off = 0; off < len; off += PMD_SIZE) {
295 		/* Walk the guest addr space page table */
296 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
297 		if (*table & _REGION_ENTRY_INVALID)
298 			goto out;
299 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
300 		table = table + (((to + off) >> 42) & 0x7ff);
301 		if (*table & _REGION_ENTRY_INVALID)
302 			goto out;
303 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
304 		table = table + (((to + off) >> 31) & 0x7ff);
305 		if (*table & _REGION_ENTRY_INVALID)
306 			goto out;
307 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
308 		table = table + (((to + off) >> 20) & 0x7ff);
309 
310 		/* Clear segment table entry in guest address space. */
311 		flush |= gmap_unlink_segment(gmap, table);
312 		*table = _SEGMENT_ENTRY_INVALID;
313 	}
314 out:
315 	spin_unlock(&gmap->mm->page_table_lock);
316 	up_read(&gmap->mm->mmap_sem);
317 	if (flush)
318 		gmap_flush_tlb(gmap);
319 	return 0;
320 }
321 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
322 
323 /**
324  * gmap_mmap_segment - map a segment to the guest address space
325  * @gmap: pointer to the guest address space structure
326  * @from: source address in the parent address space
327  * @to: target address in the guest address space
328  *
329  * Returns 0 if the mmap succeded, -EINVAL or -ENOMEM if not.
330  */
331 int gmap_map_segment(struct gmap *gmap, unsigned long from,
332 		     unsigned long to, unsigned long len)
333 {
334 	unsigned long *table;
335 	unsigned long off;
336 	int flush;
337 
338 	if ((from | to | len) & (PMD_SIZE - 1))
339 		return -EINVAL;
340 	if (len == 0 || from + len > TASK_MAX_SIZE ||
341 	    from + len < from || to + len < to)
342 		return -EINVAL;
343 
344 	flush = 0;
345 	down_read(&gmap->mm->mmap_sem);
346 	spin_lock(&gmap->mm->page_table_lock);
347 	for (off = 0; off < len; off += PMD_SIZE) {
348 		/* Walk the gmap address space page table */
349 		table = gmap->table + (((to + off) >> 53) & 0x7ff);
350 		if ((*table & _REGION_ENTRY_INVALID) &&
351 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY))
352 			goto out_unmap;
353 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
354 		table = table + (((to + off) >> 42) & 0x7ff);
355 		if ((*table & _REGION_ENTRY_INVALID) &&
356 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY))
357 			goto out_unmap;
358 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
359 		table = table + (((to + off) >> 31) & 0x7ff);
360 		if ((*table & _REGION_ENTRY_INVALID) &&
361 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY))
362 			goto out_unmap;
363 		table = (unsigned long *) (*table & _REGION_ENTRY_ORIGIN);
364 		table = table + (((to + off) >> 20) & 0x7ff);
365 
366 		/* Store 'from' address in an invalid segment table entry. */
367 		flush |= gmap_unlink_segment(gmap, table);
368 		*table =  (from + off) | (_SEGMENT_ENTRY_INVALID |
369 					  _SEGMENT_ENTRY_PROTECT);
370 	}
371 	spin_unlock(&gmap->mm->page_table_lock);
372 	up_read(&gmap->mm->mmap_sem);
373 	if (flush)
374 		gmap_flush_tlb(gmap);
375 	return 0;
376 
377 out_unmap:
378 	spin_unlock(&gmap->mm->page_table_lock);
379 	up_read(&gmap->mm->mmap_sem);
380 	gmap_unmap_segment(gmap, to, len);
381 	return -ENOMEM;
382 }
383 EXPORT_SYMBOL_GPL(gmap_map_segment);
384 
385 static unsigned long *gmap_table_walk(unsigned long address, struct gmap *gmap)
386 {
387 	unsigned long *table;
388 
389 	table = gmap->table + ((address >> 53) & 0x7ff);
390 	if (unlikely(*table & _REGION_ENTRY_INVALID))
391 		return ERR_PTR(-EFAULT);
392 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
393 	table = table + ((address >> 42) & 0x7ff);
394 	if (unlikely(*table & _REGION_ENTRY_INVALID))
395 		return ERR_PTR(-EFAULT);
396 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
397 	table = table + ((address >> 31) & 0x7ff);
398 	if (unlikely(*table & _REGION_ENTRY_INVALID))
399 		return ERR_PTR(-EFAULT);
400 	table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
401 	table = table + ((address >> 20) & 0x7ff);
402 	return table;
403 }
404 
405 /**
406  * __gmap_translate - translate a guest address to a user space address
407  * @address: guest address
408  * @gmap: pointer to guest mapping meta data structure
409  *
410  * Returns user space address which corresponds to the guest address or
411  * -EFAULT if no such mapping exists.
412  * This function does not establish potentially missing page table entries.
413  * The mmap_sem of the mm that belongs to the address space must be held
414  * when this function gets called.
415  */
416 unsigned long __gmap_translate(unsigned long address, struct gmap *gmap)
417 {
418 	unsigned long *segment_ptr, vmaddr, segment;
419 	struct gmap_pgtable *mp;
420 	struct page *page;
421 
422 	current->thread.gmap_addr = address;
423 	segment_ptr = gmap_table_walk(address, gmap);
424 	if (IS_ERR(segment_ptr))
425 		return PTR_ERR(segment_ptr);
426 	/* Convert the gmap address to an mm address. */
427 	segment = *segment_ptr;
428 	if (!(segment & _SEGMENT_ENTRY_INVALID)) {
429 		page = pfn_to_page(segment >> PAGE_SHIFT);
430 		mp = (struct gmap_pgtable *) page->index;
431 		return mp->vmaddr | (address & ~PMD_MASK);
432 	} else if (segment & _SEGMENT_ENTRY_PROTECT) {
433 		vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
434 		return vmaddr | (address & ~PMD_MASK);
435 	}
436 	return -EFAULT;
437 }
438 EXPORT_SYMBOL_GPL(__gmap_translate);
439 
440 /**
441  * gmap_translate - translate a guest address to a user space address
442  * @address: guest address
443  * @gmap: pointer to guest mapping meta data structure
444  *
445  * Returns user space address which corresponds to the guest address or
446  * -EFAULT if no such mapping exists.
447  * This function does not establish potentially missing page table entries.
448  */
449 unsigned long gmap_translate(unsigned long address, struct gmap *gmap)
450 {
451 	unsigned long rc;
452 
453 	down_read(&gmap->mm->mmap_sem);
454 	rc = __gmap_translate(address, gmap);
455 	up_read(&gmap->mm->mmap_sem);
456 	return rc;
457 }
458 EXPORT_SYMBOL_GPL(gmap_translate);
459 
460 static int gmap_connect_pgtable(unsigned long address, unsigned long segment,
461 				unsigned long *segment_ptr, struct gmap *gmap)
462 {
463 	unsigned long vmaddr;
464 	struct vm_area_struct *vma;
465 	struct gmap_pgtable *mp;
466 	struct gmap_rmap *rmap;
467 	struct mm_struct *mm;
468 	struct page *page;
469 	pgd_t *pgd;
470 	pud_t *pud;
471 	pmd_t *pmd;
472 
473 	mm = gmap->mm;
474 	vmaddr = segment & _SEGMENT_ENTRY_ORIGIN;
475 	vma = find_vma(mm, vmaddr);
476 	if (!vma || vma->vm_start > vmaddr)
477 		return -EFAULT;
478 	/* Walk the parent mm page table */
479 	pgd = pgd_offset(mm, vmaddr);
480 	pud = pud_alloc(mm, pgd, vmaddr);
481 	if (!pud)
482 		return -ENOMEM;
483 	pmd = pmd_alloc(mm, pud, vmaddr);
484 	if (!pmd)
485 		return -ENOMEM;
486 	if (!pmd_present(*pmd) &&
487 	    __pte_alloc(mm, vma, pmd, vmaddr))
488 		return -ENOMEM;
489 	/* pmd now points to a valid segment table entry. */
490 	rmap = kmalloc(sizeof(*rmap), GFP_KERNEL|__GFP_REPEAT);
491 	if (!rmap)
492 		return -ENOMEM;
493 	/* Link gmap segment table entry location to page table. */
494 	page = pmd_page(*pmd);
495 	mp = (struct gmap_pgtable *) page->index;
496 	rmap->gmap = gmap;
497 	rmap->entry = segment_ptr;
498 	rmap->vmaddr = address & PMD_MASK;
499 	spin_lock(&mm->page_table_lock);
500 	if (*segment_ptr == segment) {
501 		list_add(&rmap->list, &mp->mapper);
502 		/* Set gmap segment table entry to page table. */
503 		*segment_ptr = pmd_val(*pmd) & PAGE_MASK;
504 		rmap = NULL;
505 	}
506 	spin_unlock(&mm->page_table_lock);
507 	kfree(rmap);
508 	return 0;
509 }
510 
511 static void gmap_disconnect_pgtable(struct mm_struct *mm, unsigned long *table)
512 {
513 	struct gmap_rmap *rmap, *next;
514 	struct gmap_pgtable *mp;
515 	struct page *page;
516 	int flush;
517 
518 	flush = 0;
519 	spin_lock(&mm->page_table_lock);
520 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
521 	mp = (struct gmap_pgtable *) page->index;
522 	list_for_each_entry_safe(rmap, next, &mp->mapper, list) {
523 		*rmap->entry = mp->vmaddr | (_SEGMENT_ENTRY_INVALID |
524 					     _SEGMENT_ENTRY_PROTECT);
525 		list_del(&rmap->list);
526 		kfree(rmap);
527 		flush = 1;
528 	}
529 	spin_unlock(&mm->page_table_lock);
530 	if (flush)
531 		__tlb_flush_global();
532 }
533 
534 /*
535  * this function is assumed to be called with mmap_sem held
536  */
537 unsigned long __gmap_fault(unsigned long address, struct gmap *gmap)
538 {
539 	unsigned long *segment_ptr, segment;
540 	struct gmap_pgtable *mp;
541 	struct page *page;
542 	int rc;
543 
544 	current->thread.gmap_addr = address;
545 	segment_ptr = gmap_table_walk(address, gmap);
546 	if (IS_ERR(segment_ptr))
547 		return -EFAULT;
548 	/* Convert the gmap address to an mm address. */
549 	while (1) {
550 		segment = *segment_ptr;
551 		if (!(segment & _SEGMENT_ENTRY_INVALID)) {
552 			/* Page table is present */
553 			page = pfn_to_page(segment >> PAGE_SHIFT);
554 			mp = (struct gmap_pgtable *) page->index;
555 			return mp->vmaddr | (address & ~PMD_MASK);
556 		}
557 		if (!(segment & _SEGMENT_ENTRY_PROTECT))
558 			/* Nothing mapped in the gmap address space. */
559 			break;
560 		rc = gmap_connect_pgtable(address, segment, segment_ptr, gmap);
561 		if (rc)
562 			return rc;
563 	}
564 	return -EFAULT;
565 }
566 
567 unsigned long gmap_fault(unsigned long address, struct gmap *gmap)
568 {
569 	unsigned long rc;
570 
571 	down_read(&gmap->mm->mmap_sem);
572 	rc = __gmap_fault(address, gmap);
573 	up_read(&gmap->mm->mmap_sem);
574 
575 	return rc;
576 }
577 EXPORT_SYMBOL_GPL(gmap_fault);
578 
579 void gmap_discard(unsigned long from, unsigned long to, struct gmap *gmap)
580 {
581 
582 	unsigned long *table, address, size;
583 	struct vm_area_struct *vma;
584 	struct gmap_pgtable *mp;
585 	struct page *page;
586 
587 	down_read(&gmap->mm->mmap_sem);
588 	address = from;
589 	while (address < to) {
590 		/* Walk the gmap address space page table */
591 		table = gmap->table + ((address >> 53) & 0x7ff);
592 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
593 			address = (address + PMD_SIZE) & PMD_MASK;
594 			continue;
595 		}
596 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
597 		table = table + ((address >> 42) & 0x7ff);
598 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
599 			address = (address + PMD_SIZE) & PMD_MASK;
600 			continue;
601 		}
602 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
603 		table = table + ((address >> 31) & 0x7ff);
604 		if (unlikely(*table & _REGION_ENTRY_INVALID)) {
605 			address = (address + PMD_SIZE) & PMD_MASK;
606 			continue;
607 		}
608 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
609 		table = table + ((address >> 20) & 0x7ff);
610 		if (unlikely(*table & _SEGMENT_ENTRY_INVALID)) {
611 			address = (address + PMD_SIZE) & PMD_MASK;
612 			continue;
613 		}
614 		page = pfn_to_page(*table >> PAGE_SHIFT);
615 		mp = (struct gmap_pgtable *) page->index;
616 		vma = find_vma(gmap->mm, mp->vmaddr);
617 		size = min(to - address, PMD_SIZE - (address & ~PMD_MASK));
618 		zap_page_range(vma, mp->vmaddr | (address & ~PMD_MASK),
619 			       size, NULL);
620 		address = (address + PMD_SIZE) & PMD_MASK;
621 	}
622 	up_read(&gmap->mm->mmap_sem);
623 }
624 EXPORT_SYMBOL_GPL(gmap_discard);
625 
626 static LIST_HEAD(gmap_notifier_list);
627 static DEFINE_SPINLOCK(gmap_notifier_lock);
628 
629 /**
630  * gmap_register_ipte_notifier - register a pte invalidation callback
631  * @nb: pointer to the gmap notifier block
632  */
633 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
634 {
635 	spin_lock(&gmap_notifier_lock);
636 	list_add(&nb->list, &gmap_notifier_list);
637 	spin_unlock(&gmap_notifier_lock);
638 }
639 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
640 
641 /**
642  * gmap_unregister_ipte_notifier - remove a pte invalidation callback
643  * @nb: pointer to the gmap notifier block
644  */
645 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
646 {
647 	spin_lock(&gmap_notifier_lock);
648 	list_del_init(&nb->list);
649 	spin_unlock(&gmap_notifier_lock);
650 }
651 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
652 
653 /**
654  * gmap_ipte_notify - mark a range of ptes for invalidation notification
655  * @gmap: pointer to guest mapping meta data structure
656  * @address: virtual address in the guest address space
657  * @len: size of area
658  *
659  * Returns 0 if for each page in the given range a gmap mapping exists and
660  * the invalidation notification could be set. If the gmap mapping is missing
661  * for one or more pages -EFAULT is returned. If no memory could be allocated
662  * -ENOMEM is returned. This function establishes missing page table entries.
663  */
664 int gmap_ipte_notify(struct gmap *gmap, unsigned long start, unsigned long len)
665 {
666 	unsigned long addr;
667 	spinlock_t *ptl;
668 	pte_t *ptep, entry;
669 	pgste_t pgste;
670 	int rc = 0;
671 
672 	if ((start & ~PAGE_MASK) || (len & ~PAGE_MASK))
673 		return -EINVAL;
674 	down_read(&gmap->mm->mmap_sem);
675 	while (len) {
676 		/* Convert gmap address and connect the page tables */
677 		addr = __gmap_fault(start, gmap);
678 		if (IS_ERR_VALUE(addr)) {
679 			rc = addr;
680 			break;
681 		}
682 		/* Get the page mapped */
683 		if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
684 			rc = -EFAULT;
685 			break;
686 		}
687 		/* Walk the process page table, lock and get pte pointer */
688 		ptep = get_locked_pte(gmap->mm, addr, &ptl);
689 		if (unlikely(!ptep))
690 			continue;
691 		/* Set notification bit in the pgste of the pte */
692 		entry = *ptep;
693 		if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
694 			pgste = pgste_get_lock(ptep);
695 			pgste_val(pgste) |= PGSTE_IN_BIT;
696 			pgste_set_unlock(ptep, pgste);
697 			start += PAGE_SIZE;
698 			len -= PAGE_SIZE;
699 		}
700 		spin_unlock(ptl);
701 	}
702 	up_read(&gmap->mm->mmap_sem);
703 	return rc;
704 }
705 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
706 
707 /**
708  * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
709  * @mm: pointer to the process mm_struct
710  * @addr: virtual address in the process address space
711  * @pte: pointer to the page table entry
712  *
713  * This function is assumed to be called with the page table lock held
714  * for the pte to notify.
715  */
716 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long addr, pte_t *pte)
717 {
718 	unsigned long segment_offset;
719 	struct gmap_notifier *nb;
720 	struct gmap_pgtable *mp;
721 	struct gmap_rmap *rmap;
722 	struct page *page;
723 
724 	segment_offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
725 	segment_offset = segment_offset * (4096 / sizeof(pte_t));
726 	page = pfn_to_page(__pa(pte) >> PAGE_SHIFT);
727 	mp = (struct gmap_pgtable *) page->index;
728 	spin_lock(&gmap_notifier_lock);
729 	list_for_each_entry(rmap, &mp->mapper, list) {
730 		list_for_each_entry(nb, &gmap_notifier_list, list)
731 			nb->notifier_call(rmap->gmap,
732 					  rmap->vmaddr + segment_offset);
733 	}
734 	spin_unlock(&gmap_notifier_lock);
735 }
736 
737 static inline int page_table_with_pgste(struct page *page)
738 {
739 	return atomic_read(&page->_mapcount) == 0;
740 }
741 
742 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
743 						    unsigned long vmaddr)
744 {
745 	struct page *page;
746 	unsigned long *table;
747 	struct gmap_pgtable *mp;
748 
749 	page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
750 	if (!page)
751 		return NULL;
752 	mp = kmalloc(sizeof(*mp), GFP_KERNEL|__GFP_REPEAT);
753 	if (!mp) {
754 		__free_page(page);
755 		return NULL;
756 	}
757 	pgtable_page_ctor(page);
758 	mp->vmaddr = vmaddr & PMD_MASK;
759 	INIT_LIST_HEAD(&mp->mapper);
760 	page->index = (unsigned long) mp;
761 	atomic_set(&page->_mapcount, 0);
762 	table = (unsigned long *) page_to_phys(page);
763 	clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
764 	clear_table(table + PTRS_PER_PTE, PGSTE_HR_BIT | PGSTE_HC_BIT,
765 		    PAGE_SIZE/2);
766 	return table;
767 }
768 
769 static inline void page_table_free_pgste(unsigned long *table)
770 {
771 	struct page *page;
772 	struct gmap_pgtable *mp;
773 
774 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
775 	mp = (struct gmap_pgtable *) page->index;
776 	BUG_ON(!list_empty(&mp->mapper));
777 	pgtable_page_dtor(page);
778 	atomic_set(&page->_mapcount, -1);
779 	kfree(mp);
780 	__free_page(page);
781 }
782 
783 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
784 			  unsigned long key, bool nq)
785 {
786 	spinlock_t *ptl;
787 	pgste_t old, new;
788 	pte_t *ptep;
789 
790 	down_read(&mm->mmap_sem);
791 	ptep = get_locked_pte(current->mm, addr, &ptl);
792 	if (unlikely(!ptep)) {
793 		up_read(&mm->mmap_sem);
794 		return -EFAULT;
795 	}
796 
797 	new = old = pgste_get_lock(ptep);
798 	pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
799 			    PGSTE_ACC_BITS | PGSTE_FP_BIT);
800 	pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
801 	pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
802 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
803 		unsigned long address, bits, skey;
804 
805 		address = pte_val(*ptep) & PAGE_MASK;
806 		skey = (unsigned long) page_get_storage_key(address);
807 		bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
808 		skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
809 		/* Set storage key ACC and FP */
810 		page_set_storage_key(address, skey, !nq);
811 		/* Merge host changed & referenced into pgste  */
812 		pgste_val(new) |= bits << 52;
813 	}
814 	/* changing the guest storage key is considered a change of the page */
815 	if ((pgste_val(new) ^ pgste_val(old)) &
816 	    (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
817 		pgste_val(new) |= PGSTE_HC_BIT;
818 
819 	pgste_set_unlock(ptep, new);
820 	pte_unmap_unlock(*ptep, ptl);
821 	up_read(&mm->mmap_sem);
822 	return 0;
823 }
824 EXPORT_SYMBOL(set_guest_storage_key);
825 
826 #else /* CONFIG_PGSTE */
827 
828 static inline int page_table_with_pgste(struct page *page)
829 {
830 	return 0;
831 }
832 
833 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm,
834 						    unsigned long vmaddr)
835 {
836 	return NULL;
837 }
838 
839 static inline void page_table_free_pgste(unsigned long *table)
840 {
841 }
842 
843 static inline void gmap_disconnect_pgtable(struct mm_struct *mm,
844 					   unsigned long *table)
845 {
846 }
847 
848 #endif /* CONFIG_PGSTE */
849 
850 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
851 {
852 	unsigned int old, new;
853 
854 	do {
855 		old = atomic_read(v);
856 		new = old ^ bits;
857 	} while (atomic_cmpxchg(v, old, new) != old);
858 	return new;
859 }
860 
861 /*
862  * page table entry allocation/free routines.
863  */
864 unsigned long *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr)
865 {
866 	unsigned long *uninitialized_var(table);
867 	struct page *uninitialized_var(page);
868 	unsigned int mask, bit;
869 
870 	if (mm_has_pgste(mm))
871 		return page_table_alloc_pgste(mm, vmaddr);
872 	/* Allocate fragments of a 4K page as 1K/2K page table */
873 	spin_lock_bh(&mm->context.list_lock);
874 	mask = FRAG_MASK;
875 	if (!list_empty(&mm->context.pgtable_list)) {
876 		page = list_first_entry(&mm->context.pgtable_list,
877 					struct page, lru);
878 		table = (unsigned long *) page_to_phys(page);
879 		mask = atomic_read(&page->_mapcount);
880 		mask = mask | (mask >> 4);
881 	}
882 	if ((mask & FRAG_MASK) == FRAG_MASK) {
883 		spin_unlock_bh(&mm->context.list_lock);
884 		page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
885 		if (!page)
886 			return NULL;
887 		pgtable_page_ctor(page);
888 		atomic_set(&page->_mapcount, 1);
889 		table = (unsigned long *) page_to_phys(page);
890 		clear_table(table, _PAGE_INVALID, PAGE_SIZE);
891 		spin_lock_bh(&mm->context.list_lock);
892 		list_add(&page->lru, &mm->context.pgtable_list);
893 	} else {
894 		for (bit = 1; mask & bit; bit <<= 1)
895 			table += PTRS_PER_PTE;
896 		mask = atomic_xor_bits(&page->_mapcount, bit);
897 		if ((mask & FRAG_MASK) == FRAG_MASK)
898 			list_del(&page->lru);
899 	}
900 	spin_unlock_bh(&mm->context.list_lock);
901 	return table;
902 }
903 
904 void page_table_free(struct mm_struct *mm, unsigned long *table)
905 {
906 	struct page *page;
907 	unsigned int bit, mask;
908 
909 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
910 	if (page_table_with_pgste(page)) {
911 		gmap_disconnect_pgtable(mm, table);
912 		return page_table_free_pgste(table);
913 	}
914 	/* Free 1K/2K page table fragment of a 4K page */
915 	bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
916 	spin_lock_bh(&mm->context.list_lock);
917 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
918 		list_del(&page->lru);
919 	mask = atomic_xor_bits(&page->_mapcount, bit);
920 	if (mask & FRAG_MASK)
921 		list_add(&page->lru, &mm->context.pgtable_list);
922 	spin_unlock_bh(&mm->context.list_lock);
923 	if (mask == 0) {
924 		pgtable_page_dtor(page);
925 		atomic_set(&page->_mapcount, -1);
926 		__free_page(page);
927 	}
928 }
929 
930 static void __page_table_free_rcu(void *table, unsigned bit)
931 {
932 	struct page *page;
933 
934 	if (bit == FRAG_MASK)
935 		return page_table_free_pgste(table);
936 	/* Free 1K/2K page table fragment of a 4K page */
937 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
938 	if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
939 		pgtable_page_dtor(page);
940 		atomic_set(&page->_mapcount, -1);
941 		__free_page(page);
942 	}
943 }
944 
945 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table)
946 {
947 	struct mm_struct *mm;
948 	struct page *page;
949 	unsigned int bit, mask;
950 
951 	mm = tlb->mm;
952 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
953 	if (page_table_with_pgste(page)) {
954 		gmap_disconnect_pgtable(mm, table);
955 		table = (unsigned long *) (__pa(table) | FRAG_MASK);
956 		tlb_remove_table(tlb, table);
957 		return;
958 	}
959 	bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
960 	spin_lock_bh(&mm->context.list_lock);
961 	if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
962 		list_del(&page->lru);
963 	mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
964 	if (mask & FRAG_MASK)
965 		list_add_tail(&page->lru, &mm->context.pgtable_list);
966 	spin_unlock_bh(&mm->context.list_lock);
967 	table = (unsigned long *) (__pa(table) | (bit << 4));
968 	tlb_remove_table(tlb, table);
969 }
970 
971 static void __tlb_remove_table(void *_table)
972 {
973 	const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
974 	void *table = (void *)((unsigned long) _table & ~mask);
975 	unsigned type = (unsigned long) _table & mask;
976 
977 	if (type)
978 		__page_table_free_rcu(table, type);
979 	else
980 		free_pages((unsigned long) table, ALLOC_ORDER);
981 }
982 
983 static void tlb_remove_table_smp_sync(void *arg)
984 {
985 	/* Simply deliver the interrupt */
986 }
987 
988 static void tlb_remove_table_one(void *table)
989 {
990 	/*
991 	 * This isn't an RCU grace period and hence the page-tables cannot be
992 	 * assumed to be actually RCU-freed.
993 	 *
994 	 * It is however sufficient for software page-table walkers that rely
995 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
996 	 */
997 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
998 	__tlb_remove_table(table);
999 }
1000 
1001 static void tlb_remove_table_rcu(struct rcu_head *head)
1002 {
1003 	struct mmu_table_batch *batch;
1004 	int i;
1005 
1006 	batch = container_of(head, struct mmu_table_batch, rcu);
1007 
1008 	for (i = 0; i < batch->nr; i++)
1009 		__tlb_remove_table(batch->tables[i]);
1010 
1011 	free_page((unsigned long)batch);
1012 }
1013 
1014 void tlb_table_flush(struct mmu_gather *tlb)
1015 {
1016 	struct mmu_table_batch **batch = &tlb->batch;
1017 
1018 	if (*batch) {
1019 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1020 		*batch = NULL;
1021 	}
1022 }
1023 
1024 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1025 {
1026 	struct mmu_table_batch **batch = &tlb->batch;
1027 
1028 	tlb->mm->context.flush_mm = 1;
1029 	if (*batch == NULL) {
1030 		*batch = (struct mmu_table_batch *)
1031 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1032 		if (*batch == NULL) {
1033 			__tlb_flush_mm_lazy(tlb->mm);
1034 			tlb_remove_table_one(table);
1035 			return;
1036 		}
1037 		(*batch)->nr = 0;
1038 	}
1039 	(*batch)->tables[(*batch)->nr++] = table;
1040 	if ((*batch)->nr == MAX_TABLE_BATCH)
1041 		tlb_flush_mmu(tlb);
1042 }
1043 
1044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1045 static inline void thp_split_vma(struct vm_area_struct *vma)
1046 {
1047 	unsigned long addr;
1048 
1049 	for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1050 		follow_page(vma, addr, FOLL_SPLIT);
1051 }
1052 
1053 static inline void thp_split_mm(struct mm_struct *mm)
1054 {
1055 	struct vm_area_struct *vma;
1056 
1057 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1058 		thp_split_vma(vma);
1059 		vma->vm_flags &= ~VM_HUGEPAGE;
1060 		vma->vm_flags |= VM_NOHUGEPAGE;
1061 	}
1062 	mm->def_flags |= VM_NOHUGEPAGE;
1063 }
1064 #else
1065 static inline void thp_split_mm(struct mm_struct *mm)
1066 {
1067 }
1068 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1069 
1070 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1071 				struct mm_struct *mm, pud_t *pud,
1072 				unsigned long addr, unsigned long end)
1073 {
1074 	unsigned long next, *table, *new;
1075 	struct page *page;
1076 	pmd_t *pmd;
1077 
1078 	pmd = pmd_offset(pud, addr);
1079 	do {
1080 		next = pmd_addr_end(addr, end);
1081 again:
1082 		if (pmd_none_or_clear_bad(pmd))
1083 			continue;
1084 		table = (unsigned long *) pmd_deref(*pmd);
1085 		page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1086 		if (page_table_with_pgste(page))
1087 			continue;
1088 		/* Allocate new page table with pgstes */
1089 		new = page_table_alloc_pgste(mm, addr);
1090 		if (!new) {
1091 			mm->context.has_pgste = 0;
1092 			continue;
1093 		}
1094 		spin_lock(&mm->page_table_lock);
1095 		if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1096 			/* Nuke pmd entry pointing to the "short" page table */
1097 			pmdp_flush_lazy(mm, addr, pmd);
1098 			pmd_clear(pmd);
1099 			/* Copy ptes from old table to new table */
1100 			memcpy(new, table, PAGE_SIZE/2);
1101 			clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1102 			/* Establish new table */
1103 			pmd_populate(mm, pmd, (pte_t *) new);
1104 			/* Free old table with rcu, there might be a walker! */
1105 			page_table_free_rcu(tlb, table);
1106 			new = NULL;
1107 		}
1108 		spin_unlock(&mm->page_table_lock);
1109 		if (new) {
1110 			page_table_free_pgste(new);
1111 			goto again;
1112 		}
1113 	} while (pmd++, addr = next, addr != end);
1114 
1115 	return addr;
1116 }
1117 
1118 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1119 				   struct mm_struct *mm, pgd_t *pgd,
1120 				   unsigned long addr, unsigned long end)
1121 {
1122 	unsigned long next;
1123 	pud_t *pud;
1124 
1125 	pud = pud_offset(pgd, addr);
1126 	do {
1127 		next = pud_addr_end(addr, end);
1128 		if (pud_none_or_clear_bad(pud))
1129 			continue;
1130 		next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1131 	} while (pud++, addr = next, addr != end);
1132 
1133 	return addr;
1134 }
1135 
1136 static void page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1137 			       unsigned long addr, unsigned long end)
1138 {
1139 	unsigned long next;
1140 	pgd_t *pgd;
1141 
1142 	pgd = pgd_offset(mm, addr);
1143 	do {
1144 		next = pgd_addr_end(addr, end);
1145 		if (pgd_none_or_clear_bad(pgd))
1146 			continue;
1147 		next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1148 	} while (pgd++, addr = next, addr != end);
1149 }
1150 
1151 /*
1152  * switch on pgstes for its userspace process (for kvm)
1153  */
1154 int s390_enable_sie(void)
1155 {
1156 	struct task_struct *tsk = current;
1157 	struct mm_struct *mm = tsk->mm;
1158 	struct mmu_gather tlb;
1159 
1160 	/* Do we have switched amode? If no, we cannot do sie */
1161 	if (s390_user_mode == HOME_SPACE_MODE)
1162 		return -EINVAL;
1163 
1164 	/* Do we have pgstes? if yes, we are done */
1165 	if (mm_has_pgste(tsk->mm))
1166 		return 0;
1167 
1168 	down_write(&mm->mmap_sem);
1169 	/* split thp mappings and disable thp for future mappings */
1170 	thp_split_mm(mm);
1171 	/* Reallocate the page tables with pgstes */
1172 	mm->context.has_pgste = 1;
1173 	tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1174 	page_table_realloc(&tlb, mm, 0, TASK_SIZE);
1175 	tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1176 	up_write(&mm->mmap_sem);
1177 	return mm->context.has_pgste ? 0 : -ENOMEM;
1178 }
1179 EXPORT_SYMBOL_GPL(s390_enable_sie);
1180 
1181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1182 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1183 			   pmd_t *pmdp)
1184 {
1185 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1186 	/* No need to flush TLB
1187 	 * On s390 reference bits are in storage key and never in TLB */
1188 	return pmdp_test_and_clear_young(vma, address, pmdp);
1189 }
1190 
1191 int pmdp_set_access_flags(struct vm_area_struct *vma,
1192 			  unsigned long address, pmd_t *pmdp,
1193 			  pmd_t entry, int dirty)
1194 {
1195 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1196 
1197 	if (pmd_same(*pmdp, entry))
1198 		return 0;
1199 	pmdp_invalidate(vma, address, pmdp);
1200 	set_pmd_at(vma->vm_mm, address, pmdp, entry);
1201 	return 1;
1202 }
1203 
1204 static void pmdp_splitting_flush_sync(void *arg)
1205 {
1206 	/* Simply deliver the interrupt */
1207 }
1208 
1209 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1210 			  pmd_t *pmdp)
1211 {
1212 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1213 	if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1214 			      (unsigned long *) pmdp)) {
1215 		/* need to serialize against gup-fast (IRQ disabled) */
1216 		smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1217 	}
1218 }
1219 
1220 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1221 				pgtable_t pgtable)
1222 {
1223 	struct list_head *lh = (struct list_head *) pgtable;
1224 
1225 	assert_spin_locked(&mm->page_table_lock);
1226 
1227 	/* FIFO */
1228 	if (!mm->pmd_huge_pte)
1229 		INIT_LIST_HEAD(lh);
1230 	else
1231 		list_add(lh, (struct list_head *) mm->pmd_huge_pte);
1232 	mm->pmd_huge_pte = pgtable;
1233 }
1234 
1235 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1236 {
1237 	struct list_head *lh;
1238 	pgtable_t pgtable;
1239 	pte_t *ptep;
1240 
1241 	assert_spin_locked(&mm->page_table_lock);
1242 
1243 	/* FIFO */
1244 	pgtable = mm->pmd_huge_pte;
1245 	lh = (struct list_head *) pgtable;
1246 	if (list_empty(lh))
1247 		mm->pmd_huge_pte = NULL;
1248 	else {
1249 		mm->pmd_huge_pte = (pgtable_t) lh->next;
1250 		list_del(lh);
1251 	}
1252 	ptep = (pte_t *) pgtable;
1253 	pte_val(*ptep) = _PAGE_INVALID;
1254 	ptep++;
1255 	pte_val(*ptep) = _PAGE_INVALID;
1256 	return pgtable;
1257 }
1258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1259