1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Page table allocation functions 4 * 5 * Copyright IBM Corp. 2016 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 */ 8 9 #include <linux/sysctl.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <asm/mmu_context.h> 13 #include <asm/pgalloc.h> 14 #include <asm/gmap.h> 15 #include <asm/tlb.h> 16 #include <asm/tlbflush.h> 17 18 #ifdef CONFIG_PGSTE 19 20 int page_table_allocate_pgste = 0; 21 EXPORT_SYMBOL(page_table_allocate_pgste); 22 23 static struct ctl_table page_table_sysctl[] = { 24 { 25 .procname = "allocate_pgste", 26 .data = &page_table_allocate_pgste, 27 .maxlen = sizeof(int), 28 .mode = S_IRUGO | S_IWUSR, 29 .proc_handler = proc_dointvec_minmax, 30 .extra1 = SYSCTL_ZERO, 31 .extra2 = SYSCTL_ONE, 32 }, 33 { } 34 }; 35 36 static int __init page_table_register_sysctl(void) 37 { 38 return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM; 39 } 40 __initcall(page_table_register_sysctl); 41 42 #endif /* CONFIG_PGSTE */ 43 44 unsigned long *crst_table_alloc(struct mm_struct *mm) 45 { 46 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER); 47 48 if (!ptdesc) 49 return NULL; 50 arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER); 51 return (unsigned long *) ptdesc_to_virt(ptdesc); 52 } 53 54 void crst_table_free(struct mm_struct *mm, unsigned long *table) 55 { 56 if (!table) 57 return; 58 pagetable_free(virt_to_ptdesc(table)); 59 } 60 61 static void __crst_table_upgrade(void *arg) 62 { 63 struct mm_struct *mm = arg; 64 65 /* change all active ASCEs to avoid the creation of new TLBs */ 66 if (current->active_mm == mm) { 67 S390_lowcore.user_asce = mm->context.asce; 68 __ctl_load(S390_lowcore.user_asce, 7, 7); 69 } 70 __tlb_flush_local(); 71 } 72 73 int crst_table_upgrade(struct mm_struct *mm, unsigned long end) 74 { 75 unsigned long *pgd = NULL, *p4d = NULL, *__pgd; 76 unsigned long asce_limit = mm->context.asce_limit; 77 78 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ 79 VM_BUG_ON(asce_limit < _REGION2_SIZE); 80 81 if (end <= asce_limit) 82 return 0; 83 84 if (asce_limit == _REGION2_SIZE) { 85 p4d = crst_table_alloc(mm); 86 if (unlikely(!p4d)) 87 goto err_p4d; 88 crst_table_init(p4d, _REGION2_ENTRY_EMPTY); 89 } 90 if (end > _REGION1_SIZE) { 91 pgd = crst_table_alloc(mm); 92 if (unlikely(!pgd)) 93 goto err_pgd; 94 crst_table_init(pgd, _REGION1_ENTRY_EMPTY); 95 } 96 97 spin_lock_bh(&mm->page_table_lock); 98 99 /* 100 * This routine gets called with mmap_lock lock held and there is 101 * no reason to optimize for the case of otherwise. However, if 102 * that would ever change, the below check will let us know. 103 */ 104 VM_BUG_ON(asce_limit != mm->context.asce_limit); 105 106 if (p4d) { 107 __pgd = (unsigned long *) mm->pgd; 108 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); 109 mm->pgd = (pgd_t *) p4d; 110 mm->context.asce_limit = _REGION1_SIZE; 111 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 112 _ASCE_USER_BITS | _ASCE_TYPE_REGION2; 113 mm_inc_nr_puds(mm); 114 } 115 if (pgd) { 116 __pgd = (unsigned long *) mm->pgd; 117 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); 118 mm->pgd = (pgd_t *) pgd; 119 mm->context.asce_limit = TASK_SIZE_MAX; 120 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 121 _ASCE_USER_BITS | _ASCE_TYPE_REGION1; 122 } 123 124 spin_unlock_bh(&mm->page_table_lock); 125 126 on_each_cpu(__crst_table_upgrade, mm, 0); 127 128 return 0; 129 130 err_pgd: 131 crst_table_free(mm, p4d); 132 err_p4d: 133 return -ENOMEM; 134 } 135 136 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) 137 { 138 return atomic_fetch_xor(bits, v) ^ bits; 139 } 140 141 #ifdef CONFIG_PGSTE 142 143 struct page *page_table_alloc_pgste(struct mm_struct *mm) 144 { 145 struct ptdesc *ptdesc; 146 u64 *table; 147 148 ptdesc = pagetable_alloc(GFP_KERNEL, 0); 149 if (ptdesc) { 150 table = (u64 *)ptdesc_to_virt(ptdesc); 151 arch_set_page_dat(virt_to_page(table), 0); 152 memset64(table, _PAGE_INVALID, PTRS_PER_PTE); 153 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 154 } 155 return ptdesc_page(ptdesc); 156 } 157 158 void page_table_free_pgste(struct page *page) 159 { 160 pagetable_free(page_ptdesc(page)); 161 } 162 163 #endif /* CONFIG_PGSTE */ 164 165 /* 166 * A 2KB-pgtable is either upper or lower half of a normal page. 167 * The second half of the page may be unused or used as another 168 * 2KB-pgtable. 169 * 170 * Whenever possible the parent page for a new 2KB-pgtable is picked 171 * from the list of partially allocated pages mm_context_t::pgtable_list. 172 * In case the list is empty a new parent page is allocated and added to 173 * the list. 174 * 175 * When a parent page gets fully allocated it contains 2KB-pgtables in both 176 * upper and lower halves and is removed from mm_context_t::pgtable_list. 177 * 178 * When 2KB-pgtable is freed from to fully allocated parent page that 179 * page turns partially allocated and added to mm_context_t::pgtable_list. 180 * 181 * If 2KB-pgtable is freed from the partially allocated parent page that 182 * page turns unused and gets removed from mm_context_t::pgtable_list. 183 * Furthermore, the unused parent page is released. 184 * 185 * As follows from the above, no unallocated or fully allocated parent 186 * pages are contained in mm_context_t::pgtable_list. 187 * 188 * The upper byte (bits 24-31) of the parent page _refcount is used 189 * for tracking contained 2KB-pgtables and has the following format: 190 * 191 * PP AA 192 * 01234567 upper byte (bits 24-31) of struct page::_refcount 193 * || || 194 * || |+--- upper 2KB-pgtable is allocated 195 * || +---- lower 2KB-pgtable is allocated 196 * |+------- upper 2KB-pgtable is pending for removal 197 * +-------- lower 2KB-pgtable is pending for removal 198 * 199 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why 200 * using _refcount is possible). 201 * 202 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. 203 * The parent page is either: 204 * - added to mm_context_t::pgtable_list in case the second half of the 205 * parent page is still unallocated; 206 * - removed from mm_context_t::pgtable_list in case both hales of the 207 * parent page are allocated; 208 * These operations are protected with mm_context_t::lock. 209 * 210 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 211 * and the corresponding PP bit is set to 1 in a single atomic operation. 212 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually 213 * exclusive and may never be both set to 1! 214 * The parent page is either: 215 * - added to mm_context_t::pgtable_list in case the second half of the 216 * parent page is still allocated; 217 * - removed from mm_context_t::pgtable_list in case the second half of 218 * the parent page is unallocated; 219 * These operations are protected with mm_context_t::lock. 220 * 221 * It is important to understand that mm_context_t::lock only protects 222 * mm_context_t::pgtable_list and AA bits, but not the parent page itself 223 * and PP bits. 224 * 225 * Releasing the parent page happens whenever the PP bit turns from 1 to 0, 226 * while both AA bits and the second PP bit are already unset. Then the 227 * parent page does not contain any 2KB-pgtable fragment anymore, and it has 228 * also been removed from mm_context_t::pgtable_list. It is safe to release 229 * the page therefore. 230 * 231 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the 232 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable 233 * while the PP bits are never used, nor such a page is added to or removed 234 * from mm_context_t::pgtable_list. 235 * 236 * pte_free_defer() overrides those rules: it takes the page off pgtable_list, 237 * and prevents both 2K fragments from being reused. pte_free_defer() has to 238 * guarantee that its pgtable cannot be reused before the RCU grace period 239 * has elapsed (which page_table_free_rcu() does not actually guarantee). 240 * But for simplicity, because page->rcu_head overlays page->lru, and because 241 * the RCU callback might not be called before the mm_context_t has been freed, 242 * pte_free_defer() in this implementation prevents both fragments from being 243 * reused, and delays making the call to RCU until both fragments are freed. 244 */ 245 unsigned long *page_table_alloc(struct mm_struct *mm) 246 { 247 unsigned long *table; 248 struct ptdesc *ptdesc; 249 unsigned int mask, bit; 250 251 /* Try to get a fragment of a 4K page as a 2K page table */ 252 if (!mm_alloc_pgste(mm)) { 253 table = NULL; 254 spin_lock_bh(&mm->context.lock); 255 if (!list_empty(&mm->context.pgtable_list)) { 256 ptdesc = list_first_entry(&mm->context.pgtable_list, 257 struct ptdesc, pt_list); 258 mask = atomic_read(&ptdesc->_refcount) >> 24; 259 /* 260 * The pending removal bits must also be checked. 261 * Failure to do so might lead to an impossible 262 * value of (i.e 0x13 or 0x23) written to _refcount. 263 * Such values violate the assumption that pending and 264 * allocation bits are mutually exclusive, and the rest 265 * of the code unrails as result. That could lead to 266 * a whole bunch of races and corruptions. 267 */ 268 mask = (mask | (mask >> 4)) & 0x03U; 269 if (mask != 0x03U) { 270 table = (unsigned long *) ptdesc_to_virt(ptdesc); 271 bit = mask & 1; /* =1 -> second 2K */ 272 if (bit) 273 table += PTRS_PER_PTE; 274 atomic_xor_bits(&ptdesc->_refcount, 275 0x01U << (bit + 24)); 276 list_del_init(&ptdesc->pt_list); 277 } 278 } 279 spin_unlock_bh(&mm->context.lock); 280 if (table) 281 return table; 282 } 283 /* Allocate a fresh page */ 284 ptdesc = pagetable_alloc(GFP_KERNEL, 0); 285 if (!ptdesc) 286 return NULL; 287 if (!pagetable_pte_ctor(ptdesc)) { 288 pagetable_free(ptdesc); 289 return NULL; 290 } 291 arch_set_page_dat(ptdesc_page(ptdesc), 0); 292 /* Initialize page table */ 293 table = (unsigned long *) ptdesc_to_virt(ptdesc); 294 if (mm_alloc_pgste(mm)) { 295 /* Return 4K page table with PGSTEs */ 296 INIT_LIST_HEAD(&ptdesc->pt_list); 297 atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 298 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 299 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 300 } else { 301 /* Return the first 2K fragment of the page */ 302 atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24); 303 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); 304 spin_lock_bh(&mm->context.lock); 305 list_add(&ptdesc->pt_list, &mm->context.pgtable_list); 306 spin_unlock_bh(&mm->context.lock); 307 } 308 return table; 309 } 310 311 static void page_table_release_check(struct page *page, void *table, 312 unsigned int half, unsigned int mask) 313 { 314 char msg[128]; 315 316 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 317 return; 318 if (!mask && list_empty(&page->lru)) 319 return; 320 snprintf(msg, sizeof(msg), 321 "Invalid pgtable %p release half 0x%02x mask 0x%02x", 322 table, half, mask); 323 dump_page(page, msg); 324 } 325 326 static void pte_free_now(struct rcu_head *head) 327 { 328 struct ptdesc *ptdesc; 329 330 ptdesc = container_of(head, struct ptdesc, pt_rcu_head); 331 pagetable_pte_dtor(ptdesc); 332 pagetable_free(ptdesc); 333 } 334 335 void page_table_free(struct mm_struct *mm, unsigned long *table) 336 { 337 unsigned int mask, bit, half; 338 struct ptdesc *ptdesc = virt_to_ptdesc(table); 339 340 if (!mm_alloc_pgste(mm)) { 341 /* Free 2K page table fragment of a 4K page */ 342 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); 343 spin_lock_bh(&mm->context.lock); 344 /* 345 * Mark the page for delayed release. The actual release 346 * will happen outside of the critical section from this 347 * function or from __tlb_remove_table() 348 */ 349 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); 350 mask >>= 24; 351 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { 352 /* 353 * Other half is allocated, and neither half has had 354 * its free deferred: add page to head of list, to make 355 * this freed half available for immediate reuse. 356 */ 357 list_add(&ptdesc->pt_list, &mm->context.pgtable_list); 358 } else { 359 /* If page is on list, now remove it. */ 360 list_del_init(&ptdesc->pt_list); 361 } 362 spin_unlock_bh(&mm->context.lock); 363 mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24)); 364 mask >>= 24; 365 if (mask != 0x00U) 366 return; 367 half = 0x01U << bit; 368 } else { 369 half = 0x03U; 370 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 371 mask >>= 24; 372 } 373 374 page_table_release_check(ptdesc_page(ptdesc), table, half, mask); 375 if (folio_test_clear_active(ptdesc_folio(ptdesc))) 376 call_rcu(&ptdesc->pt_rcu_head, pte_free_now); 377 else 378 pte_free_now(&ptdesc->pt_rcu_head); 379 } 380 381 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, 382 unsigned long vmaddr) 383 { 384 struct mm_struct *mm; 385 unsigned int bit, mask; 386 struct ptdesc *ptdesc = virt_to_ptdesc(table); 387 388 mm = tlb->mm; 389 if (mm_alloc_pgste(mm)) { 390 gmap_unlink(mm, table, vmaddr); 391 table = (unsigned long *) ((unsigned long)table | 0x03U); 392 tlb_remove_ptdesc(tlb, table); 393 return; 394 } 395 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); 396 spin_lock_bh(&mm->context.lock); 397 /* 398 * Mark the page for delayed release. The actual release will happen 399 * outside of the critical section from __tlb_remove_table() or from 400 * page_table_free() 401 */ 402 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); 403 mask >>= 24; 404 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { 405 /* 406 * Other half is allocated, and neither half has had 407 * its free deferred: add page to end of list, to make 408 * this freed half available for reuse once its pending 409 * bit has been cleared by __tlb_remove_table(). 410 */ 411 list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list); 412 } else { 413 /* If page is on list, now remove it. */ 414 list_del_init(&ptdesc->pt_list); 415 } 416 spin_unlock_bh(&mm->context.lock); 417 table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); 418 tlb_remove_table(tlb, table); 419 } 420 421 void __tlb_remove_table(void *_table) 422 { 423 unsigned int mask = (unsigned long) _table & 0x03U, half = mask; 424 void *table = (void *)((unsigned long) _table ^ mask); 425 struct ptdesc *ptdesc = virt_to_ptdesc(table); 426 427 switch (half) { 428 case 0x00U: /* pmd, pud, or p4d */ 429 pagetable_free(ptdesc); 430 return; 431 case 0x01U: /* lower 2K of a 4K page table */ 432 case 0x02U: /* higher 2K of a 4K page table */ 433 mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24)); 434 mask >>= 24; 435 if (mask != 0x00U) 436 return; 437 break; 438 case 0x03U: /* 4K page table with pgstes */ 439 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 440 mask >>= 24; 441 break; 442 } 443 444 page_table_release_check(ptdesc_page(ptdesc), table, half, mask); 445 if (folio_test_clear_active(ptdesc_folio(ptdesc))) 446 call_rcu(&ptdesc->pt_rcu_head, pte_free_now); 447 else 448 pte_free_now(&ptdesc->pt_rcu_head); 449 } 450 451 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 452 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 453 { 454 struct page *page; 455 456 page = virt_to_page(pgtable); 457 SetPageActive(page); 458 page_table_free(mm, (unsigned long *)pgtable); 459 /* 460 * page_table_free() does not do the pgste gmap_unlink() which 461 * page_table_free_rcu() does: warn us if pgste ever reaches here. 462 */ 463 WARN_ON_ONCE(mm_has_pgste(mm)); 464 } 465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 466 467 /* 468 * Base infrastructure required to generate basic asces, region, segment, 469 * and page tables that do not make use of enhanced features like EDAT1. 470 */ 471 472 static struct kmem_cache *base_pgt_cache; 473 474 static unsigned long *base_pgt_alloc(void) 475 { 476 unsigned long *table; 477 478 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); 479 if (table) 480 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 481 return table; 482 } 483 484 static void base_pgt_free(unsigned long *table) 485 { 486 kmem_cache_free(base_pgt_cache, table); 487 } 488 489 static unsigned long *base_crst_alloc(unsigned long val) 490 { 491 unsigned long *table; 492 struct ptdesc *ptdesc; 493 494 ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER); 495 if (!ptdesc) 496 return NULL; 497 table = ptdesc_address(ptdesc); 498 499 crst_table_init(table, val); 500 return table; 501 } 502 503 static void base_crst_free(unsigned long *table) 504 { 505 if (!table) 506 return; 507 pagetable_free(virt_to_ptdesc(table)); 508 } 509 510 #define BASE_ADDR_END_FUNC(NAME, SIZE) \ 511 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ 512 unsigned long end) \ 513 { \ 514 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ 515 \ 516 return (next - 1) < (end - 1) ? next : end; \ 517 } 518 519 BASE_ADDR_END_FUNC(page, _PAGE_SIZE) 520 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) 521 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) 522 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) 523 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) 524 525 static inline unsigned long base_lra(unsigned long address) 526 { 527 unsigned long real; 528 529 asm volatile( 530 " lra %0,0(%1)\n" 531 : "=d" (real) : "a" (address) : "cc"); 532 return real; 533 } 534 535 static int base_page_walk(unsigned long *origin, unsigned long addr, 536 unsigned long end, int alloc) 537 { 538 unsigned long *pte, next; 539 540 if (!alloc) 541 return 0; 542 pte = origin; 543 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; 544 do { 545 next = base_page_addr_end(addr, end); 546 *pte = base_lra(addr); 547 } while (pte++, addr = next, addr < end); 548 return 0; 549 } 550 551 static int base_segment_walk(unsigned long *origin, unsigned long addr, 552 unsigned long end, int alloc) 553 { 554 unsigned long *ste, next, *table; 555 int rc; 556 557 ste = origin; 558 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 559 do { 560 next = base_segment_addr_end(addr, end); 561 if (*ste & _SEGMENT_ENTRY_INVALID) { 562 if (!alloc) 563 continue; 564 table = base_pgt_alloc(); 565 if (!table) 566 return -ENOMEM; 567 *ste = __pa(table) | _SEGMENT_ENTRY; 568 } 569 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); 570 rc = base_page_walk(table, addr, next, alloc); 571 if (rc) 572 return rc; 573 if (!alloc) 574 base_pgt_free(table); 575 cond_resched(); 576 } while (ste++, addr = next, addr < end); 577 return 0; 578 } 579 580 static int base_region3_walk(unsigned long *origin, unsigned long addr, 581 unsigned long end, int alloc) 582 { 583 unsigned long *rtte, next, *table; 584 int rc; 585 586 rtte = origin; 587 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; 588 do { 589 next = base_region3_addr_end(addr, end); 590 if (*rtte & _REGION_ENTRY_INVALID) { 591 if (!alloc) 592 continue; 593 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 594 if (!table) 595 return -ENOMEM; 596 *rtte = __pa(table) | _REGION3_ENTRY; 597 } 598 table = __va(*rtte & _REGION_ENTRY_ORIGIN); 599 rc = base_segment_walk(table, addr, next, alloc); 600 if (rc) 601 return rc; 602 if (!alloc) 603 base_crst_free(table); 604 } while (rtte++, addr = next, addr < end); 605 return 0; 606 } 607 608 static int base_region2_walk(unsigned long *origin, unsigned long addr, 609 unsigned long end, int alloc) 610 { 611 unsigned long *rste, next, *table; 612 int rc; 613 614 rste = origin; 615 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; 616 do { 617 next = base_region2_addr_end(addr, end); 618 if (*rste & _REGION_ENTRY_INVALID) { 619 if (!alloc) 620 continue; 621 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 622 if (!table) 623 return -ENOMEM; 624 *rste = __pa(table) | _REGION2_ENTRY; 625 } 626 table = __va(*rste & _REGION_ENTRY_ORIGIN); 627 rc = base_region3_walk(table, addr, next, alloc); 628 if (rc) 629 return rc; 630 if (!alloc) 631 base_crst_free(table); 632 } while (rste++, addr = next, addr < end); 633 return 0; 634 } 635 636 static int base_region1_walk(unsigned long *origin, unsigned long addr, 637 unsigned long end, int alloc) 638 { 639 unsigned long *rfte, next, *table; 640 int rc; 641 642 rfte = origin; 643 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; 644 do { 645 next = base_region1_addr_end(addr, end); 646 if (*rfte & _REGION_ENTRY_INVALID) { 647 if (!alloc) 648 continue; 649 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 650 if (!table) 651 return -ENOMEM; 652 *rfte = __pa(table) | _REGION1_ENTRY; 653 } 654 table = __va(*rfte & _REGION_ENTRY_ORIGIN); 655 rc = base_region2_walk(table, addr, next, alloc); 656 if (rc) 657 return rc; 658 if (!alloc) 659 base_crst_free(table); 660 } while (rfte++, addr = next, addr < end); 661 return 0; 662 } 663 664 /** 665 * base_asce_free - free asce and tables returned from base_asce_alloc() 666 * @asce: asce to be freed 667 * 668 * Frees all region, segment, and page tables that were allocated with a 669 * corresponding base_asce_alloc() call. 670 */ 671 void base_asce_free(unsigned long asce) 672 { 673 unsigned long *table = __va(asce & _ASCE_ORIGIN); 674 675 if (!asce) 676 return; 677 switch (asce & _ASCE_TYPE_MASK) { 678 case _ASCE_TYPE_SEGMENT: 679 base_segment_walk(table, 0, _REGION3_SIZE, 0); 680 break; 681 case _ASCE_TYPE_REGION3: 682 base_region3_walk(table, 0, _REGION2_SIZE, 0); 683 break; 684 case _ASCE_TYPE_REGION2: 685 base_region2_walk(table, 0, _REGION1_SIZE, 0); 686 break; 687 case _ASCE_TYPE_REGION1: 688 base_region1_walk(table, 0, TASK_SIZE_MAX, 0); 689 break; 690 } 691 base_crst_free(table); 692 } 693 694 static int base_pgt_cache_init(void) 695 { 696 static DEFINE_MUTEX(base_pgt_cache_mutex); 697 unsigned long sz = _PAGE_TABLE_SIZE; 698 699 if (base_pgt_cache) 700 return 0; 701 mutex_lock(&base_pgt_cache_mutex); 702 if (!base_pgt_cache) 703 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); 704 mutex_unlock(&base_pgt_cache_mutex); 705 return base_pgt_cache ? 0 : -ENOMEM; 706 } 707 708 /** 709 * base_asce_alloc - create kernel mapping without enhanced DAT features 710 * @addr: virtual start address of kernel mapping 711 * @num_pages: number of consecutive pages 712 * 713 * Generate an asce, including all required region, segment and page tables, 714 * that can be used to access the virtual kernel mapping. The difference is 715 * that the returned asce does not make use of any enhanced DAT features like 716 * e.g. large pages. This is required for some I/O functions that pass an 717 * asce, like e.g. some service call requests. 718 * 719 * Note: the returned asce may NEVER be attached to any cpu. It may only be 720 * used for I/O requests. tlb entries that might result because the 721 * asce was attached to a cpu won't be cleared. 722 */ 723 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) 724 { 725 unsigned long asce, *table, end; 726 int rc; 727 728 if (base_pgt_cache_init()) 729 return 0; 730 end = addr + num_pages * PAGE_SIZE; 731 if (end <= _REGION3_SIZE) { 732 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 733 if (!table) 734 return 0; 735 rc = base_segment_walk(table, addr, end, 1); 736 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; 737 } else if (end <= _REGION2_SIZE) { 738 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 739 if (!table) 740 return 0; 741 rc = base_region3_walk(table, addr, end, 1); 742 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; 743 } else if (end <= _REGION1_SIZE) { 744 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 745 if (!table) 746 return 0; 747 rc = base_region2_walk(table, addr, end, 1); 748 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; 749 } else { 750 table = base_crst_alloc(_REGION1_ENTRY_EMPTY); 751 if (!table) 752 return 0; 753 rc = base_region1_walk(table, addr, end, 1); 754 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; 755 } 756 if (rc) { 757 base_asce_free(asce); 758 asce = 0; 759 } 760 return asce; 761 } 762