1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Page table allocation functions 4 * 5 * Copyright IBM Corp. 2016 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 */ 8 9 #include <linux/sysctl.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <asm/mmu_context.h> 13 #include <asm/pgalloc.h> 14 #include <asm/gmap.h> 15 #include <asm/tlb.h> 16 #include <asm/tlbflush.h> 17 18 #ifdef CONFIG_PGSTE 19 20 int page_table_allocate_pgste = 0; 21 EXPORT_SYMBOL(page_table_allocate_pgste); 22 23 static struct ctl_table page_table_sysctl[] = { 24 { 25 .procname = "allocate_pgste", 26 .data = &page_table_allocate_pgste, 27 .maxlen = sizeof(int), 28 .mode = S_IRUGO | S_IWUSR, 29 .proc_handler = proc_dointvec_minmax, 30 .extra1 = SYSCTL_ZERO, 31 .extra2 = SYSCTL_ONE, 32 }, 33 { } 34 }; 35 36 static int __init page_table_register_sysctl(void) 37 { 38 return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM; 39 } 40 __initcall(page_table_register_sysctl); 41 42 #endif /* CONFIG_PGSTE */ 43 44 unsigned long *crst_table_alloc(struct mm_struct *mm) 45 { 46 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER); 47 48 if (!ptdesc) 49 return NULL; 50 arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER); 51 return (unsigned long *) ptdesc_to_virt(ptdesc); 52 } 53 54 void crst_table_free(struct mm_struct *mm, unsigned long *table) 55 { 56 pagetable_free(virt_to_ptdesc(table)); 57 } 58 59 static void __crst_table_upgrade(void *arg) 60 { 61 struct mm_struct *mm = arg; 62 63 /* change all active ASCEs to avoid the creation of new TLBs */ 64 if (current->active_mm == mm) { 65 S390_lowcore.user_asce = mm->context.asce; 66 __ctl_load(S390_lowcore.user_asce, 7, 7); 67 } 68 __tlb_flush_local(); 69 } 70 71 int crst_table_upgrade(struct mm_struct *mm, unsigned long end) 72 { 73 unsigned long *pgd = NULL, *p4d = NULL, *__pgd; 74 unsigned long asce_limit = mm->context.asce_limit; 75 76 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ 77 VM_BUG_ON(asce_limit < _REGION2_SIZE); 78 79 if (end <= asce_limit) 80 return 0; 81 82 if (asce_limit == _REGION2_SIZE) { 83 p4d = crst_table_alloc(mm); 84 if (unlikely(!p4d)) 85 goto err_p4d; 86 crst_table_init(p4d, _REGION2_ENTRY_EMPTY); 87 } 88 if (end > _REGION1_SIZE) { 89 pgd = crst_table_alloc(mm); 90 if (unlikely(!pgd)) 91 goto err_pgd; 92 crst_table_init(pgd, _REGION1_ENTRY_EMPTY); 93 } 94 95 spin_lock_bh(&mm->page_table_lock); 96 97 /* 98 * This routine gets called with mmap_lock lock held and there is 99 * no reason to optimize for the case of otherwise. However, if 100 * that would ever change, the below check will let us know. 101 */ 102 VM_BUG_ON(asce_limit != mm->context.asce_limit); 103 104 if (p4d) { 105 __pgd = (unsigned long *) mm->pgd; 106 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); 107 mm->pgd = (pgd_t *) p4d; 108 mm->context.asce_limit = _REGION1_SIZE; 109 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 110 _ASCE_USER_BITS | _ASCE_TYPE_REGION2; 111 mm_inc_nr_puds(mm); 112 } 113 if (pgd) { 114 __pgd = (unsigned long *) mm->pgd; 115 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); 116 mm->pgd = (pgd_t *) pgd; 117 mm->context.asce_limit = TASK_SIZE_MAX; 118 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 119 _ASCE_USER_BITS | _ASCE_TYPE_REGION1; 120 } 121 122 spin_unlock_bh(&mm->page_table_lock); 123 124 on_each_cpu(__crst_table_upgrade, mm, 0); 125 126 return 0; 127 128 err_pgd: 129 crst_table_free(mm, p4d); 130 err_p4d: 131 return -ENOMEM; 132 } 133 134 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) 135 { 136 return atomic_fetch_xor(bits, v) ^ bits; 137 } 138 139 #ifdef CONFIG_PGSTE 140 141 struct page *page_table_alloc_pgste(struct mm_struct *mm) 142 { 143 struct ptdesc *ptdesc; 144 u64 *table; 145 146 ptdesc = pagetable_alloc(GFP_KERNEL, 0); 147 if (ptdesc) { 148 table = (u64 *)ptdesc_to_virt(ptdesc); 149 arch_set_page_dat(virt_to_page(table), 0); 150 memset64(table, _PAGE_INVALID, PTRS_PER_PTE); 151 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 152 } 153 return ptdesc_page(ptdesc); 154 } 155 156 void page_table_free_pgste(struct page *page) 157 { 158 pagetable_free(page_ptdesc(page)); 159 } 160 161 #endif /* CONFIG_PGSTE */ 162 163 /* 164 * A 2KB-pgtable is either upper or lower half of a normal page. 165 * The second half of the page may be unused or used as another 166 * 2KB-pgtable. 167 * 168 * Whenever possible the parent page for a new 2KB-pgtable is picked 169 * from the list of partially allocated pages mm_context_t::pgtable_list. 170 * In case the list is empty a new parent page is allocated and added to 171 * the list. 172 * 173 * When a parent page gets fully allocated it contains 2KB-pgtables in both 174 * upper and lower halves and is removed from mm_context_t::pgtable_list. 175 * 176 * When 2KB-pgtable is freed from to fully allocated parent page that 177 * page turns partially allocated and added to mm_context_t::pgtable_list. 178 * 179 * If 2KB-pgtable is freed from the partially allocated parent page that 180 * page turns unused and gets removed from mm_context_t::pgtable_list. 181 * Furthermore, the unused parent page is released. 182 * 183 * As follows from the above, no unallocated or fully allocated parent 184 * pages are contained in mm_context_t::pgtable_list. 185 * 186 * The upper byte (bits 24-31) of the parent page _refcount is used 187 * for tracking contained 2KB-pgtables and has the following format: 188 * 189 * PP AA 190 * 01234567 upper byte (bits 24-31) of struct page::_refcount 191 * || || 192 * || |+--- upper 2KB-pgtable is allocated 193 * || +---- lower 2KB-pgtable is allocated 194 * |+------- upper 2KB-pgtable is pending for removal 195 * +-------- lower 2KB-pgtable is pending for removal 196 * 197 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why 198 * using _refcount is possible). 199 * 200 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. 201 * The parent page is either: 202 * - added to mm_context_t::pgtable_list in case the second half of the 203 * parent page is still unallocated; 204 * - removed from mm_context_t::pgtable_list in case both hales of the 205 * parent page are allocated; 206 * These operations are protected with mm_context_t::lock. 207 * 208 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 209 * and the corresponding PP bit is set to 1 in a single atomic operation. 210 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually 211 * exclusive and may never be both set to 1! 212 * The parent page is either: 213 * - added to mm_context_t::pgtable_list in case the second half of the 214 * parent page is still allocated; 215 * - removed from mm_context_t::pgtable_list in case the second half of 216 * the parent page is unallocated; 217 * These operations are protected with mm_context_t::lock. 218 * 219 * It is important to understand that mm_context_t::lock only protects 220 * mm_context_t::pgtable_list and AA bits, but not the parent page itself 221 * and PP bits. 222 * 223 * Releasing the parent page happens whenever the PP bit turns from 1 to 0, 224 * while both AA bits and the second PP bit are already unset. Then the 225 * parent page does not contain any 2KB-pgtable fragment anymore, and it has 226 * also been removed from mm_context_t::pgtable_list. It is safe to release 227 * the page therefore. 228 * 229 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the 230 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable 231 * while the PP bits are never used, nor such a page is added to or removed 232 * from mm_context_t::pgtable_list. 233 * 234 * pte_free_defer() overrides those rules: it takes the page off pgtable_list, 235 * and prevents both 2K fragments from being reused. pte_free_defer() has to 236 * guarantee that its pgtable cannot be reused before the RCU grace period 237 * has elapsed (which page_table_free_rcu() does not actually guarantee). 238 * But for simplicity, because page->rcu_head overlays page->lru, and because 239 * the RCU callback might not be called before the mm_context_t has been freed, 240 * pte_free_defer() in this implementation prevents both fragments from being 241 * reused, and delays making the call to RCU until both fragments are freed. 242 */ 243 unsigned long *page_table_alloc(struct mm_struct *mm) 244 { 245 unsigned long *table; 246 struct ptdesc *ptdesc; 247 unsigned int mask, bit; 248 249 /* Try to get a fragment of a 4K page as a 2K page table */ 250 if (!mm_alloc_pgste(mm)) { 251 table = NULL; 252 spin_lock_bh(&mm->context.lock); 253 if (!list_empty(&mm->context.pgtable_list)) { 254 ptdesc = list_first_entry(&mm->context.pgtable_list, 255 struct ptdesc, pt_list); 256 mask = atomic_read(&ptdesc->_refcount) >> 24; 257 /* 258 * The pending removal bits must also be checked. 259 * Failure to do so might lead to an impossible 260 * value of (i.e 0x13 or 0x23) written to _refcount. 261 * Such values violate the assumption that pending and 262 * allocation bits are mutually exclusive, and the rest 263 * of the code unrails as result. That could lead to 264 * a whole bunch of races and corruptions. 265 */ 266 mask = (mask | (mask >> 4)) & 0x03U; 267 if (mask != 0x03U) { 268 table = (unsigned long *) ptdesc_to_virt(ptdesc); 269 bit = mask & 1; /* =1 -> second 2K */ 270 if (bit) 271 table += PTRS_PER_PTE; 272 atomic_xor_bits(&ptdesc->_refcount, 273 0x01U << (bit + 24)); 274 list_del_init(&ptdesc->pt_list); 275 } 276 } 277 spin_unlock_bh(&mm->context.lock); 278 if (table) 279 return table; 280 } 281 /* Allocate a fresh page */ 282 ptdesc = pagetable_alloc(GFP_KERNEL, 0); 283 if (!ptdesc) 284 return NULL; 285 if (!pagetable_pte_ctor(ptdesc)) { 286 pagetable_free(ptdesc); 287 return NULL; 288 } 289 arch_set_page_dat(ptdesc_page(ptdesc), 0); 290 /* Initialize page table */ 291 table = (unsigned long *) ptdesc_to_virt(ptdesc); 292 if (mm_alloc_pgste(mm)) { 293 /* Return 4K page table with PGSTEs */ 294 INIT_LIST_HEAD(&ptdesc->pt_list); 295 atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 296 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 297 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 298 } else { 299 /* Return the first 2K fragment of the page */ 300 atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24); 301 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); 302 spin_lock_bh(&mm->context.lock); 303 list_add(&ptdesc->pt_list, &mm->context.pgtable_list); 304 spin_unlock_bh(&mm->context.lock); 305 } 306 return table; 307 } 308 309 static void page_table_release_check(struct page *page, void *table, 310 unsigned int half, unsigned int mask) 311 { 312 char msg[128]; 313 314 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 315 return; 316 if (!mask && list_empty(&page->lru)) 317 return; 318 snprintf(msg, sizeof(msg), 319 "Invalid pgtable %p release half 0x%02x mask 0x%02x", 320 table, half, mask); 321 dump_page(page, msg); 322 } 323 324 static void pte_free_now(struct rcu_head *head) 325 { 326 struct ptdesc *ptdesc; 327 328 ptdesc = container_of(head, struct ptdesc, pt_rcu_head); 329 pagetable_pte_dtor(ptdesc); 330 pagetable_free(ptdesc); 331 } 332 333 void page_table_free(struct mm_struct *mm, unsigned long *table) 334 { 335 unsigned int mask, bit, half; 336 struct ptdesc *ptdesc = virt_to_ptdesc(table); 337 338 if (!mm_alloc_pgste(mm)) { 339 /* Free 2K page table fragment of a 4K page */ 340 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); 341 spin_lock_bh(&mm->context.lock); 342 /* 343 * Mark the page for delayed release. The actual release 344 * will happen outside of the critical section from this 345 * function or from __tlb_remove_table() 346 */ 347 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); 348 mask >>= 24; 349 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { 350 /* 351 * Other half is allocated, and neither half has had 352 * its free deferred: add page to head of list, to make 353 * this freed half available for immediate reuse. 354 */ 355 list_add(&ptdesc->pt_list, &mm->context.pgtable_list); 356 } else { 357 /* If page is on list, now remove it. */ 358 list_del_init(&ptdesc->pt_list); 359 } 360 spin_unlock_bh(&mm->context.lock); 361 mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24)); 362 mask >>= 24; 363 if (mask != 0x00U) 364 return; 365 half = 0x01U << bit; 366 } else { 367 half = 0x03U; 368 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 369 mask >>= 24; 370 } 371 372 page_table_release_check(ptdesc_page(ptdesc), table, half, mask); 373 if (folio_test_clear_active(ptdesc_folio(ptdesc))) 374 call_rcu(&ptdesc->pt_rcu_head, pte_free_now); 375 else 376 pte_free_now(&ptdesc->pt_rcu_head); 377 } 378 379 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, 380 unsigned long vmaddr) 381 { 382 struct mm_struct *mm; 383 unsigned int bit, mask; 384 struct ptdesc *ptdesc = virt_to_ptdesc(table); 385 386 mm = tlb->mm; 387 if (mm_alloc_pgste(mm)) { 388 gmap_unlink(mm, table, vmaddr); 389 table = (unsigned long *) ((unsigned long)table | 0x03U); 390 tlb_remove_ptdesc(tlb, table); 391 return; 392 } 393 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); 394 spin_lock_bh(&mm->context.lock); 395 /* 396 * Mark the page for delayed release. The actual release will happen 397 * outside of the critical section from __tlb_remove_table() or from 398 * page_table_free() 399 */ 400 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24)); 401 mask >>= 24; 402 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) { 403 /* 404 * Other half is allocated, and neither half has had 405 * its free deferred: add page to end of list, to make 406 * this freed half available for reuse once its pending 407 * bit has been cleared by __tlb_remove_table(). 408 */ 409 list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list); 410 } else { 411 /* If page is on list, now remove it. */ 412 list_del_init(&ptdesc->pt_list); 413 } 414 spin_unlock_bh(&mm->context.lock); 415 table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); 416 tlb_remove_table(tlb, table); 417 } 418 419 void __tlb_remove_table(void *_table) 420 { 421 unsigned int mask = (unsigned long) _table & 0x03U, half = mask; 422 void *table = (void *)((unsigned long) _table ^ mask); 423 struct ptdesc *ptdesc = virt_to_ptdesc(table); 424 425 switch (half) { 426 case 0x00U: /* pmd, pud, or p4d */ 427 pagetable_free(ptdesc); 428 return; 429 case 0x01U: /* lower 2K of a 4K page table */ 430 case 0x02U: /* higher 2K of a 4K page table */ 431 mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24)); 432 mask >>= 24; 433 if (mask != 0x00U) 434 return; 435 break; 436 case 0x03U: /* 4K page table with pgstes */ 437 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24); 438 mask >>= 24; 439 break; 440 } 441 442 page_table_release_check(ptdesc_page(ptdesc), table, half, mask); 443 if (folio_test_clear_active(ptdesc_folio(ptdesc))) 444 call_rcu(&ptdesc->pt_rcu_head, pte_free_now); 445 else 446 pte_free_now(&ptdesc->pt_rcu_head); 447 } 448 449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 450 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 451 { 452 struct page *page; 453 454 page = virt_to_page(pgtable); 455 SetPageActive(page); 456 page_table_free(mm, (unsigned long *)pgtable); 457 /* 458 * page_table_free() does not do the pgste gmap_unlink() which 459 * page_table_free_rcu() does: warn us if pgste ever reaches here. 460 */ 461 WARN_ON_ONCE(mm_has_pgste(mm)); 462 } 463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 464 465 /* 466 * Base infrastructure required to generate basic asces, region, segment, 467 * and page tables that do not make use of enhanced features like EDAT1. 468 */ 469 470 static struct kmem_cache *base_pgt_cache; 471 472 static unsigned long *base_pgt_alloc(void) 473 { 474 unsigned long *table; 475 476 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); 477 if (table) 478 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 479 return table; 480 } 481 482 static void base_pgt_free(unsigned long *table) 483 { 484 kmem_cache_free(base_pgt_cache, table); 485 } 486 487 static unsigned long *base_crst_alloc(unsigned long val) 488 { 489 unsigned long *table; 490 struct ptdesc *ptdesc; 491 492 ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER); 493 if (!ptdesc) 494 return NULL; 495 table = ptdesc_address(ptdesc); 496 497 crst_table_init(table, val); 498 return table; 499 } 500 501 static void base_crst_free(unsigned long *table) 502 { 503 pagetable_free(virt_to_ptdesc(table)); 504 } 505 506 #define BASE_ADDR_END_FUNC(NAME, SIZE) \ 507 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ 508 unsigned long end) \ 509 { \ 510 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ 511 \ 512 return (next - 1) < (end - 1) ? next : end; \ 513 } 514 515 BASE_ADDR_END_FUNC(page, _PAGE_SIZE) 516 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) 517 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) 518 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) 519 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) 520 521 static inline unsigned long base_lra(unsigned long address) 522 { 523 unsigned long real; 524 525 asm volatile( 526 " lra %0,0(%1)\n" 527 : "=d" (real) : "a" (address) : "cc"); 528 return real; 529 } 530 531 static int base_page_walk(unsigned long *origin, unsigned long addr, 532 unsigned long end, int alloc) 533 { 534 unsigned long *pte, next; 535 536 if (!alloc) 537 return 0; 538 pte = origin; 539 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; 540 do { 541 next = base_page_addr_end(addr, end); 542 *pte = base_lra(addr); 543 } while (pte++, addr = next, addr < end); 544 return 0; 545 } 546 547 static int base_segment_walk(unsigned long *origin, unsigned long addr, 548 unsigned long end, int alloc) 549 { 550 unsigned long *ste, next, *table; 551 int rc; 552 553 ste = origin; 554 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 555 do { 556 next = base_segment_addr_end(addr, end); 557 if (*ste & _SEGMENT_ENTRY_INVALID) { 558 if (!alloc) 559 continue; 560 table = base_pgt_alloc(); 561 if (!table) 562 return -ENOMEM; 563 *ste = __pa(table) | _SEGMENT_ENTRY; 564 } 565 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); 566 rc = base_page_walk(table, addr, next, alloc); 567 if (rc) 568 return rc; 569 if (!alloc) 570 base_pgt_free(table); 571 cond_resched(); 572 } while (ste++, addr = next, addr < end); 573 return 0; 574 } 575 576 static int base_region3_walk(unsigned long *origin, unsigned long addr, 577 unsigned long end, int alloc) 578 { 579 unsigned long *rtte, next, *table; 580 int rc; 581 582 rtte = origin; 583 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; 584 do { 585 next = base_region3_addr_end(addr, end); 586 if (*rtte & _REGION_ENTRY_INVALID) { 587 if (!alloc) 588 continue; 589 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 590 if (!table) 591 return -ENOMEM; 592 *rtte = __pa(table) | _REGION3_ENTRY; 593 } 594 table = __va(*rtte & _REGION_ENTRY_ORIGIN); 595 rc = base_segment_walk(table, addr, next, alloc); 596 if (rc) 597 return rc; 598 if (!alloc) 599 base_crst_free(table); 600 } while (rtte++, addr = next, addr < end); 601 return 0; 602 } 603 604 static int base_region2_walk(unsigned long *origin, unsigned long addr, 605 unsigned long end, int alloc) 606 { 607 unsigned long *rste, next, *table; 608 int rc; 609 610 rste = origin; 611 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; 612 do { 613 next = base_region2_addr_end(addr, end); 614 if (*rste & _REGION_ENTRY_INVALID) { 615 if (!alloc) 616 continue; 617 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 618 if (!table) 619 return -ENOMEM; 620 *rste = __pa(table) | _REGION2_ENTRY; 621 } 622 table = __va(*rste & _REGION_ENTRY_ORIGIN); 623 rc = base_region3_walk(table, addr, next, alloc); 624 if (rc) 625 return rc; 626 if (!alloc) 627 base_crst_free(table); 628 } while (rste++, addr = next, addr < end); 629 return 0; 630 } 631 632 static int base_region1_walk(unsigned long *origin, unsigned long addr, 633 unsigned long end, int alloc) 634 { 635 unsigned long *rfte, next, *table; 636 int rc; 637 638 rfte = origin; 639 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; 640 do { 641 next = base_region1_addr_end(addr, end); 642 if (*rfte & _REGION_ENTRY_INVALID) { 643 if (!alloc) 644 continue; 645 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 646 if (!table) 647 return -ENOMEM; 648 *rfte = __pa(table) | _REGION1_ENTRY; 649 } 650 table = __va(*rfte & _REGION_ENTRY_ORIGIN); 651 rc = base_region2_walk(table, addr, next, alloc); 652 if (rc) 653 return rc; 654 if (!alloc) 655 base_crst_free(table); 656 } while (rfte++, addr = next, addr < end); 657 return 0; 658 } 659 660 /** 661 * base_asce_free - free asce and tables returned from base_asce_alloc() 662 * @asce: asce to be freed 663 * 664 * Frees all region, segment, and page tables that were allocated with a 665 * corresponding base_asce_alloc() call. 666 */ 667 void base_asce_free(unsigned long asce) 668 { 669 unsigned long *table = __va(asce & _ASCE_ORIGIN); 670 671 if (!asce) 672 return; 673 switch (asce & _ASCE_TYPE_MASK) { 674 case _ASCE_TYPE_SEGMENT: 675 base_segment_walk(table, 0, _REGION3_SIZE, 0); 676 break; 677 case _ASCE_TYPE_REGION3: 678 base_region3_walk(table, 0, _REGION2_SIZE, 0); 679 break; 680 case _ASCE_TYPE_REGION2: 681 base_region2_walk(table, 0, _REGION1_SIZE, 0); 682 break; 683 case _ASCE_TYPE_REGION1: 684 base_region1_walk(table, 0, TASK_SIZE_MAX, 0); 685 break; 686 } 687 base_crst_free(table); 688 } 689 690 static int base_pgt_cache_init(void) 691 { 692 static DEFINE_MUTEX(base_pgt_cache_mutex); 693 unsigned long sz = _PAGE_TABLE_SIZE; 694 695 if (base_pgt_cache) 696 return 0; 697 mutex_lock(&base_pgt_cache_mutex); 698 if (!base_pgt_cache) 699 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); 700 mutex_unlock(&base_pgt_cache_mutex); 701 return base_pgt_cache ? 0 : -ENOMEM; 702 } 703 704 /** 705 * base_asce_alloc - create kernel mapping without enhanced DAT features 706 * @addr: virtual start address of kernel mapping 707 * @num_pages: number of consecutive pages 708 * 709 * Generate an asce, including all required region, segment and page tables, 710 * that can be used to access the virtual kernel mapping. The difference is 711 * that the returned asce does not make use of any enhanced DAT features like 712 * e.g. large pages. This is required for some I/O functions that pass an 713 * asce, like e.g. some service call requests. 714 * 715 * Note: the returned asce may NEVER be attached to any cpu. It may only be 716 * used for I/O requests. tlb entries that might result because the 717 * asce was attached to a cpu won't be cleared. 718 */ 719 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) 720 { 721 unsigned long asce, *table, end; 722 int rc; 723 724 if (base_pgt_cache_init()) 725 return 0; 726 end = addr + num_pages * PAGE_SIZE; 727 if (end <= _REGION3_SIZE) { 728 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 729 if (!table) 730 return 0; 731 rc = base_segment_walk(table, addr, end, 1); 732 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; 733 } else if (end <= _REGION2_SIZE) { 734 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 735 if (!table) 736 return 0; 737 rc = base_region3_walk(table, addr, end, 1); 738 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; 739 } else if (end <= _REGION1_SIZE) { 740 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 741 if (!table) 742 return 0; 743 rc = base_region2_walk(table, addr, end, 1); 744 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; 745 } else { 746 table = base_crst_alloc(_REGION1_ENTRY_EMPTY); 747 if (!table) 748 return 0; 749 rc = base_region1_walk(table, addr, end, 1); 750 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; 751 } 752 if (rc) { 753 base_asce_free(asce); 754 asce = 0; 755 } 756 return asce; 757 } 758