1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Page table allocation functions 4 * 5 * Copyright IBM Corp. 2016 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 */ 8 9 #include <linux/sysctl.h> 10 #include <linux/slab.h> 11 #include <linux/mm.h> 12 #include <asm/mmu_context.h> 13 #include <asm/pgalloc.h> 14 #include <asm/gmap.h> 15 #include <asm/tlb.h> 16 #include <asm/tlbflush.h> 17 18 #ifdef CONFIG_PGSTE 19 20 int page_table_allocate_pgste = 0; 21 EXPORT_SYMBOL(page_table_allocate_pgste); 22 23 static struct ctl_table page_table_sysctl[] = { 24 { 25 .procname = "allocate_pgste", 26 .data = &page_table_allocate_pgste, 27 .maxlen = sizeof(int), 28 .mode = S_IRUGO | S_IWUSR, 29 .proc_handler = proc_dointvec_minmax, 30 .extra1 = SYSCTL_ZERO, 31 .extra2 = SYSCTL_ONE, 32 }, 33 { } 34 }; 35 36 static int __init page_table_register_sysctl(void) 37 { 38 return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM; 39 } 40 __initcall(page_table_register_sysctl); 41 42 #endif /* CONFIG_PGSTE */ 43 44 unsigned long *crst_table_alloc(struct mm_struct *mm) 45 { 46 struct page *page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 47 48 if (!page) 49 return NULL; 50 arch_set_page_dat(page, CRST_ALLOC_ORDER); 51 return (unsigned long *) page_to_virt(page); 52 } 53 54 void crst_table_free(struct mm_struct *mm, unsigned long *table) 55 { 56 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 57 } 58 59 static void __crst_table_upgrade(void *arg) 60 { 61 struct mm_struct *mm = arg; 62 63 /* change all active ASCEs to avoid the creation of new TLBs */ 64 if (current->active_mm == mm) { 65 S390_lowcore.user_asce = mm->context.asce; 66 __ctl_load(S390_lowcore.user_asce, 7, 7); 67 } 68 __tlb_flush_local(); 69 } 70 71 int crst_table_upgrade(struct mm_struct *mm, unsigned long end) 72 { 73 unsigned long *pgd = NULL, *p4d = NULL, *__pgd; 74 unsigned long asce_limit = mm->context.asce_limit; 75 76 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */ 77 VM_BUG_ON(asce_limit < _REGION2_SIZE); 78 79 if (end <= asce_limit) 80 return 0; 81 82 if (asce_limit == _REGION2_SIZE) { 83 p4d = crst_table_alloc(mm); 84 if (unlikely(!p4d)) 85 goto err_p4d; 86 crst_table_init(p4d, _REGION2_ENTRY_EMPTY); 87 } 88 if (end > _REGION1_SIZE) { 89 pgd = crst_table_alloc(mm); 90 if (unlikely(!pgd)) 91 goto err_pgd; 92 crst_table_init(pgd, _REGION1_ENTRY_EMPTY); 93 } 94 95 spin_lock_bh(&mm->page_table_lock); 96 97 /* 98 * This routine gets called with mmap_lock lock held and there is 99 * no reason to optimize for the case of otherwise. However, if 100 * that would ever change, the below check will let us know. 101 */ 102 VM_BUG_ON(asce_limit != mm->context.asce_limit); 103 104 if (p4d) { 105 __pgd = (unsigned long *) mm->pgd; 106 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd); 107 mm->pgd = (pgd_t *) p4d; 108 mm->context.asce_limit = _REGION1_SIZE; 109 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 110 _ASCE_USER_BITS | _ASCE_TYPE_REGION2; 111 mm_inc_nr_puds(mm); 112 } 113 if (pgd) { 114 __pgd = (unsigned long *) mm->pgd; 115 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd); 116 mm->pgd = (pgd_t *) pgd; 117 mm->context.asce_limit = TASK_SIZE_MAX; 118 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH | 119 _ASCE_USER_BITS | _ASCE_TYPE_REGION1; 120 } 121 122 spin_unlock_bh(&mm->page_table_lock); 123 124 on_each_cpu(__crst_table_upgrade, mm, 0); 125 126 return 0; 127 128 err_pgd: 129 crst_table_free(mm, p4d); 130 err_p4d: 131 return -ENOMEM; 132 } 133 134 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) 135 { 136 return atomic_fetch_xor(bits, v) ^ bits; 137 } 138 139 #ifdef CONFIG_PGSTE 140 141 struct page *page_table_alloc_pgste(struct mm_struct *mm) 142 { 143 struct page *page; 144 u64 *table; 145 146 page = alloc_page(GFP_KERNEL); 147 if (page) { 148 table = (u64 *)page_to_virt(page); 149 memset64(table, _PAGE_INVALID, PTRS_PER_PTE); 150 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 151 } 152 return page; 153 } 154 155 void page_table_free_pgste(struct page *page) 156 { 157 __free_page(page); 158 } 159 160 #endif /* CONFIG_PGSTE */ 161 162 /* 163 * A 2KB-pgtable is either upper or lower half of a normal page. 164 * The second half of the page may be unused or used as another 165 * 2KB-pgtable. 166 * 167 * Whenever possible the parent page for a new 2KB-pgtable is picked 168 * from the list of partially allocated pages mm_context_t::pgtable_list. 169 * In case the list is empty a new parent page is allocated and added to 170 * the list. 171 * 172 * When a parent page gets fully allocated it contains 2KB-pgtables in both 173 * upper and lower halves and is removed from mm_context_t::pgtable_list. 174 * 175 * When 2KB-pgtable is freed from to fully allocated parent page that 176 * page turns partially allocated and added to mm_context_t::pgtable_list. 177 * 178 * If 2KB-pgtable is freed from the partially allocated parent page that 179 * page turns unused and gets removed from mm_context_t::pgtable_list. 180 * Furthermore, the unused parent page is released. 181 * 182 * As follows from the above, no unallocated or fully allocated parent 183 * pages are contained in mm_context_t::pgtable_list. 184 * 185 * The upper byte (bits 24-31) of the parent page _refcount is used 186 * for tracking contained 2KB-pgtables and has the following format: 187 * 188 * PP AA 189 * 01234567 upper byte (bits 24-31) of struct page::_refcount 190 * || || 191 * || |+--- upper 2KB-pgtable is allocated 192 * || +---- lower 2KB-pgtable is allocated 193 * |+------- upper 2KB-pgtable is pending for removal 194 * +-------- lower 2KB-pgtable is pending for removal 195 * 196 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why 197 * using _refcount is possible). 198 * 199 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1. 200 * The parent page is either: 201 * - added to mm_context_t::pgtable_list in case the second half of the 202 * parent page is still unallocated; 203 * - removed from mm_context_t::pgtable_list in case both hales of the 204 * parent page are allocated; 205 * These operations are protected with mm_context_t::lock. 206 * 207 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0 208 * and the corresponding PP bit is set to 1 in a single atomic operation. 209 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually 210 * exclusive and may never be both set to 1! 211 * The parent page is either: 212 * - added to mm_context_t::pgtable_list in case the second half of the 213 * parent page is still allocated; 214 * - removed from mm_context_t::pgtable_list in case the second half of 215 * the parent page is unallocated; 216 * These operations are protected with mm_context_t::lock. 217 * 218 * It is important to understand that mm_context_t::lock only protects 219 * mm_context_t::pgtable_list and AA bits, but not the parent page itself 220 * and PP bits. 221 * 222 * Releasing the parent page happens whenever the PP bit turns from 1 to 0, 223 * while both AA bits and the second PP bit are already unset. Then the 224 * parent page does not contain any 2KB-pgtable fragment anymore, and it has 225 * also been removed from mm_context_t::pgtable_list. It is safe to release 226 * the page therefore. 227 * 228 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the 229 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable 230 * while the PP bits are never used, nor such a page is added to or removed 231 * from mm_context_t::pgtable_list. 232 * 233 * pte_free_defer() overrides those rules: it takes the page off pgtable_list, 234 * and prevents both 2K fragments from being reused. pte_free_defer() has to 235 * guarantee that its pgtable cannot be reused before the RCU grace period 236 * has elapsed (which page_table_free_rcu() does not actually guarantee). 237 * But for simplicity, because page->rcu_head overlays page->lru, and because 238 * the RCU callback might not be called before the mm_context_t has been freed, 239 * pte_free_defer() in this implementation prevents both fragments from being 240 * reused, and delays making the call to RCU until both fragments are freed. 241 */ 242 unsigned long *page_table_alloc(struct mm_struct *mm) 243 { 244 unsigned long *table; 245 struct page *page; 246 unsigned int mask, bit; 247 248 /* Try to get a fragment of a 4K page as a 2K page table */ 249 if (!mm_alloc_pgste(mm)) { 250 table = NULL; 251 spin_lock_bh(&mm->context.lock); 252 if (!list_empty(&mm->context.pgtable_list)) { 253 page = list_first_entry(&mm->context.pgtable_list, 254 struct page, lru); 255 mask = atomic_read(&page->_refcount) >> 24; 256 /* 257 * The pending removal bits must also be checked. 258 * Failure to do so might lead to an impossible 259 * value of (i.e 0x13 or 0x23) written to _refcount. 260 * Such values violate the assumption that pending and 261 * allocation bits are mutually exclusive, and the rest 262 * of the code unrails as result. That could lead to 263 * a whole bunch of races and corruptions. 264 */ 265 mask = (mask | (mask >> 4)) & 0x03U; 266 if (mask != 0x03U) { 267 table = (unsigned long *) page_to_virt(page); 268 bit = mask & 1; /* =1 -> second 2K */ 269 if (bit) 270 table += PTRS_PER_PTE; 271 atomic_xor_bits(&page->_refcount, 272 0x01U << (bit + 24)); 273 list_del_init(&page->lru); 274 } 275 } 276 spin_unlock_bh(&mm->context.lock); 277 if (table) 278 return table; 279 } 280 /* Allocate a fresh page */ 281 page = alloc_page(GFP_KERNEL); 282 if (!page) 283 return NULL; 284 if (!pgtable_pte_page_ctor(page)) { 285 __free_page(page); 286 return NULL; 287 } 288 arch_set_page_dat(page, 0); 289 /* Initialize page table */ 290 table = (unsigned long *) page_to_virt(page); 291 if (mm_alloc_pgste(mm)) { 292 /* Return 4K page table with PGSTEs */ 293 INIT_LIST_HEAD(&page->lru); 294 atomic_xor_bits(&page->_refcount, 0x03U << 24); 295 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 296 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE); 297 } else { 298 /* Return the first 2K fragment of the page */ 299 atomic_xor_bits(&page->_refcount, 0x01U << 24); 300 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE); 301 spin_lock_bh(&mm->context.lock); 302 list_add(&page->lru, &mm->context.pgtable_list); 303 spin_unlock_bh(&mm->context.lock); 304 } 305 return table; 306 } 307 308 static void page_table_release_check(struct page *page, void *table, 309 unsigned int half, unsigned int mask) 310 { 311 char msg[128]; 312 313 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 314 return; 315 if (!mask && list_empty(&page->lru)) 316 return; 317 snprintf(msg, sizeof(msg), 318 "Invalid pgtable %p release half 0x%02x mask 0x%02x", 319 table, half, mask); 320 dump_page(page, msg); 321 } 322 323 static void pte_free_now(struct rcu_head *head) 324 { 325 struct page *page; 326 327 page = container_of(head, struct page, rcu_head); 328 pgtable_pte_page_dtor(page); 329 __free_page(page); 330 } 331 332 void page_table_free(struct mm_struct *mm, unsigned long *table) 333 { 334 unsigned int mask, bit, half; 335 struct page *page; 336 337 page = virt_to_page(table); 338 if (!mm_alloc_pgste(mm)) { 339 /* Free 2K page table fragment of a 4K page */ 340 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); 341 spin_lock_bh(&mm->context.lock); 342 /* 343 * Mark the page for delayed release. The actual release 344 * will happen outside of the critical section from this 345 * function or from __tlb_remove_table() 346 */ 347 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); 348 mask >>= 24; 349 if ((mask & 0x03U) && !PageActive(page)) { 350 /* 351 * Other half is allocated, and neither half has had 352 * its free deferred: add page to head of list, to make 353 * this freed half available for immediate reuse. 354 */ 355 list_add(&page->lru, &mm->context.pgtable_list); 356 } else { 357 /* If page is on list, now remove it. */ 358 list_del_init(&page->lru); 359 } 360 spin_unlock_bh(&mm->context.lock); 361 mask = atomic_xor_bits(&page->_refcount, 0x10U << (bit + 24)); 362 mask >>= 24; 363 if (mask != 0x00U) 364 return; 365 half = 0x01U << bit; 366 } else { 367 half = 0x03U; 368 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); 369 mask >>= 24; 370 } 371 372 page_table_release_check(page, table, half, mask); 373 if (TestClearPageActive(page)) 374 call_rcu(&page->rcu_head, pte_free_now); 375 else 376 pte_free_now(&page->rcu_head); 377 } 378 379 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, 380 unsigned long vmaddr) 381 { 382 struct mm_struct *mm; 383 struct page *page; 384 unsigned int bit, mask; 385 386 mm = tlb->mm; 387 page = virt_to_page(table); 388 if (mm_alloc_pgste(mm)) { 389 gmap_unlink(mm, table, vmaddr); 390 table = (unsigned long *) ((unsigned long)table | 0x03U); 391 tlb_remove_table(tlb, table); 392 return; 393 } 394 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); 395 spin_lock_bh(&mm->context.lock); 396 /* 397 * Mark the page for delayed release. The actual release will happen 398 * outside of the critical section from __tlb_remove_table() or from 399 * page_table_free() 400 */ 401 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24)); 402 mask >>= 24; 403 if ((mask & 0x03U) && !PageActive(page)) { 404 /* 405 * Other half is allocated, and neither half has had 406 * its free deferred: add page to end of list, to make 407 * this freed half available for reuse once its pending 408 * bit has been cleared by __tlb_remove_table(). 409 */ 410 list_add_tail(&page->lru, &mm->context.pgtable_list); 411 } else { 412 /* If page is on list, now remove it. */ 413 list_del_init(&page->lru); 414 } 415 spin_unlock_bh(&mm->context.lock); 416 table = (unsigned long *) ((unsigned long) table | (0x01U << bit)); 417 tlb_remove_table(tlb, table); 418 } 419 420 void __tlb_remove_table(void *_table) 421 { 422 unsigned int mask = (unsigned long) _table & 0x03U, half = mask; 423 void *table = (void *)((unsigned long) _table ^ mask); 424 struct page *page = virt_to_page(table); 425 426 switch (half) { 427 case 0x00U: /* pmd, pud, or p4d */ 428 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 429 return; 430 case 0x01U: /* lower 2K of a 4K page table */ 431 case 0x02U: /* higher 2K of a 4K page table */ 432 mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24)); 433 mask >>= 24; 434 if (mask != 0x00U) 435 return; 436 break; 437 case 0x03U: /* 4K page table with pgstes */ 438 mask = atomic_xor_bits(&page->_refcount, 0x03U << 24); 439 mask >>= 24; 440 break; 441 } 442 443 page_table_release_check(page, table, half, mask); 444 if (TestClearPageActive(page)) 445 call_rcu(&page->rcu_head, pte_free_now); 446 else 447 pte_free_now(&page->rcu_head); 448 } 449 450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 451 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable) 452 { 453 struct page *page; 454 455 page = virt_to_page(pgtable); 456 SetPageActive(page); 457 page_table_free(mm, (unsigned long *)pgtable); 458 /* 459 * page_table_free() does not do the pgste gmap_unlink() which 460 * page_table_free_rcu() does: warn us if pgste ever reaches here. 461 */ 462 WARN_ON_ONCE(mm_has_pgste(mm)); 463 } 464 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 465 466 /* 467 * Base infrastructure required to generate basic asces, region, segment, 468 * and page tables that do not make use of enhanced features like EDAT1. 469 */ 470 471 static struct kmem_cache *base_pgt_cache; 472 473 static unsigned long *base_pgt_alloc(void) 474 { 475 unsigned long *table; 476 477 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL); 478 if (table) 479 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE); 480 return table; 481 } 482 483 static void base_pgt_free(unsigned long *table) 484 { 485 kmem_cache_free(base_pgt_cache, table); 486 } 487 488 static unsigned long *base_crst_alloc(unsigned long val) 489 { 490 unsigned long *table; 491 492 table = (unsigned long *)__get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 493 if (table) 494 crst_table_init(table, val); 495 return table; 496 } 497 498 static void base_crst_free(unsigned long *table) 499 { 500 free_pages((unsigned long)table, CRST_ALLOC_ORDER); 501 } 502 503 #define BASE_ADDR_END_FUNC(NAME, SIZE) \ 504 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \ 505 unsigned long end) \ 506 { \ 507 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \ 508 \ 509 return (next - 1) < (end - 1) ? next : end; \ 510 } 511 512 BASE_ADDR_END_FUNC(page, _PAGE_SIZE) 513 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE) 514 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE) 515 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE) 516 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE) 517 518 static inline unsigned long base_lra(unsigned long address) 519 { 520 unsigned long real; 521 522 asm volatile( 523 " lra %0,0(%1)\n" 524 : "=d" (real) : "a" (address) : "cc"); 525 return real; 526 } 527 528 static int base_page_walk(unsigned long *origin, unsigned long addr, 529 unsigned long end, int alloc) 530 { 531 unsigned long *pte, next; 532 533 if (!alloc) 534 return 0; 535 pte = origin; 536 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT; 537 do { 538 next = base_page_addr_end(addr, end); 539 *pte = base_lra(addr); 540 } while (pte++, addr = next, addr < end); 541 return 0; 542 } 543 544 static int base_segment_walk(unsigned long *origin, unsigned long addr, 545 unsigned long end, int alloc) 546 { 547 unsigned long *ste, next, *table; 548 int rc; 549 550 ste = origin; 551 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 552 do { 553 next = base_segment_addr_end(addr, end); 554 if (*ste & _SEGMENT_ENTRY_INVALID) { 555 if (!alloc) 556 continue; 557 table = base_pgt_alloc(); 558 if (!table) 559 return -ENOMEM; 560 *ste = __pa(table) | _SEGMENT_ENTRY; 561 } 562 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN); 563 rc = base_page_walk(table, addr, next, alloc); 564 if (rc) 565 return rc; 566 if (!alloc) 567 base_pgt_free(table); 568 cond_resched(); 569 } while (ste++, addr = next, addr < end); 570 return 0; 571 } 572 573 static int base_region3_walk(unsigned long *origin, unsigned long addr, 574 unsigned long end, int alloc) 575 { 576 unsigned long *rtte, next, *table; 577 int rc; 578 579 rtte = origin; 580 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT; 581 do { 582 next = base_region3_addr_end(addr, end); 583 if (*rtte & _REGION_ENTRY_INVALID) { 584 if (!alloc) 585 continue; 586 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 587 if (!table) 588 return -ENOMEM; 589 *rtte = __pa(table) | _REGION3_ENTRY; 590 } 591 table = __va(*rtte & _REGION_ENTRY_ORIGIN); 592 rc = base_segment_walk(table, addr, next, alloc); 593 if (rc) 594 return rc; 595 if (!alloc) 596 base_crst_free(table); 597 } while (rtte++, addr = next, addr < end); 598 return 0; 599 } 600 601 static int base_region2_walk(unsigned long *origin, unsigned long addr, 602 unsigned long end, int alloc) 603 { 604 unsigned long *rste, next, *table; 605 int rc; 606 607 rste = origin; 608 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT; 609 do { 610 next = base_region2_addr_end(addr, end); 611 if (*rste & _REGION_ENTRY_INVALID) { 612 if (!alloc) 613 continue; 614 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 615 if (!table) 616 return -ENOMEM; 617 *rste = __pa(table) | _REGION2_ENTRY; 618 } 619 table = __va(*rste & _REGION_ENTRY_ORIGIN); 620 rc = base_region3_walk(table, addr, next, alloc); 621 if (rc) 622 return rc; 623 if (!alloc) 624 base_crst_free(table); 625 } while (rste++, addr = next, addr < end); 626 return 0; 627 } 628 629 static int base_region1_walk(unsigned long *origin, unsigned long addr, 630 unsigned long end, int alloc) 631 { 632 unsigned long *rfte, next, *table; 633 int rc; 634 635 rfte = origin; 636 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT; 637 do { 638 next = base_region1_addr_end(addr, end); 639 if (*rfte & _REGION_ENTRY_INVALID) { 640 if (!alloc) 641 continue; 642 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 643 if (!table) 644 return -ENOMEM; 645 *rfte = __pa(table) | _REGION1_ENTRY; 646 } 647 table = __va(*rfte & _REGION_ENTRY_ORIGIN); 648 rc = base_region2_walk(table, addr, next, alloc); 649 if (rc) 650 return rc; 651 if (!alloc) 652 base_crst_free(table); 653 } while (rfte++, addr = next, addr < end); 654 return 0; 655 } 656 657 /** 658 * base_asce_free - free asce and tables returned from base_asce_alloc() 659 * @asce: asce to be freed 660 * 661 * Frees all region, segment, and page tables that were allocated with a 662 * corresponding base_asce_alloc() call. 663 */ 664 void base_asce_free(unsigned long asce) 665 { 666 unsigned long *table = __va(asce & _ASCE_ORIGIN); 667 668 if (!asce) 669 return; 670 switch (asce & _ASCE_TYPE_MASK) { 671 case _ASCE_TYPE_SEGMENT: 672 base_segment_walk(table, 0, _REGION3_SIZE, 0); 673 break; 674 case _ASCE_TYPE_REGION3: 675 base_region3_walk(table, 0, _REGION2_SIZE, 0); 676 break; 677 case _ASCE_TYPE_REGION2: 678 base_region2_walk(table, 0, _REGION1_SIZE, 0); 679 break; 680 case _ASCE_TYPE_REGION1: 681 base_region1_walk(table, 0, TASK_SIZE_MAX, 0); 682 break; 683 } 684 base_crst_free(table); 685 } 686 687 static int base_pgt_cache_init(void) 688 { 689 static DEFINE_MUTEX(base_pgt_cache_mutex); 690 unsigned long sz = _PAGE_TABLE_SIZE; 691 692 if (base_pgt_cache) 693 return 0; 694 mutex_lock(&base_pgt_cache_mutex); 695 if (!base_pgt_cache) 696 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL); 697 mutex_unlock(&base_pgt_cache_mutex); 698 return base_pgt_cache ? 0 : -ENOMEM; 699 } 700 701 /** 702 * base_asce_alloc - create kernel mapping without enhanced DAT features 703 * @addr: virtual start address of kernel mapping 704 * @num_pages: number of consecutive pages 705 * 706 * Generate an asce, including all required region, segment and page tables, 707 * that can be used to access the virtual kernel mapping. The difference is 708 * that the returned asce does not make use of any enhanced DAT features like 709 * e.g. large pages. This is required for some I/O functions that pass an 710 * asce, like e.g. some service call requests. 711 * 712 * Note: the returned asce may NEVER be attached to any cpu. It may only be 713 * used for I/O requests. tlb entries that might result because the 714 * asce was attached to a cpu won't be cleared. 715 */ 716 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages) 717 { 718 unsigned long asce, *table, end; 719 int rc; 720 721 if (base_pgt_cache_init()) 722 return 0; 723 end = addr + num_pages * PAGE_SIZE; 724 if (end <= _REGION3_SIZE) { 725 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY); 726 if (!table) 727 return 0; 728 rc = base_segment_walk(table, addr, end, 1); 729 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH; 730 } else if (end <= _REGION2_SIZE) { 731 table = base_crst_alloc(_REGION3_ENTRY_EMPTY); 732 if (!table) 733 return 0; 734 rc = base_region3_walk(table, addr, end, 1); 735 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH; 736 } else if (end <= _REGION1_SIZE) { 737 table = base_crst_alloc(_REGION2_ENTRY_EMPTY); 738 if (!table) 739 return 0; 740 rc = base_region2_walk(table, addr, end, 1); 741 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH; 742 } else { 743 table = base_crst_alloc(_REGION1_ENTRY_EMPTY); 744 if (!table) 745 return 0; 746 rc = base_region1_walk(table, addr, end, 1); 747 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH; 748 } 749 if (rc) { 750 base_asce_free(asce); 751 asce = 0; 752 } 753 return asce; 754 } 755