1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Page table allocation functions
4 *
5 * Copyright IBM Corp. 2016
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17
18 #ifdef CONFIG_PGSTE
19
20 int page_table_allocate_pgste = 0;
21 EXPORT_SYMBOL(page_table_allocate_pgste);
22
23 static struct ctl_table page_table_sysctl[] = {
24 {
25 .procname = "allocate_pgste",
26 .data = &page_table_allocate_pgste,
27 .maxlen = sizeof(int),
28 .mode = S_IRUGO | S_IWUSR,
29 .proc_handler = proc_dointvec_minmax,
30 .extra1 = SYSCTL_ZERO,
31 .extra2 = SYSCTL_ONE,
32 },
33 { }
34 };
35
page_table_register_sysctl(void)36 static int __init page_table_register_sysctl(void)
37 {
38 return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM;
39 }
40 __initcall(page_table_register_sysctl);
41
42 #endif /* CONFIG_PGSTE */
43
crst_table_alloc(struct mm_struct * mm)44 unsigned long *crst_table_alloc(struct mm_struct *mm)
45 {
46 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER);
47
48 if (!ptdesc)
49 return NULL;
50 arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER);
51 return (unsigned long *) ptdesc_to_virt(ptdesc);
52 }
53
crst_table_free(struct mm_struct * mm,unsigned long * table)54 void crst_table_free(struct mm_struct *mm, unsigned long *table)
55 {
56 if (!table)
57 return;
58 pagetable_free(virt_to_ptdesc(table));
59 }
60
__crst_table_upgrade(void * arg)61 static void __crst_table_upgrade(void *arg)
62 {
63 struct mm_struct *mm = arg;
64
65 /* change all active ASCEs to avoid the creation of new TLBs */
66 if (current->active_mm == mm) {
67 S390_lowcore.user_asce = mm->context.asce;
68 __ctl_load(S390_lowcore.user_asce, 7, 7);
69 }
70 __tlb_flush_local();
71 }
72
crst_table_upgrade(struct mm_struct * mm,unsigned long end)73 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
74 {
75 unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
76 unsigned long asce_limit = mm->context.asce_limit;
77
78 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
79 VM_BUG_ON(asce_limit < _REGION2_SIZE);
80
81 if (end <= asce_limit)
82 return 0;
83
84 if (asce_limit == _REGION2_SIZE) {
85 p4d = crst_table_alloc(mm);
86 if (unlikely(!p4d))
87 goto err_p4d;
88 crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
89 }
90 if (end > _REGION1_SIZE) {
91 pgd = crst_table_alloc(mm);
92 if (unlikely(!pgd))
93 goto err_pgd;
94 crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
95 }
96
97 spin_lock_bh(&mm->page_table_lock);
98
99 /*
100 * This routine gets called with mmap_lock lock held and there is
101 * no reason to optimize for the case of otherwise. However, if
102 * that would ever change, the below check will let us know.
103 */
104 VM_BUG_ON(asce_limit != mm->context.asce_limit);
105
106 if (p4d) {
107 __pgd = (unsigned long *) mm->pgd;
108 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
109 mm->pgd = (pgd_t *) p4d;
110 mm->context.asce_limit = _REGION1_SIZE;
111 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
112 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
113 mm_inc_nr_puds(mm);
114 }
115 if (pgd) {
116 __pgd = (unsigned long *) mm->pgd;
117 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
118 mm->pgd = (pgd_t *) pgd;
119 mm->context.asce_limit = TASK_SIZE_MAX;
120 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
121 _ASCE_USER_BITS | _ASCE_TYPE_REGION1;
122 }
123
124 spin_unlock_bh(&mm->page_table_lock);
125
126 on_each_cpu(__crst_table_upgrade, mm, 0);
127
128 return 0;
129
130 err_pgd:
131 crst_table_free(mm, p4d);
132 err_p4d:
133 return -ENOMEM;
134 }
135
atomic_xor_bits(atomic_t * v,unsigned int bits)136 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
137 {
138 return atomic_fetch_xor(bits, v) ^ bits;
139 }
140
141 #ifdef CONFIG_PGSTE
142
page_table_alloc_pgste(struct mm_struct * mm)143 struct page *page_table_alloc_pgste(struct mm_struct *mm)
144 {
145 struct ptdesc *ptdesc;
146 u64 *table;
147
148 ptdesc = pagetable_alloc(GFP_KERNEL, 0);
149 if (ptdesc) {
150 table = (u64 *)ptdesc_to_virt(ptdesc);
151 arch_set_page_dat(virt_to_page(table), 0);
152 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
153 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
154 }
155 return ptdesc_page(ptdesc);
156 }
157
page_table_free_pgste(struct page * page)158 void page_table_free_pgste(struct page *page)
159 {
160 pagetable_free(page_ptdesc(page));
161 }
162
163 #endif /* CONFIG_PGSTE */
164
165 /*
166 * A 2KB-pgtable is either upper or lower half of a normal page.
167 * The second half of the page may be unused or used as another
168 * 2KB-pgtable.
169 *
170 * Whenever possible the parent page for a new 2KB-pgtable is picked
171 * from the list of partially allocated pages mm_context_t::pgtable_list.
172 * In case the list is empty a new parent page is allocated and added to
173 * the list.
174 *
175 * When a parent page gets fully allocated it contains 2KB-pgtables in both
176 * upper and lower halves and is removed from mm_context_t::pgtable_list.
177 *
178 * When 2KB-pgtable is freed from to fully allocated parent page that
179 * page turns partially allocated and added to mm_context_t::pgtable_list.
180 *
181 * If 2KB-pgtable is freed from the partially allocated parent page that
182 * page turns unused and gets removed from mm_context_t::pgtable_list.
183 * Furthermore, the unused parent page is released.
184 *
185 * As follows from the above, no unallocated or fully allocated parent
186 * pages are contained in mm_context_t::pgtable_list.
187 *
188 * The upper byte (bits 24-31) of the parent page _refcount is used
189 * for tracking contained 2KB-pgtables and has the following format:
190 *
191 * PP AA
192 * 01234567 upper byte (bits 24-31) of struct page::_refcount
193 * || ||
194 * || |+--- upper 2KB-pgtable is allocated
195 * || +---- lower 2KB-pgtable is allocated
196 * |+------- upper 2KB-pgtable is pending for removal
197 * +-------- lower 2KB-pgtable is pending for removal
198 *
199 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
200 * using _refcount is possible).
201 *
202 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
203 * The parent page is either:
204 * - added to mm_context_t::pgtable_list in case the second half of the
205 * parent page is still unallocated;
206 * - removed from mm_context_t::pgtable_list in case both hales of the
207 * parent page are allocated;
208 * These operations are protected with mm_context_t::lock.
209 *
210 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
211 * and the corresponding PP bit is set to 1 in a single atomic operation.
212 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
213 * exclusive and may never be both set to 1!
214 * The parent page is either:
215 * - added to mm_context_t::pgtable_list in case the second half of the
216 * parent page is still allocated;
217 * - removed from mm_context_t::pgtable_list in case the second half of
218 * the parent page is unallocated;
219 * These operations are protected with mm_context_t::lock.
220 *
221 * It is important to understand that mm_context_t::lock only protects
222 * mm_context_t::pgtable_list and AA bits, but not the parent page itself
223 * and PP bits.
224 *
225 * Releasing the parent page happens whenever the PP bit turns from 1 to 0,
226 * while both AA bits and the second PP bit are already unset. Then the
227 * parent page does not contain any 2KB-pgtable fragment anymore, and it has
228 * also been removed from mm_context_t::pgtable_list. It is safe to release
229 * the page therefore.
230 *
231 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the
232 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
233 * while the PP bits are never used, nor such a page is added to or removed
234 * from mm_context_t::pgtable_list.
235 *
236 * pte_free_defer() overrides those rules: it takes the page off pgtable_list,
237 * and prevents both 2K fragments from being reused. pte_free_defer() has to
238 * guarantee that its pgtable cannot be reused before the RCU grace period
239 * has elapsed (which page_table_free_rcu() does not actually guarantee).
240 * But for simplicity, because page->rcu_head overlays page->lru, and because
241 * the RCU callback might not be called before the mm_context_t has been freed,
242 * pte_free_defer() in this implementation prevents both fragments from being
243 * reused, and delays making the call to RCU until both fragments are freed.
244 */
page_table_alloc(struct mm_struct * mm)245 unsigned long *page_table_alloc(struct mm_struct *mm)
246 {
247 unsigned long *table;
248 struct ptdesc *ptdesc;
249 unsigned int mask, bit;
250
251 /* Try to get a fragment of a 4K page as a 2K page table */
252 if (!mm_alloc_pgste(mm)) {
253 table = NULL;
254 spin_lock_bh(&mm->context.lock);
255 if (!list_empty(&mm->context.pgtable_list)) {
256 ptdesc = list_first_entry(&mm->context.pgtable_list,
257 struct ptdesc, pt_list);
258 mask = atomic_read(&ptdesc->_refcount) >> 24;
259 /*
260 * The pending removal bits must also be checked.
261 * Failure to do so might lead to an impossible
262 * value of (i.e 0x13 or 0x23) written to _refcount.
263 * Such values violate the assumption that pending and
264 * allocation bits are mutually exclusive, and the rest
265 * of the code unrails as result. That could lead to
266 * a whole bunch of races and corruptions.
267 */
268 mask = (mask | (mask >> 4)) & 0x03U;
269 if (mask != 0x03U) {
270 table = (unsigned long *) ptdesc_to_virt(ptdesc);
271 bit = mask & 1; /* =1 -> second 2K */
272 if (bit)
273 table += PTRS_PER_PTE;
274 atomic_xor_bits(&ptdesc->_refcount,
275 0x01U << (bit + 24));
276 list_del_init(&ptdesc->pt_list);
277 }
278 }
279 spin_unlock_bh(&mm->context.lock);
280 if (table)
281 return table;
282 }
283 /* Allocate a fresh page */
284 ptdesc = pagetable_alloc(GFP_KERNEL, 0);
285 if (!ptdesc)
286 return NULL;
287 if (!pagetable_pte_ctor(ptdesc)) {
288 pagetable_free(ptdesc);
289 return NULL;
290 }
291 arch_set_page_dat(ptdesc_page(ptdesc), 0);
292 /* Initialize page table */
293 table = (unsigned long *) ptdesc_to_virt(ptdesc);
294 if (mm_alloc_pgste(mm)) {
295 /* Return 4K page table with PGSTEs */
296 INIT_LIST_HEAD(&ptdesc->pt_list);
297 atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
298 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
299 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
300 } else {
301 /* Return the first 2K fragment of the page */
302 atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24);
303 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
304 spin_lock_bh(&mm->context.lock);
305 list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
306 spin_unlock_bh(&mm->context.lock);
307 }
308 return table;
309 }
310
page_table_release_check(struct page * page,void * table,unsigned int half,unsigned int mask)311 static void page_table_release_check(struct page *page, void *table,
312 unsigned int half, unsigned int mask)
313 {
314 char msg[128];
315
316 if (!IS_ENABLED(CONFIG_DEBUG_VM))
317 return;
318 if (!mask && list_empty(&page->lru))
319 return;
320 snprintf(msg, sizeof(msg),
321 "Invalid pgtable %p release half 0x%02x mask 0x%02x",
322 table, half, mask);
323 dump_page(page, msg);
324 }
325
pte_free_now(struct rcu_head * head)326 static void pte_free_now(struct rcu_head *head)
327 {
328 struct ptdesc *ptdesc;
329
330 ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
331 pagetable_pte_dtor(ptdesc);
332 pagetable_free(ptdesc);
333 }
334
page_table_free(struct mm_struct * mm,unsigned long * table)335 void page_table_free(struct mm_struct *mm, unsigned long *table)
336 {
337 unsigned int mask, bit, half;
338 struct ptdesc *ptdesc = virt_to_ptdesc(table);
339
340 if (!mm_alloc_pgste(mm)) {
341 /* Free 2K page table fragment of a 4K page */
342 bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
343 spin_lock_bh(&mm->context.lock);
344 /*
345 * Mark the page for delayed release. The actual release
346 * will happen outside of the critical section from this
347 * function or from __tlb_remove_table()
348 */
349 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
350 mask >>= 24;
351 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
352 /*
353 * Other half is allocated, and neither half has had
354 * its free deferred: add page to head of list, to make
355 * this freed half available for immediate reuse.
356 */
357 list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
358 } else {
359 /* If page is on list, now remove it. */
360 list_del_init(&ptdesc->pt_list);
361 }
362 spin_unlock_bh(&mm->context.lock);
363 mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24));
364 mask >>= 24;
365 if (mask != 0x00U)
366 return;
367 half = 0x01U << bit;
368 } else {
369 half = 0x03U;
370 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
371 mask >>= 24;
372 }
373
374 page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
375 if (folio_test_clear_active(ptdesc_folio(ptdesc)))
376 call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
377 else
378 pte_free_now(&ptdesc->pt_rcu_head);
379 }
380
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)381 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
382 unsigned long vmaddr)
383 {
384 struct mm_struct *mm;
385 unsigned int bit, mask;
386 struct ptdesc *ptdesc = virt_to_ptdesc(table);
387
388 mm = tlb->mm;
389 if (mm_alloc_pgste(mm)) {
390 gmap_unlink(mm, table, vmaddr);
391 table = (unsigned long *) ((unsigned long)table | 0x03U);
392 tlb_remove_ptdesc(tlb, table);
393 return;
394 }
395 bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
396 spin_lock_bh(&mm->context.lock);
397 /*
398 * Mark the page for delayed release. The actual release will happen
399 * outside of the critical section from __tlb_remove_table() or from
400 * page_table_free()
401 */
402 mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
403 mask >>= 24;
404 if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
405 /*
406 * Other half is allocated, and neither half has had
407 * its free deferred: add page to end of list, to make
408 * this freed half available for reuse once its pending
409 * bit has been cleared by __tlb_remove_table().
410 */
411 list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list);
412 } else {
413 /* If page is on list, now remove it. */
414 list_del_init(&ptdesc->pt_list);
415 }
416 spin_unlock_bh(&mm->context.lock);
417 table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
418 tlb_remove_table(tlb, table);
419 }
420
__tlb_remove_table(void * _table)421 void __tlb_remove_table(void *_table)
422 {
423 unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
424 void *table = (void *)((unsigned long) _table ^ mask);
425 struct ptdesc *ptdesc = virt_to_ptdesc(table);
426
427 switch (half) {
428 case 0x00U: /* pmd, pud, or p4d */
429 pagetable_free(ptdesc);
430 return;
431 case 0x01U: /* lower 2K of a 4K page table */
432 case 0x02U: /* higher 2K of a 4K page table */
433 mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24));
434 mask >>= 24;
435 if (mask != 0x00U)
436 return;
437 break;
438 case 0x03U: /* 4K page table with pgstes */
439 mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
440 mask >>= 24;
441 break;
442 }
443
444 page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
445 if (folio_test_clear_active(ptdesc_folio(ptdesc)))
446 call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
447 else
448 pte_free_now(&ptdesc->pt_rcu_head);
449 }
450
451 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pte_free_defer(struct mm_struct * mm,pgtable_t pgtable)452 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
453 {
454 struct page *page;
455
456 page = virt_to_page(pgtable);
457 SetPageActive(page);
458 page_table_free(mm, (unsigned long *)pgtable);
459 /*
460 * page_table_free() does not do the pgste gmap_unlink() which
461 * page_table_free_rcu() does: warn us if pgste ever reaches here.
462 */
463 WARN_ON_ONCE(mm_has_pgste(mm));
464 }
465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
466
467 /*
468 * Base infrastructure required to generate basic asces, region, segment,
469 * and page tables that do not make use of enhanced features like EDAT1.
470 */
471
472 static struct kmem_cache *base_pgt_cache;
473
base_pgt_alloc(void)474 static unsigned long *base_pgt_alloc(void)
475 {
476 unsigned long *table;
477
478 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
479 if (table)
480 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
481 return table;
482 }
483
base_pgt_free(unsigned long * table)484 static void base_pgt_free(unsigned long *table)
485 {
486 kmem_cache_free(base_pgt_cache, table);
487 }
488
base_crst_alloc(unsigned long val)489 static unsigned long *base_crst_alloc(unsigned long val)
490 {
491 unsigned long *table;
492 struct ptdesc *ptdesc;
493
494 ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER);
495 if (!ptdesc)
496 return NULL;
497 table = ptdesc_address(ptdesc);
498
499 crst_table_init(table, val);
500 return table;
501 }
502
base_crst_free(unsigned long * table)503 static void base_crst_free(unsigned long *table)
504 {
505 if (!table)
506 return;
507 pagetable_free(virt_to_ptdesc(table));
508 }
509
510 #define BASE_ADDR_END_FUNC(NAME, SIZE) \
511 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
512 unsigned long end) \
513 { \
514 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
515 \
516 return (next - 1) < (end - 1) ? next : end; \
517 }
518
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)519 BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
520 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
521 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
522 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
523 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
524
525 static inline unsigned long base_lra(unsigned long address)
526 {
527 unsigned long real;
528
529 asm volatile(
530 " lra %0,0(%1)\n"
531 : "=d" (real) : "a" (address) : "cc");
532 return real;
533 }
534
base_page_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)535 static int base_page_walk(unsigned long *origin, unsigned long addr,
536 unsigned long end, int alloc)
537 {
538 unsigned long *pte, next;
539
540 if (!alloc)
541 return 0;
542 pte = origin;
543 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
544 do {
545 next = base_page_addr_end(addr, end);
546 *pte = base_lra(addr);
547 } while (pte++, addr = next, addr < end);
548 return 0;
549 }
550
base_segment_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)551 static int base_segment_walk(unsigned long *origin, unsigned long addr,
552 unsigned long end, int alloc)
553 {
554 unsigned long *ste, next, *table;
555 int rc;
556
557 ste = origin;
558 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
559 do {
560 next = base_segment_addr_end(addr, end);
561 if (*ste & _SEGMENT_ENTRY_INVALID) {
562 if (!alloc)
563 continue;
564 table = base_pgt_alloc();
565 if (!table)
566 return -ENOMEM;
567 *ste = __pa(table) | _SEGMENT_ENTRY;
568 }
569 table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
570 rc = base_page_walk(table, addr, next, alloc);
571 if (rc)
572 return rc;
573 if (!alloc)
574 base_pgt_free(table);
575 cond_resched();
576 } while (ste++, addr = next, addr < end);
577 return 0;
578 }
579
base_region3_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)580 static int base_region3_walk(unsigned long *origin, unsigned long addr,
581 unsigned long end, int alloc)
582 {
583 unsigned long *rtte, next, *table;
584 int rc;
585
586 rtte = origin;
587 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
588 do {
589 next = base_region3_addr_end(addr, end);
590 if (*rtte & _REGION_ENTRY_INVALID) {
591 if (!alloc)
592 continue;
593 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
594 if (!table)
595 return -ENOMEM;
596 *rtte = __pa(table) | _REGION3_ENTRY;
597 }
598 table = __va(*rtte & _REGION_ENTRY_ORIGIN);
599 rc = base_segment_walk(table, addr, next, alloc);
600 if (rc)
601 return rc;
602 if (!alloc)
603 base_crst_free(table);
604 } while (rtte++, addr = next, addr < end);
605 return 0;
606 }
607
base_region2_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)608 static int base_region2_walk(unsigned long *origin, unsigned long addr,
609 unsigned long end, int alloc)
610 {
611 unsigned long *rste, next, *table;
612 int rc;
613
614 rste = origin;
615 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
616 do {
617 next = base_region2_addr_end(addr, end);
618 if (*rste & _REGION_ENTRY_INVALID) {
619 if (!alloc)
620 continue;
621 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
622 if (!table)
623 return -ENOMEM;
624 *rste = __pa(table) | _REGION2_ENTRY;
625 }
626 table = __va(*rste & _REGION_ENTRY_ORIGIN);
627 rc = base_region3_walk(table, addr, next, alloc);
628 if (rc)
629 return rc;
630 if (!alloc)
631 base_crst_free(table);
632 } while (rste++, addr = next, addr < end);
633 return 0;
634 }
635
base_region1_walk(unsigned long * origin,unsigned long addr,unsigned long end,int alloc)636 static int base_region1_walk(unsigned long *origin, unsigned long addr,
637 unsigned long end, int alloc)
638 {
639 unsigned long *rfte, next, *table;
640 int rc;
641
642 rfte = origin;
643 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
644 do {
645 next = base_region1_addr_end(addr, end);
646 if (*rfte & _REGION_ENTRY_INVALID) {
647 if (!alloc)
648 continue;
649 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
650 if (!table)
651 return -ENOMEM;
652 *rfte = __pa(table) | _REGION1_ENTRY;
653 }
654 table = __va(*rfte & _REGION_ENTRY_ORIGIN);
655 rc = base_region2_walk(table, addr, next, alloc);
656 if (rc)
657 return rc;
658 if (!alloc)
659 base_crst_free(table);
660 } while (rfte++, addr = next, addr < end);
661 return 0;
662 }
663
664 /**
665 * base_asce_free - free asce and tables returned from base_asce_alloc()
666 * @asce: asce to be freed
667 *
668 * Frees all region, segment, and page tables that were allocated with a
669 * corresponding base_asce_alloc() call.
670 */
base_asce_free(unsigned long asce)671 void base_asce_free(unsigned long asce)
672 {
673 unsigned long *table = __va(asce & _ASCE_ORIGIN);
674
675 if (!asce)
676 return;
677 switch (asce & _ASCE_TYPE_MASK) {
678 case _ASCE_TYPE_SEGMENT:
679 base_segment_walk(table, 0, _REGION3_SIZE, 0);
680 break;
681 case _ASCE_TYPE_REGION3:
682 base_region3_walk(table, 0, _REGION2_SIZE, 0);
683 break;
684 case _ASCE_TYPE_REGION2:
685 base_region2_walk(table, 0, _REGION1_SIZE, 0);
686 break;
687 case _ASCE_TYPE_REGION1:
688 base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
689 break;
690 }
691 base_crst_free(table);
692 }
693
base_pgt_cache_init(void)694 static int base_pgt_cache_init(void)
695 {
696 static DEFINE_MUTEX(base_pgt_cache_mutex);
697 unsigned long sz = _PAGE_TABLE_SIZE;
698
699 if (base_pgt_cache)
700 return 0;
701 mutex_lock(&base_pgt_cache_mutex);
702 if (!base_pgt_cache)
703 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
704 mutex_unlock(&base_pgt_cache_mutex);
705 return base_pgt_cache ? 0 : -ENOMEM;
706 }
707
708 /**
709 * base_asce_alloc - create kernel mapping without enhanced DAT features
710 * @addr: virtual start address of kernel mapping
711 * @num_pages: number of consecutive pages
712 *
713 * Generate an asce, including all required region, segment and page tables,
714 * that can be used to access the virtual kernel mapping. The difference is
715 * that the returned asce does not make use of any enhanced DAT features like
716 * e.g. large pages. This is required for some I/O functions that pass an
717 * asce, like e.g. some service call requests.
718 *
719 * Note: the returned asce may NEVER be attached to any cpu. It may only be
720 * used for I/O requests. tlb entries that might result because the
721 * asce was attached to a cpu won't be cleared.
722 */
base_asce_alloc(unsigned long addr,unsigned long num_pages)723 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
724 {
725 unsigned long asce, *table, end;
726 int rc;
727
728 if (base_pgt_cache_init())
729 return 0;
730 end = addr + num_pages * PAGE_SIZE;
731 if (end <= _REGION3_SIZE) {
732 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
733 if (!table)
734 return 0;
735 rc = base_segment_walk(table, addr, end, 1);
736 asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
737 } else if (end <= _REGION2_SIZE) {
738 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
739 if (!table)
740 return 0;
741 rc = base_region3_walk(table, addr, end, 1);
742 asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
743 } else if (end <= _REGION1_SIZE) {
744 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
745 if (!table)
746 return 0;
747 rc = base_region2_walk(table, addr, end, 1);
748 asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
749 } else {
750 table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
751 if (!table)
752 return 0;
753 rc = base_region1_walk(table, addr, end, 1);
754 asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
755 }
756 if (rc) {
757 base_asce_free(asce);
758 asce = 0;
759 }
760 return asce;
761 }
762