xref: /openbmc/linux/arch/s390/mm/pfault.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright IBM Corp. 1999, 2023
4  */
5 
6 #include <linux/cpuhotplug.h>
7 #include <linux/sched/task.h>
8 #include <linux/errno.h>
9 #include <linux/init.h>
10 #include <linux/irq.h>
11 #include <asm/asm-extable.h>
12 #include <asm/pfault.h>
13 #include <asm/diag.h>
14 
15 #define __SUBCODE_MASK 0x0600
16 #define __PF_RES_FIELD 0x8000000000000000UL
17 
18 /*
19  * 'pfault' pseudo page faults routines.
20  */
21 static int pfault_disable;
22 
23 static int __init nopfault(char *str)
24 {
25 	pfault_disable = 1;
26 	return 1;
27 }
28 early_param("nopfault", nopfault);
29 
30 struct pfault_refbk {
31 	u16 refdiagc;
32 	u16 reffcode;
33 	u16 refdwlen;
34 	u16 refversn;
35 	u64 refgaddr;
36 	u64 refselmk;
37 	u64 refcmpmk;
38 	u64 reserved;
39 };
40 
41 static struct pfault_refbk pfault_init_refbk = {
42 	.refdiagc = 0x258,
43 	.reffcode = 0,
44 	.refdwlen = 5,
45 	.refversn = 2,
46 	.refgaddr = __LC_LPP,
47 	.refselmk = 1UL << 48,
48 	.refcmpmk = 1UL << 48,
49 	.reserved = __PF_RES_FIELD
50 };
51 
52 int __pfault_init(void)
53 {
54 	int rc = -EOPNOTSUPP;
55 
56 	if (pfault_disable)
57 		return rc;
58 	diag_stat_inc(DIAG_STAT_X258);
59 	asm volatile(
60 		"	diag	%[refbk],%[rc],0x258\n"
61 		"0:	nopr	%%r7\n"
62 		EX_TABLE(0b, 0b)
63 		: [rc] "+d" (rc)
64 		: [refbk] "a" (&pfault_init_refbk), "m" (pfault_init_refbk)
65 		: "cc");
66 	return rc;
67 }
68 
69 static struct pfault_refbk pfault_fini_refbk = {
70 	.refdiagc = 0x258,
71 	.reffcode = 1,
72 	.refdwlen = 5,
73 	.refversn = 2,
74 };
75 
76 void __pfault_fini(void)
77 {
78 	if (pfault_disable)
79 		return;
80 	diag_stat_inc(DIAG_STAT_X258);
81 	asm volatile(
82 		"	diag	%[refbk],0,0x258\n"
83 		"0:	nopr	%%r7\n"
84 		EX_TABLE(0b, 0b)
85 		:
86 		: [refbk] "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk)
87 		: "cc");
88 }
89 
90 static DEFINE_SPINLOCK(pfault_lock);
91 static LIST_HEAD(pfault_list);
92 
93 #define PF_COMPLETE	0x0080
94 
95 /*
96  * The mechanism of our pfault code: if Linux is running as guest, runs a user
97  * space process and the user space process accesses a page that the host has
98  * paged out we get a pfault interrupt.
99  *
100  * This allows us, within the guest, to schedule a different process. Without
101  * this mechanism the host would have to suspend the whole virtual cpu until
102  * the page has been paged in.
103  *
104  * So when we get such an interrupt then we set the state of the current task
105  * to uninterruptible and also set the need_resched flag. Both happens within
106  * interrupt context(!). If we later on want to return to user space we
107  * recognize the need_resched flag and then call schedule().  It's not very
108  * obvious how this works...
109  *
110  * Of course we have a lot of additional fun with the completion interrupt (->
111  * host signals that a page of a process has been paged in and the process can
112  * continue to run). This interrupt can arrive on any cpu and, since we have
113  * virtual cpus, actually appear before the interrupt that signals that a page
114  * is missing.
115  */
116 static void pfault_interrupt(struct ext_code ext_code,
117 			     unsigned int param32, unsigned long param64)
118 {
119 	struct task_struct *tsk;
120 	__u16 subcode;
121 	pid_t pid;
122 
123 	/*
124 	 * Get the external interruption subcode & pfault initial/completion
125 	 * signal bit. VM stores this in the 'cpu address' field associated
126 	 * with the external interrupt.
127 	 */
128 	subcode = ext_code.subcode;
129 	if ((subcode & 0xff00) != __SUBCODE_MASK)
130 		return;
131 	inc_irq_stat(IRQEXT_PFL);
132 	/* Get the token (= pid of the affected task). */
133 	pid = param64 & LPP_PID_MASK;
134 	rcu_read_lock();
135 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
136 	if (tsk)
137 		get_task_struct(tsk);
138 	rcu_read_unlock();
139 	if (!tsk)
140 		return;
141 	spin_lock(&pfault_lock);
142 	if (subcode & PF_COMPLETE) {
143 		/* signal bit is set -> a page has been swapped in by VM */
144 		if (tsk->thread.pfault_wait == 1) {
145 			/*
146 			 * Initial interrupt was faster than the completion
147 			 * interrupt. pfault_wait is valid. Set pfault_wait
148 			 * back to zero and wake up the process. This can
149 			 * safely be done because the task is still sleeping
150 			 * and can't produce new pfaults.
151 			 */
152 			tsk->thread.pfault_wait = 0;
153 			list_del(&tsk->thread.list);
154 			wake_up_process(tsk);
155 			put_task_struct(tsk);
156 		} else {
157 			/*
158 			 * Completion interrupt was faster than initial
159 			 * interrupt. Set pfault_wait to -1 so the initial
160 			 * interrupt doesn't put the task to sleep.
161 			 * If the task is not running, ignore the completion
162 			 * interrupt since it must be a leftover of a PFAULT
163 			 * CANCEL operation which didn't remove all pending
164 			 * completion interrupts.
165 			 */
166 			if (task_is_running(tsk))
167 				tsk->thread.pfault_wait = -1;
168 		}
169 	} else {
170 		/* signal bit not set -> a real page is missing. */
171 		if (WARN_ON_ONCE(tsk != current))
172 			goto out;
173 		if (tsk->thread.pfault_wait == 1) {
174 			/* Already on the list with a reference: put to sleep */
175 			goto block;
176 		} else if (tsk->thread.pfault_wait == -1) {
177 			/*
178 			 * Completion interrupt was faster than the initial
179 			 * interrupt (pfault_wait == -1). Set pfault_wait
180 			 * back to zero and exit.
181 			 */
182 			tsk->thread.pfault_wait = 0;
183 		} else {
184 			/*
185 			 * Initial interrupt arrived before completion
186 			 * interrupt. Let the task sleep.
187 			 * An extra task reference is needed since a different
188 			 * cpu may set the task state to TASK_RUNNING again
189 			 * before the scheduler is reached.
190 			 */
191 			get_task_struct(tsk);
192 			tsk->thread.pfault_wait = 1;
193 			list_add(&tsk->thread.list, &pfault_list);
194 block:
195 			/*
196 			 * Since this must be a userspace fault, there
197 			 * is no kernel task state to trample. Rely on the
198 			 * return to userspace schedule() to block.
199 			 */
200 			__set_current_state(TASK_UNINTERRUPTIBLE);
201 			set_tsk_need_resched(tsk);
202 			set_preempt_need_resched();
203 		}
204 	}
205 out:
206 	spin_unlock(&pfault_lock);
207 	put_task_struct(tsk);
208 }
209 
210 static int pfault_cpu_dead(unsigned int cpu)
211 {
212 	struct thread_struct *thread, *next;
213 	struct task_struct *tsk;
214 
215 	spin_lock_irq(&pfault_lock);
216 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
217 		thread->pfault_wait = 0;
218 		list_del(&thread->list);
219 		tsk = container_of(thread, struct task_struct, thread);
220 		wake_up_process(tsk);
221 		put_task_struct(tsk);
222 	}
223 	spin_unlock_irq(&pfault_lock);
224 	return 0;
225 }
226 
227 static int __init pfault_irq_init(void)
228 {
229 	int rc;
230 
231 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
232 	if (rc)
233 		goto out_extint;
234 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
235 	if (rc)
236 		goto out_pfault;
237 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
238 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
239 				  NULL, pfault_cpu_dead);
240 	return 0;
241 
242 out_pfault:
243 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
244 out_extint:
245 	pfault_disable = 1;
246 	return rc;
247 }
248 early_initcall(pfault_irq_init);
249