xref: /openbmc/linux/arch/s390/mm/gmap.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @limit: maximum address of the gmap address space
31  *
32  * Returns a guest address space structure.
33  */
34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 	struct gmap *gmap;
37 	struct page *page;
38 	unsigned long *table;
39 	unsigned long etype, atype;
40 
41 	if (limit < _REGION3_SIZE) {
42 		limit = _REGION3_SIZE - 1;
43 		atype = _ASCE_TYPE_SEGMENT;
44 		etype = _SEGMENT_ENTRY_EMPTY;
45 	} else if (limit < _REGION2_SIZE) {
46 		limit = _REGION2_SIZE - 1;
47 		atype = _ASCE_TYPE_REGION3;
48 		etype = _REGION3_ENTRY_EMPTY;
49 	} else if (limit < _REGION1_SIZE) {
50 		limit = _REGION1_SIZE - 1;
51 		atype = _ASCE_TYPE_REGION2;
52 		etype = _REGION2_ENTRY_EMPTY;
53 	} else {
54 		limit = -1UL;
55 		atype = _ASCE_TYPE_REGION1;
56 		etype = _REGION1_ENTRY_EMPTY;
57 	}
58 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 	if (!gmap)
60 		goto out;
61 	INIT_LIST_HEAD(&gmap->crst_list);
62 	INIT_LIST_HEAD(&gmap->children);
63 	INIT_LIST_HEAD(&gmap->pt_list);
64 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 	spin_lock_init(&gmap->guest_table_lock);
68 	spin_lock_init(&gmap->shadow_lock);
69 	refcount_set(&gmap->ref_count, 1);
70 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 	if (!page)
72 		goto out_free;
73 	page->index = 0;
74 	list_add(&page->lru, &gmap->crst_list);
75 	table = page_to_virt(page);
76 	crst_table_init(table, etype);
77 	gmap->table = table;
78 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 		_ASCE_USER_BITS | __pa(table);
80 	gmap->asce_end = limit;
81 	return gmap;
82 
83 out_free:
84 	kfree(gmap);
85 out:
86 	return NULL;
87 }
88 
89 /**
90  * gmap_create - create a guest address space
91  * @mm: pointer to the parent mm_struct
92  * @limit: maximum size of the gmap address space
93  *
94  * Returns a guest address space structure.
95  */
96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 	struct gmap *gmap;
99 	unsigned long gmap_asce;
100 
101 	gmap = gmap_alloc(limit);
102 	if (!gmap)
103 		return NULL;
104 	gmap->mm = mm;
105 	spin_lock(&mm->context.lock);
106 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 	if (list_is_singular(&mm->context.gmap_list))
108 		gmap_asce = gmap->asce;
109 	else
110 		gmap_asce = -1UL;
111 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 	spin_unlock(&mm->context.lock);
113 	return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116 
117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 	if (MACHINE_HAS_IDTE)
120 		__tlb_flush_idte(gmap->asce);
121 	else
122 		__tlb_flush_global();
123 }
124 
125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 	struct radix_tree_iter iter;
128 	unsigned long indices[16];
129 	unsigned long index;
130 	void __rcu **slot;
131 	int i, nr;
132 
133 	/* A radix tree is freed by deleting all of its entries */
134 	index = 0;
135 	do {
136 		nr = 0;
137 		radix_tree_for_each_slot(slot, root, &iter, index) {
138 			indices[nr] = iter.index;
139 			if (++nr == 16)
140 				break;
141 		}
142 		for (i = 0; i < nr; i++) {
143 			index = indices[i];
144 			radix_tree_delete(root, index);
145 		}
146 	} while (nr > 0);
147 }
148 
149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 	struct gmap_rmap *rmap, *rnext, *head;
152 	struct radix_tree_iter iter;
153 	unsigned long indices[16];
154 	unsigned long index;
155 	void __rcu **slot;
156 	int i, nr;
157 
158 	/* A radix tree is freed by deleting all of its entries */
159 	index = 0;
160 	do {
161 		nr = 0;
162 		radix_tree_for_each_slot(slot, root, &iter, index) {
163 			indices[nr] = iter.index;
164 			if (++nr == 16)
165 				break;
166 		}
167 		for (i = 0; i < nr; i++) {
168 			index = indices[i];
169 			head = radix_tree_delete(root, index);
170 			gmap_for_each_rmap_safe(rmap, rnext, head)
171 				kfree(rmap);
172 		}
173 	} while (nr > 0);
174 }
175 
176 /**
177  * gmap_free - free a guest address space
178  * @gmap: pointer to the guest address space structure
179  *
180  * No locks required. There are no references to this gmap anymore.
181  */
182 static void gmap_free(struct gmap *gmap)
183 {
184 	struct page *page, *next;
185 
186 	/* Flush tlb of all gmaps (if not already done for shadows) */
187 	if (!(gmap_is_shadow(gmap) && gmap->removed))
188 		gmap_flush_tlb(gmap);
189 	/* Free all segment & region tables. */
190 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 		__free_pages(page, CRST_ALLOC_ORDER);
192 	gmap_radix_tree_free(&gmap->guest_to_host);
193 	gmap_radix_tree_free(&gmap->host_to_guest);
194 
195 	/* Free additional data for a shadow gmap */
196 	if (gmap_is_shadow(gmap)) {
197 		/* Free all page tables. */
198 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 			page_table_free_pgste(page);
200 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 		/* Release reference to the parent */
202 		gmap_put(gmap->parent);
203 	}
204 
205 	kfree(gmap);
206 }
207 
208 /**
209  * gmap_get - increase reference counter for guest address space
210  * @gmap: pointer to the guest address space structure
211  *
212  * Returns the gmap pointer
213  */
214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 	refcount_inc(&gmap->ref_count);
217 	return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220 
221 /**
222  * gmap_put - decrease reference counter for guest address space
223  * @gmap: pointer to the guest address space structure
224  *
225  * If the reference counter reaches zero the guest address space is freed.
226  */
227 void gmap_put(struct gmap *gmap)
228 {
229 	if (refcount_dec_and_test(&gmap->ref_count))
230 		gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233 
234 /**
235  * gmap_remove - remove a guest address space but do not free it yet
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_remove(struct gmap *gmap)
239 {
240 	struct gmap *sg, *next;
241 	unsigned long gmap_asce;
242 
243 	/* Remove all shadow gmaps linked to this gmap */
244 	if (!list_empty(&gmap->children)) {
245 		spin_lock(&gmap->shadow_lock);
246 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 			list_del(&sg->list);
248 			gmap_put(sg);
249 		}
250 		spin_unlock(&gmap->shadow_lock);
251 	}
252 	/* Remove gmap from the pre-mm list */
253 	spin_lock(&gmap->mm->context.lock);
254 	list_del_rcu(&gmap->list);
255 	if (list_empty(&gmap->mm->context.gmap_list))
256 		gmap_asce = 0;
257 	else if (list_is_singular(&gmap->mm->context.gmap_list))
258 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 					     struct gmap, list)->asce;
260 	else
261 		gmap_asce = -1UL;
262 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 	spin_unlock(&gmap->mm->context.lock);
264 	synchronize_rcu();
265 	/* Put reference */
266 	gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269 
270 /**
271  * gmap_enable - switch primary space to the guest address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_enable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279 
280 /**
281  * gmap_disable - switch back to the standard primary address space
282  * @gmap: pointer to the guest address space structure
283  */
284 void gmap_disable(struct gmap *gmap)
285 {
286 	S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289 
290 /**
291  * gmap_get_enabled - get a pointer to the currently enabled gmap
292  *
293  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294  */
295 struct gmap *gmap_get_enabled(void)
296 {
297 	return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300 
301 /*
302  * gmap_alloc_table is assumed to be called with mmap_lock held
303  */
304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 			    unsigned long init, unsigned long gaddr)
306 {
307 	struct page *page;
308 	unsigned long *new;
309 
310 	/* since we dont free the gmap table until gmap_free we can unlock */
311 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 	if (!page)
313 		return -ENOMEM;
314 	new = page_to_virt(page);
315 	crst_table_init(new, init);
316 	spin_lock(&gmap->guest_table_lock);
317 	if (*table & _REGION_ENTRY_INVALID) {
318 		list_add(&page->lru, &gmap->crst_list);
319 		*table = __pa(new) | _REGION_ENTRY_LENGTH |
320 			(*table & _REGION_ENTRY_TYPE_MASK);
321 		page->index = gaddr;
322 		page = NULL;
323 	}
324 	spin_unlock(&gmap->guest_table_lock);
325 	if (page)
326 		__free_pages(page, CRST_ALLOC_ORDER);
327 	return 0;
328 }
329 
330 /**
331  * __gmap_segment_gaddr - find virtual address from segment pointer
332  * @entry: pointer to a segment table entry in the guest address space
333  *
334  * Returns the virtual address in the guest address space for the segment
335  */
336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 	struct page *page;
339 	unsigned long offset;
340 
341 	offset = (unsigned long) entry / sizeof(unsigned long);
342 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 	page = pmd_pgtable_page((pmd_t *) entry);
344 	return page->index + offset;
345 }
346 
347 /**
348  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
349  * @gmap: pointer to the guest address space structure
350  * @vmaddr: address in the host process address space
351  *
352  * Returns 1 if a TLB flush is required
353  */
354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
355 {
356 	unsigned long *entry;
357 	int flush = 0;
358 
359 	BUG_ON(gmap_is_shadow(gmap));
360 	spin_lock(&gmap->guest_table_lock);
361 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
362 	if (entry) {
363 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
364 		*entry = _SEGMENT_ENTRY_EMPTY;
365 	}
366 	spin_unlock(&gmap->guest_table_lock);
367 	return flush;
368 }
369 
370 /**
371  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
372  * @gmap: pointer to the guest address space structure
373  * @gaddr: address in the guest address space
374  *
375  * Returns 1 if a TLB flush is required
376  */
377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
378 {
379 	unsigned long vmaddr;
380 
381 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
382 						   gaddr >> PMD_SHIFT);
383 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
384 }
385 
386 /**
387  * gmap_unmap_segment - unmap segment from the guest address space
388  * @gmap: pointer to the guest address space structure
389  * @to: address in the guest address space
390  * @len: length of the memory area to unmap
391  *
392  * Returns 0 if the unmap succeeded, -EINVAL if not.
393  */
394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
395 {
396 	unsigned long off;
397 	int flush;
398 
399 	BUG_ON(gmap_is_shadow(gmap));
400 	if ((to | len) & (PMD_SIZE - 1))
401 		return -EINVAL;
402 	if (len == 0 || to + len < to)
403 		return -EINVAL;
404 
405 	flush = 0;
406 	mmap_write_lock(gmap->mm);
407 	for (off = 0; off < len; off += PMD_SIZE)
408 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
409 	mmap_write_unlock(gmap->mm);
410 	if (flush)
411 		gmap_flush_tlb(gmap);
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
415 
416 /**
417  * gmap_map_segment - map a segment to the guest address space
418  * @gmap: pointer to the guest address space structure
419  * @from: source address in the parent address space
420  * @to: target address in the guest address space
421  * @len: length of the memory area to map
422  *
423  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
424  */
425 int gmap_map_segment(struct gmap *gmap, unsigned long from,
426 		     unsigned long to, unsigned long len)
427 {
428 	unsigned long off;
429 	int flush;
430 
431 	BUG_ON(gmap_is_shadow(gmap));
432 	if ((from | to | len) & (PMD_SIZE - 1))
433 		return -EINVAL;
434 	if (len == 0 || from + len < from || to + len < to ||
435 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
436 		return -EINVAL;
437 
438 	flush = 0;
439 	mmap_write_lock(gmap->mm);
440 	for (off = 0; off < len; off += PMD_SIZE) {
441 		/* Remove old translation */
442 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
443 		/* Store new translation */
444 		if (radix_tree_insert(&gmap->guest_to_host,
445 				      (to + off) >> PMD_SHIFT,
446 				      (void *) from + off))
447 			break;
448 	}
449 	mmap_write_unlock(gmap->mm);
450 	if (flush)
451 		gmap_flush_tlb(gmap);
452 	if (off >= len)
453 		return 0;
454 	gmap_unmap_segment(gmap, to, len);
455 	return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(gmap_map_segment);
458 
459 /**
460  * __gmap_translate - translate a guest address to a user space address
461  * @gmap: pointer to guest mapping meta data structure
462  * @gaddr: guest address
463  *
464  * Returns user space address which corresponds to the guest address or
465  * -EFAULT if no such mapping exists.
466  * This function does not establish potentially missing page table entries.
467  * The mmap_lock of the mm that belongs to the address space must be held
468  * when this function gets called.
469  *
470  * Note: Can also be called for shadow gmaps.
471  */
472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 	unsigned long vmaddr;
475 
476 	vmaddr = (unsigned long)
477 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
478 	/* Note: guest_to_host is empty for a shadow gmap */
479 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
480 }
481 EXPORT_SYMBOL_GPL(__gmap_translate);
482 
483 /**
484  * gmap_translate - translate a guest address to a user space address
485  * @gmap: pointer to guest mapping meta data structure
486  * @gaddr: guest address
487  *
488  * Returns user space address which corresponds to the guest address or
489  * -EFAULT if no such mapping exists.
490  * This function does not establish potentially missing page table entries.
491  */
492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
493 {
494 	unsigned long rc;
495 
496 	mmap_read_lock(gmap->mm);
497 	rc = __gmap_translate(gmap, gaddr);
498 	mmap_read_unlock(gmap->mm);
499 	return rc;
500 }
501 EXPORT_SYMBOL_GPL(gmap_translate);
502 
503 /**
504  * gmap_unlink - disconnect a page table from the gmap shadow tables
505  * @mm: pointer to the parent mm_struct
506  * @table: pointer to the host page table
507  * @vmaddr: vm address associated with the host page table
508  */
509 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
510 		 unsigned long vmaddr)
511 {
512 	struct gmap *gmap;
513 	int flush;
514 
515 	rcu_read_lock();
516 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
517 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
518 		if (flush)
519 			gmap_flush_tlb(gmap);
520 	}
521 	rcu_read_unlock();
522 }
523 
524 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
525 			   unsigned long gaddr);
526 
527 /**
528  * __gmap_link - set up shadow page tables to connect a host to a guest address
529  * @gmap: pointer to guest mapping meta data structure
530  * @gaddr: guest address
531  * @vmaddr: vm address
532  *
533  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
534  * if the vm address is already mapped to a different guest segment.
535  * The mmap_lock of the mm that belongs to the address space must be held
536  * when this function gets called.
537  */
538 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
539 {
540 	struct mm_struct *mm;
541 	unsigned long *table;
542 	spinlock_t *ptl;
543 	pgd_t *pgd;
544 	p4d_t *p4d;
545 	pud_t *pud;
546 	pmd_t *pmd;
547 	u64 unprot;
548 	int rc;
549 
550 	BUG_ON(gmap_is_shadow(gmap));
551 	/* Create higher level tables in the gmap page table */
552 	table = gmap->table;
553 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
554 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
555 		if ((*table & _REGION_ENTRY_INVALID) &&
556 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
557 				     gaddr & _REGION1_MASK))
558 			return -ENOMEM;
559 		table = __va(*table & _REGION_ENTRY_ORIGIN);
560 	}
561 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
562 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
563 		if ((*table & _REGION_ENTRY_INVALID) &&
564 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
565 				     gaddr & _REGION2_MASK))
566 			return -ENOMEM;
567 		table = __va(*table & _REGION_ENTRY_ORIGIN);
568 	}
569 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
570 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
571 		if ((*table & _REGION_ENTRY_INVALID) &&
572 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
573 				     gaddr & _REGION3_MASK))
574 			return -ENOMEM;
575 		table = __va(*table & _REGION_ENTRY_ORIGIN);
576 	}
577 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
578 	/* Walk the parent mm page table */
579 	mm = gmap->mm;
580 	pgd = pgd_offset(mm, vmaddr);
581 	VM_BUG_ON(pgd_none(*pgd));
582 	p4d = p4d_offset(pgd, vmaddr);
583 	VM_BUG_ON(p4d_none(*p4d));
584 	pud = pud_offset(p4d, vmaddr);
585 	VM_BUG_ON(pud_none(*pud));
586 	/* large puds cannot yet be handled */
587 	if (pud_large(*pud))
588 		return -EFAULT;
589 	pmd = pmd_offset(pud, vmaddr);
590 	VM_BUG_ON(pmd_none(*pmd));
591 	/* Are we allowed to use huge pages? */
592 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
593 		return -EFAULT;
594 	/* Link gmap segment table entry location to page table. */
595 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
596 	if (rc)
597 		return rc;
598 	ptl = pmd_lock(mm, pmd);
599 	spin_lock(&gmap->guest_table_lock);
600 	if (*table == _SEGMENT_ENTRY_EMPTY) {
601 		rc = radix_tree_insert(&gmap->host_to_guest,
602 				       vmaddr >> PMD_SHIFT, table);
603 		if (!rc) {
604 			if (pmd_large(*pmd)) {
605 				*table = (pmd_val(*pmd) &
606 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
607 					| _SEGMENT_ENTRY_GMAP_UC;
608 			} else
609 				*table = pmd_val(*pmd) &
610 					_SEGMENT_ENTRY_HARDWARE_BITS;
611 		}
612 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
613 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
614 		unprot = (u64)*table;
615 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
616 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
617 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
618 	}
619 	spin_unlock(&gmap->guest_table_lock);
620 	spin_unlock(ptl);
621 	radix_tree_preload_end();
622 	return rc;
623 }
624 
625 /**
626  * gmap_fault - resolve a fault on a guest address
627  * @gmap: pointer to guest mapping meta data structure
628  * @gaddr: guest address
629  * @fault_flags: flags to pass down to handle_mm_fault()
630  *
631  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
632  * if the vm address is already mapped to a different guest segment.
633  */
634 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
635 	       unsigned int fault_flags)
636 {
637 	unsigned long vmaddr;
638 	int rc;
639 	bool unlocked;
640 
641 	mmap_read_lock(gmap->mm);
642 
643 retry:
644 	unlocked = false;
645 	vmaddr = __gmap_translate(gmap, gaddr);
646 	if (IS_ERR_VALUE(vmaddr)) {
647 		rc = vmaddr;
648 		goto out_up;
649 	}
650 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
651 			     &unlocked)) {
652 		rc = -EFAULT;
653 		goto out_up;
654 	}
655 	/*
656 	 * In the case that fixup_user_fault unlocked the mmap_lock during
657 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
658 	 */
659 	if (unlocked)
660 		goto retry;
661 
662 	rc = __gmap_link(gmap, gaddr, vmaddr);
663 out_up:
664 	mmap_read_unlock(gmap->mm);
665 	return rc;
666 }
667 EXPORT_SYMBOL_GPL(gmap_fault);
668 
669 /*
670  * this function is assumed to be called with mmap_lock held
671  */
672 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
673 {
674 	struct vm_area_struct *vma;
675 	unsigned long vmaddr;
676 	spinlock_t *ptl;
677 	pte_t *ptep;
678 
679 	/* Find the vm address for the guest address */
680 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
681 						   gaddr >> PMD_SHIFT);
682 	if (vmaddr) {
683 		vmaddr |= gaddr & ~PMD_MASK;
684 
685 		vma = vma_lookup(gmap->mm, vmaddr);
686 		if (!vma || is_vm_hugetlb_page(vma))
687 			return;
688 
689 		/* Get pointer to the page table entry */
690 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
691 		if (likely(ptep)) {
692 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
693 			pte_unmap_unlock(ptep, ptl);
694 		}
695 	}
696 }
697 EXPORT_SYMBOL_GPL(__gmap_zap);
698 
699 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
700 {
701 	unsigned long gaddr, vmaddr, size;
702 	struct vm_area_struct *vma;
703 
704 	mmap_read_lock(gmap->mm);
705 	for (gaddr = from; gaddr < to;
706 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
707 		/* Find the vm address for the guest address */
708 		vmaddr = (unsigned long)
709 			radix_tree_lookup(&gmap->guest_to_host,
710 					  gaddr >> PMD_SHIFT);
711 		if (!vmaddr)
712 			continue;
713 		vmaddr |= gaddr & ~PMD_MASK;
714 		/* Find vma in the parent mm */
715 		vma = find_vma(gmap->mm, vmaddr);
716 		if (!vma)
717 			continue;
718 		/*
719 		 * We do not discard pages that are backed by
720 		 * hugetlbfs, so we don't have to refault them.
721 		 */
722 		if (is_vm_hugetlb_page(vma))
723 			continue;
724 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
725 		zap_page_range_single(vma, vmaddr, size, NULL);
726 	}
727 	mmap_read_unlock(gmap->mm);
728 }
729 EXPORT_SYMBOL_GPL(gmap_discard);
730 
731 static LIST_HEAD(gmap_notifier_list);
732 static DEFINE_SPINLOCK(gmap_notifier_lock);
733 
734 /**
735  * gmap_register_pte_notifier - register a pte invalidation callback
736  * @nb: pointer to the gmap notifier block
737  */
738 void gmap_register_pte_notifier(struct gmap_notifier *nb)
739 {
740 	spin_lock(&gmap_notifier_lock);
741 	list_add_rcu(&nb->list, &gmap_notifier_list);
742 	spin_unlock(&gmap_notifier_lock);
743 }
744 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
745 
746 /**
747  * gmap_unregister_pte_notifier - remove a pte invalidation callback
748  * @nb: pointer to the gmap notifier block
749  */
750 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
751 {
752 	spin_lock(&gmap_notifier_lock);
753 	list_del_rcu(&nb->list);
754 	spin_unlock(&gmap_notifier_lock);
755 	synchronize_rcu();
756 }
757 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
758 
759 /**
760  * gmap_call_notifier - call all registered invalidation callbacks
761  * @gmap: pointer to guest mapping meta data structure
762  * @start: start virtual address in the guest address space
763  * @end: end virtual address in the guest address space
764  */
765 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
766 			       unsigned long end)
767 {
768 	struct gmap_notifier *nb;
769 
770 	list_for_each_entry(nb, &gmap_notifier_list, list)
771 		nb->notifier_call(gmap, start, end);
772 }
773 
774 /**
775  * gmap_table_walk - walk the gmap page tables
776  * @gmap: pointer to guest mapping meta data structure
777  * @gaddr: virtual address in the guest address space
778  * @level: page table level to stop at
779  *
780  * Returns a table entry pointer for the given guest address and @level
781  * @level=0 : returns a pointer to a page table table entry (or NULL)
782  * @level=1 : returns a pointer to a segment table entry (or NULL)
783  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
784  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
785  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
786  *
787  * Returns NULL if the gmap page tables could not be walked to the
788  * requested level.
789  *
790  * Note: Can also be called for shadow gmaps.
791  */
792 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
793 					     unsigned long gaddr, int level)
794 {
795 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
796 	unsigned long *table = gmap->table;
797 
798 	if (gmap_is_shadow(gmap) && gmap->removed)
799 		return NULL;
800 
801 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
802 		return NULL;
803 
804 	if (asce_type != _ASCE_TYPE_REGION1 &&
805 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
806 		return NULL;
807 
808 	switch (asce_type) {
809 	case _ASCE_TYPE_REGION1:
810 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
811 		if (level == 4)
812 			break;
813 		if (*table & _REGION_ENTRY_INVALID)
814 			return NULL;
815 		table = __va(*table & _REGION_ENTRY_ORIGIN);
816 		fallthrough;
817 	case _ASCE_TYPE_REGION2:
818 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
819 		if (level == 3)
820 			break;
821 		if (*table & _REGION_ENTRY_INVALID)
822 			return NULL;
823 		table = __va(*table & _REGION_ENTRY_ORIGIN);
824 		fallthrough;
825 	case _ASCE_TYPE_REGION3:
826 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
827 		if (level == 2)
828 			break;
829 		if (*table & _REGION_ENTRY_INVALID)
830 			return NULL;
831 		table = __va(*table & _REGION_ENTRY_ORIGIN);
832 		fallthrough;
833 	case _ASCE_TYPE_SEGMENT:
834 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
835 		if (level == 1)
836 			break;
837 		if (*table & _REGION_ENTRY_INVALID)
838 			return NULL;
839 		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
840 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
841 	}
842 	return table;
843 }
844 
845 /**
846  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
847  *		      and return the pte pointer
848  * @gmap: pointer to guest mapping meta data structure
849  * @gaddr: virtual address in the guest address space
850  * @ptl: pointer to the spinlock pointer
851  *
852  * Returns a pointer to the locked pte for a guest address, or NULL
853  */
854 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
855 			       spinlock_t **ptl)
856 {
857 	unsigned long *table;
858 
859 	BUG_ON(gmap_is_shadow(gmap));
860 	/* Walk the gmap page table, lock and get pte pointer */
861 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
862 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
863 		return NULL;
864 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
865 }
866 
867 /**
868  * gmap_pte_op_fixup - force a page in and connect the gmap page table
869  * @gmap: pointer to guest mapping meta data structure
870  * @gaddr: virtual address in the guest address space
871  * @vmaddr: address in the host process address space
872  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
873  *
874  * Returns 0 if the caller can retry __gmap_translate (might fail again),
875  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
876  * up or connecting the gmap page table.
877  */
878 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
879 			     unsigned long vmaddr, int prot)
880 {
881 	struct mm_struct *mm = gmap->mm;
882 	unsigned int fault_flags;
883 	bool unlocked = false;
884 
885 	BUG_ON(gmap_is_shadow(gmap));
886 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
887 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
888 		return -EFAULT;
889 	if (unlocked)
890 		/* lost mmap_lock, caller has to retry __gmap_translate */
891 		return 0;
892 	/* Connect the page tables */
893 	return __gmap_link(gmap, gaddr, vmaddr);
894 }
895 
896 /**
897  * gmap_pte_op_end - release the page table lock
898  * @ptl: pointer to the spinlock pointer
899  */
900 static void gmap_pte_op_end(spinlock_t *ptl)
901 {
902 	if (ptl)
903 		spin_unlock(ptl);
904 }
905 
906 /**
907  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
908  *		      and return the pmd pointer
909  * @gmap: pointer to guest mapping meta data structure
910  * @gaddr: virtual address in the guest address space
911  *
912  * Returns a pointer to the pmd for a guest address, or NULL
913  */
914 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
915 {
916 	pmd_t *pmdp;
917 
918 	BUG_ON(gmap_is_shadow(gmap));
919 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
920 	if (!pmdp)
921 		return NULL;
922 
923 	/* without huge pages, there is no need to take the table lock */
924 	if (!gmap->mm->context.allow_gmap_hpage_1m)
925 		return pmd_none(*pmdp) ? NULL : pmdp;
926 
927 	spin_lock(&gmap->guest_table_lock);
928 	if (pmd_none(*pmdp)) {
929 		spin_unlock(&gmap->guest_table_lock);
930 		return NULL;
931 	}
932 
933 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
934 	if (!pmd_large(*pmdp))
935 		spin_unlock(&gmap->guest_table_lock);
936 	return pmdp;
937 }
938 
939 /**
940  * gmap_pmd_op_end - release the guest_table_lock if needed
941  * @gmap: pointer to the guest mapping meta data structure
942  * @pmdp: pointer to the pmd
943  */
944 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
945 {
946 	if (pmd_large(*pmdp))
947 		spin_unlock(&gmap->guest_table_lock);
948 }
949 
950 /*
951  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
952  * @pmdp: pointer to the pmd to be protected
953  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
954  * @bits: notification bits to set
955  *
956  * Returns:
957  * 0 if successfully protected
958  * -EAGAIN if a fixup is needed
959  * -EINVAL if unsupported notifier bits have been specified
960  *
961  * Expected to be called with sg->mm->mmap_lock in read and
962  * guest_table_lock held.
963  */
964 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
965 			    pmd_t *pmdp, int prot, unsigned long bits)
966 {
967 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
968 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
969 	pmd_t new = *pmdp;
970 
971 	/* Fixup needed */
972 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
973 		return -EAGAIN;
974 
975 	if (prot == PROT_NONE && !pmd_i) {
976 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
977 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
978 	}
979 
980 	if (prot == PROT_READ && !pmd_p) {
981 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
982 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
983 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
984 	}
985 
986 	if (bits & GMAP_NOTIFY_MPROT)
987 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
988 
989 	/* Shadow GMAP protection needs split PMDs */
990 	if (bits & GMAP_NOTIFY_SHADOW)
991 		return -EINVAL;
992 
993 	return 0;
994 }
995 
996 /*
997  * gmap_protect_pte - remove access rights to memory and set pgste bits
998  * @gmap: pointer to guest mapping meta data structure
999  * @gaddr: virtual address in the guest address space
1000  * @pmdp: pointer to the pmd associated with the pte
1001  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1002  * @bits: notification bits to set
1003  *
1004  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1005  * -EAGAIN if a fixup is needed.
1006  *
1007  * Expected to be called with sg->mm->mmap_lock in read
1008  */
1009 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1010 			    pmd_t *pmdp, int prot, unsigned long bits)
1011 {
1012 	int rc;
1013 	pte_t *ptep;
1014 	spinlock_t *ptl = NULL;
1015 	unsigned long pbits = 0;
1016 
1017 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1018 		return -EAGAIN;
1019 
1020 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1021 	if (!ptep)
1022 		return -ENOMEM;
1023 
1024 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1025 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1026 	/* Protect and unlock. */
1027 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1028 	gmap_pte_op_end(ptl);
1029 	return rc;
1030 }
1031 
1032 /*
1033  * gmap_protect_range - remove access rights to memory and set pgste bits
1034  * @gmap: pointer to guest mapping meta data structure
1035  * @gaddr: virtual address in the guest address space
1036  * @len: size of area
1037  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1038  * @bits: pgste notification bits to set
1039  *
1040  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1041  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1042  *
1043  * Called with sg->mm->mmap_lock in read.
1044  */
1045 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1046 			      unsigned long len, int prot, unsigned long bits)
1047 {
1048 	unsigned long vmaddr, dist;
1049 	pmd_t *pmdp;
1050 	int rc;
1051 
1052 	BUG_ON(gmap_is_shadow(gmap));
1053 	while (len) {
1054 		rc = -EAGAIN;
1055 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1056 		if (pmdp) {
1057 			if (!pmd_large(*pmdp)) {
1058 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1059 						      bits);
1060 				if (!rc) {
1061 					len -= PAGE_SIZE;
1062 					gaddr += PAGE_SIZE;
1063 				}
1064 			} else {
1065 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1066 						      bits);
1067 				if (!rc) {
1068 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1069 					len = len < dist ? 0 : len - dist;
1070 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1071 				}
1072 			}
1073 			gmap_pmd_op_end(gmap, pmdp);
1074 		}
1075 		if (rc) {
1076 			if (rc == -EINVAL)
1077 				return rc;
1078 
1079 			/* -EAGAIN, fixup of userspace mm and gmap */
1080 			vmaddr = __gmap_translate(gmap, gaddr);
1081 			if (IS_ERR_VALUE(vmaddr))
1082 				return vmaddr;
1083 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1084 			if (rc)
1085 				return rc;
1086 		}
1087 	}
1088 	return 0;
1089 }
1090 
1091 /**
1092  * gmap_mprotect_notify - change access rights for a range of ptes and
1093  *                        call the notifier if any pte changes again
1094  * @gmap: pointer to guest mapping meta data structure
1095  * @gaddr: virtual address in the guest address space
1096  * @len: size of area
1097  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1098  *
1099  * Returns 0 if for each page in the given range a gmap mapping exists,
1100  * the new access rights could be set and the notifier could be armed.
1101  * If the gmap mapping is missing for one or more pages -EFAULT is
1102  * returned. If no memory could be allocated -ENOMEM is returned.
1103  * This function establishes missing page table entries.
1104  */
1105 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1106 			 unsigned long len, int prot)
1107 {
1108 	int rc;
1109 
1110 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1111 		return -EINVAL;
1112 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1113 		return -EINVAL;
1114 	mmap_read_lock(gmap->mm);
1115 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1116 	mmap_read_unlock(gmap->mm);
1117 	return rc;
1118 }
1119 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1120 
1121 /**
1122  * gmap_read_table - get an unsigned long value from a guest page table using
1123  *                   absolute addressing, without marking the page referenced.
1124  * @gmap: pointer to guest mapping meta data structure
1125  * @gaddr: virtual address in the guest address space
1126  * @val: pointer to the unsigned long value to return
1127  *
1128  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1129  * if reading using the virtual address failed. -EINVAL if called on a gmap
1130  * shadow.
1131  *
1132  * Called with gmap->mm->mmap_lock in read.
1133  */
1134 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1135 {
1136 	unsigned long address, vmaddr;
1137 	spinlock_t *ptl;
1138 	pte_t *ptep, pte;
1139 	int rc;
1140 
1141 	if (gmap_is_shadow(gmap))
1142 		return -EINVAL;
1143 
1144 	while (1) {
1145 		rc = -EAGAIN;
1146 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1147 		if (ptep) {
1148 			pte = *ptep;
1149 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1150 				address = pte_val(pte) & PAGE_MASK;
1151 				address += gaddr & ~PAGE_MASK;
1152 				*val = *(unsigned long *)__va(address);
1153 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1154 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1155 				rc = 0;
1156 			}
1157 			gmap_pte_op_end(ptl);
1158 		}
1159 		if (!rc)
1160 			break;
1161 		vmaddr = __gmap_translate(gmap, gaddr);
1162 		if (IS_ERR_VALUE(vmaddr)) {
1163 			rc = vmaddr;
1164 			break;
1165 		}
1166 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1167 		if (rc)
1168 			break;
1169 	}
1170 	return rc;
1171 }
1172 EXPORT_SYMBOL_GPL(gmap_read_table);
1173 
1174 /**
1175  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1176  * @sg: pointer to the shadow guest address space structure
1177  * @vmaddr: vm address associated with the rmap
1178  * @rmap: pointer to the rmap structure
1179  *
1180  * Called with the sg->guest_table_lock
1181  */
1182 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1183 				    struct gmap_rmap *rmap)
1184 {
1185 	struct gmap_rmap *temp;
1186 	void __rcu **slot;
1187 
1188 	BUG_ON(!gmap_is_shadow(sg));
1189 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190 	if (slot) {
1191 		rmap->next = radix_tree_deref_slot_protected(slot,
1192 							&sg->guest_table_lock);
1193 		for (temp = rmap->next; temp; temp = temp->next) {
1194 			if (temp->raddr == rmap->raddr) {
1195 				kfree(rmap);
1196 				return;
1197 			}
1198 		}
1199 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1200 	} else {
1201 		rmap->next = NULL;
1202 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1203 				  rmap);
1204 	}
1205 }
1206 
1207 /**
1208  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1209  * @sg: pointer to the shadow guest address space structure
1210  * @raddr: rmap address in the shadow gmap
1211  * @paddr: address in the parent guest address space
1212  * @len: length of the memory area to protect
1213  *
1214  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1215  * if out of memory and -EFAULT if paddr is invalid.
1216  */
1217 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1218 			     unsigned long paddr, unsigned long len)
1219 {
1220 	struct gmap *parent;
1221 	struct gmap_rmap *rmap;
1222 	unsigned long vmaddr;
1223 	spinlock_t *ptl;
1224 	pte_t *ptep;
1225 	int rc;
1226 
1227 	BUG_ON(!gmap_is_shadow(sg));
1228 	parent = sg->parent;
1229 	while (len) {
1230 		vmaddr = __gmap_translate(parent, paddr);
1231 		if (IS_ERR_VALUE(vmaddr))
1232 			return vmaddr;
1233 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1234 		if (!rmap)
1235 			return -ENOMEM;
1236 		rmap->raddr = raddr;
1237 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1238 		if (rc) {
1239 			kfree(rmap);
1240 			return rc;
1241 		}
1242 		rc = -EAGAIN;
1243 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1244 		if (ptep) {
1245 			spin_lock(&sg->guest_table_lock);
1246 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1247 					     PGSTE_VSIE_BIT);
1248 			if (!rc)
1249 				gmap_insert_rmap(sg, vmaddr, rmap);
1250 			spin_unlock(&sg->guest_table_lock);
1251 			gmap_pte_op_end(ptl);
1252 		}
1253 		radix_tree_preload_end();
1254 		if (rc) {
1255 			kfree(rmap);
1256 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1257 			if (rc)
1258 				return rc;
1259 			continue;
1260 		}
1261 		paddr += PAGE_SIZE;
1262 		len -= PAGE_SIZE;
1263 	}
1264 	return 0;
1265 }
1266 
1267 #define _SHADOW_RMAP_MASK	0x7
1268 #define _SHADOW_RMAP_REGION1	0x5
1269 #define _SHADOW_RMAP_REGION2	0x4
1270 #define _SHADOW_RMAP_REGION3	0x3
1271 #define _SHADOW_RMAP_SEGMENT	0x2
1272 #define _SHADOW_RMAP_PGTABLE	0x1
1273 
1274 /**
1275  * gmap_idte_one - invalidate a single region or segment table entry
1276  * @asce: region or segment table *origin* + table-type bits
1277  * @vaddr: virtual address to identify the table entry to flush
1278  *
1279  * The invalid bit of a single region or segment table entry is set
1280  * and the associated TLB entries depending on the entry are flushed.
1281  * The table-type of the @asce identifies the portion of the @vaddr
1282  * that is used as the invalidation index.
1283  */
1284 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1285 {
1286 	asm volatile(
1287 		"	idte	%0,0,%1"
1288 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1289 }
1290 
1291 /**
1292  * gmap_unshadow_page - remove a page from a shadow page table
1293  * @sg: pointer to the shadow guest address space structure
1294  * @raddr: rmap address in the shadow guest address space
1295  *
1296  * Called with the sg->guest_table_lock
1297  */
1298 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1299 {
1300 	unsigned long *table;
1301 
1302 	BUG_ON(!gmap_is_shadow(sg));
1303 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1304 	if (!table || *table & _PAGE_INVALID)
1305 		return;
1306 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1307 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1308 }
1309 
1310 /**
1311  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1312  * @sg: pointer to the shadow guest address space structure
1313  * @raddr: rmap address in the shadow guest address space
1314  * @pgt: pointer to the start of a shadow page table
1315  *
1316  * Called with the sg->guest_table_lock
1317  */
1318 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1319 				unsigned long *pgt)
1320 {
1321 	int i;
1322 
1323 	BUG_ON(!gmap_is_shadow(sg));
1324 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1325 		pgt[i] = _PAGE_INVALID;
1326 }
1327 
1328 /**
1329  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1330  * @sg: pointer to the shadow guest address space structure
1331  * @raddr: address in the shadow guest address space
1332  *
1333  * Called with the sg->guest_table_lock
1334  */
1335 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1336 {
1337 	unsigned long *ste;
1338 	phys_addr_t sto, pgt;
1339 	struct page *page;
1340 
1341 	BUG_ON(!gmap_is_shadow(sg));
1342 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1343 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1344 		return;
1345 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1346 	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1347 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1348 	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1349 	*ste = _SEGMENT_ENTRY_EMPTY;
1350 	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1351 	/* Free page table */
1352 	page = phys_to_page(pgt);
1353 	list_del(&page->lru);
1354 	page_table_free_pgste(page);
1355 }
1356 
1357 /**
1358  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1359  * @sg: pointer to the shadow guest address space structure
1360  * @raddr: rmap address in the shadow guest address space
1361  * @sgt: pointer to the start of a shadow segment table
1362  *
1363  * Called with the sg->guest_table_lock
1364  */
1365 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1366 				unsigned long *sgt)
1367 {
1368 	struct page *page;
1369 	phys_addr_t pgt;
1370 	int i;
1371 
1372 	BUG_ON(!gmap_is_shadow(sg));
1373 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1374 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1375 			continue;
1376 		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1377 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1378 		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1379 		/* Free page table */
1380 		page = phys_to_page(pgt);
1381 		list_del(&page->lru);
1382 		page_table_free_pgste(page);
1383 	}
1384 }
1385 
1386 /**
1387  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1388  * @sg: pointer to the shadow guest address space structure
1389  * @raddr: rmap address in the shadow guest address space
1390  *
1391  * Called with the shadow->guest_table_lock
1392  */
1393 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1394 {
1395 	unsigned long r3o, *r3e;
1396 	phys_addr_t sgt;
1397 	struct page *page;
1398 
1399 	BUG_ON(!gmap_is_shadow(sg));
1400 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1401 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1402 		return;
1403 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1404 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1405 	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1406 	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1407 	*r3e = _REGION3_ENTRY_EMPTY;
1408 	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1409 	/* Free segment table */
1410 	page = phys_to_page(sgt);
1411 	list_del(&page->lru);
1412 	__free_pages(page, CRST_ALLOC_ORDER);
1413 }
1414 
1415 /**
1416  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1417  * @sg: pointer to the shadow guest address space structure
1418  * @raddr: address in the shadow guest address space
1419  * @r3t: pointer to the start of a shadow region-3 table
1420  *
1421  * Called with the sg->guest_table_lock
1422  */
1423 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1424 				unsigned long *r3t)
1425 {
1426 	struct page *page;
1427 	phys_addr_t sgt;
1428 	int i;
1429 
1430 	BUG_ON(!gmap_is_shadow(sg));
1431 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1432 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1433 			continue;
1434 		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1435 		r3t[i] = _REGION3_ENTRY_EMPTY;
1436 		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1437 		/* Free segment table */
1438 		page = phys_to_page(sgt);
1439 		list_del(&page->lru);
1440 		__free_pages(page, CRST_ALLOC_ORDER);
1441 	}
1442 }
1443 
1444 /**
1445  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1446  * @sg: pointer to the shadow guest address space structure
1447  * @raddr: rmap address in the shadow guest address space
1448  *
1449  * Called with the sg->guest_table_lock
1450  */
1451 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1452 {
1453 	unsigned long r2o, *r2e;
1454 	phys_addr_t r3t;
1455 	struct page *page;
1456 
1457 	BUG_ON(!gmap_is_shadow(sg));
1458 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1459 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1460 		return;
1461 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1462 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1463 	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1464 	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1465 	*r2e = _REGION2_ENTRY_EMPTY;
1466 	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1467 	/* Free region 3 table */
1468 	page = phys_to_page(r3t);
1469 	list_del(&page->lru);
1470 	__free_pages(page, CRST_ALLOC_ORDER);
1471 }
1472 
1473 /**
1474  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1475  * @sg: pointer to the shadow guest address space structure
1476  * @raddr: rmap address in the shadow guest address space
1477  * @r2t: pointer to the start of a shadow region-2 table
1478  *
1479  * Called with the sg->guest_table_lock
1480  */
1481 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1482 				unsigned long *r2t)
1483 {
1484 	phys_addr_t r3t;
1485 	struct page *page;
1486 	int i;
1487 
1488 	BUG_ON(!gmap_is_shadow(sg));
1489 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1490 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1491 			continue;
1492 		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1493 		r2t[i] = _REGION2_ENTRY_EMPTY;
1494 		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1495 		/* Free region 3 table */
1496 		page = phys_to_page(r3t);
1497 		list_del(&page->lru);
1498 		__free_pages(page, CRST_ALLOC_ORDER);
1499 	}
1500 }
1501 
1502 /**
1503  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1504  * @sg: pointer to the shadow guest address space structure
1505  * @raddr: rmap address in the shadow guest address space
1506  *
1507  * Called with the sg->guest_table_lock
1508  */
1509 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1510 {
1511 	unsigned long r1o, *r1e;
1512 	struct page *page;
1513 	phys_addr_t r2t;
1514 
1515 	BUG_ON(!gmap_is_shadow(sg));
1516 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1517 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1518 		return;
1519 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1520 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1521 	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1522 	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1523 	*r1e = _REGION1_ENTRY_EMPTY;
1524 	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1525 	/* Free region 2 table */
1526 	page = phys_to_page(r2t);
1527 	list_del(&page->lru);
1528 	__free_pages(page, CRST_ALLOC_ORDER);
1529 }
1530 
1531 /**
1532  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1533  * @sg: pointer to the shadow guest address space structure
1534  * @raddr: rmap address in the shadow guest address space
1535  * @r1t: pointer to the start of a shadow region-1 table
1536  *
1537  * Called with the shadow->guest_table_lock
1538  */
1539 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1540 				unsigned long *r1t)
1541 {
1542 	unsigned long asce;
1543 	struct page *page;
1544 	phys_addr_t r2t;
1545 	int i;
1546 
1547 	BUG_ON(!gmap_is_shadow(sg));
1548 	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1549 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1550 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1551 			continue;
1552 		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1553 		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1554 		/* Clear entry and flush translation r1t -> r2t */
1555 		gmap_idte_one(asce, raddr);
1556 		r1t[i] = _REGION1_ENTRY_EMPTY;
1557 		/* Free region 2 table */
1558 		page = phys_to_page(r2t);
1559 		list_del(&page->lru);
1560 		__free_pages(page, CRST_ALLOC_ORDER);
1561 	}
1562 }
1563 
1564 /**
1565  * gmap_unshadow - remove a shadow page table completely
1566  * @sg: pointer to the shadow guest address space structure
1567  *
1568  * Called with sg->guest_table_lock
1569  */
1570 static void gmap_unshadow(struct gmap *sg)
1571 {
1572 	unsigned long *table;
1573 
1574 	BUG_ON(!gmap_is_shadow(sg));
1575 	if (sg->removed)
1576 		return;
1577 	sg->removed = 1;
1578 	gmap_call_notifier(sg, 0, -1UL);
1579 	gmap_flush_tlb(sg);
1580 	table = __va(sg->asce & _ASCE_ORIGIN);
1581 	switch (sg->asce & _ASCE_TYPE_MASK) {
1582 	case _ASCE_TYPE_REGION1:
1583 		__gmap_unshadow_r1t(sg, 0, table);
1584 		break;
1585 	case _ASCE_TYPE_REGION2:
1586 		__gmap_unshadow_r2t(sg, 0, table);
1587 		break;
1588 	case _ASCE_TYPE_REGION3:
1589 		__gmap_unshadow_r3t(sg, 0, table);
1590 		break;
1591 	case _ASCE_TYPE_SEGMENT:
1592 		__gmap_unshadow_sgt(sg, 0, table);
1593 		break;
1594 	}
1595 }
1596 
1597 /**
1598  * gmap_find_shadow - find a specific asce in the list of shadow tables
1599  * @parent: pointer to the parent gmap
1600  * @asce: ASCE for which the shadow table is created
1601  * @edat_level: edat level to be used for the shadow translation
1602  *
1603  * Returns the pointer to a gmap if a shadow table with the given asce is
1604  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1605  * otherwise NULL
1606  */
1607 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1608 				     int edat_level)
1609 {
1610 	struct gmap *sg;
1611 
1612 	list_for_each_entry(sg, &parent->children, list) {
1613 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1614 		    sg->removed)
1615 			continue;
1616 		if (!sg->initialized)
1617 			return ERR_PTR(-EAGAIN);
1618 		refcount_inc(&sg->ref_count);
1619 		return sg;
1620 	}
1621 	return NULL;
1622 }
1623 
1624 /**
1625  * gmap_shadow_valid - check if a shadow guest address space matches the
1626  *                     given properties and is still valid
1627  * @sg: pointer to the shadow guest address space structure
1628  * @asce: ASCE for which the shadow table is requested
1629  * @edat_level: edat level to be used for the shadow translation
1630  *
1631  * Returns 1 if the gmap shadow is still valid and matches the given
1632  * properties, the caller can continue using it. Returns 0 otherwise, the
1633  * caller has to request a new shadow gmap in this case.
1634  *
1635  */
1636 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1637 {
1638 	if (sg->removed)
1639 		return 0;
1640 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1641 }
1642 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1643 
1644 /**
1645  * gmap_shadow - create/find a shadow guest address space
1646  * @parent: pointer to the parent gmap
1647  * @asce: ASCE for which the shadow table is created
1648  * @edat_level: edat level to be used for the shadow translation
1649  *
1650  * The pages of the top level page table referred by the asce parameter
1651  * will be set to read-only and marked in the PGSTEs of the kvm process.
1652  * The shadow table will be removed automatically on any change to the
1653  * PTE mapping for the source table.
1654  *
1655  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1656  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1657  * parent gmap table could not be protected.
1658  */
1659 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1660 			 int edat_level)
1661 {
1662 	struct gmap *sg, *new;
1663 	unsigned long limit;
1664 	int rc;
1665 
1666 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1667 	BUG_ON(gmap_is_shadow(parent));
1668 	spin_lock(&parent->shadow_lock);
1669 	sg = gmap_find_shadow(parent, asce, edat_level);
1670 	spin_unlock(&parent->shadow_lock);
1671 	if (sg)
1672 		return sg;
1673 	/* Create a new shadow gmap */
1674 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1675 	if (asce & _ASCE_REAL_SPACE)
1676 		limit = -1UL;
1677 	new = gmap_alloc(limit);
1678 	if (!new)
1679 		return ERR_PTR(-ENOMEM);
1680 	new->mm = parent->mm;
1681 	new->parent = gmap_get(parent);
1682 	new->orig_asce = asce;
1683 	new->edat_level = edat_level;
1684 	new->initialized = false;
1685 	spin_lock(&parent->shadow_lock);
1686 	/* Recheck if another CPU created the same shadow */
1687 	sg = gmap_find_shadow(parent, asce, edat_level);
1688 	if (sg) {
1689 		spin_unlock(&parent->shadow_lock);
1690 		gmap_free(new);
1691 		return sg;
1692 	}
1693 	if (asce & _ASCE_REAL_SPACE) {
1694 		/* only allow one real-space gmap shadow */
1695 		list_for_each_entry(sg, &parent->children, list) {
1696 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1697 				spin_lock(&sg->guest_table_lock);
1698 				gmap_unshadow(sg);
1699 				spin_unlock(&sg->guest_table_lock);
1700 				list_del(&sg->list);
1701 				gmap_put(sg);
1702 				break;
1703 			}
1704 		}
1705 	}
1706 	refcount_set(&new->ref_count, 2);
1707 	list_add(&new->list, &parent->children);
1708 	if (asce & _ASCE_REAL_SPACE) {
1709 		/* nothing to protect, return right away */
1710 		new->initialized = true;
1711 		spin_unlock(&parent->shadow_lock);
1712 		return new;
1713 	}
1714 	spin_unlock(&parent->shadow_lock);
1715 	/* protect after insertion, so it will get properly invalidated */
1716 	mmap_read_lock(parent->mm);
1717 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1718 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1719 				PROT_READ, GMAP_NOTIFY_SHADOW);
1720 	mmap_read_unlock(parent->mm);
1721 	spin_lock(&parent->shadow_lock);
1722 	new->initialized = true;
1723 	if (rc) {
1724 		list_del(&new->list);
1725 		gmap_free(new);
1726 		new = ERR_PTR(rc);
1727 	}
1728 	spin_unlock(&parent->shadow_lock);
1729 	return new;
1730 }
1731 EXPORT_SYMBOL_GPL(gmap_shadow);
1732 
1733 /**
1734  * gmap_shadow_r2t - create an empty shadow region 2 table
1735  * @sg: pointer to the shadow guest address space structure
1736  * @saddr: faulting address in the shadow gmap
1737  * @r2t: parent gmap address of the region 2 table to get shadowed
1738  * @fake: r2t references contiguous guest memory block, not a r2t
1739  *
1740  * The r2t parameter specifies the address of the source table. The
1741  * four pages of the source table are made read-only in the parent gmap
1742  * address space. A write to the source table area @r2t will automatically
1743  * remove the shadow r2 table and all of its decendents.
1744  *
1745  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1746  * shadow table structure is incomplete, -ENOMEM if out of memory and
1747  * -EFAULT if an address in the parent gmap could not be resolved.
1748  *
1749  * Called with sg->mm->mmap_lock in read.
1750  */
1751 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1752 		    int fake)
1753 {
1754 	unsigned long raddr, origin, offset, len;
1755 	unsigned long *table;
1756 	phys_addr_t s_r2t;
1757 	struct page *page;
1758 	int rc;
1759 
1760 	BUG_ON(!gmap_is_shadow(sg));
1761 	/* Allocate a shadow region second table */
1762 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1763 	if (!page)
1764 		return -ENOMEM;
1765 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1766 	if (fake)
1767 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1768 	s_r2t = page_to_phys(page);
1769 	/* Install shadow region second table */
1770 	spin_lock(&sg->guest_table_lock);
1771 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1772 	if (!table) {
1773 		rc = -EAGAIN;		/* Race with unshadow */
1774 		goto out_free;
1775 	}
1776 	if (!(*table & _REGION_ENTRY_INVALID)) {
1777 		rc = 0;			/* Already established */
1778 		goto out_free;
1779 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1780 		rc = -EAGAIN;		/* Race with shadow */
1781 		goto out_free;
1782 	}
1783 	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1784 	/* mark as invalid as long as the parent table is not protected */
1785 	*table = s_r2t | _REGION_ENTRY_LENGTH |
1786 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1787 	if (sg->edat_level >= 1)
1788 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1789 	list_add(&page->lru, &sg->crst_list);
1790 	if (fake) {
1791 		/* nothing to protect for fake tables */
1792 		*table &= ~_REGION_ENTRY_INVALID;
1793 		spin_unlock(&sg->guest_table_lock);
1794 		return 0;
1795 	}
1796 	spin_unlock(&sg->guest_table_lock);
1797 	/* Make r2t read-only in parent gmap page table */
1798 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1799 	origin = r2t & _REGION_ENTRY_ORIGIN;
1800 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1801 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1802 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1803 	spin_lock(&sg->guest_table_lock);
1804 	if (!rc) {
1805 		table = gmap_table_walk(sg, saddr, 4);
1806 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1807 			rc = -EAGAIN;		/* Race with unshadow */
1808 		else
1809 			*table &= ~_REGION_ENTRY_INVALID;
1810 	} else {
1811 		gmap_unshadow_r2t(sg, raddr);
1812 	}
1813 	spin_unlock(&sg->guest_table_lock);
1814 	return rc;
1815 out_free:
1816 	spin_unlock(&sg->guest_table_lock);
1817 	__free_pages(page, CRST_ALLOC_ORDER);
1818 	return rc;
1819 }
1820 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1821 
1822 /**
1823  * gmap_shadow_r3t - create a shadow region 3 table
1824  * @sg: pointer to the shadow guest address space structure
1825  * @saddr: faulting address in the shadow gmap
1826  * @r3t: parent gmap address of the region 3 table to get shadowed
1827  * @fake: r3t references contiguous guest memory block, not a r3t
1828  *
1829  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1830  * shadow table structure is incomplete, -ENOMEM if out of memory and
1831  * -EFAULT if an address in the parent gmap could not be resolved.
1832  *
1833  * Called with sg->mm->mmap_lock in read.
1834  */
1835 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1836 		    int fake)
1837 {
1838 	unsigned long raddr, origin, offset, len;
1839 	unsigned long *table;
1840 	phys_addr_t s_r3t;
1841 	struct page *page;
1842 	int rc;
1843 
1844 	BUG_ON(!gmap_is_shadow(sg));
1845 	/* Allocate a shadow region second table */
1846 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1847 	if (!page)
1848 		return -ENOMEM;
1849 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1850 	if (fake)
1851 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1852 	s_r3t = page_to_phys(page);
1853 	/* Install shadow region second table */
1854 	spin_lock(&sg->guest_table_lock);
1855 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1856 	if (!table) {
1857 		rc = -EAGAIN;		/* Race with unshadow */
1858 		goto out_free;
1859 	}
1860 	if (!(*table & _REGION_ENTRY_INVALID)) {
1861 		rc = 0;			/* Already established */
1862 		goto out_free;
1863 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1864 		rc = -EAGAIN;		/* Race with shadow */
1865 		goto out_free;
1866 	}
1867 	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1868 	/* mark as invalid as long as the parent table is not protected */
1869 	*table = s_r3t | _REGION_ENTRY_LENGTH |
1870 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1871 	if (sg->edat_level >= 1)
1872 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1873 	list_add(&page->lru, &sg->crst_list);
1874 	if (fake) {
1875 		/* nothing to protect for fake tables */
1876 		*table &= ~_REGION_ENTRY_INVALID;
1877 		spin_unlock(&sg->guest_table_lock);
1878 		return 0;
1879 	}
1880 	spin_unlock(&sg->guest_table_lock);
1881 	/* Make r3t read-only in parent gmap page table */
1882 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1883 	origin = r3t & _REGION_ENTRY_ORIGIN;
1884 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1885 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1886 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1887 	spin_lock(&sg->guest_table_lock);
1888 	if (!rc) {
1889 		table = gmap_table_walk(sg, saddr, 3);
1890 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1891 			rc = -EAGAIN;		/* Race with unshadow */
1892 		else
1893 			*table &= ~_REGION_ENTRY_INVALID;
1894 	} else {
1895 		gmap_unshadow_r3t(sg, raddr);
1896 	}
1897 	spin_unlock(&sg->guest_table_lock);
1898 	return rc;
1899 out_free:
1900 	spin_unlock(&sg->guest_table_lock);
1901 	__free_pages(page, CRST_ALLOC_ORDER);
1902 	return rc;
1903 }
1904 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1905 
1906 /**
1907  * gmap_shadow_sgt - create a shadow segment table
1908  * @sg: pointer to the shadow guest address space structure
1909  * @saddr: faulting address in the shadow gmap
1910  * @sgt: parent gmap address of the segment table to get shadowed
1911  * @fake: sgt references contiguous guest memory block, not a sgt
1912  *
1913  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1914  * shadow table structure is incomplete, -ENOMEM if out of memory and
1915  * -EFAULT if an address in the parent gmap could not be resolved.
1916  *
1917  * Called with sg->mm->mmap_lock in read.
1918  */
1919 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1920 		    int fake)
1921 {
1922 	unsigned long raddr, origin, offset, len;
1923 	unsigned long *table;
1924 	phys_addr_t s_sgt;
1925 	struct page *page;
1926 	int rc;
1927 
1928 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1929 	/* Allocate a shadow segment table */
1930 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1931 	if (!page)
1932 		return -ENOMEM;
1933 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1934 	if (fake)
1935 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1936 	s_sgt = page_to_phys(page);
1937 	/* Install shadow region second table */
1938 	spin_lock(&sg->guest_table_lock);
1939 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1940 	if (!table) {
1941 		rc = -EAGAIN;		/* Race with unshadow */
1942 		goto out_free;
1943 	}
1944 	if (!(*table & _REGION_ENTRY_INVALID)) {
1945 		rc = 0;			/* Already established */
1946 		goto out_free;
1947 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1948 		rc = -EAGAIN;		/* Race with shadow */
1949 		goto out_free;
1950 	}
1951 	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1952 	/* mark as invalid as long as the parent table is not protected */
1953 	*table = s_sgt | _REGION_ENTRY_LENGTH |
1954 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1955 	if (sg->edat_level >= 1)
1956 		*table |= sgt & _REGION_ENTRY_PROTECT;
1957 	list_add(&page->lru, &sg->crst_list);
1958 	if (fake) {
1959 		/* nothing to protect for fake tables */
1960 		*table &= ~_REGION_ENTRY_INVALID;
1961 		spin_unlock(&sg->guest_table_lock);
1962 		return 0;
1963 	}
1964 	spin_unlock(&sg->guest_table_lock);
1965 	/* Make sgt read-only in parent gmap page table */
1966 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1967 	origin = sgt & _REGION_ENTRY_ORIGIN;
1968 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1969 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1970 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1971 	spin_lock(&sg->guest_table_lock);
1972 	if (!rc) {
1973 		table = gmap_table_walk(sg, saddr, 2);
1974 		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1975 			rc = -EAGAIN;		/* Race with unshadow */
1976 		else
1977 			*table &= ~_REGION_ENTRY_INVALID;
1978 	} else {
1979 		gmap_unshadow_sgt(sg, raddr);
1980 	}
1981 	spin_unlock(&sg->guest_table_lock);
1982 	return rc;
1983 out_free:
1984 	spin_unlock(&sg->guest_table_lock);
1985 	__free_pages(page, CRST_ALLOC_ORDER);
1986 	return rc;
1987 }
1988 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1989 
1990 /**
1991  * gmap_shadow_pgt_lookup - find a shadow page table
1992  * @sg: pointer to the shadow guest address space structure
1993  * @saddr: the address in the shadow aguest address space
1994  * @pgt: parent gmap address of the page table to get shadowed
1995  * @dat_protection: if the pgtable is marked as protected by dat
1996  * @fake: pgt references contiguous guest memory block, not a pgtable
1997  *
1998  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1999  * table was not found.
2000  *
2001  * Called with sg->mm->mmap_lock in read.
2002  */
2003 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2004 			   unsigned long *pgt, int *dat_protection,
2005 			   int *fake)
2006 {
2007 	unsigned long *table;
2008 	struct page *page;
2009 	int rc;
2010 
2011 	BUG_ON(!gmap_is_shadow(sg));
2012 	spin_lock(&sg->guest_table_lock);
2013 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2014 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2015 		/* Shadow page tables are full pages (pte+pgste) */
2016 		page = pfn_to_page(*table >> PAGE_SHIFT);
2017 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2018 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2019 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2020 		rc = 0;
2021 	} else  {
2022 		rc = -EAGAIN;
2023 	}
2024 	spin_unlock(&sg->guest_table_lock);
2025 	return rc;
2026 
2027 }
2028 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2029 
2030 /**
2031  * gmap_shadow_pgt - instantiate a shadow page table
2032  * @sg: pointer to the shadow guest address space structure
2033  * @saddr: faulting address in the shadow gmap
2034  * @pgt: parent gmap address of the page table to get shadowed
2035  * @fake: pgt references contiguous guest memory block, not a pgtable
2036  *
2037  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2038  * shadow table structure is incomplete, -ENOMEM if out of memory,
2039  * -EFAULT if an address in the parent gmap could not be resolved and
2040  *
2041  * Called with gmap->mm->mmap_lock in read
2042  */
2043 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2044 		    int fake)
2045 {
2046 	unsigned long raddr, origin;
2047 	unsigned long *table;
2048 	struct page *page;
2049 	phys_addr_t s_pgt;
2050 	int rc;
2051 
2052 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2053 	/* Allocate a shadow page table */
2054 	page = page_table_alloc_pgste(sg->mm);
2055 	if (!page)
2056 		return -ENOMEM;
2057 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2058 	if (fake)
2059 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2060 	s_pgt = page_to_phys(page);
2061 	/* Install shadow page table */
2062 	spin_lock(&sg->guest_table_lock);
2063 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2064 	if (!table) {
2065 		rc = -EAGAIN;		/* Race with unshadow */
2066 		goto out_free;
2067 	}
2068 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2069 		rc = 0;			/* Already established */
2070 		goto out_free;
2071 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2072 		rc = -EAGAIN;		/* Race with shadow */
2073 		goto out_free;
2074 	}
2075 	/* mark as invalid as long as the parent table is not protected */
2076 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2077 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2078 	list_add(&page->lru, &sg->pt_list);
2079 	if (fake) {
2080 		/* nothing to protect for fake tables */
2081 		*table &= ~_SEGMENT_ENTRY_INVALID;
2082 		spin_unlock(&sg->guest_table_lock);
2083 		return 0;
2084 	}
2085 	spin_unlock(&sg->guest_table_lock);
2086 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2087 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2088 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2089 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2090 	spin_lock(&sg->guest_table_lock);
2091 	if (!rc) {
2092 		table = gmap_table_walk(sg, saddr, 1);
2093 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2094 			rc = -EAGAIN;		/* Race with unshadow */
2095 		else
2096 			*table &= ~_SEGMENT_ENTRY_INVALID;
2097 	} else {
2098 		gmap_unshadow_pgt(sg, raddr);
2099 	}
2100 	spin_unlock(&sg->guest_table_lock);
2101 	return rc;
2102 out_free:
2103 	spin_unlock(&sg->guest_table_lock);
2104 	page_table_free_pgste(page);
2105 	return rc;
2106 
2107 }
2108 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2109 
2110 /**
2111  * gmap_shadow_page - create a shadow page mapping
2112  * @sg: pointer to the shadow guest address space structure
2113  * @saddr: faulting address in the shadow gmap
2114  * @pte: pte in parent gmap address space to get shadowed
2115  *
2116  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2117  * shadow table structure is incomplete, -ENOMEM if out of memory and
2118  * -EFAULT if an address in the parent gmap could not be resolved.
2119  *
2120  * Called with sg->mm->mmap_lock in read.
2121  */
2122 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2123 {
2124 	struct gmap *parent;
2125 	struct gmap_rmap *rmap;
2126 	unsigned long vmaddr, paddr;
2127 	spinlock_t *ptl;
2128 	pte_t *sptep, *tptep;
2129 	int prot;
2130 	int rc;
2131 
2132 	BUG_ON(!gmap_is_shadow(sg));
2133 	parent = sg->parent;
2134 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2135 
2136 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2137 	if (!rmap)
2138 		return -ENOMEM;
2139 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2140 
2141 	while (1) {
2142 		paddr = pte_val(pte) & PAGE_MASK;
2143 		vmaddr = __gmap_translate(parent, paddr);
2144 		if (IS_ERR_VALUE(vmaddr)) {
2145 			rc = vmaddr;
2146 			break;
2147 		}
2148 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2149 		if (rc)
2150 			break;
2151 		rc = -EAGAIN;
2152 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2153 		if (sptep) {
2154 			spin_lock(&sg->guest_table_lock);
2155 			/* Get page table pointer */
2156 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2157 			if (!tptep) {
2158 				spin_unlock(&sg->guest_table_lock);
2159 				gmap_pte_op_end(ptl);
2160 				radix_tree_preload_end();
2161 				break;
2162 			}
2163 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2164 			if (rc > 0) {
2165 				/* Success and a new mapping */
2166 				gmap_insert_rmap(sg, vmaddr, rmap);
2167 				rmap = NULL;
2168 				rc = 0;
2169 			}
2170 			gmap_pte_op_end(ptl);
2171 			spin_unlock(&sg->guest_table_lock);
2172 		}
2173 		radix_tree_preload_end();
2174 		if (!rc)
2175 			break;
2176 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2177 		if (rc)
2178 			break;
2179 	}
2180 	kfree(rmap);
2181 	return rc;
2182 }
2183 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2184 
2185 /*
2186  * gmap_shadow_notify - handle notifications for shadow gmap
2187  *
2188  * Called with sg->parent->shadow_lock.
2189  */
2190 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2191 			       unsigned long gaddr)
2192 {
2193 	struct gmap_rmap *rmap, *rnext, *head;
2194 	unsigned long start, end, bits, raddr;
2195 
2196 	BUG_ON(!gmap_is_shadow(sg));
2197 
2198 	spin_lock(&sg->guest_table_lock);
2199 	if (sg->removed) {
2200 		spin_unlock(&sg->guest_table_lock);
2201 		return;
2202 	}
2203 	/* Check for top level table */
2204 	start = sg->orig_asce & _ASCE_ORIGIN;
2205 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2206 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2207 	    gaddr < end) {
2208 		/* The complete shadow table has to go */
2209 		gmap_unshadow(sg);
2210 		spin_unlock(&sg->guest_table_lock);
2211 		list_del(&sg->list);
2212 		gmap_put(sg);
2213 		return;
2214 	}
2215 	/* Remove the page table tree from on specific entry */
2216 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2217 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2218 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2219 		raddr = rmap->raddr ^ bits;
2220 		switch (bits) {
2221 		case _SHADOW_RMAP_REGION1:
2222 			gmap_unshadow_r2t(sg, raddr);
2223 			break;
2224 		case _SHADOW_RMAP_REGION2:
2225 			gmap_unshadow_r3t(sg, raddr);
2226 			break;
2227 		case _SHADOW_RMAP_REGION3:
2228 			gmap_unshadow_sgt(sg, raddr);
2229 			break;
2230 		case _SHADOW_RMAP_SEGMENT:
2231 			gmap_unshadow_pgt(sg, raddr);
2232 			break;
2233 		case _SHADOW_RMAP_PGTABLE:
2234 			gmap_unshadow_page(sg, raddr);
2235 			break;
2236 		}
2237 		kfree(rmap);
2238 	}
2239 	spin_unlock(&sg->guest_table_lock);
2240 }
2241 
2242 /**
2243  * ptep_notify - call all invalidation callbacks for a specific pte.
2244  * @mm: pointer to the process mm_struct
2245  * @vmaddr: virtual address in the process address space
2246  * @pte: pointer to the page table entry
2247  * @bits: bits from the pgste that caused the notify call
2248  *
2249  * This function is assumed to be called with the page table lock held
2250  * for the pte to notify.
2251  */
2252 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2253 		 pte_t *pte, unsigned long bits)
2254 {
2255 	unsigned long offset, gaddr = 0;
2256 	unsigned long *table;
2257 	struct gmap *gmap, *sg, *next;
2258 
2259 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2260 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2261 	rcu_read_lock();
2262 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2263 		spin_lock(&gmap->guest_table_lock);
2264 		table = radix_tree_lookup(&gmap->host_to_guest,
2265 					  vmaddr >> PMD_SHIFT);
2266 		if (table)
2267 			gaddr = __gmap_segment_gaddr(table) + offset;
2268 		spin_unlock(&gmap->guest_table_lock);
2269 		if (!table)
2270 			continue;
2271 
2272 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2273 			spin_lock(&gmap->shadow_lock);
2274 			list_for_each_entry_safe(sg, next,
2275 						 &gmap->children, list)
2276 				gmap_shadow_notify(sg, vmaddr, gaddr);
2277 			spin_unlock(&gmap->shadow_lock);
2278 		}
2279 		if (bits & PGSTE_IN_BIT)
2280 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2281 	}
2282 	rcu_read_unlock();
2283 }
2284 EXPORT_SYMBOL_GPL(ptep_notify);
2285 
2286 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2287 			     unsigned long gaddr)
2288 {
2289 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2290 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2291 }
2292 
2293 /**
2294  * gmap_pmdp_xchg - exchange a gmap pmd with another
2295  * @gmap: pointer to the guest address space structure
2296  * @pmdp: pointer to the pmd entry
2297  * @new: replacement entry
2298  * @gaddr: the affected guest address
2299  *
2300  * This function is assumed to be called with the guest_table_lock
2301  * held.
2302  */
2303 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2304 			   unsigned long gaddr)
2305 {
2306 	gaddr &= HPAGE_MASK;
2307 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2308 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2309 	if (MACHINE_HAS_TLB_GUEST)
2310 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2311 			    IDTE_GLOBAL);
2312 	else if (MACHINE_HAS_IDTE)
2313 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2314 	else
2315 		__pmdp_csp(pmdp);
2316 	set_pmd(pmdp, new);
2317 }
2318 
2319 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2320 			    int purge)
2321 {
2322 	pmd_t *pmdp;
2323 	struct gmap *gmap;
2324 	unsigned long gaddr;
2325 
2326 	rcu_read_lock();
2327 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2328 		spin_lock(&gmap->guest_table_lock);
2329 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2330 						  vmaddr >> PMD_SHIFT);
2331 		if (pmdp) {
2332 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2333 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2334 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2335 						   _SEGMENT_ENTRY_GMAP_UC));
2336 			if (purge)
2337 				__pmdp_csp(pmdp);
2338 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2339 		}
2340 		spin_unlock(&gmap->guest_table_lock);
2341 	}
2342 	rcu_read_unlock();
2343 }
2344 
2345 /**
2346  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2347  *                        flushing
2348  * @mm: pointer to the process mm_struct
2349  * @vmaddr: virtual address in the process address space
2350  */
2351 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2352 {
2353 	gmap_pmdp_clear(mm, vmaddr, 0);
2354 }
2355 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2356 
2357 /**
2358  * gmap_pmdp_csp - csp all affected guest pmd entries
2359  * @mm: pointer to the process mm_struct
2360  * @vmaddr: virtual address in the process address space
2361  */
2362 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2363 {
2364 	gmap_pmdp_clear(mm, vmaddr, 1);
2365 }
2366 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2367 
2368 /**
2369  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2370  * @mm: pointer to the process mm_struct
2371  * @vmaddr: virtual address in the process address space
2372  */
2373 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2374 {
2375 	unsigned long *entry, gaddr;
2376 	struct gmap *gmap;
2377 	pmd_t *pmdp;
2378 
2379 	rcu_read_lock();
2380 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2381 		spin_lock(&gmap->guest_table_lock);
2382 		entry = radix_tree_delete(&gmap->host_to_guest,
2383 					  vmaddr >> PMD_SHIFT);
2384 		if (entry) {
2385 			pmdp = (pmd_t *)entry;
2386 			gaddr = __gmap_segment_gaddr(entry);
2387 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2388 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2389 					   _SEGMENT_ENTRY_GMAP_UC));
2390 			if (MACHINE_HAS_TLB_GUEST)
2391 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2392 					    gmap->asce, IDTE_LOCAL);
2393 			else if (MACHINE_HAS_IDTE)
2394 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2395 			*entry = _SEGMENT_ENTRY_EMPTY;
2396 		}
2397 		spin_unlock(&gmap->guest_table_lock);
2398 	}
2399 	rcu_read_unlock();
2400 }
2401 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2402 
2403 /**
2404  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2405  * @mm: pointer to the process mm_struct
2406  * @vmaddr: virtual address in the process address space
2407  */
2408 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2409 {
2410 	unsigned long *entry, gaddr;
2411 	struct gmap *gmap;
2412 	pmd_t *pmdp;
2413 
2414 	rcu_read_lock();
2415 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2416 		spin_lock(&gmap->guest_table_lock);
2417 		entry = radix_tree_delete(&gmap->host_to_guest,
2418 					  vmaddr >> PMD_SHIFT);
2419 		if (entry) {
2420 			pmdp = (pmd_t *)entry;
2421 			gaddr = __gmap_segment_gaddr(entry);
2422 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2423 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2424 					   _SEGMENT_ENTRY_GMAP_UC));
2425 			if (MACHINE_HAS_TLB_GUEST)
2426 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2427 					    gmap->asce, IDTE_GLOBAL);
2428 			else if (MACHINE_HAS_IDTE)
2429 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2430 			else
2431 				__pmdp_csp(pmdp);
2432 			*entry = _SEGMENT_ENTRY_EMPTY;
2433 		}
2434 		spin_unlock(&gmap->guest_table_lock);
2435 	}
2436 	rcu_read_unlock();
2437 }
2438 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2439 
2440 /**
2441  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2442  * @gmap: pointer to guest address space
2443  * @pmdp: pointer to the pmd to be tested
2444  * @gaddr: virtual address in the guest address space
2445  *
2446  * This function is assumed to be called with the guest_table_lock
2447  * held.
2448  */
2449 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2450 					  unsigned long gaddr)
2451 {
2452 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2453 		return false;
2454 
2455 	/* Already protected memory, which did not change is clean */
2456 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2457 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2458 		return false;
2459 
2460 	/* Clear UC indication and reset protection */
2461 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2462 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2463 	return true;
2464 }
2465 
2466 /**
2467  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2468  * @gmap: pointer to guest address space
2469  * @bitmap: dirty bitmap for this pmd
2470  * @gaddr: virtual address in the guest address space
2471  * @vmaddr: virtual address in the host address space
2472  *
2473  * This function is assumed to be called with the guest_table_lock
2474  * held.
2475  */
2476 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2477 			     unsigned long gaddr, unsigned long vmaddr)
2478 {
2479 	int i;
2480 	pmd_t *pmdp;
2481 	pte_t *ptep;
2482 	spinlock_t *ptl;
2483 
2484 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2485 	if (!pmdp)
2486 		return;
2487 
2488 	if (pmd_large(*pmdp)) {
2489 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2490 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2491 	} else {
2492 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2493 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2494 			if (!ptep)
2495 				continue;
2496 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2497 				set_bit(i, bitmap);
2498 			spin_unlock(ptl);
2499 		}
2500 	}
2501 	gmap_pmd_op_end(gmap, pmdp);
2502 }
2503 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2504 
2505 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2506 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2507 				    unsigned long end, struct mm_walk *walk)
2508 {
2509 	struct vm_area_struct *vma = walk->vma;
2510 
2511 	split_huge_pmd(vma, pmd, addr);
2512 	return 0;
2513 }
2514 
2515 static const struct mm_walk_ops thp_split_walk_ops = {
2516 	.pmd_entry	= thp_split_walk_pmd_entry,
2517 };
2518 
2519 static inline void thp_split_mm(struct mm_struct *mm)
2520 {
2521 	struct vm_area_struct *vma;
2522 	VMA_ITERATOR(vmi, mm, 0);
2523 
2524 	for_each_vma(vmi, vma) {
2525 		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2526 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2527 	}
2528 	mm->def_flags |= VM_NOHUGEPAGE;
2529 }
2530 #else
2531 static inline void thp_split_mm(struct mm_struct *mm)
2532 {
2533 }
2534 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2535 
2536 /*
2537  * Remove all empty zero pages from the mapping for lazy refaulting
2538  * - This must be called after mm->context.has_pgste is set, to avoid
2539  *   future creation of zero pages
2540  * - This must be called after THP was enabled
2541  */
2542 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2543 			   unsigned long end, struct mm_walk *walk)
2544 {
2545 	unsigned long addr;
2546 
2547 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2548 		pte_t *ptep;
2549 		spinlock_t *ptl;
2550 
2551 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2552 		if (is_zero_pfn(pte_pfn(*ptep)))
2553 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2554 		pte_unmap_unlock(ptep, ptl);
2555 	}
2556 	return 0;
2557 }
2558 
2559 static const struct mm_walk_ops zap_zero_walk_ops = {
2560 	.pmd_entry	= __zap_zero_pages,
2561 };
2562 
2563 /*
2564  * switch on pgstes for its userspace process (for kvm)
2565  */
2566 int s390_enable_sie(void)
2567 {
2568 	struct mm_struct *mm = current->mm;
2569 
2570 	/* Do we have pgstes? if yes, we are done */
2571 	if (mm_has_pgste(mm))
2572 		return 0;
2573 	/* Fail if the page tables are 2K */
2574 	if (!mm_alloc_pgste(mm))
2575 		return -EINVAL;
2576 	mmap_write_lock(mm);
2577 	mm->context.has_pgste = 1;
2578 	/* split thp mappings and disable thp for future mappings */
2579 	thp_split_mm(mm);
2580 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2581 	mmap_write_unlock(mm);
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL_GPL(s390_enable_sie);
2585 
2586 int gmap_mark_unmergeable(void)
2587 {
2588 	/*
2589 	 * Make sure to disable KSM (if enabled for the whole process or
2590 	 * individual VMAs). Note that nothing currently hinders user space
2591 	 * from re-enabling it.
2592 	 */
2593 	return ksm_disable(current->mm);
2594 }
2595 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2596 
2597 /*
2598  * Enable storage key handling from now on and initialize the storage
2599  * keys with the default key.
2600  */
2601 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2602 				  unsigned long next, struct mm_walk *walk)
2603 {
2604 	/* Clear storage key */
2605 	ptep_zap_key(walk->mm, addr, pte);
2606 	return 0;
2607 }
2608 
2609 /*
2610  * Give a chance to schedule after setting a key to 256 pages.
2611  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2612  * Both can sleep.
2613  */
2614 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2615 				  unsigned long next, struct mm_walk *walk)
2616 {
2617 	cond_resched();
2618 	return 0;
2619 }
2620 
2621 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2622 				      unsigned long hmask, unsigned long next,
2623 				      struct mm_walk *walk)
2624 {
2625 	pmd_t *pmd = (pmd_t *)pte;
2626 	unsigned long start, end;
2627 	struct page *page = pmd_page(*pmd);
2628 
2629 	/*
2630 	 * The write check makes sure we do not set a key on shared
2631 	 * memory. This is needed as the walker does not differentiate
2632 	 * between actual guest memory and the process executable or
2633 	 * shared libraries.
2634 	 */
2635 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2636 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2637 		return 0;
2638 
2639 	start = pmd_val(*pmd) & HPAGE_MASK;
2640 	end = start + HPAGE_SIZE - 1;
2641 	__storage_key_init_range(start, end);
2642 	set_bit(PG_arch_1, &page->flags);
2643 	cond_resched();
2644 	return 0;
2645 }
2646 
2647 static const struct mm_walk_ops enable_skey_walk_ops = {
2648 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2649 	.pte_entry		= __s390_enable_skey_pte,
2650 	.pmd_entry		= __s390_enable_skey_pmd,
2651 };
2652 
2653 int s390_enable_skey(void)
2654 {
2655 	struct mm_struct *mm = current->mm;
2656 	int rc = 0;
2657 
2658 	mmap_write_lock(mm);
2659 	if (mm_uses_skeys(mm))
2660 		goto out_up;
2661 
2662 	mm->context.uses_skeys = 1;
2663 	rc = gmap_mark_unmergeable();
2664 	if (rc) {
2665 		mm->context.uses_skeys = 0;
2666 		goto out_up;
2667 	}
2668 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2669 
2670 out_up:
2671 	mmap_write_unlock(mm);
2672 	return rc;
2673 }
2674 EXPORT_SYMBOL_GPL(s390_enable_skey);
2675 
2676 /*
2677  * Reset CMMA state, make all pages stable again.
2678  */
2679 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2680 			     unsigned long next, struct mm_walk *walk)
2681 {
2682 	ptep_zap_unused(walk->mm, addr, pte, 1);
2683 	return 0;
2684 }
2685 
2686 static const struct mm_walk_ops reset_cmma_walk_ops = {
2687 	.pte_entry		= __s390_reset_cmma,
2688 };
2689 
2690 void s390_reset_cmma(struct mm_struct *mm)
2691 {
2692 	mmap_write_lock(mm);
2693 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2694 	mmap_write_unlock(mm);
2695 }
2696 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2697 
2698 #define GATHER_GET_PAGES 32
2699 
2700 struct reset_walk_state {
2701 	unsigned long next;
2702 	unsigned long count;
2703 	unsigned long pfns[GATHER_GET_PAGES];
2704 };
2705 
2706 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2707 			     unsigned long next, struct mm_walk *walk)
2708 {
2709 	struct reset_walk_state *p = walk->private;
2710 	pte_t pte = READ_ONCE(*ptep);
2711 
2712 	if (pte_present(pte)) {
2713 		/* we have a reference from the mapping, take an extra one */
2714 		get_page(phys_to_page(pte_val(pte)));
2715 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2716 		p->next = next;
2717 		p->count++;
2718 	}
2719 	return p->count >= GATHER_GET_PAGES;
2720 }
2721 
2722 static const struct mm_walk_ops gather_pages_ops = {
2723 	.pte_entry = s390_gather_pages,
2724 };
2725 
2726 /*
2727  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2728  * Each page needs to have an extra reference, which will be released here.
2729  */
2730 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2731 {
2732 	unsigned long i;
2733 
2734 	for (i = 0; i < count; i++) {
2735 		/* we always have an extra reference */
2736 		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2737 		/* get rid of the extra reference */
2738 		put_page(pfn_to_page(pfns[i]));
2739 		cond_resched();
2740 	}
2741 }
2742 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2743 
2744 /**
2745  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2746  * in the given range of the given address space.
2747  * @mm: the mm to operate on
2748  * @start: the start of the range
2749  * @end: the end of the range
2750  * @interruptible: if not 0, stop when a fatal signal is received
2751  *
2752  * Walk the given range of the given address space and call the destroy
2753  * secure page UVC on each page. Optionally exit early if a fatal signal is
2754  * pending.
2755  *
2756  * Return: 0 on success, -EINTR if the function stopped before completing
2757  */
2758 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2759 			    unsigned long end, bool interruptible)
2760 {
2761 	struct reset_walk_state state = { .next = start };
2762 	int r = 1;
2763 
2764 	while (r > 0) {
2765 		state.count = 0;
2766 		mmap_read_lock(mm);
2767 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2768 		mmap_read_unlock(mm);
2769 		cond_resched();
2770 		s390_uv_destroy_pfns(state.count, state.pfns);
2771 		if (interruptible && fatal_signal_pending(current))
2772 			return -EINTR;
2773 	}
2774 	return 0;
2775 }
2776 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2777 
2778 /**
2779  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2780  * list of page tables of the gmap.
2781  * @gmap: the gmap whose table is to be removed
2782  *
2783  * On s390x, KVM keeps a list of all pages containing the page tables of the
2784  * gmap (the CRST list). This list is used at tear down time to free all
2785  * pages that are now not needed anymore.
2786  *
2787  * This function removes the topmost page of the tree (the one pointed to by
2788  * the ASCE) from the CRST list.
2789  *
2790  * This means that it will not be freed when the VM is torn down, and needs
2791  * to be handled separately by the caller, unless a leak is actually
2792  * intended. Notice that this function will only remove the page from the
2793  * list, the page will still be used as a top level page table (and ASCE).
2794  */
2795 void s390_unlist_old_asce(struct gmap *gmap)
2796 {
2797 	struct page *old;
2798 
2799 	old = virt_to_page(gmap->table);
2800 	spin_lock(&gmap->guest_table_lock);
2801 	list_del(&old->lru);
2802 	/*
2803 	 * Sometimes the topmost page might need to be "removed" multiple
2804 	 * times, for example if the VM is rebooted into secure mode several
2805 	 * times concurrently, or if s390_replace_asce fails after calling
2806 	 * s390_remove_old_asce and is attempted again later. In that case
2807 	 * the old asce has been removed from the list, and therefore it
2808 	 * will not be freed when the VM terminates, but the ASCE is still
2809 	 * in use and still pointed to.
2810 	 * A subsequent call to replace_asce will follow the pointer and try
2811 	 * to remove the same page from the list again.
2812 	 * Therefore it's necessary that the page of the ASCE has valid
2813 	 * pointers, so list_del can work (and do nothing) without
2814 	 * dereferencing stale or invalid pointers.
2815 	 */
2816 	INIT_LIST_HEAD(&old->lru);
2817 	spin_unlock(&gmap->guest_table_lock);
2818 }
2819 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2820 
2821 /**
2822  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2823  * @gmap: the gmap whose ASCE needs to be replaced
2824  *
2825  * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2826  * otherwise the pointers in the host_to_guest radix tree will keep pointing
2827  * to the wrong pages, causing use-after-free and memory corruption.
2828  * If the allocation of the new top level page table fails, the ASCE is not
2829  * replaced.
2830  * In any case, the old ASCE is always removed from the gmap CRST list.
2831  * Therefore the caller has to make sure to save a pointer to it
2832  * beforehand, unless a leak is actually intended.
2833  */
2834 int s390_replace_asce(struct gmap *gmap)
2835 {
2836 	unsigned long asce;
2837 	struct page *page;
2838 	void *table;
2839 
2840 	s390_unlist_old_asce(gmap);
2841 
2842 	/* Replacing segment type ASCEs would cause serious issues */
2843 	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2844 		return -EINVAL;
2845 
2846 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2847 	if (!page)
2848 		return -ENOMEM;
2849 	table = page_to_virt(page);
2850 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2851 
2852 	/*
2853 	 * The caller has to deal with the old ASCE, but here we make sure
2854 	 * the new one is properly added to the CRST list, so that
2855 	 * it will be freed when the VM is torn down.
2856 	 */
2857 	spin_lock(&gmap->guest_table_lock);
2858 	list_add(&page->lru, &gmap->crst_list);
2859 	spin_unlock(&gmap->guest_table_lock);
2860 
2861 	/* Set new table origin while preserving existing ASCE control bits */
2862 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2863 	WRITE_ONCE(gmap->asce, asce);
2864 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2865 	WRITE_ONCE(gmap->table, table);
2866 
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL_GPL(s390_replace_asce);
2870