xref: /openbmc/linux/arch/s390/mm/gmap.c (revision fe7498ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @limit: maximum address of the gmap address space
31  *
32  * Returns a guest address space structure.
33  */
34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 	struct gmap *gmap;
37 	struct page *page;
38 	unsigned long *table;
39 	unsigned long etype, atype;
40 
41 	if (limit < _REGION3_SIZE) {
42 		limit = _REGION3_SIZE - 1;
43 		atype = _ASCE_TYPE_SEGMENT;
44 		etype = _SEGMENT_ENTRY_EMPTY;
45 	} else if (limit < _REGION2_SIZE) {
46 		limit = _REGION2_SIZE - 1;
47 		atype = _ASCE_TYPE_REGION3;
48 		etype = _REGION3_ENTRY_EMPTY;
49 	} else if (limit < _REGION1_SIZE) {
50 		limit = _REGION1_SIZE - 1;
51 		atype = _ASCE_TYPE_REGION2;
52 		etype = _REGION2_ENTRY_EMPTY;
53 	} else {
54 		limit = -1UL;
55 		atype = _ASCE_TYPE_REGION1;
56 		etype = _REGION1_ENTRY_EMPTY;
57 	}
58 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 	if (!gmap)
60 		goto out;
61 	INIT_LIST_HEAD(&gmap->crst_list);
62 	INIT_LIST_HEAD(&gmap->children);
63 	INIT_LIST_HEAD(&gmap->pt_list);
64 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 	spin_lock_init(&gmap->guest_table_lock);
68 	spin_lock_init(&gmap->shadow_lock);
69 	refcount_set(&gmap->ref_count, 1);
70 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 	if (!page)
72 		goto out_free;
73 	page->index = 0;
74 	list_add(&page->lru, &gmap->crst_list);
75 	table = (unsigned long *) page_to_phys(page);
76 	crst_table_init(table, etype);
77 	gmap->table = table;
78 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 		_ASCE_USER_BITS | __pa(table);
80 	gmap->asce_end = limit;
81 	return gmap;
82 
83 out_free:
84 	kfree(gmap);
85 out:
86 	return NULL;
87 }
88 
89 /**
90  * gmap_create - create a guest address space
91  * @mm: pointer to the parent mm_struct
92  * @limit: maximum size of the gmap address space
93  *
94  * Returns a guest address space structure.
95  */
96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 	struct gmap *gmap;
99 	unsigned long gmap_asce;
100 
101 	gmap = gmap_alloc(limit);
102 	if (!gmap)
103 		return NULL;
104 	gmap->mm = mm;
105 	spin_lock(&mm->context.lock);
106 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 	if (list_is_singular(&mm->context.gmap_list))
108 		gmap_asce = gmap->asce;
109 	else
110 		gmap_asce = -1UL;
111 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 	spin_unlock(&mm->context.lock);
113 	return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116 
117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 	if (MACHINE_HAS_IDTE)
120 		__tlb_flush_idte(gmap->asce);
121 	else
122 		__tlb_flush_global();
123 }
124 
125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 	struct radix_tree_iter iter;
128 	unsigned long indices[16];
129 	unsigned long index;
130 	void __rcu **slot;
131 	int i, nr;
132 
133 	/* A radix tree is freed by deleting all of its entries */
134 	index = 0;
135 	do {
136 		nr = 0;
137 		radix_tree_for_each_slot(slot, root, &iter, index) {
138 			indices[nr] = iter.index;
139 			if (++nr == 16)
140 				break;
141 		}
142 		for (i = 0; i < nr; i++) {
143 			index = indices[i];
144 			radix_tree_delete(root, index);
145 		}
146 	} while (nr > 0);
147 }
148 
149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 	struct gmap_rmap *rmap, *rnext, *head;
152 	struct radix_tree_iter iter;
153 	unsigned long indices[16];
154 	unsigned long index;
155 	void __rcu **slot;
156 	int i, nr;
157 
158 	/* A radix tree is freed by deleting all of its entries */
159 	index = 0;
160 	do {
161 		nr = 0;
162 		radix_tree_for_each_slot(slot, root, &iter, index) {
163 			indices[nr] = iter.index;
164 			if (++nr == 16)
165 				break;
166 		}
167 		for (i = 0; i < nr; i++) {
168 			index = indices[i];
169 			head = radix_tree_delete(root, index);
170 			gmap_for_each_rmap_safe(rmap, rnext, head)
171 				kfree(rmap);
172 		}
173 	} while (nr > 0);
174 }
175 
176 /**
177  * gmap_free - free a guest address space
178  * @gmap: pointer to the guest address space structure
179  *
180  * No locks required. There are no references to this gmap anymore.
181  */
182 static void gmap_free(struct gmap *gmap)
183 {
184 	struct page *page, *next;
185 
186 	/* Flush tlb of all gmaps (if not already done for shadows) */
187 	if (!(gmap_is_shadow(gmap) && gmap->removed))
188 		gmap_flush_tlb(gmap);
189 	/* Free all segment & region tables. */
190 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 		__free_pages(page, CRST_ALLOC_ORDER);
192 	gmap_radix_tree_free(&gmap->guest_to_host);
193 	gmap_radix_tree_free(&gmap->host_to_guest);
194 
195 	/* Free additional data for a shadow gmap */
196 	if (gmap_is_shadow(gmap)) {
197 		/* Free all page tables. */
198 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 			page_table_free_pgste(page);
200 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 		/* Release reference to the parent */
202 		gmap_put(gmap->parent);
203 	}
204 
205 	kfree(gmap);
206 }
207 
208 /**
209  * gmap_get - increase reference counter for guest address space
210  * @gmap: pointer to the guest address space structure
211  *
212  * Returns the gmap pointer
213  */
214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 	refcount_inc(&gmap->ref_count);
217 	return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220 
221 /**
222  * gmap_put - decrease reference counter for guest address space
223  * @gmap: pointer to the guest address space structure
224  *
225  * If the reference counter reaches zero the guest address space is freed.
226  */
227 void gmap_put(struct gmap *gmap)
228 {
229 	if (refcount_dec_and_test(&gmap->ref_count))
230 		gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233 
234 /**
235  * gmap_remove - remove a guest address space but do not free it yet
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_remove(struct gmap *gmap)
239 {
240 	struct gmap *sg, *next;
241 	unsigned long gmap_asce;
242 
243 	/* Remove all shadow gmaps linked to this gmap */
244 	if (!list_empty(&gmap->children)) {
245 		spin_lock(&gmap->shadow_lock);
246 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 			list_del(&sg->list);
248 			gmap_put(sg);
249 		}
250 		spin_unlock(&gmap->shadow_lock);
251 	}
252 	/* Remove gmap from the pre-mm list */
253 	spin_lock(&gmap->mm->context.lock);
254 	list_del_rcu(&gmap->list);
255 	if (list_empty(&gmap->mm->context.gmap_list))
256 		gmap_asce = 0;
257 	else if (list_is_singular(&gmap->mm->context.gmap_list))
258 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 					     struct gmap, list)->asce;
260 	else
261 		gmap_asce = -1UL;
262 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 	spin_unlock(&gmap->mm->context.lock);
264 	synchronize_rcu();
265 	/* Put reference */
266 	gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269 
270 /**
271  * gmap_enable - switch primary space to the guest address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_enable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279 
280 /**
281  * gmap_disable - switch back to the standard primary address space
282  * @gmap: pointer to the guest address space structure
283  */
284 void gmap_disable(struct gmap *gmap)
285 {
286 	S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289 
290 /**
291  * gmap_get_enabled - get a pointer to the currently enabled gmap
292  *
293  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294  */
295 struct gmap *gmap_get_enabled(void)
296 {
297 	return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300 
301 /*
302  * gmap_alloc_table is assumed to be called with mmap_lock held
303  */
304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 			    unsigned long init, unsigned long gaddr)
306 {
307 	struct page *page;
308 	unsigned long *new;
309 
310 	/* since we dont free the gmap table until gmap_free we can unlock */
311 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 	if (!page)
313 		return -ENOMEM;
314 	new = (unsigned long *) page_to_phys(page);
315 	crst_table_init(new, init);
316 	spin_lock(&gmap->guest_table_lock);
317 	if (*table & _REGION_ENTRY_INVALID) {
318 		list_add(&page->lru, &gmap->crst_list);
319 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
320 			(*table & _REGION_ENTRY_TYPE_MASK);
321 		page->index = gaddr;
322 		page = NULL;
323 	}
324 	spin_unlock(&gmap->guest_table_lock);
325 	if (page)
326 		__free_pages(page, CRST_ALLOC_ORDER);
327 	return 0;
328 }
329 
330 /**
331  * __gmap_segment_gaddr - find virtual address from segment pointer
332  * @entry: pointer to a segment table entry in the guest address space
333  *
334  * Returns the virtual address in the guest address space for the segment
335  */
336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 	struct page *page;
339 	unsigned long offset, mask;
340 
341 	offset = (unsigned long) entry / sizeof(unsigned long);
342 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
344 	page = virt_to_page((void *)((unsigned long) entry & mask));
345 	return page->index + offset;
346 }
347 
348 /**
349  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
350  * @gmap: pointer to the guest address space structure
351  * @vmaddr: address in the host process address space
352  *
353  * Returns 1 if a TLB flush is required
354  */
355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
356 {
357 	unsigned long *entry;
358 	int flush = 0;
359 
360 	BUG_ON(gmap_is_shadow(gmap));
361 	spin_lock(&gmap->guest_table_lock);
362 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
363 	if (entry) {
364 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
365 		*entry = _SEGMENT_ENTRY_EMPTY;
366 	}
367 	spin_unlock(&gmap->guest_table_lock);
368 	return flush;
369 }
370 
371 /**
372  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
373  * @gmap: pointer to the guest address space structure
374  * @gaddr: address in the guest address space
375  *
376  * Returns 1 if a TLB flush is required
377  */
378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
379 {
380 	unsigned long vmaddr;
381 
382 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
383 						   gaddr >> PMD_SHIFT);
384 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
385 }
386 
387 /**
388  * gmap_unmap_segment - unmap segment from the guest address space
389  * @gmap: pointer to the guest address space structure
390  * @to: address in the guest address space
391  * @len: length of the memory area to unmap
392  *
393  * Returns 0 if the unmap succeeded, -EINVAL if not.
394  */
395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
396 {
397 	unsigned long off;
398 	int flush;
399 
400 	BUG_ON(gmap_is_shadow(gmap));
401 	if ((to | len) & (PMD_SIZE - 1))
402 		return -EINVAL;
403 	if (len == 0 || to + len < to)
404 		return -EINVAL;
405 
406 	flush = 0;
407 	mmap_write_lock(gmap->mm);
408 	for (off = 0; off < len; off += PMD_SIZE)
409 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
410 	mmap_write_unlock(gmap->mm);
411 	if (flush)
412 		gmap_flush_tlb(gmap);
413 	return 0;
414 }
415 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
416 
417 /**
418  * gmap_map_segment - map a segment to the guest address space
419  * @gmap: pointer to the guest address space structure
420  * @from: source address in the parent address space
421  * @to: target address in the guest address space
422  * @len: length of the memory area to map
423  *
424  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
425  */
426 int gmap_map_segment(struct gmap *gmap, unsigned long from,
427 		     unsigned long to, unsigned long len)
428 {
429 	unsigned long off;
430 	int flush;
431 
432 	BUG_ON(gmap_is_shadow(gmap));
433 	if ((from | to | len) & (PMD_SIZE - 1))
434 		return -EINVAL;
435 	if (len == 0 || from + len < from || to + len < to ||
436 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
437 		return -EINVAL;
438 
439 	flush = 0;
440 	mmap_write_lock(gmap->mm);
441 	for (off = 0; off < len; off += PMD_SIZE) {
442 		/* Remove old translation */
443 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
444 		/* Store new translation */
445 		if (radix_tree_insert(&gmap->guest_to_host,
446 				      (to + off) >> PMD_SHIFT,
447 				      (void *) from + off))
448 			break;
449 	}
450 	mmap_write_unlock(gmap->mm);
451 	if (flush)
452 		gmap_flush_tlb(gmap);
453 	if (off >= len)
454 		return 0;
455 	gmap_unmap_segment(gmap, to, len);
456 	return -ENOMEM;
457 }
458 EXPORT_SYMBOL_GPL(gmap_map_segment);
459 
460 /**
461  * __gmap_translate - translate a guest address to a user space address
462  * @gmap: pointer to guest mapping meta data structure
463  * @gaddr: guest address
464  *
465  * Returns user space address which corresponds to the guest address or
466  * -EFAULT if no such mapping exists.
467  * This function does not establish potentially missing page table entries.
468  * The mmap_lock of the mm that belongs to the address space must be held
469  * when this function gets called.
470  *
471  * Note: Can also be called for shadow gmaps.
472  */
473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
474 {
475 	unsigned long vmaddr;
476 
477 	vmaddr = (unsigned long)
478 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
479 	/* Note: guest_to_host is empty for a shadow gmap */
480 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
481 }
482 EXPORT_SYMBOL_GPL(__gmap_translate);
483 
484 /**
485  * gmap_translate - translate a guest address to a user space address
486  * @gmap: pointer to guest mapping meta data structure
487  * @gaddr: guest address
488  *
489  * Returns user space address which corresponds to the guest address or
490  * -EFAULT if no such mapping exists.
491  * This function does not establish potentially missing page table entries.
492  */
493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
494 {
495 	unsigned long rc;
496 
497 	mmap_read_lock(gmap->mm);
498 	rc = __gmap_translate(gmap, gaddr);
499 	mmap_read_unlock(gmap->mm);
500 	return rc;
501 }
502 EXPORT_SYMBOL_GPL(gmap_translate);
503 
504 /**
505  * gmap_unlink - disconnect a page table from the gmap shadow tables
506  * @mm: pointer to the parent mm_struct
507  * @table: pointer to the host page table
508  * @vmaddr: vm address associated with the host page table
509  */
510 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
511 		 unsigned long vmaddr)
512 {
513 	struct gmap *gmap;
514 	int flush;
515 
516 	rcu_read_lock();
517 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
518 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
519 		if (flush)
520 			gmap_flush_tlb(gmap);
521 	}
522 	rcu_read_unlock();
523 }
524 
525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
526 			   unsigned long gaddr);
527 
528 /**
529  * __gmap_link - set up shadow page tables to connect a host to a guest address
530  * @gmap: pointer to guest mapping meta data structure
531  * @gaddr: guest address
532  * @vmaddr: vm address
533  *
534  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
535  * if the vm address is already mapped to a different guest segment.
536  * The mmap_lock of the mm that belongs to the address space must be held
537  * when this function gets called.
538  */
539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
540 {
541 	struct mm_struct *mm;
542 	unsigned long *table;
543 	spinlock_t *ptl;
544 	pgd_t *pgd;
545 	p4d_t *p4d;
546 	pud_t *pud;
547 	pmd_t *pmd;
548 	u64 unprot;
549 	int rc;
550 
551 	BUG_ON(gmap_is_shadow(gmap));
552 	/* Create higher level tables in the gmap page table */
553 	table = gmap->table;
554 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
555 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
556 		if ((*table & _REGION_ENTRY_INVALID) &&
557 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
558 				     gaddr & _REGION1_MASK))
559 			return -ENOMEM;
560 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
561 	}
562 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
563 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
564 		if ((*table & _REGION_ENTRY_INVALID) &&
565 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
566 				     gaddr & _REGION2_MASK))
567 			return -ENOMEM;
568 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
569 	}
570 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
571 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
572 		if ((*table & _REGION_ENTRY_INVALID) &&
573 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
574 				     gaddr & _REGION3_MASK))
575 			return -ENOMEM;
576 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
577 	}
578 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
579 	/* Walk the parent mm page table */
580 	mm = gmap->mm;
581 	pgd = pgd_offset(mm, vmaddr);
582 	VM_BUG_ON(pgd_none(*pgd));
583 	p4d = p4d_offset(pgd, vmaddr);
584 	VM_BUG_ON(p4d_none(*p4d));
585 	pud = pud_offset(p4d, vmaddr);
586 	VM_BUG_ON(pud_none(*pud));
587 	/* large puds cannot yet be handled */
588 	if (pud_large(*pud))
589 		return -EFAULT;
590 	pmd = pmd_offset(pud, vmaddr);
591 	VM_BUG_ON(pmd_none(*pmd));
592 	/* Are we allowed to use huge pages? */
593 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
594 		return -EFAULT;
595 	/* Link gmap segment table entry location to page table. */
596 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
597 	if (rc)
598 		return rc;
599 	ptl = pmd_lock(mm, pmd);
600 	spin_lock(&gmap->guest_table_lock);
601 	if (*table == _SEGMENT_ENTRY_EMPTY) {
602 		rc = radix_tree_insert(&gmap->host_to_guest,
603 				       vmaddr >> PMD_SHIFT, table);
604 		if (!rc) {
605 			if (pmd_large(*pmd)) {
606 				*table = (pmd_val(*pmd) &
607 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
608 					| _SEGMENT_ENTRY_GMAP_UC;
609 			} else
610 				*table = pmd_val(*pmd) &
611 					_SEGMENT_ENTRY_HARDWARE_BITS;
612 		}
613 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
614 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
615 		unprot = (u64)*table;
616 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
617 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
618 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
619 	}
620 	spin_unlock(&gmap->guest_table_lock);
621 	spin_unlock(ptl);
622 	radix_tree_preload_end();
623 	return rc;
624 }
625 
626 /**
627  * gmap_fault - resolve a fault on a guest address
628  * @gmap: pointer to guest mapping meta data structure
629  * @gaddr: guest address
630  * @fault_flags: flags to pass down to handle_mm_fault()
631  *
632  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
633  * if the vm address is already mapped to a different guest segment.
634  */
635 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
636 	       unsigned int fault_flags)
637 {
638 	unsigned long vmaddr;
639 	int rc;
640 	bool unlocked;
641 
642 	mmap_read_lock(gmap->mm);
643 
644 retry:
645 	unlocked = false;
646 	vmaddr = __gmap_translate(gmap, gaddr);
647 	if (IS_ERR_VALUE(vmaddr)) {
648 		rc = vmaddr;
649 		goto out_up;
650 	}
651 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
652 			     &unlocked)) {
653 		rc = -EFAULT;
654 		goto out_up;
655 	}
656 	/*
657 	 * In the case that fixup_user_fault unlocked the mmap_lock during
658 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
659 	 */
660 	if (unlocked)
661 		goto retry;
662 
663 	rc = __gmap_link(gmap, gaddr, vmaddr);
664 out_up:
665 	mmap_read_unlock(gmap->mm);
666 	return rc;
667 }
668 EXPORT_SYMBOL_GPL(gmap_fault);
669 
670 /*
671  * this function is assumed to be called with mmap_lock held
672  */
673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
674 {
675 	struct vm_area_struct *vma;
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 
686 		vma = vma_lookup(gmap->mm, vmaddr);
687 		if (!vma || is_vm_hugetlb_page(vma))
688 			return;
689 
690 		/* Get pointer to the page table entry */
691 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
692 		if (likely(ptep)) {
693 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
694 			pte_unmap_unlock(ptep, ptl);
695 		}
696 	}
697 }
698 EXPORT_SYMBOL_GPL(__gmap_zap);
699 
700 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
701 {
702 	unsigned long gaddr, vmaddr, size;
703 	struct vm_area_struct *vma;
704 
705 	mmap_read_lock(gmap->mm);
706 	for (gaddr = from; gaddr < to;
707 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
708 		/* Find the vm address for the guest address */
709 		vmaddr = (unsigned long)
710 			radix_tree_lookup(&gmap->guest_to_host,
711 					  gaddr >> PMD_SHIFT);
712 		if (!vmaddr)
713 			continue;
714 		vmaddr |= gaddr & ~PMD_MASK;
715 		/* Find vma in the parent mm */
716 		vma = find_vma(gmap->mm, vmaddr);
717 		if (!vma)
718 			continue;
719 		/*
720 		 * We do not discard pages that are backed by
721 		 * hugetlbfs, so we don't have to refault them.
722 		 */
723 		if (is_vm_hugetlb_page(vma))
724 			continue;
725 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
726 		zap_page_range(vma, vmaddr, size);
727 	}
728 	mmap_read_unlock(gmap->mm);
729 }
730 EXPORT_SYMBOL_GPL(gmap_discard);
731 
732 static LIST_HEAD(gmap_notifier_list);
733 static DEFINE_SPINLOCK(gmap_notifier_lock);
734 
735 /**
736  * gmap_register_pte_notifier - register a pte invalidation callback
737  * @nb: pointer to the gmap notifier block
738  */
739 void gmap_register_pte_notifier(struct gmap_notifier *nb)
740 {
741 	spin_lock(&gmap_notifier_lock);
742 	list_add_rcu(&nb->list, &gmap_notifier_list);
743 	spin_unlock(&gmap_notifier_lock);
744 }
745 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
746 
747 /**
748  * gmap_unregister_pte_notifier - remove a pte invalidation callback
749  * @nb: pointer to the gmap notifier block
750  */
751 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
752 {
753 	spin_lock(&gmap_notifier_lock);
754 	list_del_rcu(&nb->list);
755 	spin_unlock(&gmap_notifier_lock);
756 	synchronize_rcu();
757 }
758 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
759 
760 /**
761  * gmap_call_notifier - call all registered invalidation callbacks
762  * @gmap: pointer to guest mapping meta data structure
763  * @start: start virtual address in the guest address space
764  * @end: end virtual address in the guest address space
765  */
766 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
767 			       unsigned long end)
768 {
769 	struct gmap_notifier *nb;
770 
771 	list_for_each_entry(nb, &gmap_notifier_list, list)
772 		nb->notifier_call(gmap, start, end);
773 }
774 
775 /**
776  * gmap_table_walk - walk the gmap page tables
777  * @gmap: pointer to guest mapping meta data structure
778  * @gaddr: virtual address in the guest address space
779  * @level: page table level to stop at
780  *
781  * Returns a table entry pointer for the given guest address and @level
782  * @level=0 : returns a pointer to a page table table entry (or NULL)
783  * @level=1 : returns a pointer to a segment table entry (or NULL)
784  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
785  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
786  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
787  *
788  * Returns NULL if the gmap page tables could not be walked to the
789  * requested level.
790  *
791  * Note: Can also be called for shadow gmaps.
792  */
793 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
794 					     unsigned long gaddr, int level)
795 {
796 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
797 	unsigned long *table = gmap->table;
798 
799 	if (gmap_is_shadow(gmap) && gmap->removed)
800 		return NULL;
801 
802 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
803 		return NULL;
804 
805 	if (asce_type != _ASCE_TYPE_REGION1 &&
806 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
807 		return NULL;
808 
809 	switch (asce_type) {
810 	case _ASCE_TYPE_REGION1:
811 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
812 		if (level == 4)
813 			break;
814 		if (*table & _REGION_ENTRY_INVALID)
815 			return NULL;
816 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
817 		fallthrough;
818 	case _ASCE_TYPE_REGION2:
819 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
820 		if (level == 3)
821 			break;
822 		if (*table & _REGION_ENTRY_INVALID)
823 			return NULL;
824 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
825 		fallthrough;
826 	case _ASCE_TYPE_REGION3:
827 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
828 		if (level == 2)
829 			break;
830 		if (*table & _REGION_ENTRY_INVALID)
831 			return NULL;
832 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
833 		fallthrough;
834 	case _ASCE_TYPE_SEGMENT:
835 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
836 		if (level == 1)
837 			break;
838 		if (*table & _REGION_ENTRY_INVALID)
839 			return NULL;
840 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
841 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
842 	}
843 	return table;
844 }
845 
846 /**
847  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
848  *		      and return the pte pointer
849  * @gmap: pointer to guest mapping meta data structure
850  * @gaddr: virtual address in the guest address space
851  * @ptl: pointer to the spinlock pointer
852  *
853  * Returns a pointer to the locked pte for a guest address, or NULL
854  */
855 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
856 			       spinlock_t **ptl)
857 {
858 	unsigned long *table;
859 
860 	BUG_ON(gmap_is_shadow(gmap));
861 	/* Walk the gmap page table, lock and get pte pointer */
862 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
863 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
864 		return NULL;
865 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
866 }
867 
868 /**
869  * gmap_pte_op_fixup - force a page in and connect the gmap page table
870  * @gmap: pointer to guest mapping meta data structure
871  * @gaddr: virtual address in the guest address space
872  * @vmaddr: address in the host process address space
873  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
874  *
875  * Returns 0 if the caller can retry __gmap_translate (might fail again),
876  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
877  * up or connecting the gmap page table.
878  */
879 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
880 			     unsigned long vmaddr, int prot)
881 {
882 	struct mm_struct *mm = gmap->mm;
883 	unsigned int fault_flags;
884 	bool unlocked = false;
885 
886 	BUG_ON(gmap_is_shadow(gmap));
887 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
888 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
889 		return -EFAULT;
890 	if (unlocked)
891 		/* lost mmap_lock, caller has to retry __gmap_translate */
892 		return 0;
893 	/* Connect the page tables */
894 	return __gmap_link(gmap, gaddr, vmaddr);
895 }
896 
897 /**
898  * gmap_pte_op_end - release the page table lock
899  * @ptl: pointer to the spinlock pointer
900  */
901 static void gmap_pte_op_end(spinlock_t *ptl)
902 {
903 	if (ptl)
904 		spin_unlock(ptl);
905 }
906 
907 /**
908  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
909  *		      and return the pmd pointer
910  * @gmap: pointer to guest mapping meta data structure
911  * @gaddr: virtual address in the guest address space
912  *
913  * Returns a pointer to the pmd for a guest address, or NULL
914  */
915 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
916 {
917 	pmd_t *pmdp;
918 
919 	BUG_ON(gmap_is_shadow(gmap));
920 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
921 	if (!pmdp)
922 		return NULL;
923 
924 	/* without huge pages, there is no need to take the table lock */
925 	if (!gmap->mm->context.allow_gmap_hpage_1m)
926 		return pmd_none(*pmdp) ? NULL : pmdp;
927 
928 	spin_lock(&gmap->guest_table_lock);
929 	if (pmd_none(*pmdp)) {
930 		spin_unlock(&gmap->guest_table_lock);
931 		return NULL;
932 	}
933 
934 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
935 	if (!pmd_large(*pmdp))
936 		spin_unlock(&gmap->guest_table_lock);
937 	return pmdp;
938 }
939 
940 /**
941  * gmap_pmd_op_end - release the guest_table_lock if needed
942  * @gmap: pointer to the guest mapping meta data structure
943  * @pmdp: pointer to the pmd
944  */
945 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
946 {
947 	if (pmd_large(*pmdp))
948 		spin_unlock(&gmap->guest_table_lock);
949 }
950 
951 /*
952  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
953  * @pmdp: pointer to the pmd to be protected
954  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
955  * @bits: notification bits to set
956  *
957  * Returns:
958  * 0 if successfully protected
959  * -EAGAIN if a fixup is needed
960  * -EINVAL if unsupported notifier bits have been specified
961  *
962  * Expected to be called with sg->mm->mmap_lock in read and
963  * guest_table_lock held.
964  */
965 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
966 			    pmd_t *pmdp, int prot, unsigned long bits)
967 {
968 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
969 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
970 	pmd_t new = *pmdp;
971 
972 	/* Fixup needed */
973 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
974 		return -EAGAIN;
975 
976 	if (prot == PROT_NONE && !pmd_i) {
977 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
978 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
979 	}
980 
981 	if (prot == PROT_READ && !pmd_p) {
982 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
983 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
984 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
985 	}
986 
987 	if (bits & GMAP_NOTIFY_MPROT)
988 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
989 
990 	/* Shadow GMAP protection needs split PMDs */
991 	if (bits & GMAP_NOTIFY_SHADOW)
992 		return -EINVAL;
993 
994 	return 0;
995 }
996 
997 /*
998  * gmap_protect_pte - remove access rights to memory and set pgste bits
999  * @gmap: pointer to guest mapping meta data structure
1000  * @gaddr: virtual address in the guest address space
1001  * @pmdp: pointer to the pmd associated with the pte
1002  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1003  * @bits: notification bits to set
1004  *
1005  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1006  * -EAGAIN if a fixup is needed.
1007  *
1008  * Expected to be called with sg->mm->mmap_lock in read
1009  */
1010 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1011 			    pmd_t *pmdp, int prot, unsigned long bits)
1012 {
1013 	int rc;
1014 	pte_t *ptep;
1015 	spinlock_t *ptl = NULL;
1016 	unsigned long pbits = 0;
1017 
1018 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1019 		return -EAGAIN;
1020 
1021 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1022 	if (!ptep)
1023 		return -ENOMEM;
1024 
1025 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1026 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1027 	/* Protect and unlock. */
1028 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1029 	gmap_pte_op_end(ptl);
1030 	return rc;
1031 }
1032 
1033 /*
1034  * gmap_protect_range - remove access rights to memory and set pgste bits
1035  * @gmap: pointer to guest mapping meta data structure
1036  * @gaddr: virtual address in the guest address space
1037  * @len: size of area
1038  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1039  * @bits: pgste notification bits to set
1040  *
1041  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1042  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1043  *
1044  * Called with sg->mm->mmap_lock in read.
1045  */
1046 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1047 			      unsigned long len, int prot, unsigned long bits)
1048 {
1049 	unsigned long vmaddr, dist;
1050 	pmd_t *pmdp;
1051 	int rc;
1052 
1053 	BUG_ON(gmap_is_shadow(gmap));
1054 	while (len) {
1055 		rc = -EAGAIN;
1056 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1057 		if (pmdp) {
1058 			if (!pmd_large(*pmdp)) {
1059 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1060 						      bits);
1061 				if (!rc) {
1062 					len -= PAGE_SIZE;
1063 					gaddr += PAGE_SIZE;
1064 				}
1065 			} else {
1066 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1067 						      bits);
1068 				if (!rc) {
1069 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1070 					len = len < dist ? 0 : len - dist;
1071 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1072 				}
1073 			}
1074 			gmap_pmd_op_end(gmap, pmdp);
1075 		}
1076 		if (rc) {
1077 			if (rc == -EINVAL)
1078 				return rc;
1079 
1080 			/* -EAGAIN, fixup of userspace mm and gmap */
1081 			vmaddr = __gmap_translate(gmap, gaddr);
1082 			if (IS_ERR_VALUE(vmaddr))
1083 				return vmaddr;
1084 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1085 			if (rc)
1086 				return rc;
1087 		}
1088 	}
1089 	return 0;
1090 }
1091 
1092 /**
1093  * gmap_mprotect_notify - change access rights for a range of ptes and
1094  *                        call the notifier if any pte changes again
1095  * @gmap: pointer to guest mapping meta data structure
1096  * @gaddr: virtual address in the guest address space
1097  * @len: size of area
1098  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1099  *
1100  * Returns 0 if for each page in the given range a gmap mapping exists,
1101  * the new access rights could be set and the notifier could be armed.
1102  * If the gmap mapping is missing for one or more pages -EFAULT is
1103  * returned. If no memory could be allocated -ENOMEM is returned.
1104  * This function establishes missing page table entries.
1105  */
1106 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1107 			 unsigned long len, int prot)
1108 {
1109 	int rc;
1110 
1111 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1112 		return -EINVAL;
1113 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1114 		return -EINVAL;
1115 	mmap_read_lock(gmap->mm);
1116 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1117 	mmap_read_unlock(gmap->mm);
1118 	return rc;
1119 }
1120 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1121 
1122 /**
1123  * gmap_read_table - get an unsigned long value from a guest page table using
1124  *                   absolute addressing, without marking the page referenced.
1125  * @gmap: pointer to guest mapping meta data structure
1126  * @gaddr: virtual address in the guest address space
1127  * @val: pointer to the unsigned long value to return
1128  *
1129  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1130  * if reading using the virtual address failed. -EINVAL if called on a gmap
1131  * shadow.
1132  *
1133  * Called with gmap->mm->mmap_lock in read.
1134  */
1135 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1136 {
1137 	unsigned long address, vmaddr;
1138 	spinlock_t *ptl;
1139 	pte_t *ptep, pte;
1140 	int rc;
1141 
1142 	if (gmap_is_shadow(gmap))
1143 		return -EINVAL;
1144 
1145 	while (1) {
1146 		rc = -EAGAIN;
1147 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1148 		if (ptep) {
1149 			pte = *ptep;
1150 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1151 				address = pte_val(pte) & PAGE_MASK;
1152 				address += gaddr & ~PAGE_MASK;
1153 				*val = *(unsigned long *) address;
1154 				pte_val(*ptep) |= _PAGE_YOUNG;
1155 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1156 				rc = 0;
1157 			}
1158 			gmap_pte_op_end(ptl);
1159 		}
1160 		if (!rc)
1161 			break;
1162 		vmaddr = __gmap_translate(gmap, gaddr);
1163 		if (IS_ERR_VALUE(vmaddr)) {
1164 			rc = vmaddr;
1165 			break;
1166 		}
1167 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1168 		if (rc)
1169 			break;
1170 	}
1171 	return rc;
1172 }
1173 EXPORT_SYMBOL_GPL(gmap_read_table);
1174 
1175 /**
1176  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1177  * @sg: pointer to the shadow guest address space structure
1178  * @vmaddr: vm address associated with the rmap
1179  * @rmap: pointer to the rmap structure
1180  *
1181  * Called with the sg->guest_table_lock
1182  */
1183 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1184 				    struct gmap_rmap *rmap)
1185 {
1186 	void __rcu **slot;
1187 
1188 	BUG_ON(!gmap_is_shadow(sg));
1189 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190 	if (slot) {
1191 		rmap->next = radix_tree_deref_slot_protected(slot,
1192 							&sg->guest_table_lock);
1193 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1194 	} else {
1195 		rmap->next = NULL;
1196 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1197 				  rmap);
1198 	}
1199 }
1200 
1201 /**
1202  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1203  * @sg: pointer to the shadow guest address space structure
1204  * @raddr: rmap address in the shadow gmap
1205  * @paddr: address in the parent guest address space
1206  * @len: length of the memory area to protect
1207  *
1208  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1209  * if out of memory and -EFAULT if paddr is invalid.
1210  */
1211 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1212 			     unsigned long paddr, unsigned long len)
1213 {
1214 	struct gmap *parent;
1215 	struct gmap_rmap *rmap;
1216 	unsigned long vmaddr;
1217 	spinlock_t *ptl;
1218 	pte_t *ptep;
1219 	int rc;
1220 
1221 	BUG_ON(!gmap_is_shadow(sg));
1222 	parent = sg->parent;
1223 	while (len) {
1224 		vmaddr = __gmap_translate(parent, paddr);
1225 		if (IS_ERR_VALUE(vmaddr))
1226 			return vmaddr;
1227 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1228 		if (!rmap)
1229 			return -ENOMEM;
1230 		rmap->raddr = raddr;
1231 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1232 		if (rc) {
1233 			kfree(rmap);
1234 			return rc;
1235 		}
1236 		rc = -EAGAIN;
1237 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1238 		if (ptep) {
1239 			spin_lock(&sg->guest_table_lock);
1240 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1241 					     PGSTE_VSIE_BIT);
1242 			if (!rc)
1243 				gmap_insert_rmap(sg, vmaddr, rmap);
1244 			spin_unlock(&sg->guest_table_lock);
1245 			gmap_pte_op_end(ptl);
1246 		}
1247 		radix_tree_preload_end();
1248 		if (rc) {
1249 			kfree(rmap);
1250 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1251 			if (rc)
1252 				return rc;
1253 			continue;
1254 		}
1255 		paddr += PAGE_SIZE;
1256 		len -= PAGE_SIZE;
1257 	}
1258 	return 0;
1259 }
1260 
1261 #define _SHADOW_RMAP_MASK	0x7
1262 #define _SHADOW_RMAP_REGION1	0x5
1263 #define _SHADOW_RMAP_REGION2	0x4
1264 #define _SHADOW_RMAP_REGION3	0x3
1265 #define _SHADOW_RMAP_SEGMENT	0x2
1266 #define _SHADOW_RMAP_PGTABLE	0x1
1267 
1268 /**
1269  * gmap_idte_one - invalidate a single region or segment table entry
1270  * @asce: region or segment table *origin* + table-type bits
1271  * @vaddr: virtual address to identify the table entry to flush
1272  *
1273  * The invalid bit of a single region or segment table entry is set
1274  * and the associated TLB entries depending on the entry are flushed.
1275  * The table-type of the @asce identifies the portion of the @vaddr
1276  * that is used as the invalidation index.
1277  */
1278 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1279 {
1280 	asm volatile(
1281 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1282 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1283 }
1284 
1285 /**
1286  * gmap_unshadow_page - remove a page from a shadow page table
1287  * @sg: pointer to the shadow guest address space structure
1288  * @raddr: rmap address in the shadow guest address space
1289  *
1290  * Called with the sg->guest_table_lock
1291  */
1292 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1293 {
1294 	unsigned long *table;
1295 
1296 	BUG_ON(!gmap_is_shadow(sg));
1297 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1298 	if (!table || *table & _PAGE_INVALID)
1299 		return;
1300 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1301 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1302 }
1303 
1304 /**
1305  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1306  * @sg: pointer to the shadow guest address space structure
1307  * @raddr: rmap address in the shadow guest address space
1308  * @pgt: pointer to the start of a shadow page table
1309  *
1310  * Called with the sg->guest_table_lock
1311  */
1312 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1313 				unsigned long *pgt)
1314 {
1315 	int i;
1316 
1317 	BUG_ON(!gmap_is_shadow(sg));
1318 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1319 		pgt[i] = _PAGE_INVALID;
1320 }
1321 
1322 /**
1323  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1324  * @sg: pointer to the shadow guest address space structure
1325  * @raddr: address in the shadow guest address space
1326  *
1327  * Called with the sg->guest_table_lock
1328  */
1329 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1330 {
1331 	unsigned long sto, *ste, *pgt;
1332 	struct page *page;
1333 
1334 	BUG_ON(!gmap_is_shadow(sg));
1335 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1336 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1337 		return;
1338 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1339 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1340 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1341 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1342 	*ste = _SEGMENT_ENTRY_EMPTY;
1343 	__gmap_unshadow_pgt(sg, raddr, pgt);
1344 	/* Free page table */
1345 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1346 	list_del(&page->lru);
1347 	page_table_free_pgste(page);
1348 }
1349 
1350 /**
1351  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1352  * @sg: pointer to the shadow guest address space structure
1353  * @raddr: rmap address in the shadow guest address space
1354  * @sgt: pointer to the start of a shadow segment table
1355  *
1356  * Called with the sg->guest_table_lock
1357  */
1358 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1359 				unsigned long *sgt)
1360 {
1361 	unsigned long *pgt;
1362 	struct page *page;
1363 	int i;
1364 
1365 	BUG_ON(!gmap_is_shadow(sg));
1366 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1367 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1368 			continue;
1369 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1370 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1371 		__gmap_unshadow_pgt(sg, raddr, pgt);
1372 		/* Free page table */
1373 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1374 		list_del(&page->lru);
1375 		page_table_free_pgste(page);
1376 	}
1377 }
1378 
1379 /**
1380  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1381  * @sg: pointer to the shadow guest address space structure
1382  * @raddr: rmap address in the shadow guest address space
1383  *
1384  * Called with the shadow->guest_table_lock
1385  */
1386 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1387 {
1388 	unsigned long r3o, *r3e, *sgt;
1389 	struct page *page;
1390 
1391 	BUG_ON(!gmap_is_shadow(sg));
1392 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1393 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1394 		return;
1395 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1396 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1397 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1398 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1399 	*r3e = _REGION3_ENTRY_EMPTY;
1400 	__gmap_unshadow_sgt(sg, raddr, sgt);
1401 	/* Free segment table */
1402 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1403 	list_del(&page->lru);
1404 	__free_pages(page, CRST_ALLOC_ORDER);
1405 }
1406 
1407 /**
1408  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1409  * @sg: pointer to the shadow guest address space structure
1410  * @raddr: address in the shadow guest address space
1411  * @r3t: pointer to the start of a shadow region-3 table
1412  *
1413  * Called with the sg->guest_table_lock
1414  */
1415 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1416 				unsigned long *r3t)
1417 {
1418 	unsigned long *sgt;
1419 	struct page *page;
1420 	int i;
1421 
1422 	BUG_ON(!gmap_is_shadow(sg));
1423 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1424 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1425 			continue;
1426 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1427 		r3t[i] = _REGION3_ENTRY_EMPTY;
1428 		__gmap_unshadow_sgt(sg, raddr, sgt);
1429 		/* Free segment table */
1430 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1431 		list_del(&page->lru);
1432 		__free_pages(page, CRST_ALLOC_ORDER);
1433 	}
1434 }
1435 
1436 /**
1437  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1438  * @sg: pointer to the shadow guest address space structure
1439  * @raddr: rmap address in the shadow guest address space
1440  *
1441  * Called with the sg->guest_table_lock
1442  */
1443 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1444 {
1445 	unsigned long r2o, *r2e, *r3t;
1446 	struct page *page;
1447 
1448 	BUG_ON(!gmap_is_shadow(sg));
1449 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1450 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1451 		return;
1452 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1453 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1454 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1455 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1456 	*r2e = _REGION2_ENTRY_EMPTY;
1457 	__gmap_unshadow_r3t(sg, raddr, r3t);
1458 	/* Free region 3 table */
1459 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1460 	list_del(&page->lru);
1461 	__free_pages(page, CRST_ALLOC_ORDER);
1462 }
1463 
1464 /**
1465  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1466  * @sg: pointer to the shadow guest address space structure
1467  * @raddr: rmap address in the shadow guest address space
1468  * @r2t: pointer to the start of a shadow region-2 table
1469  *
1470  * Called with the sg->guest_table_lock
1471  */
1472 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1473 				unsigned long *r2t)
1474 {
1475 	unsigned long *r3t;
1476 	struct page *page;
1477 	int i;
1478 
1479 	BUG_ON(!gmap_is_shadow(sg));
1480 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1481 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1482 			continue;
1483 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1484 		r2t[i] = _REGION2_ENTRY_EMPTY;
1485 		__gmap_unshadow_r3t(sg, raddr, r3t);
1486 		/* Free region 3 table */
1487 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1488 		list_del(&page->lru);
1489 		__free_pages(page, CRST_ALLOC_ORDER);
1490 	}
1491 }
1492 
1493 /**
1494  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1495  * @sg: pointer to the shadow guest address space structure
1496  * @raddr: rmap address in the shadow guest address space
1497  *
1498  * Called with the sg->guest_table_lock
1499  */
1500 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1501 {
1502 	unsigned long r1o, *r1e, *r2t;
1503 	struct page *page;
1504 
1505 	BUG_ON(!gmap_is_shadow(sg));
1506 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1507 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1508 		return;
1509 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1510 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1511 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1512 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1513 	*r1e = _REGION1_ENTRY_EMPTY;
1514 	__gmap_unshadow_r2t(sg, raddr, r2t);
1515 	/* Free region 2 table */
1516 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1517 	list_del(&page->lru);
1518 	__free_pages(page, CRST_ALLOC_ORDER);
1519 }
1520 
1521 /**
1522  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1523  * @sg: pointer to the shadow guest address space structure
1524  * @raddr: rmap address in the shadow guest address space
1525  * @r1t: pointer to the start of a shadow region-1 table
1526  *
1527  * Called with the shadow->guest_table_lock
1528  */
1529 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1530 				unsigned long *r1t)
1531 {
1532 	unsigned long asce, *r2t;
1533 	struct page *page;
1534 	int i;
1535 
1536 	BUG_ON(!gmap_is_shadow(sg));
1537 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1538 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1539 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1540 			continue;
1541 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1542 		__gmap_unshadow_r2t(sg, raddr, r2t);
1543 		/* Clear entry and flush translation r1t -> r2t */
1544 		gmap_idte_one(asce, raddr);
1545 		r1t[i] = _REGION1_ENTRY_EMPTY;
1546 		/* Free region 2 table */
1547 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1548 		list_del(&page->lru);
1549 		__free_pages(page, CRST_ALLOC_ORDER);
1550 	}
1551 }
1552 
1553 /**
1554  * gmap_unshadow - remove a shadow page table completely
1555  * @sg: pointer to the shadow guest address space structure
1556  *
1557  * Called with sg->guest_table_lock
1558  */
1559 static void gmap_unshadow(struct gmap *sg)
1560 {
1561 	unsigned long *table;
1562 
1563 	BUG_ON(!gmap_is_shadow(sg));
1564 	if (sg->removed)
1565 		return;
1566 	sg->removed = 1;
1567 	gmap_call_notifier(sg, 0, -1UL);
1568 	gmap_flush_tlb(sg);
1569 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1570 	switch (sg->asce & _ASCE_TYPE_MASK) {
1571 	case _ASCE_TYPE_REGION1:
1572 		__gmap_unshadow_r1t(sg, 0, table);
1573 		break;
1574 	case _ASCE_TYPE_REGION2:
1575 		__gmap_unshadow_r2t(sg, 0, table);
1576 		break;
1577 	case _ASCE_TYPE_REGION3:
1578 		__gmap_unshadow_r3t(sg, 0, table);
1579 		break;
1580 	case _ASCE_TYPE_SEGMENT:
1581 		__gmap_unshadow_sgt(sg, 0, table);
1582 		break;
1583 	}
1584 }
1585 
1586 /**
1587  * gmap_find_shadow - find a specific asce in the list of shadow tables
1588  * @parent: pointer to the parent gmap
1589  * @asce: ASCE for which the shadow table is created
1590  * @edat_level: edat level to be used for the shadow translation
1591  *
1592  * Returns the pointer to a gmap if a shadow table with the given asce is
1593  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1594  * otherwise NULL
1595  */
1596 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1597 				     int edat_level)
1598 {
1599 	struct gmap *sg;
1600 
1601 	list_for_each_entry(sg, &parent->children, list) {
1602 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1603 		    sg->removed)
1604 			continue;
1605 		if (!sg->initialized)
1606 			return ERR_PTR(-EAGAIN);
1607 		refcount_inc(&sg->ref_count);
1608 		return sg;
1609 	}
1610 	return NULL;
1611 }
1612 
1613 /**
1614  * gmap_shadow_valid - check if a shadow guest address space matches the
1615  *                     given properties and is still valid
1616  * @sg: pointer to the shadow guest address space structure
1617  * @asce: ASCE for which the shadow table is requested
1618  * @edat_level: edat level to be used for the shadow translation
1619  *
1620  * Returns 1 if the gmap shadow is still valid and matches the given
1621  * properties, the caller can continue using it. Returns 0 otherwise, the
1622  * caller has to request a new shadow gmap in this case.
1623  *
1624  */
1625 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1626 {
1627 	if (sg->removed)
1628 		return 0;
1629 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1630 }
1631 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1632 
1633 /**
1634  * gmap_shadow - create/find a shadow guest address space
1635  * @parent: pointer to the parent gmap
1636  * @asce: ASCE for which the shadow table is created
1637  * @edat_level: edat level to be used for the shadow translation
1638  *
1639  * The pages of the top level page table referred by the asce parameter
1640  * will be set to read-only and marked in the PGSTEs of the kvm process.
1641  * The shadow table will be removed automatically on any change to the
1642  * PTE mapping for the source table.
1643  *
1644  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1645  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1646  * parent gmap table could not be protected.
1647  */
1648 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1649 			 int edat_level)
1650 {
1651 	struct gmap *sg, *new;
1652 	unsigned long limit;
1653 	int rc;
1654 
1655 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1656 	BUG_ON(gmap_is_shadow(parent));
1657 	spin_lock(&parent->shadow_lock);
1658 	sg = gmap_find_shadow(parent, asce, edat_level);
1659 	spin_unlock(&parent->shadow_lock);
1660 	if (sg)
1661 		return sg;
1662 	/* Create a new shadow gmap */
1663 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1664 	if (asce & _ASCE_REAL_SPACE)
1665 		limit = -1UL;
1666 	new = gmap_alloc(limit);
1667 	if (!new)
1668 		return ERR_PTR(-ENOMEM);
1669 	new->mm = parent->mm;
1670 	new->parent = gmap_get(parent);
1671 	new->orig_asce = asce;
1672 	new->edat_level = edat_level;
1673 	new->initialized = false;
1674 	spin_lock(&parent->shadow_lock);
1675 	/* Recheck if another CPU created the same shadow */
1676 	sg = gmap_find_shadow(parent, asce, edat_level);
1677 	if (sg) {
1678 		spin_unlock(&parent->shadow_lock);
1679 		gmap_free(new);
1680 		return sg;
1681 	}
1682 	if (asce & _ASCE_REAL_SPACE) {
1683 		/* only allow one real-space gmap shadow */
1684 		list_for_each_entry(sg, &parent->children, list) {
1685 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1686 				spin_lock(&sg->guest_table_lock);
1687 				gmap_unshadow(sg);
1688 				spin_unlock(&sg->guest_table_lock);
1689 				list_del(&sg->list);
1690 				gmap_put(sg);
1691 				break;
1692 			}
1693 		}
1694 	}
1695 	refcount_set(&new->ref_count, 2);
1696 	list_add(&new->list, &parent->children);
1697 	if (asce & _ASCE_REAL_SPACE) {
1698 		/* nothing to protect, return right away */
1699 		new->initialized = true;
1700 		spin_unlock(&parent->shadow_lock);
1701 		return new;
1702 	}
1703 	spin_unlock(&parent->shadow_lock);
1704 	/* protect after insertion, so it will get properly invalidated */
1705 	mmap_read_lock(parent->mm);
1706 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1707 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1708 				PROT_READ, GMAP_NOTIFY_SHADOW);
1709 	mmap_read_unlock(parent->mm);
1710 	spin_lock(&parent->shadow_lock);
1711 	new->initialized = true;
1712 	if (rc) {
1713 		list_del(&new->list);
1714 		gmap_free(new);
1715 		new = ERR_PTR(rc);
1716 	}
1717 	spin_unlock(&parent->shadow_lock);
1718 	return new;
1719 }
1720 EXPORT_SYMBOL_GPL(gmap_shadow);
1721 
1722 /**
1723  * gmap_shadow_r2t - create an empty shadow region 2 table
1724  * @sg: pointer to the shadow guest address space structure
1725  * @saddr: faulting address in the shadow gmap
1726  * @r2t: parent gmap address of the region 2 table to get shadowed
1727  * @fake: r2t references contiguous guest memory block, not a r2t
1728  *
1729  * The r2t parameter specifies the address of the source table. The
1730  * four pages of the source table are made read-only in the parent gmap
1731  * address space. A write to the source table area @r2t will automatically
1732  * remove the shadow r2 table and all of its decendents.
1733  *
1734  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1735  * shadow table structure is incomplete, -ENOMEM if out of memory and
1736  * -EFAULT if an address in the parent gmap could not be resolved.
1737  *
1738  * Called with sg->mm->mmap_lock in read.
1739  */
1740 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1741 		    int fake)
1742 {
1743 	unsigned long raddr, origin, offset, len;
1744 	unsigned long *s_r2t, *table;
1745 	struct page *page;
1746 	int rc;
1747 
1748 	BUG_ON(!gmap_is_shadow(sg));
1749 	/* Allocate a shadow region second table */
1750 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1751 	if (!page)
1752 		return -ENOMEM;
1753 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1754 	if (fake)
1755 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1756 	s_r2t = (unsigned long *) page_to_phys(page);
1757 	/* Install shadow region second table */
1758 	spin_lock(&sg->guest_table_lock);
1759 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1760 	if (!table) {
1761 		rc = -EAGAIN;		/* Race with unshadow */
1762 		goto out_free;
1763 	}
1764 	if (!(*table & _REGION_ENTRY_INVALID)) {
1765 		rc = 0;			/* Already established */
1766 		goto out_free;
1767 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1768 		rc = -EAGAIN;		/* Race with shadow */
1769 		goto out_free;
1770 	}
1771 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1772 	/* mark as invalid as long as the parent table is not protected */
1773 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1774 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1775 	if (sg->edat_level >= 1)
1776 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1777 	list_add(&page->lru, &sg->crst_list);
1778 	if (fake) {
1779 		/* nothing to protect for fake tables */
1780 		*table &= ~_REGION_ENTRY_INVALID;
1781 		spin_unlock(&sg->guest_table_lock);
1782 		return 0;
1783 	}
1784 	spin_unlock(&sg->guest_table_lock);
1785 	/* Make r2t read-only in parent gmap page table */
1786 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1787 	origin = r2t & _REGION_ENTRY_ORIGIN;
1788 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1789 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1790 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1791 	spin_lock(&sg->guest_table_lock);
1792 	if (!rc) {
1793 		table = gmap_table_walk(sg, saddr, 4);
1794 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1795 			      (unsigned long) s_r2t)
1796 			rc = -EAGAIN;		/* Race with unshadow */
1797 		else
1798 			*table &= ~_REGION_ENTRY_INVALID;
1799 	} else {
1800 		gmap_unshadow_r2t(sg, raddr);
1801 	}
1802 	spin_unlock(&sg->guest_table_lock);
1803 	return rc;
1804 out_free:
1805 	spin_unlock(&sg->guest_table_lock);
1806 	__free_pages(page, CRST_ALLOC_ORDER);
1807 	return rc;
1808 }
1809 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1810 
1811 /**
1812  * gmap_shadow_r3t - create a shadow region 3 table
1813  * @sg: pointer to the shadow guest address space structure
1814  * @saddr: faulting address in the shadow gmap
1815  * @r3t: parent gmap address of the region 3 table to get shadowed
1816  * @fake: r3t references contiguous guest memory block, not a r3t
1817  *
1818  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1819  * shadow table structure is incomplete, -ENOMEM if out of memory and
1820  * -EFAULT if an address in the parent gmap could not be resolved.
1821  *
1822  * Called with sg->mm->mmap_lock in read.
1823  */
1824 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1825 		    int fake)
1826 {
1827 	unsigned long raddr, origin, offset, len;
1828 	unsigned long *s_r3t, *table;
1829 	struct page *page;
1830 	int rc;
1831 
1832 	BUG_ON(!gmap_is_shadow(sg));
1833 	/* Allocate a shadow region second table */
1834 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1835 	if (!page)
1836 		return -ENOMEM;
1837 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1838 	if (fake)
1839 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1840 	s_r3t = (unsigned long *) page_to_phys(page);
1841 	/* Install shadow region second table */
1842 	spin_lock(&sg->guest_table_lock);
1843 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1844 	if (!table) {
1845 		rc = -EAGAIN;		/* Race with unshadow */
1846 		goto out_free;
1847 	}
1848 	if (!(*table & _REGION_ENTRY_INVALID)) {
1849 		rc = 0;			/* Already established */
1850 		goto out_free;
1851 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1852 		rc = -EAGAIN;		/* Race with shadow */
1853 		goto out_free;
1854 	}
1855 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1856 	/* mark as invalid as long as the parent table is not protected */
1857 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1858 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1859 	if (sg->edat_level >= 1)
1860 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1861 	list_add(&page->lru, &sg->crst_list);
1862 	if (fake) {
1863 		/* nothing to protect for fake tables */
1864 		*table &= ~_REGION_ENTRY_INVALID;
1865 		spin_unlock(&sg->guest_table_lock);
1866 		return 0;
1867 	}
1868 	spin_unlock(&sg->guest_table_lock);
1869 	/* Make r3t read-only in parent gmap page table */
1870 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1871 	origin = r3t & _REGION_ENTRY_ORIGIN;
1872 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1873 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1874 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1875 	spin_lock(&sg->guest_table_lock);
1876 	if (!rc) {
1877 		table = gmap_table_walk(sg, saddr, 3);
1878 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1879 			      (unsigned long) s_r3t)
1880 			rc = -EAGAIN;		/* Race with unshadow */
1881 		else
1882 			*table &= ~_REGION_ENTRY_INVALID;
1883 	} else {
1884 		gmap_unshadow_r3t(sg, raddr);
1885 	}
1886 	spin_unlock(&sg->guest_table_lock);
1887 	return rc;
1888 out_free:
1889 	spin_unlock(&sg->guest_table_lock);
1890 	__free_pages(page, CRST_ALLOC_ORDER);
1891 	return rc;
1892 }
1893 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1894 
1895 /**
1896  * gmap_shadow_sgt - create a shadow segment table
1897  * @sg: pointer to the shadow guest address space structure
1898  * @saddr: faulting address in the shadow gmap
1899  * @sgt: parent gmap address of the segment table to get shadowed
1900  * @fake: sgt references contiguous guest memory block, not a sgt
1901  *
1902  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1903  * shadow table structure is incomplete, -ENOMEM if out of memory and
1904  * -EFAULT if an address in the parent gmap could not be resolved.
1905  *
1906  * Called with sg->mm->mmap_lock in read.
1907  */
1908 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1909 		    int fake)
1910 {
1911 	unsigned long raddr, origin, offset, len;
1912 	unsigned long *s_sgt, *table;
1913 	struct page *page;
1914 	int rc;
1915 
1916 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1917 	/* Allocate a shadow segment table */
1918 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1919 	if (!page)
1920 		return -ENOMEM;
1921 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1922 	if (fake)
1923 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1924 	s_sgt = (unsigned long *) page_to_phys(page);
1925 	/* Install shadow region second table */
1926 	spin_lock(&sg->guest_table_lock);
1927 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1928 	if (!table) {
1929 		rc = -EAGAIN;		/* Race with unshadow */
1930 		goto out_free;
1931 	}
1932 	if (!(*table & _REGION_ENTRY_INVALID)) {
1933 		rc = 0;			/* Already established */
1934 		goto out_free;
1935 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1936 		rc = -EAGAIN;		/* Race with shadow */
1937 		goto out_free;
1938 	}
1939 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1940 	/* mark as invalid as long as the parent table is not protected */
1941 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1942 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1943 	if (sg->edat_level >= 1)
1944 		*table |= sgt & _REGION_ENTRY_PROTECT;
1945 	list_add(&page->lru, &sg->crst_list);
1946 	if (fake) {
1947 		/* nothing to protect for fake tables */
1948 		*table &= ~_REGION_ENTRY_INVALID;
1949 		spin_unlock(&sg->guest_table_lock);
1950 		return 0;
1951 	}
1952 	spin_unlock(&sg->guest_table_lock);
1953 	/* Make sgt read-only in parent gmap page table */
1954 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1955 	origin = sgt & _REGION_ENTRY_ORIGIN;
1956 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1957 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1958 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1959 	spin_lock(&sg->guest_table_lock);
1960 	if (!rc) {
1961 		table = gmap_table_walk(sg, saddr, 2);
1962 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1963 			      (unsigned long) s_sgt)
1964 			rc = -EAGAIN;		/* Race with unshadow */
1965 		else
1966 			*table &= ~_REGION_ENTRY_INVALID;
1967 	} else {
1968 		gmap_unshadow_sgt(sg, raddr);
1969 	}
1970 	spin_unlock(&sg->guest_table_lock);
1971 	return rc;
1972 out_free:
1973 	spin_unlock(&sg->guest_table_lock);
1974 	__free_pages(page, CRST_ALLOC_ORDER);
1975 	return rc;
1976 }
1977 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1978 
1979 /**
1980  * gmap_shadow_pgt_lookup - find a shadow page table
1981  * @sg: pointer to the shadow guest address space structure
1982  * @saddr: the address in the shadow aguest address space
1983  * @pgt: parent gmap address of the page table to get shadowed
1984  * @dat_protection: if the pgtable is marked as protected by dat
1985  * @fake: pgt references contiguous guest memory block, not a pgtable
1986  *
1987  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1988  * table was not found.
1989  *
1990  * Called with sg->mm->mmap_lock in read.
1991  */
1992 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1993 			   unsigned long *pgt, int *dat_protection,
1994 			   int *fake)
1995 {
1996 	unsigned long *table;
1997 	struct page *page;
1998 	int rc;
1999 
2000 	BUG_ON(!gmap_is_shadow(sg));
2001 	spin_lock(&sg->guest_table_lock);
2002 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2003 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2004 		/* Shadow page tables are full pages (pte+pgste) */
2005 		page = pfn_to_page(*table >> PAGE_SHIFT);
2006 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2007 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2008 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2009 		rc = 0;
2010 	} else  {
2011 		rc = -EAGAIN;
2012 	}
2013 	spin_unlock(&sg->guest_table_lock);
2014 	return rc;
2015 
2016 }
2017 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2018 
2019 /**
2020  * gmap_shadow_pgt - instantiate a shadow page table
2021  * @sg: pointer to the shadow guest address space structure
2022  * @saddr: faulting address in the shadow gmap
2023  * @pgt: parent gmap address of the page table to get shadowed
2024  * @fake: pgt references contiguous guest memory block, not a pgtable
2025  *
2026  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2027  * shadow table structure is incomplete, -ENOMEM if out of memory,
2028  * -EFAULT if an address in the parent gmap could not be resolved and
2029  *
2030  * Called with gmap->mm->mmap_lock in read
2031  */
2032 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2033 		    int fake)
2034 {
2035 	unsigned long raddr, origin;
2036 	unsigned long *s_pgt, *table;
2037 	struct page *page;
2038 	int rc;
2039 
2040 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2041 	/* Allocate a shadow page table */
2042 	page = page_table_alloc_pgste(sg->mm);
2043 	if (!page)
2044 		return -ENOMEM;
2045 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2046 	if (fake)
2047 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2048 	s_pgt = (unsigned long *) page_to_phys(page);
2049 	/* Install shadow page table */
2050 	spin_lock(&sg->guest_table_lock);
2051 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2052 	if (!table) {
2053 		rc = -EAGAIN;		/* Race with unshadow */
2054 		goto out_free;
2055 	}
2056 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2057 		rc = 0;			/* Already established */
2058 		goto out_free;
2059 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2060 		rc = -EAGAIN;		/* Race with shadow */
2061 		goto out_free;
2062 	}
2063 	/* mark as invalid as long as the parent table is not protected */
2064 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2065 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2066 	list_add(&page->lru, &sg->pt_list);
2067 	if (fake) {
2068 		/* nothing to protect for fake tables */
2069 		*table &= ~_SEGMENT_ENTRY_INVALID;
2070 		spin_unlock(&sg->guest_table_lock);
2071 		return 0;
2072 	}
2073 	spin_unlock(&sg->guest_table_lock);
2074 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2075 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2076 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2077 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2078 	spin_lock(&sg->guest_table_lock);
2079 	if (!rc) {
2080 		table = gmap_table_walk(sg, saddr, 1);
2081 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2082 			      (unsigned long) s_pgt)
2083 			rc = -EAGAIN;		/* Race with unshadow */
2084 		else
2085 			*table &= ~_SEGMENT_ENTRY_INVALID;
2086 	} else {
2087 		gmap_unshadow_pgt(sg, raddr);
2088 	}
2089 	spin_unlock(&sg->guest_table_lock);
2090 	return rc;
2091 out_free:
2092 	spin_unlock(&sg->guest_table_lock);
2093 	page_table_free_pgste(page);
2094 	return rc;
2095 
2096 }
2097 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2098 
2099 /**
2100  * gmap_shadow_page - create a shadow page mapping
2101  * @sg: pointer to the shadow guest address space structure
2102  * @saddr: faulting address in the shadow gmap
2103  * @pte: pte in parent gmap address space to get shadowed
2104  *
2105  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2106  * shadow table structure is incomplete, -ENOMEM if out of memory and
2107  * -EFAULT if an address in the parent gmap could not be resolved.
2108  *
2109  * Called with sg->mm->mmap_lock in read.
2110  */
2111 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2112 {
2113 	struct gmap *parent;
2114 	struct gmap_rmap *rmap;
2115 	unsigned long vmaddr, paddr;
2116 	spinlock_t *ptl;
2117 	pte_t *sptep, *tptep;
2118 	int prot;
2119 	int rc;
2120 
2121 	BUG_ON(!gmap_is_shadow(sg));
2122 	parent = sg->parent;
2123 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2124 
2125 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2126 	if (!rmap)
2127 		return -ENOMEM;
2128 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2129 
2130 	while (1) {
2131 		paddr = pte_val(pte) & PAGE_MASK;
2132 		vmaddr = __gmap_translate(parent, paddr);
2133 		if (IS_ERR_VALUE(vmaddr)) {
2134 			rc = vmaddr;
2135 			break;
2136 		}
2137 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2138 		if (rc)
2139 			break;
2140 		rc = -EAGAIN;
2141 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2142 		if (sptep) {
2143 			spin_lock(&sg->guest_table_lock);
2144 			/* Get page table pointer */
2145 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2146 			if (!tptep) {
2147 				spin_unlock(&sg->guest_table_lock);
2148 				gmap_pte_op_end(ptl);
2149 				radix_tree_preload_end();
2150 				break;
2151 			}
2152 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2153 			if (rc > 0) {
2154 				/* Success and a new mapping */
2155 				gmap_insert_rmap(sg, vmaddr, rmap);
2156 				rmap = NULL;
2157 				rc = 0;
2158 			}
2159 			gmap_pte_op_end(ptl);
2160 			spin_unlock(&sg->guest_table_lock);
2161 		}
2162 		radix_tree_preload_end();
2163 		if (!rc)
2164 			break;
2165 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2166 		if (rc)
2167 			break;
2168 	}
2169 	kfree(rmap);
2170 	return rc;
2171 }
2172 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2173 
2174 /*
2175  * gmap_shadow_notify - handle notifications for shadow gmap
2176  *
2177  * Called with sg->parent->shadow_lock.
2178  */
2179 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2180 			       unsigned long gaddr)
2181 {
2182 	struct gmap_rmap *rmap, *rnext, *head;
2183 	unsigned long start, end, bits, raddr;
2184 
2185 	BUG_ON(!gmap_is_shadow(sg));
2186 
2187 	spin_lock(&sg->guest_table_lock);
2188 	if (sg->removed) {
2189 		spin_unlock(&sg->guest_table_lock);
2190 		return;
2191 	}
2192 	/* Check for top level table */
2193 	start = sg->orig_asce & _ASCE_ORIGIN;
2194 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2195 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2196 	    gaddr < end) {
2197 		/* The complete shadow table has to go */
2198 		gmap_unshadow(sg);
2199 		spin_unlock(&sg->guest_table_lock);
2200 		list_del(&sg->list);
2201 		gmap_put(sg);
2202 		return;
2203 	}
2204 	/* Remove the page table tree from on specific entry */
2205 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2206 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2207 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2208 		raddr = rmap->raddr ^ bits;
2209 		switch (bits) {
2210 		case _SHADOW_RMAP_REGION1:
2211 			gmap_unshadow_r2t(sg, raddr);
2212 			break;
2213 		case _SHADOW_RMAP_REGION2:
2214 			gmap_unshadow_r3t(sg, raddr);
2215 			break;
2216 		case _SHADOW_RMAP_REGION3:
2217 			gmap_unshadow_sgt(sg, raddr);
2218 			break;
2219 		case _SHADOW_RMAP_SEGMENT:
2220 			gmap_unshadow_pgt(sg, raddr);
2221 			break;
2222 		case _SHADOW_RMAP_PGTABLE:
2223 			gmap_unshadow_page(sg, raddr);
2224 			break;
2225 		}
2226 		kfree(rmap);
2227 	}
2228 	spin_unlock(&sg->guest_table_lock);
2229 }
2230 
2231 /**
2232  * ptep_notify - call all invalidation callbacks for a specific pte.
2233  * @mm: pointer to the process mm_struct
2234  * @vmaddr: virtual address in the process address space
2235  * @pte: pointer to the page table entry
2236  * @bits: bits from the pgste that caused the notify call
2237  *
2238  * This function is assumed to be called with the page table lock held
2239  * for the pte to notify.
2240  */
2241 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2242 		 pte_t *pte, unsigned long bits)
2243 {
2244 	unsigned long offset, gaddr = 0;
2245 	unsigned long *table;
2246 	struct gmap *gmap, *sg, *next;
2247 
2248 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2249 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2250 	rcu_read_lock();
2251 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2252 		spin_lock(&gmap->guest_table_lock);
2253 		table = radix_tree_lookup(&gmap->host_to_guest,
2254 					  vmaddr >> PMD_SHIFT);
2255 		if (table)
2256 			gaddr = __gmap_segment_gaddr(table) + offset;
2257 		spin_unlock(&gmap->guest_table_lock);
2258 		if (!table)
2259 			continue;
2260 
2261 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2262 			spin_lock(&gmap->shadow_lock);
2263 			list_for_each_entry_safe(sg, next,
2264 						 &gmap->children, list)
2265 				gmap_shadow_notify(sg, vmaddr, gaddr);
2266 			spin_unlock(&gmap->shadow_lock);
2267 		}
2268 		if (bits & PGSTE_IN_BIT)
2269 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2270 	}
2271 	rcu_read_unlock();
2272 }
2273 EXPORT_SYMBOL_GPL(ptep_notify);
2274 
2275 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2276 			     unsigned long gaddr)
2277 {
2278 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2279 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2280 }
2281 
2282 /**
2283  * gmap_pmdp_xchg - exchange a gmap pmd with another
2284  * @gmap: pointer to the guest address space structure
2285  * @pmdp: pointer to the pmd entry
2286  * @new: replacement entry
2287  * @gaddr: the affected guest address
2288  *
2289  * This function is assumed to be called with the guest_table_lock
2290  * held.
2291  */
2292 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2293 			   unsigned long gaddr)
2294 {
2295 	gaddr &= HPAGE_MASK;
2296 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2297 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2298 	if (MACHINE_HAS_TLB_GUEST)
2299 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2300 			    IDTE_GLOBAL);
2301 	else if (MACHINE_HAS_IDTE)
2302 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2303 	else
2304 		__pmdp_csp(pmdp);
2305 	*pmdp = new;
2306 }
2307 
2308 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2309 			    int purge)
2310 {
2311 	pmd_t *pmdp;
2312 	struct gmap *gmap;
2313 	unsigned long gaddr;
2314 
2315 	rcu_read_lock();
2316 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2317 		spin_lock(&gmap->guest_table_lock);
2318 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2319 						  vmaddr >> PMD_SHIFT);
2320 		if (pmdp) {
2321 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2322 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2323 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2324 						   _SEGMENT_ENTRY_GMAP_UC));
2325 			if (purge)
2326 				__pmdp_csp(pmdp);
2327 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2328 		}
2329 		spin_unlock(&gmap->guest_table_lock);
2330 	}
2331 	rcu_read_unlock();
2332 }
2333 
2334 /**
2335  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2336  *                        flushing
2337  * @mm: pointer to the process mm_struct
2338  * @vmaddr: virtual address in the process address space
2339  */
2340 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2341 {
2342 	gmap_pmdp_clear(mm, vmaddr, 0);
2343 }
2344 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2345 
2346 /**
2347  * gmap_pmdp_csp - csp all affected guest pmd entries
2348  * @mm: pointer to the process mm_struct
2349  * @vmaddr: virtual address in the process address space
2350  */
2351 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2352 {
2353 	gmap_pmdp_clear(mm, vmaddr, 1);
2354 }
2355 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2356 
2357 /**
2358  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2359  * @mm: pointer to the process mm_struct
2360  * @vmaddr: virtual address in the process address space
2361  */
2362 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2363 {
2364 	unsigned long *entry, gaddr;
2365 	struct gmap *gmap;
2366 	pmd_t *pmdp;
2367 
2368 	rcu_read_lock();
2369 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2370 		spin_lock(&gmap->guest_table_lock);
2371 		entry = radix_tree_delete(&gmap->host_to_guest,
2372 					  vmaddr >> PMD_SHIFT);
2373 		if (entry) {
2374 			pmdp = (pmd_t *)entry;
2375 			gaddr = __gmap_segment_gaddr(entry);
2376 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2377 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2378 					   _SEGMENT_ENTRY_GMAP_UC));
2379 			if (MACHINE_HAS_TLB_GUEST)
2380 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2381 					    gmap->asce, IDTE_LOCAL);
2382 			else if (MACHINE_HAS_IDTE)
2383 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2384 			*entry = _SEGMENT_ENTRY_EMPTY;
2385 		}
2386 		spin_unlock(&gmap->guest_table_lock);
2387 	}
2388 	rcu_read_unlock();
2389 }
2390 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2391 
2392 /**
2393  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2394  * @mm: pointer to the process mm_struct
2395  * @vmaddr: virtual address in the process address space
2396  */
2397 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2398 {
2399 	unsigned long *entry, gaddr;
2400 	struct gmap *gmap;
2401 	pmd_t *pmdp;
2402 
2403 	rcu_read_lock();
2404 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2405 		spin_lock(&gmap->guest_table_lock);
2406 		entry = radix_tree_delete(&gmap->host_to_guest,
2407 					  vmaddr >> PMD_SHIFT);
2408 		if (entry) {
2409 			pmdp = (pmd_t *)entry;
2410 			gaddr = __gmap_segment_gaddr(entry);
2411 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2412 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2413 					   _SEGMENT_ENTRY_GMAP_UC));
2414 			if (MACHINE_HAS_TLB_GUEST)
2415 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2416 					    gmap->asce, IDTE_GLOBAL);
2417 			else if (MACHINE_HAS_IDTE)
2418 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2419 			else
2420 				__pmdp_csp(pmdp);
2421 			*entry = _SEGMENT_ENTRY_EMPTY;
2422 		}
2423 		spin_unlock(&gmap->guest_table_lock);
2424 	}
2425 	rcu_read_unlock();
2426 }
2427 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2428 
2429 /**
2430  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2431  * @gmap: pointer to guest address space
2432  * @pmdp: pointer to the pmd to be tested
2433  * @gaddr: virtual address in the guest address space
2434  *
2435  * This function is assumed to be called with the guest_table_lock
2436  * held.
2437  */
2438 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2439 					  unsigned long gaddr)
2440 {
2441 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2442 		return false;
2443 
2444 	/* Already protected memory, which did not change is clean */
2445 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2446 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2447 		return false;
2448 
2449 	/* Clear UC indication and reset protection */
2450 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2451 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2452 	return true;
2453 }
2454 
2455 /**
2456  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2457  * @gmap: pointer to guest address space
2458  * @bitmap: dirty bitmap for this pmd
2459  * @gaddr: virtual address in the guest address space
2460  * @vmaddr: virtual address in the host address space
2461  *
2462  * This function is assumed to be called with the guest_table_lock
2463  * held.
2464  */
2465 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2466 			     unsigned long gaddr, unsigned long vmaddr)
2467 {
2468 	int i;
2469 	pmd_t *pmdp;
2470 	pte_t *ptep;
2471 	spinlock_t *ptl;
2472 
2473 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2474 	if (!pmdp)
2475 		return;
2476 
2477 	if (pmd_large(*pmdp)) {
2478 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2479 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2480 	} else {
2481 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2482 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2483 			if (!ptep)
2484 				continue;
2485 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2486 				set_bit(i, bitmap);
2487 			spin_unlock(ptl);
2488 		}
2489 	}
2490 	gmap_pmd_op_end(gmap, pmdp);
2491 }
2492 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2493 
2494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2495 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2496 				    unsigned long end, struct mm_walk *walk)
2497 {
2498 	struct vm_area_struct *vma = walk->vma;
2499 
2500 	split_huge_pmd(vma, pmd, addr);
2501 	return 0;
2502 }
2503 
2504 static const struct mm_walk_ops thp_split_walk_ops = {
2505 	.pmd_entry	= thp_split_walk_pmd_entry,
2506 };
2507 
2508 static inline void thp_split_mm(struct mm_struct *mm)
2509 {
2510 	struct vm_area_struct *vma;
2511 
2512 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2513 		vma->vm_flags &= ~VM_HUGEPAGE;
2514 		vma->vm_flags |= VM_NOHUGEPAGE;
2515 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2516 	}
2517 	mm->def_flags |= VM_NOHUGEPAGE;
2518 }
2519 #else
2520 static inline void thp_split_mm(struct mm_struct *mm)
2521 {
2522 }
2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2524 
2525 /*
2526  * Remove all empty zero pages from the mapping for lazy refaulting
2527  * - This must be called after mm->context.has_pgste is set, to avoid
2528  *   future creation of zero pages
2529  * - This must be called after THP was enabled
2530  */
2531 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2532 			   unsigned long end, struct mm_walk *walk)
2533 {
2534 	unsigned long addr;
2535 
2536 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2537 		pte_t *ptep;
2538 		spinlock_t *ptl;
2539 
2540 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2541 		if (is_zero_pfn(pte_pfn(*ptep)))
2542 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2543 		pte_unmap_unlock(ptep, ptl);
2544 	}
2545 	return 0;
2546 }
2547 
2548 static const struct mm_walk_ops zap_zero_walk_ops = {
2549 	.pmd_entry	= __zap_zero_pages,
2550 };
2551 
2552 /*
2553  * switch on pgstes for its userspace process (for kvm)
2554  */
2555 int s390_enable_sie(void)
2556 {
2557 	struct mm_struct *mm = current->mm;
2558 
2559 	/* Do we have pgstes? if yes, we are done */
2560 	if (mm_has_pgste(mm))
2561 		return 0;
2562 	/* Fail if the page tables are 2K */
2563 	if (!mm_alloc_pgste(mm))
2564 		return -EINVAL;
2565 	mmap_write_lock(mm);
2566 	mm->context.has_pgste = 1;
2567 	/* split thp mappings and disable thp for future mappings */
2568 	thp_split_mm(mm);
2569 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2570 	mmap_write_unlock(mm);
2571 	return 0;
2572 }
2573 EXPORT_SYMBOL_GPL(s390_enable_sie);
2574 
2575 int gmap_mark_unmergeable(void)
2576 {
2577 	struct mm_struct *mm = current->mm;
2578 	struct vm_area_struct *vma;
2579 	int ret;
2580 
2581 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2582 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2583 				  MADV_UNMERGEABLE, &vma->vm_flags);
2584 		if (ret)
2585 			return ret;
2586 	}
2587 	mm->def_flags &= ~VM_MERGEABLE;
2588 	return 0;
2589 }
2590 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2591 
2592 /*
2593  * Enable storage key handling from now on and initialize the storage
2594  * keys with the default key.
2595  */
2596 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2597 				  unsigned long next, struct mm_walk *walk)
2598 {
2599 	/* Clear storage key */
2600 	ptep_zap_key(walk->mm, addr, pte);
2601 	return 0;
2602 }
2603 
2604 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2605 				      unsigned long hmask, unsigned long next,
2606 				      struct mm_walk *walk)
2607 {
2608 	pmd_t *pmd = (pmd_t *)pte;
2609 	unsigned long start, end;
2610 	struct page *page = pmd_page(*pmd);
2611 
2612 	/*
2613 	 * The write check makes sure we do not set a key on shared
2614 	 * memory. This is needed as the walker does not differentiate
2615 	 * between actual guest memory and the process executable or
2616 	 * shared libraries.
2617 	 */
2618 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2619 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2620 		return 0;
2621 
2622 	start = pmd_val(*pmd) & HPAGE_MASK;
2623 	end = start + HPAGE_SIZE - 1;
2624 	__storage_key_init_range(start, end);
2625 	set_bit(PG_arch_1, &page->flags);
2626 	return 0;
2627 }
2628 
2629 static const struct mm_walk_ops enable_skey_walk_ops = {
2630 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2631 	.pte_entry		= __s390_enable_skey_pte,
2632 };
2633 
2634 int s390_enable_skey(void)
2635 {
2636 	struct mm_struct *mm = current->mm;
2637 	int rc = 0;
2638 
2639 	mmap_write_lock(mm);
2640 	if (mm_uses_skeys(mm))
2641 		goto out_up;
2642 
2643 	mm->context.uses_skeys = 1;
2644 	rc = gmap_mark_unmergeable();
2645 	if (rc) {
2646 		mm->context.uses_skeys = 0;
2647 		goto out_up;
2648 	}
2649 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2650 
2651 out_up:
2652 	mmap_write_unlock(mm);
2653 	return rc;
2654 }
2655 EXPORT_SYMBOL_GPL(s390_enable_skey);
2656 
2657 /*
2658  * Reset CMMA state, make all pages stable again.
2659  */
2660 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2661 			     unsigned long next, struct mm_walk *walk)
2662 {
2663 	ptep_zap_unused(walk->mm, addr, pte, 1);
2664 	return 0;
2665 }
2666 
2667 static const struct mm_walk_ops reset_cmma_walk_ops = {
2668 	.pte_entry		= __s390_reset_cmma,
2669 };
2670 
2671 void s390_reset_cmma(struct mm_struct *mm)
2672 {
2673 	mmap_write_lock(mm);
2674 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2675 	mmap_write_unlock(mm);
2676 }
2677 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2678 
2679 /*
2680  * make inaccessible pages accessible again
2681  */
2682 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2683 			    unsigned long next, struct mm_walk *walk)
2684 {
2685 	pte_t pte = READ_ONCE(*ptep);
2686 
2687 	/* There is a reference through the mapping */
2688 	if (pte_present(pte))
2689 		WARN_ON_ONCE(uv_destroy_owned_page(pte_val(pte) & PAGE_MASK));
2690 
2691 	return 0;
2692 }
2693 
2694 static const struct mm_walk_ops reset_acc_walk_ops = {
2695 	.pte_entry		= __s390_reset_acc,
2696 };
2697 
2698 #include <linux/sched/mm.h>
2699 void s390_reset_acc(struct mm_struct *mm)
2700 {
2701 	if (!mm_is_protected(mm))
2702 		return;
2703 	/*
2704 	 * we might be called during
2705 	 * reset:                             we walk the pages and clear
2706 	 * close of all kvm file descriptors: we walk the pages and clear
2707 	 * exit of process on fd closure:     vma already gone, do nothing
2708 	 */
2709 	if (!mmget_not_zero(mm))
2710 		return;
2711 	mmap_read_lock(mm);
2712 	walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2713 	mmap_read_unlock(mm);
2714 	mmput(mm);
2715 }
2716 EXPORT_SYMBOL_GPL(s390_reset_acc);
2717