xref: /openbmc/linux/arch/s390/mm/gmap.c (revision f1288bdb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @limit: maximum address of the gmap address space
31  *
32  * Returns a guest address space structure.
33  */
34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 	struct gmap *gmap;
37 	struct page *page;
38 	unsigned long *table;
39 	unsigned long etype, atype;
40 
41 	if (limit < _REGION3_SIZE) {
42 		limit = _REGION3_SIZE - 1;
43 		atype = _ASCE_TYPE_SEGMENT;
44 		etype = _SEGMENT_ENTRY_EMPTY;
45 	} else if (limit < _REGION2_SIZE) {
46 		limit = _REGION2_SIZE - 1;
47 		atype = _ASCE_TYPE_REGION3;
48 		etype = _REGION3_ENTRY_EMPTY;
49 	} else if (limit < _REGION1_SIZE) {
50 		limit = _REGION1_SIZE - 1;
51 		atype = _ASCE_TYPE_REGION2;
52 		etype = _REGION2_ENTRY_EMPTY;
53 	} else {
54 		limit = -1UL;
55 		atype = _ASCE_TYPE_REGION1;
56 		etype = _REGION1_ENTRY_EMPTY;
57 	}
58 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 	if (!gmap)
60 		goto out;
61 	INIT_LIST_HEAD(&gmap->crst_list);
62 	INIT_LIST_HEAD(&gmap->children);
63 	INIT_LIST_HEAD(&gmap->pt_list);
64 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 	spin_lock_init(&gmap->guest_table_lock);
68 	spin_lock_init(&gmap->shadow_lock);
69 	refcount_set(&gmap->ref_count, 1);
70 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 	if (!page)
72 		goto out_free;
73 	page->index = 0;
74 	list_add(&page->lru, &gmap->crst_list);
75 	table = (unsigned long *) page_to_phys(page);
76 	crst_table_init(table, etype);
77 	gmap->table = table;
78 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 		_ASCE_USER_BITS | __pa(table);
80 	gmap->asce_end = limit;
81 	return gmap;
82 
83 out_free:
84 	kfree(gmap);
85 out:
86 	return NULL;
87 }
88 
89 /**
90  * gmap_create - create a guest address space
91  * @mm: pointer to the parent mm_struct
92  * @limit: maximum size of the gmap address space
93  *
94  * Returns a guest address space structure.
95  */
96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 	struct gmap *gmap;
99 	unsigned long gmap_asce;
100 
101 	gmap = gmap_alloc(limit);
102 	if (!gmap)
103 		return NULL;
104 	gmap->mm = mm;
105 	spin_lock(&mm->context.lock);
106 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 	if (list_is_singular(&mm->context.gmap_list))
108 		gmap_asce = gmap->asce;
109 	else
110 		gmap_asce = -1UL;
111 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 	spin_unlock(&mm->context.lock);
113 	return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116 
117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 	if (MACHINE_HAS_IDTE)
120 		__tlb_flush_idte(gmap->asce);
121 	else
122 		__tlb_flush_global();
123 }
124 
125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 	struct radix_tree_iter iter;
128 	unsigned long indices[16];
129 	unsigned long index;
130 	void __rcu **slot;
131 	int i, nr;
132 
133 	/* A radix tree is freed by deleting all of its entries */
134 	index = 0;
135 	do {
136 		nr = 0;
137 		radix_tree_for_each_slot(slot, root, &iter, index) {
138 			indices[nr] = iter.index;
139 			if (++nr == 16)
140 				break;
141 		}
142 		for (i = 0; i < nr; i++) {
143 			index = indices[i];
144 			radix_tree_delete(root, index);
145 		}
146 	} while (nr > 0);
147 }
148 
149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 	struct gmap_rmap *rmap, *rnext, *head;
152 	struct radix_tree_iter iter;
153 	unsigned long indices[16];
154 	unsigned long index;
155 	void __rcu **slot;
156 	int i, nr;
157 
158 	/* A radix tree is freed by deleting all of its entries */
159 	index = 0;
160 	do {
161 		nr = 0;
162 		radix_tree_for_each_slot(slot, root, &iter, index) {
163 			indices[nr] = iter.index;
164 			if (++nr == 16)
165 				break;
166 		}
167 		for (i = 0; i < nr; i++) {
168 			index = indices[i];
169 			head = radix_tree_delete(root, index);
170 			gmap_for_each_rmap_safe(rmap, rnext, head)
171 				kfree(rmap);
172 		}
173 	} while (nr > 0);
174 }
175 
176 /**
177  * gmap_free - free a guest address space
178  * @gmap: pointer to the guest address space structure
179  *
180  * No locks required. There are no references to this gmap anymore.
181  */
182 static void gmap_free(struct gmap *gmap)
183 {
184 	struct page *page, *next;
185 
186 	/* Flush tlb of all gmaps (if not already done for shadows) */
187 	if (!(gmap_is_shadow(gmap) && gmap->removed))
188 		gmap_flush_tlb(gmap);
189 	/* Free all segment & region tables. */
190 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 		__free_pages(page, CRST_ALLOC_ORDER);
192 	gmap_radix_tree_free(&gmap->guest_to_host);
193 	gmap_radix_tree_free(&gmap->host_to_guest);
194 
195 	/* Free additional data for a shadow gmap */
196 	if (gmap_is_shadow(gmap)) {
197 		/* Free all page tables. */
198 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 			page_table_free_pgste(page);
200 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 		/* Release reference to the parent */
202 		gmap_put(gmap->parent);
203 	}
204 
205 	kfree(gmap);
206 }
207 
208 /**
209  * gmap_get - increase reference counter for guest address space
210  * @gmap: pointer to the guest address space structure
211  *
212  * Returns the gmap pointer
213  */
214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 	refcount_inc(&gmap->ref_count);
217 	return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220 
221 /**
222  * gmap_put - decrease reference counter for guest address space
223  * @gmap: pointer to the guest address space structure
224  *
225  * If the reference counter reaches zero the guest address space is freed.
226  */
227 void gmap_put(struct gmap *gmap)
228 {
229 	if (refcount_dec_and_test(&gmap->ref_count))
230 		gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233 
234 /**
235  * gmap_remove - remove a guest address space but do not free it yet
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_remove(struct gmap *gmap)
239 {
240 	struct gmap *sg, *next;
241 	unsigned long gmap_asce;
242 
243 	/* Remove all shadow gmaps linked to this gmap */
244 	if (!list_empty(&gmap->children)) {
245 		spin_lock(&gmap->shadow_lock);
246 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 			list_del(&sg->list);
248 			gmap_put(sg);
249 		}
250 		spin_unlock(&gmap->shadow_lock);
251 	}
252 	/* Remove gmap from the pre-mm list */
253 	spin_lock(&gmap->mm->context.lock);
254 	list_del_rcu(&gmap->list);
255 	if (list_empty(&gmap->mm->context.gmap_list))
256 		gmap_asce = 0;
257 	else if (list_is_singular(&gmap->mm->context.gmap_list))
258 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 					     struct gmap, list)->asce;
260 	else
261 		gmap_asce = -1UL;
262 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 	spin_unlock(&gmap->mm->context.lock);
264 	synchronize_rcu();
265 	/* Put reference */
266 	gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269 
270 /**
271  * gmap_enable - switch primary space to the guest address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_enable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279 
280 /**
281  * gmap_disable - switch back to the standard primary address space
282  * @gmap: pointer to the guest address space structure
283  */
284 void gmap_disable(struct gmap *gmap)
285 {
286 	S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289 
290 /**
291  * gmap_get_enabled - get a pointer to the currently enabled gmap
292  *
293  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294  */
295 struct gmap *gmap_get_enabled(void)
296 {
297 	return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300 
301 /*
302  * gmap_alloc_table is assumed to be called with mmap_lock held
303  */
304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 			    unsigned long init, unsigned long gaddr)
306 {
307 	struct page *page;
308 	unsigned long *new;
309 
310 	/* since we dont free the gmap table until gmap_free we can unlock */
311 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 	if (!page)
313 		return -ENOMEM;
314 	new = (unsigned long *) page_to_phys(page);
315 	crst_table_init(new, init);
316 	spin_lock(&gmap->guest_table_lock);
317 	if (*table & _REGION_ENTRY_INVALID) {
318 		list_add(&page->lru, &gmap->crst_list);
319 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
320 			(*table & _REGION_ENTRY_TYPE_MASK);
321 		page->index = gaddr;
322 		page = NULL;
323 	}
324 	spin_unlock(&gmap->guest_table_lock);
325 	if (page)
326 		__free_pages(page, CRST_ALLOC_ORDER);
327 	return 0;
328 }
329 
330 /**
331  * __gmap_segment_gaddr - find virtual address from segment pointer
332  * @entry: pointer to a segment table entry in the guest address space
333  *
334  * Returns the virtual address in the guest address space for the segment
335  */
336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 	struct page *page;
339 	unsigned long offset, mask;
340 
341 	offset = (unsigned long) entry / sizeof(unsigned long);
342 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
344 	page = virt_to_page((void *)((unsigned long) entry & mask));
345 	return page->index + offset;
346 }
347 
348 /**
349  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
350  * @gmap: pointer to the guest address space structure
351  * @vmaddr: address in the host process address space
352  *
353  * Returns 1 if a TLB flush is required
354  */
355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
356 {
357 	unsigned long *entry;
358 	int flush = 0;
359 
360 	BUG_ON(gmap_is_shadow(gmap));
361 	spin_lock(&gmap->guest_table_lock);
362 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
363 	if (entry) {
364 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
365 		*entry = _SEGMENT_ENTRY_EMPTY;
366 	}
367 	spin_unlock(&gmap->guest_table_lock);
368 	return flush;
369 }
370 
371 /**
372  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
373  * @gmap: pointer to the guest address space structure
374  * @gaddr: address in the guest address space
375  *
376  * Returns 1 if a TLB flush is required
377  */
378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
379 {
380 	unsigned long vmaddr;
381 
382 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
383 						   gaddr >> PMD_SHIFT);
384 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
385 }
386 
387 /**
388  * gmap_unmap_segment - unmap segment from the guest address space
389  * @gmap: pointer to the guest address space structure
390  * @to: address in the guest address space
391  * @len: length of the memory area to unmap
392  *
393  * Returns 0 if the unmap succeeded, -EINVAL if not.
394  */
395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
396 {
397 	unsigned long off;
398 	int flush;
399 
400 	BUG_ON(gmap_is_shadow(gmap));
401 	if ((to | len) & (PMD_SIZE - 1))
402 		return -EINVAL;
403 	if (len == 0 || to + len < to)
404 		return -EINVAL;
405 
406 	flush = 0;
407 	mmap_write_lock(gmap->mm);
408 	for (off = 0; off < len; off += PMD_SIZE)
409 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
410 	mmap_write_unlock(gmap->mm);
411 	if (flush)
412 		gmap_flush_tlb(gmap);
413 	return 0;
414 }
415 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
416 
417 /**
418  * gmap_map_segment - map a segment to the guest address space
419  * @gmap: pointer to the guest address space structure
420  * @from: source address in the parent address space
421  * @to: target address in the guest address space
422  * @len: length of the memory area to map
423  *
424  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
425  */
426 int gmap_map_segment(struct gmap *gmap, unsigned long from,
427 		     unsigned long to, unsigned long len)
428 {
429 	unsigned long off;
430 	int flush;
431 
432 	BUG_ON(gmap_is_shadow(gmap));
433 	if ((from | to | len) & (PMD_SIZE - 1))
434 		return -EINVAL;
435 	if (len == 0 || from + len < from || to + len < to ||
436 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
437 		return -EINVAL;
438 
439 	flush = 0;
440 	mmap_write_lock(gmap->mm);
441 	for (off = 0; off < len; off += PMD_SIZE) {
442 		/* Remove old translation */
443 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
444 		/* Store new translation */
445 		if (radix_tree_insert(&gmap->guest_to_host,
446 				      (to + off) >> PMD_SHIFT,
447 				      (void *) from + off))
448 			break;
449 	}
450 	mmap_write_unlock(gmap->mm);
451 	if (flush)
452 		gmap_flush_tlb(gmap);
453 	if (off >= len)
454 		return 0;
455 	gmap_unmap_segment(gmap, to, len);
456 	return -ENOMEM;
457 }
458 EXPORT_SYMBOL_GPL(gmap_map_segment);
459 
460 /**
461  * __gmap_translate - translate a guest address to a user space address
462  * @gmap: pointer to guest mapping meta data structure
463  * @gaddr: guest address
464  *
465  * Returns user space address which corresponds to the guest address or
466  * -EFAULT if no such mapping exists.
467  * This function does not establish potentially missing page table entries.
468  * The mmap_lock of the mm that belongs to the address space must be held
469  * when this function gets called.
470  *
471  * Note: Can also be called for shadow gmaps.
472  */
473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
474 {
475 	unsigned long vmaddr;
476 
477 	vmaddr = (unsigned long)
478 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
479 	/* Note: guest_to_host is empty for a shadow gmap */
480 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
481 }
482 EXPORT_SYMBOL_GPL(__gmap_translate);
483 
484 /**
485  * gmap_translate - translate a guest address to a user space address
486  * @gmap: pointer to guest mapping meta data structure
487  * @gaddr: guest address
488  *
489  * Returns user space address which corresponds to the guest address or
490  * -EFAULT if no such mapping exists.
491  * This function does not establish potentially missing page table entries.
492  */
493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
494 {
495 	unsigned long rc;
496 
497 	mmap_read_lock(gmap->mm);
498 	rc = __gmap_translate(gmap, gaddr);
499 	mmap_read_unlock(gmap->mm);
500 	return rc;
501 }
502 EXPORT_SYMBOL_GPL(gmap_translate);
503 
504 /**
505  * gmap_unlink - disconnect a page table from the gmap shadow tables
506  * @mm: pointer to the parent mm_struct
507  * @table: pointer to the host page table
508  * @vmaddr: vm address associated with the host page table
509  */
510 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
511 		 unsigned long vmaddr)
512 {
513 	struct gmap *gmap;
514 	int flush;
515 
516 	rcu_read_lock();
517 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
518 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
519 		if (flush)
520 			gmap_flush_tlb(gmap);
521 	}
522 	rcu_read_unlock();
523 }
524 
525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
526 			   unsigned long gaddr);
527 
528 /**
529  * __gmap_link - set up shadow page tables to connect a host to a guest address
530  * @gmap: pointer to guest mapping meta data structure
531  * @gaddr: guest address
532  * @vmaddr: vm address
533  *
534  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
535  * if the vm address is already mapped to a different guest segment.
536  * The mmap_lock of the mm that belongs to the address space must be held
537  * when this function gets called.
538  */
539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
540 {
541 	struct mm_struct *mm;
542 	unsigned long *table;
543 	spinlock_t *ptl;
544 	pgd_t *pgd;
545 	p4d_t *p4d;
546 	pud_t *pud;
547 	pmd_t *pmd;
548 	u64 unprot;
549 	int rc;
550 
551 	BUG_ON(gmap_is_shadow(gmap));
552 	/* Create higher level tables in the gmap page table */
553 	table = gmap->table;
554 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
555 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
556 		if ((*table & _REGION_ENTRY_INVALID) &&
557 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
558 				     gaddr & _REGION1_MASK))
559 			return -ENOMEM;
560 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
561 	}
562 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
563 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
564 		if ((*table & _REGION_ENTRY_INVALID) &&
565 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
566 				     gaddr & _REGION2_MASK))
567 			return -ENOMEM;
568 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
569 	}
570 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
571 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
572 		if ((*table & _REGION_ENTRY_INVALID) &&
573 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
574 				     gaddr & _REGION3_MASK))
575 			return -ENOMEM;
576 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
577 	}
578 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
579 	/* Walk the parent mm page table */
580 	mm = gmap->mm;
581 	pgd = pgd_offset(mm, vmaddr);
582 	VM_BUG_ON(pgd_none(*pgd));
583 	p4d = p4d_offset(pgd, vmaddr);
584 	VM_BUG_ON(p4d_none(*p4d));
585 	pud = pud_offset(p4d, vmaddr);
586 	VM_BUG_ON(pud_none(*pud));
587 	/* large puds cannot yet be handled */
588 	if (pud_large(*pud))
589 		return -EFAULT;
590 	pmd = pmd_offset(pud, vmaddr);
591 	VM_BUG_ON(pmd_none(*pmd));
592 	/* Are we allowed to use huge pages? */
593 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
594 		return -EFAULT;
595 	/* Link gmap segment table entry location to page table. */
596 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
597 	if (rc)
598 		return rc;
599 	ptl = pmd_lock(mm, pmd);
600 	spin_lock(&gmap->guest_table_lock);
601 	if (*table == _SEGMENT_ENTRY_EMPTY) {
602 		rc = radix_tree_insert(&gmap->host_to_guest,
603 				       vmaddr >> PMD_SHIFT, table);
604 		if (!rc) {
605 			if (pmd_large(*pmd)) {
606 				*table = (pmd_val(*pmd) &
607 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
608 					| _SEGMENT_ENTRY_GMAP_UC;
609 			} else
610 				*table = pmd_val(*pmd) &
611 					_SEGMENT_ENTRY_HARDWARE_BITS;
612 		}
613 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
614 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
615 		unprot = (u64)*table;
616 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
617 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
618 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
619 	}
620 	spin_unlock(&gmap->guest_table_lock);
621 	spin_unlock(ptl);
622 	radix_tree_preload_end();
623 	return rc;
624 }
625 
626 /**
627  * gmap_fault - resolve a fault on a guest address
628  * @gmap: pointer to guest mapping meta data structure
629  * @gaddr: guest address
630  * @fault_flags: flags to pass down to handle_mm_fault()
631  *
632  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
633  * if the vm address is already mapped to a different guest segment.
634  */
635 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
636 	       unsigned int fault_flags)
637 {
638 	unsigned long vmaddr;
639 	int rc;
640 	bool unlocked;
641 
642 	mmap_read_lock(gmap->mm);
643 
644 retry:
645 	unlocked = false;
646 	vmaddr = __gmap_translate(gmap, gaddr);
647 	if (IS_ERR_VALUE(vmaddr)) {
648 		rc = vmaddr;
649 		goto out_up;
650 	}
651 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
652 			     &unlocked)) {
653 		rc = -EFAULT;
654 		goto out_up;
655 	}
656 	/*
657 	 * In the case that fixup_user_fault unlocked the mmap_lock during
658 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
659 	 */
660 	if (unlocked)
661 		goto retry;
662 
663 	rc = __gmap_link(gmap, gaddr, vmaddr);
664 out_up:
665 	mmap_read_unlock(gmap->mm);
666 	return rc;
667 }
668 EXPORT_SYMBOL_GPL(gmap_fault);
669 
670 /*
671  * this function is assumed to be called with mmap_lock held
672  */
673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
674 {
675 	struct vm_area_struct *vma;
676 	unsigned long vmaddr;
677 	spinlock_t *ptl;
678 	pte_t *ptep;
679 
680 	/* Find the vm address for the guest address */
681 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 						   gaddr >> PMD_SHIFT);
683 	if (vmaddr) {
684 		vmaddr |= gaddr & ~PMD_MASK;
685 
686 		vma = vma_lookup(gmap->mm, vmaddr);
687 		if (!vma || is_vm_hugetlb_page(vma))
688 			return;
689 
690 		/* Get pointer to the page table entry */
691 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
692 		if (likely(ptep)) {
693 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
694 			pte_unmap_unlock(ptep, ptl);
695 		}
696 	}
697 }
698 EXPORT_SYMBOL_GPL(__gmap_zap);
699 
700 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
701 {
702 	unsigned long gaddr, vmaddr, size;
703 	struct vm_area_struct *vma;
704 
705 	mmap_read_lock(gmap->mm);
706 	for (gaddr = from; gaddr < to;
707 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
708 		/* Find the vm address for the guest address */
709 		vmaddr = (unsigned long)
710 			radix_tree_lookup(&gmap->guest_to_host,
711 					  gaddr >> PMD_SHIFT);
712 		if (!vmaddr)
713 			continue;
714 		vmaddr |= gaddr & ~PMD_MASK;
715 		/* Find vma in the parent mm */
716 		vma = find_vma(gmap->mm, vmaddr);
717 		if (!vma)
718 			continue;
719 		/*
720 		 * We do not discard pages that are backed by
721 		 * hugetlbfs, so we don't have to refault them.
722 		 */
723 		if (is_vm_hugetlb_page(vma))
724 			continue;
725 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
726 		zap_page_range(vma, vmaddr, size);
727 	}
728 	mmap_read_unlock(gmap->mm);
729 }
730 EXPORT_SYMBOL_GPL(gmap_discard);
731 
732 static LIST_HEAD(gmap_notifier_list);
733 static DEFINE_SPINLOCK(gmap_notifier_lock);
734 
735 /**
736  * gmap_register_pte_notifier - register a pte invalidation callback
737  * @nb: pointer to the gmap notifier block
738  */
739 void gmap_register_pte_notifier(struct gmap_notifier *nb)
740 {
741 	spin_lock(&gmap_notifier_lock);
742 	list_add_rcu(&nb->list, &gmap_notifier_list);
743 	spin_unlock(&gmap_notifier_lock);
744 }
745 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
746 
747 /**
748  * gmap_unregister_pte_notifier - remove a pte invalidation callback
749  * @nb: pointer to the gmap notifier block
750  */
751 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
752 {
753 	spin_lock(&gmap_notifier_lock);
754 	list_del_rcu(&nb->list);
755 	spin_unlock(&gmap_notifier_lock);
756 	synchronize_rcu();
757 }
758 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
759 
760 /**
761  * gmap_call_notifier - call all registered invalidation callbacks
762  * @gmap: pointer to guest mapping meta data structure
763  * @start: start virtual address in the guest address space
764  * @end: end virtual address in the guest address space
765  */
766 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
767 			       unsigned long end)
768 {
769 	struct gmap_notifier *nb;
770 
771 	list_for_each_entry(nb, &gmap_notifier_list, list)
772 		nb->notifier_call(gmap, start, end);
773 }
774 
775 /**
776  * gmap_table_walk - walk the gmap page tables
777  * @gmap: pointer to guest mapping meta data structure
778  * @gaddr: virtual address in the guest address space
779  * @level: page table level to stop at
780  *
781  * Returns a table entry pointer for the given guest address and @level
782  * @level=0 : returns a pointer to a page table table entry (or NULL)
783  * @level=1 : returns a pointer to a segment table entry (or NULL)
784  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
785  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
786  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
787  *
788  * Returns NULL if the gmap page tables could not be walked to the
789  * requested level.
790  *
791  * Note: Can also be called for shadow gmaps.
792  */
793 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
794 					     unsigned long gaddr, int level)
795 {
796 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
797 	unsigned long *table = gmap->table;
798 
799 	if (gmap_is_shadow(gmap) && gmap->removed)
800 		return NULL;
801 
802 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
803 		return NULL;
804 
805 	if (asce_type != _ASCE_TYPE_REGION1 &&
806 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
807 		return NULL;
808 
809 	switch (asce_type) {
810 	case _ASCE_TYPE_REGION1:
811 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
812 		if (level == 4)
813 			break;
814 		if (*table & _REGION_ENTRY_INVALID)
815 			return NULL;
816 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
817 		fallthrough;
818 	case _ASCE_TYPE_REGION2:
819 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
820 		if (level == 3)
821 			break;
822 		if (*table & _REGION_ENTRY_INVALID)
823 			return NULL;
824 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
825 		fallthrough;
826 	case _ASCE_TYPE_REGION3:
827 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
828 		if (level == 2)
829 			break;
830 		if (*table & _REGION_ENTRY_INVALID)
831 			return NULL;
832 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
833 		fallthrough;
834 	case _ASCE_TYPE_SEGMENT:
835 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
836 		if (level == 1)
837 			break;
838 		if (*table & _REGION_ENTRY_INVALID)
839 			return NULL;
840 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
841 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
842 	}
843 	return table;
844 }
845 
846 /**
847  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
848  *		      and return the pte pointer
849  * @gmap: pointer to guest mapping meta data structure
850  * @gaddr: virtual address in the guest address space
851  * @ptl: pointer to the spinlock pointer
852  *
853  * Returns a pointer to the locked pte for a guest address, or NULL
854  */
855 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
856 			       spinlock_t **ptl)
857 {
858 	unsigned long *table;
859 
860 	BUG_ON(gmap_is_shadow(gmap));
861 	/* Walk the gmap page table, lock and get pte pointer */
862 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
863 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
864 		return NULL;
865 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
866 }
867 
868 /**
869  * gmap_pte_op_fixup - force a page in and connect the gmap page table
870  * @gmap: pointer to guest mapping meta data structure
871  * @gaddr: virtual address in the guest address space
872  * @vmaddr: address in the host process address space
873  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
874  *
875  * Returns 0 if the caller can retry __gmap_translate (might fail again),
876  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
877  * up or connecting the gmap page table.
878  */
879 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
880 			     unsigned long vmaddr, int prot)
881 {
882 	struct mm_struct *mm = gmap->mm;
883 	unsigned int fault_flags;
884 	bool unlocked = false;
885 
886 	BUG_ON(gmap_is_shadow(gmap));
887 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
888 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
889 		return -EFAULT;
890 	if (unlocked)
891 		/* lost mmap_lock, caller has to retry __gmap_translate */
892 		return 0;
893 	/* Connect the page tables */
894 	return __gmap_link(gmap, gaddr, vmaddr);
895 }
896 
897 /**
898  * gmap_pte_op_end - release the page table lock
899  * @ptl: pointer to the spinlock pointer
900  */
901 static void gmap_pte_op_end(spinlock_t *ptl)
902 {
903 	if (ptl)
904 		spin_unlock(ptl);
905 }
906 
907 /**
908  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
909  *		      and return the pmd pointer
910  * @gmap: pointer to guest mapping meta data structure
911  * @gaddr: virtual address in the guest address space
912  *
913  * Returns a pointer to the pmd for a guest address, or NULL
914  */
915 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
916 {
917 	pmd_t *pmdp;
918 
919 	BUG_ON(gmap_is_shadow(gmap));
920 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
921 	if (!pmdp)
922 		return NULL;
923 
924 	/* without huge pages, there is no need to take the table lock */
925 	if (!gmap->mm->context.allow_gmap_hpage_1m)
926 		return pmd_none(*pmdp) ? NULL : pmdp;
927 
928 	spin_lock(&gmap->guest_table_lock);
929 	if (pmd_none(*pmdp)) {
930 		spin_unlock(&gmap->guest_table_lock);
931 		return NULL;
932 	}
933 
934 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
935 	if (!pmd_large(*pmdp))
936 		spin_unlock(&gmap->guest_table_lock);
937 	return pmdp;
938 }
939 
940 /**
941  * gmap_pmd_op_end - release the guest_table_lock if needed
942  * @gmap: pointer to the guest mapping meta data structure
943  * @pmdp: pointer to the pmd
944  */
945 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
946 {
947 	if (pmd_large(*pmdp))
948 		spin_unlock(&gmap->guest_table_lock);
949 }
950 
951 /*
952  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
953  * @pmdp: pointer to the pmd to be protected
954  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
955  * @bits: notification bits to set
956  *
957  * Returns:
958  * 0 if successfully protected
959  * -EAGAIN if a fixup is needed
960  * -EINVAL if unsupported notifier bits have been specified
961  *
962  * Expected to be called with sg->mm->mmap_lock in read and
963  * guest_table_lock held.
964  */
965 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
966 			    pmd_t *pmdp, int prot, unsigned long bits)
967 {
968 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
969 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
970 	pmd_t new = *pmdp;
971 
972 	/* Fixup needed */
973 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
974 		return -EAGAIN;
975 
976 	if (prot == PROT_NONE && !pmd_i) {
977 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
978 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
979 	}
980 
981 	if (prot == PROT_READ && !pmd_p) {
982 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
983 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
984 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
985 	}
986 
987 	if (bits & GMAP_NOTIFY_MPROT)
988 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
989 
990 	/* Shadow GMAP protection needs split PMDs */
991 	if (bits & GMAP_NOTIFY_SHADOW)
992 		return -EINVAL;
993 
994 	return 0;
995 }
996 
997 /*
998  * gmap_protect_pte - remove access rights to memory and set pgste bits
999  * @gmap: pointer to guest mapping meta data structure
1000  * @gaddr: virtual address in the guest address space
1001  * @pmdp: pointer to the pmd associated with the pte
1002  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1003  * @bits: notification bits to set
1004  *
1005  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1006  * -EAGAIN if a fixup is needed.
1007  *
1008  * Expected to be called with sg->mm->mmap_lock in read
1009  */
1010 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1011 			    pmd_t *pmdp, int prot, unsigned long bits)
1012 {
1013 	int rc;
1014 	pte_t *ptep;
1015 	spinlock_t *ptl = NULL;
1016 	unsigned long pbits = 0;
1017 
1018 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1019 		return -EAGAIN;
1020 
1021 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1022 	if (!ptep)
1023 		return -ENOMEM;
1024 
1025 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1026 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1027 	/* Protect and unlock. */
1028 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1029 	gmap_pte_op_end(ptl);
1030 	return rc;
1031 }
1032 
1033 /*
1034  * gmap_protect_range - remove access rights to memory and set pgste bits
1035  * @gmap: pointer to guest mapping meta data structure
1036  * @gaddr: virtual address in the guest address space
1037  * @len: size of area
1038  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1039  * @bits: pgste notification bits to set
1040  *
1041  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1042  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1043  *
1044  * Called with sg->mm->mmap_lock in read.
1045  */
1046 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1047 			      unsigned long len, int prot, unsigned long bits)
1048 {
1049 	unsigned long vmaddr, dist;
1050 	pmd_t *pmdp;
1051 	int rc;
1052 
1053 	BUG_ON(gmap_is_shadow(gmap));
1054 	while (len) {
1055 		rc = -EAGAIN;
1056 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1057 		if (pmdp) {
1058 			if (!pmd_large(*pmdp)) {
1059 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1060 						      bits);
1061 				if (!rc) {
1062 					len -= PAGE_SIZE;
1063 					gaddr += PAGE_SIZE;
1064 				}
1065 			} else {
1066 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1067 						      bits);
1068 				if (!rc) {
1069 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1070 					len = len < dist ? 0 : len - dist;
1071 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1072 				}
1073 			}
1074 			gmap_pmd_op_end(gmap, pmdp);
1075 		}
1076 		if (rc) {
1077 			if (rc == -EINVAL)
1078 				return rc;
1079 
1080 			/* -EAGAIN, fixup of userspace mm and gmap */
1081 			vmaddr = __gmap_translate(gmap, gaddr);
1082 			if (IS_ERR_VALUE(vmaddr))
1083 				return vmaddr;
1084 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1085 			if (rc)
1086 				return rc;
1087 		}
1088 	}
1089 	return 0;
1090 }
1091 
1092 /**
1093  * gmap_mprotect_notify - change access rights for a range of ptes and
1094  *                        call the notifier if any pte changes again
1095  * @gmap: pointer to guest mapping meta data structure
1096  * @gaddr: virtual address in the guest address space
1097  * @len: size of area
1098  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1099  *
1100  * Returns 0 if for each page in the given range a gmap mapping exists,
1101  * the new access rights could be set and the notifier could be armed.
1102  * If the gmap mapping is missing for one or more pages -EFAULT is
1103  * returned. If no memory could be allocated -ENOMEM is returned.
1104  * This function establishes missing page table entries.
1105  */
1106 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1107 			 unsigned long len, int prot)
1108 {
1109 	int rc;
1110 
1111 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1112 		return -EINVAL;
1113 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1114 		return -EINVAL;
1115 	mmap_read_lock(gmap->mm);
1116 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1117 	mmap_read_unlock(gmap->mm);
1118 	return rc;
1119 }
1120 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1121 
1122 /**
1123  * gmap_read_table - get an unsigned long value from a guest page table using
1124  *                   absolute addressing, without marking the page referenced.
1125  * @gmap: pointer to guest mapping meta data structure
1126  * @gaddr: virtual address in the guest address space
1127  * @val: pointer to the unsigned long value to return
1128  *
1129  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1130  * if reading using the virtual address failed. -EINVAL if called on a gmap
1131  * shadow.
1132  *
1133  * Called with gmap->mm->mmap_lock in read.
1134  */
1135 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1136 {
1137 	unsigned long address, vmaddr;
1138 	spinlock_t *ptl;
1139 	pte_t *ptep, pte;
1140 	int rc;
1141 
1142 	if (gmap_is_shadow(gmap))
1143 		return -EINVAL;
1144 
1145 	while (1) {
1146 		rc = -EAGAIN;
1147 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1148 		if (ptep) {
1149 			pte = *ptep;
1150 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1151 				address = pte_val(pte) & PAGE_MASK;
1152 				address += gaddr & ~PAGE_MASK;
1153 				*val = *(unsigned long *) address;
1154 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1155 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1156 				rc = 0;
1157 			}
1158 			gmap_pte_op_end(ptl);
1159 		}
1160 		if (!rc)
1161 			break;
1162 		vmaddr = __gmap_translate(gmap, gaddr);
1163 		if (IS_ERR_VALUE(vmaddr)) {
1164 			rc = vmaddr;
1165 			break;
1166 		}
1167 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1168 		if (rc)
1169 			break;
1170 	}
1171 	return rc;
1172 }
1173 EXPORT_SYMBOL_GPL(gmap_read_table);
1174 
1175 /**
1176  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1177  * @sg: pointer to the shadow guest address space structure
1178  * @vmaddr: vm address associated with the rmap
1179  * @rmap: pointer to the rmap structure
1180  *
1181  * Called with the sg->guest_table_lock
1182  */
1183 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1184 				    struct gmap_rmap *rmap)
1185 {
1186 	struct gmap_rmap *temp;
1187 	void __rcu **slot;
1188 
1189 	BUG_ON(!gmap_is_shadow(sg));
1190 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1191 	if (slot) {
1192 		rmap->next = radix_tree_deref_slot_protected(slot,
1193 							&sg->guest_table_lock);
1194 		for (temp = rmap->next; temp; temp = temp->next) {
1195 			if (temp->raddr == rmap->raddr) {
1196 				kfree(rmap);
1197 				return;
1198 			}
1199 		}
1200 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1201 	} else {
1202 		rmap->next = NULL;
1203 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1204 				  rmap);
1205 	}
1206 }
1207 
1208 /**
1209  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1210  * @sg: pointer to the shadow guest address space structure
1211  * @raddr: rmap address in the shadow gmap
1212  * @paddr: address in the parent guest address space
1213  * @len: length of the memory area to protect
1214  *
1215  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1216  * if out of memory and -EFAULT if paddr is invalid.
1217  */
1218 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1219 			     unsigned long paddr, unsigned long len)
1220 {
1221 	struct gmap *parent;
1222 	struct gmap_rmap *rmap;
1223 	unsigned long vmaddr;
1224 	spinlock_t *ptl;
1225 	pte_t *ptep;
1226 	int rc;
1227 
1228 	BUG_ON(!gmap_is_shadow(sg));
1229 	parent = sg->parent;
1230 	while (len) {
1231 		vmaddr = __gmap_translate(parent, paddr);
1232 		if (IS_ERR_VALUE(vmaddr))
1233 			return vmaddr;
1234 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1235 		if (!rmap)
1236 			return -ENOMEM;
1237 		rmap->raddr = raddr;
1238 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1239 		if (rc) {
1240 			kfree(rmap);
1241 			return rc;
1242 		}
1243 		rc = -EAGAIN;
1244 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1245 		if (ptep) {
1246 			spin_lock(&sg->guest_table_lock);
1247 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1248 					     PGSTE_VSIE_BIT);
1249 			if (!rc)
1250 				gmap_insert_rmap(sg, vmaddr, rmap);
1251 			spin_unlock(&sg->guest_table_lock);
1252 			gmap_pte_op_end(ptl);
1253 		}
1254 		radix_tree_preload_end();
1255 		if (rc) {
1256 			kfree(rmap);
1257 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1258 			if (rc)
1259 				return rc;
1260 			continue;
1261 		}
1262 		paddr += PAGE_SIZE;
1263 		len -= PAGE_SIZE;
1264 	}
1265 	return 0;
1266 }
1267 
1268 #define _SHADOW_RMAP_MASK	0x7
1269 #define _SHADOW_RMAP_REGION1	0x5
1270 #define _SHADOW_RMAP_REGION2	0x4
1271 #define _SHADOW_RMAP_REGION3	0x3
1272 #define _SHADOW_RMAP_SEGMENT	0x2
1273 #define _SHADOW_RMAP_PGTABLE	0x1
1274 
1275 /**
1276  * gmap_idte_one - invalidate a single region or segment table entry
1277  * @asce: region or segment table *origin* + table-type bits
1278  * @vaddr: virtual address to identify the table entry to flush
1279  *
1280  * The invalid bit of a single region or segment table entry is set
1281  * and the associated TLB entries depending on the entry are flushed.
1282  * The table-type of the @asce identifies the portion of the @vaddr
1283  * that is used as the invalidation index.
1284  */
1285 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1286 {
1287 	asm volatile(
1288 		"	idte	%0,0,%1"
1289 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1290 }
1291 
1292 /**
1293  * gmap_unshadow_page - remove a page from a shadow page table
1294  * @sg: pointer to the shadow guest address space structure
1295  * @raddr: rmap address in the shadow guest address space
1296  *
1297  * Called with the sg->guest_table_lock
1298  */
1299 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1300 {
1301 	unsigned long *table;
1302 
1303 	BUG_ON(!gmap_is_shadow(sg));
1304 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1305 	if (!table || *table & _PAGE_INVALID)
1306 		return;
1307 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1308 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1309 }
1310 
1311 /**
1312  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1313  * @sg: pointer to the shadow guest address space structure
1314  * @raddr: rmap address in the shadow guest address space
1315  * @pgt: pointer to the start of a shadow page table
1316  *
1317  * Called with the sg->guest_table_lock
1318  */
1319 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1320 				unsigned long *pgt)
1321 {
1322 	int i;
1323 
1324 	BUG_ON(!gmap_is_shadow(sg));
1325 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1326 		pgt[i] = _PAGE_INVALID;
1327 }
1328 
1329 /**
1330  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1331  * @sg: pointer to the shadow guest address space structure
1332  * @raddr: address in the shadow guest address space
1333  *
1334  * Called with the sg->guest_table_lock
1335  */
1336 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1337 {
1338 	unsigned long sto, *ste, *pgt;
1339 	struct page *page;
1340 
1341 	BUG_ON(!gmap_is_shadow(sg));
1342 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1343 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1344 		return;
1345 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1346 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1347 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1348 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1349 	*ste = _SEGMENT_ENTRY_EMPTY;
1350 	__gmap_unshadow_pgt(sg, raddr, pgt);
1351 	/* Free page table */
1352 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1353 	list_del(&page->lru);
1354 	page_table_free_pgste(page);
1355 }
1356 
1357 /**
1358  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1359  * @sg: pointer to the shadow guest address space structure
1360  * @raddr: rmap address in the shadow guest address space
1361  * @sgt: pointer to the start of a shadow segment table
1362  *
1363  * Called with the sg->guest_table_lock
1364  */
1365 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1366 				unsigned long *sgt)
1367 {
1368 	unsigned long *pgt;
1369 	struct page *page;
1370 	int i;
1371 
1372 	BUG_ON(!gmap_is_shadow(sg));
1373 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1374 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1375 			continue;
1376 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1377 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1378 		__gmap_unshadow_pgt(sg, raddr, pgt);
1379 		/* Free page table */
1380 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1381 		list_del(&page->lru);
1382 		page_table_free_pgste(page);
1383 	}
1384 }
1385 
1386 /**
1387  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1388  * @sg: pointer to the shadow guest address space structure
1389  * @raddr: rmap address in the shadow guest address space
1390  *
1391  * Called with the shadow->guest_table_lock
1392  */
1393 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1394 {
1395 	unsigned long r3o, *r3e, *sgt;
1396 	struct page *page;
1397 
1398 	BUG_ON(!gmap_is_shadow(sg));
1399 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1400 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1401 		return;
1402 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1403 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1404 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1405 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1406 	*r3e = _REGION3_ENTRY_EMPTY;
1407 	__gmap_unshadow_sgt(sg, raddr, sgt);
1408 	/* Free segment table */
1409 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1410 	list_del(&page->lru);
1411 	__free_pages(page, CRST_ALLOC_ORDER);
1412 }
1413 
1414 /**
1415  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1416  * @sg: pointer to the shadow guest address space structure
1417  * @raddr: address in the shadow guest address space
1418  * @r3t: pointer to the start of a shadow region-3 table
1419  *
1420  * Called with the sg->guest_table_lock
1421  */
1422 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1423 				unsigned long *r3t)
1424 {
1425 	unsigned long *sgt;
1426 	struct page *page;
1427 	int i;
1428 
1429 	BUG_ON(!gmap_is_shadow(sg));
1430 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1431 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1432 			continue;
1433 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1434 		r3t[i] = _REGION3_ENTRY_EMPTY;
1435 		__gmap_unshadow_sgt(sg, raddr, sgt);
1436 		/* Free segment table */
1437 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1438 		list_del(&page->lru);
1439 		__free_pages(page, CRST_ALLOC_ORDER);
1440 	}
1441 }
1442 
1443 /**
1444  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1445  * @sg: pointer to the shadow guest address space structure
1446  * @raddr: rmap address in the shadow guest address space
1447  *
1448  * Called with the sg->guest_table_lock
1449  */
1450 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1451 {
1452 	unsigned long r2o, *r2e, *r3t;
1453 	struct page *page;
1454 
1455 	BUG_ON(!gmap_is_shadow(sg));
1456 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1457 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1458 		return;
1459 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1460 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1461 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1462 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1463 	*r2e = _REGION2_ENTRY_EMPTY;
1464 	__gmap_unshadow_r3t(sg, raddr, r3t);
1465 	/* Free region 3 table */
1466 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1467 	list_del(&page->lru);
1468 	__free_pages(page, CRST_ALLOC_ORDER);
1469 }
1470 
1471 /**
1472  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1473  * @sg: pointer to the shadow guest address space structure
1474  * @raddr: rmap address in the shadow guest address space
1475  * @r2t: pointer to the start of a shadow region-2 table
1476  *
1477  * Called with the sg->guest_table_lock
1478  */
1479 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1480 				unsigned long *r2t)
1481 {
1482 	unsigned long *r3t;
1483 	struct page *page;
1484 	int i;
1485 
1486 	BUG_ON(!gmap_is_shadow(sg));
1487 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1488 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1489 			continue;
1490 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1491 		r2t[i] = _REGION2_ENTRY_EMPTY;
1492 		__gmap_unshadow_r3t(sg, raddr, r3t);
1493 		/* Free region 3 table */
1494 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1495 		list_del(&page->lru);
1496 		__free_pages(page, CRST_ALLOC_ORDER);
1497 	}
1498 }
1499 
1500 /**
1501  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1502  * @sg: pointer to the shadow guest address space structure
1503  * @raddr: rmap address in the shadow guest address space
1504  *
1505  * Called with the sg->guest_table_lock
1506  */
1507 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1508 {
1509 	unsigned long r1o, *r1e, *r2t;
1510 	struct page *page;
1511 
1512 	BUG_ON(!gmap_is_shadow(sg));
1513 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1514 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1515 		return;
1516 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1517 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1518 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1519 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1520 	*r1e = _REGION1_ENTRY_EMPTY;
1521 	__gmap_unshadow_r2t(sg, raddr, r2t);
1522 	/* Free region 2 table */
1523 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1524 	list_del(&page->lru);
1525 	__free_pages(page, CRST_ALLOC_ORDER);
1526 }
1527 
1528 /**
1529  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1530  * @sg: pointer to the shadow guest address space structure
1531  * @raddr: rmap address in the shadow guest address space
1532  * @r1t: pointer to the start of a shadow region-1 table
1533  *
1534  * Called with the shadow->guest_table_lock
1535  */
1536 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1537 				unsigned long *r1t)
1538 {
1539 	unsigned long asce, *r2t;
1540 	struct page *page;
1541 	int i;
1542 
1543 	BUG_ON(!gmap_is_shadow(sg));
1544 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1545 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1546 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1547 			continue;
1548 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1549 		__gmap_unshadow_r2t(sg, raddr, r2t);
1550 		/* Clear entry and flush translation r1t -> r2t */
1551 		gmap_idte_one(asce, raddr);
1552 		r1t[i] = _REGION1_ENTRY_EMPTY;
1553 		/* Free region 2 table */
1554 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1555 		list_del(&page->lru);
1556 		__free_pages(page, CRST_ALLOC_ORDER);
1557 	}
1558 }
1559 
1560 /**
1561  * gmap_unshadow - remove a shadow page table completely
1562  * @sg: pointer to the shadow guest address space structure
1563  *
1564  * Called with sg->guest_table_lock
1565  */
1566 static void gmap_unshadow(struct gmap *sg)
1567 {
1568 	unsigned long *table;
1569 
1570 	BUG_ON(!gmap_is_shadow(sg));
1571 	if (sg->removed)
1572 		return;
1573 	sg->removed = 1;
1574 	gmap_call_notifier(sg, 0, -1UL);
1575 	gmap_flush_tlb(sg);
1576 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1577 	switch (sg->asce & _ASCE_TYPE_MASK) {
1578 	case _ASCE_TYPE_REGION1:
1579 		__gmap_unshadow_r1t(sg, 0, table);
1580 		break;
1581 	case _ASCE_TYPE_REGION2:
1582 		__gmap_unshadow_r2t(sg, 0, table);
1583 		break;
1584 	case _ASCE_TYPE_REGION3:
1585 		__gmap_unshadow_r3t(sg, 0, table);
1586 		break;
1587 	case _ASCE_TYPE_SEGMENT:
1588 		__gmap_unshadow_sgt(sg, 0, table);
1589 		break;
1590 	}
1591 }
1592 
1593 /**
1594  * gmap_find_shadow - find a specific asce in the list of shadow tables
1595  * @parent: pointer to the parent gmap
1596  * @asce: ASCE for which the shadow table is created
1597  * @edat_level: edat level to be used for the shadow translation
1598  *
1599  * Returns the pointer to a gmap if a shadow table with the given asce is
1600  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1601  * otherwise NULL
1602  */
1603 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1604 				     int edat_level)
1605 {
1606 	struct gmap *sg;
1607 
1608 	list_for_each_entry(sg, &parent->children, list) {
1609 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1610 		    sg->removed)
1611 			continue;
1612 		if (!sg->initialized)
1613 			return ERR_PTR(-EAGAIN);
1614 		refcount_inc(&sg->ref_count);
1615 		return sg;
1616 	}
1617 	return NULL;
1618 }
1619 
1620 /**
1621  * gmap_shadow_valid - check if a shadow guest address space matches the
1622  *                     given properties and is still valid
1623  * @sg: pointer to the shadow guest address space structure
1624  * @asce: ASCE for which the shadow table is requested
1625  * @edat_level: edat level to be used for the shadow translation
1626  *
1627  * Returns 1 if the gmap shadow is still valid and matches the given
1628  * properties, the caller can continue using it. Returns 0 otherwise, the
1629  * caller has to request a new shadow gmap in this case.
1630  *
1631  */
1632 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1633 {
1634 	if (sg->removed)
1635 		return 0;
1636 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1637 }
1638 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1639 
1640 /**
1641  * gmap_shadow - create/find a shadow guest address space
1642  * @parent: pointer to the parent gmap
1643  * @asce: ASCE for which the shadow table is created
1644  * @edat_level: edat level to be used for the shadow translation
1645  *
1646  * The pages of the top level page table referred by the asce parameter
1647  * will be set to read-only and marked in the PGSTEs of the kvm process.
1648  * The shadow table will be removed automatically on any change to the
1649  * PTE mapping for the source table.
1650  *
1651  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1652  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1653  * parent gmap table could not be protected.
1654  */
1655 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1656 			 int edat_level)
1657 {
1658 	struct gmap *sg, *new;
1659 	unsigned long limit;
1660 	int rc;
1661 
1662 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1663 	BUG_ON(gmap_is_shadow(parent));
1664 	spin_lock(&parent->shadow_lock);
1665 	sg = gmap_find_shadow(parent, asce, edat_level);
1666 	spin_unlock(&parent->shadow_lock);
1667 	if (sg)
1668 		return sg;
1669 	/* Create a new shadow gmap */
1670 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1671 	if (asce & _ASCE_REAL_SPACE)
1672 		limit = -1UL;
1673 	new = gmap_alloc(limit);
1674 	if (!new)
1675 		return ERR_PTR(-ENOMEM);
1676 	new->mm = parent->mm;
1677 	new->parent = gmap_get(parent);
1678 	new->orig_asce = asce;
1679 	new->edat_level = edat_level;
1680 	new->initialized = false;
1681 	spin_lock(&parent->shadow_lock);
1682 	/* Recheck if another CPU created the same shadow */
1683 	sg = gmap_find_shadow(parent, asce, edat_level);
1684 	if (sg) {
1685 		spin_unlock(&parent->shadow_lock);
1686 		gmap_free(new);
1687 		return sg;
1688 	}
1689 	if (asce & _ASCE_REAL_SPACE) {
1690 		/* only allow one real-space gmap shadow */
1691 		list_for_each_entry(sg, &parent->children, list) {
1692 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1693 				spin_lock(&sg->guest_table_lock);
1694 				gmap_unshadow(sg);
1695 				spin_unlock(&sg->guest_table_lock);
1696 				list_del(&sg->list);
1697 				gmap_put(sg);
1698 				break;
1699 			}
1700 		}
1701 	}
1702 	refcount_set(&new->ref_count, 2);
1703 	list_add(&new->list, &parent->children);
1704 	if (asce & _ASCE_REAL_SPACE) {
1705 		/* nothing to protect, return right away */
1706 		new->initialized = true;
1707 		spin_unlock(&parent->shadow_lock);
1708 		return new;
1709 	}
1710 	spin_unlock(&parent->shadow_lock);
1711 	/* protect after insertion, so it will get properly invalidated */
1712 	mmap_read_lock(parent->mm);
1713 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1714 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1715 				PROT_READ, GMAP_NOTIFY_SHADOW);
1716 	mmap_read_unlock(parent->mm);
1717 	spin_lock(&parent->shadow_lock);
1718 	new->initialized = true;
1719 	if (rc) {
1720 		list_del(&new->list);
1721 		gmap_free(new);
1722 		new = ERR_PTR(rc);
1723 	}
1724 	spin_unlock(&parent->shadow_lock);
1725 	return new;
1726 }
1727 EXPORT_SYMBOL_GPL(gmap_shadow);
1728 
1729 /**
1730  * gmap_shadow_r2t - create an empty shadow region 2 table
1731  * @sg: pointer to the shadow guest address space structure
1732  * @saddr: faulting address in the shadow gmap
1733  * @r2t: parent gmap address of the region 2 table to get shadowed
1734  * @fake: r2t references contiguous guest memory block, not a r2t
1735  *
1736  * The r2t parameter specifies the address of the source table. The
1737  * four pages of the source table are made read-only in the parent gmap
1738  * address space. A write to the source table area @r2t will automatically
1739  * remove the shadow r2 table and all of its decendents.
1740  *
1741  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1742  * shadow table structure is incomplete, -ENOMEM if out of memory and
1743  * -EFAULT if an address in the parent gmap could not be resolved.
1744  *
1745  * Called with sg->mm->mmap_lock in read.
1746  */
1747 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1748 		    int fake)
1749 {
1750 	unsigned long raddr, origin, offset, len;
1751 	unsigned long *s_r2t, *table;
1752 	struct page *page;
1753 	int rc;
1754 
1755 	BUG_ON(!gmap_is_shadow(sg));
1756 	/* Allocate a shadow region second table */
1757 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1758 	if (!page)
1759 		return -ENOMEM;
1760 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1761 	if (fake)
1762 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1763 	s_r2t = (unsigned long *) page_to_phys(page);
1764 	/* Install shadow region second table */
1765 	spin_lock(&sg->guest_table_lock);
1766 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1767 	if (!table) {
1768 		rc = -EAGAIN;		/* Race with unshadow */
1769 		goto out_free;
1770 	}
1771 	if (!(*table & _REGION_ENTRY_INVALID)) {
1772 		rc = 0;			/* Already established */
1773 		goto out_free;
1774 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1775 		rc = -EAGAIN;		/* Race with shadow */
1776 		goto out_free;
1777 	}
1778 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1779 	/* mark as invalid as long as the parent table is not protected */
1780 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1781 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1782 	if (sg->edat_level >= 1)
1783 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1784 	list_add(&page->lru, &sg->crst_list);
1785 	if (fake) {
1786 		/* nothing to protect for fake tables */
1787 		*table &= ~_REGION_ENTRY_INVALID;
1788 		spin_unlock(&sg->guest_table_lock);
1789 		return 0;
1790 	}
1791 	spin_unlock(&sg->guest_table_lock);
1792 	/* Make r2t read-only in parent gmap page table */
1793 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1794 	origin = r2t & _REGION_ENTRY_ORIGIN;
1795 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1796 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1797 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1798 	spin_lock(&sg->guest_table_lock);
1799 	if (!rc) {
1800 		table = gmap_table_walk(sg, saddr, 4);
1801 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1802 			      (unsigned long) s_r2t)
1803 			rc = -EAGAIN;		/* Race with unshadow */
1804 		else
1805 			*table &= ~_REGION_ENTRY_INVALID;
1806 	} else {
1807 		gmap_unshadow_r2t(sg, raddr);
1808 	}
1809 	spin_unlock(&sg->guest_table_lock);
1810 	return rc;
1811 out_free:
1812 	spin_unlock(&sg->guest_table_lock);
1813 	__free_pages(page, CRST_ALLOC_ORDER);
1814 	return rc;
1815 }
1816 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1817 
1818 /**
1819  * gmap_shadow_r3t - create a shadow region 3 table
1820  * @sg: pointer to the shadow guest address space structure
1821  * @saddr: faulting address in the shadow gmap
1822  * @r3t: parent gmap address of the region 3 table to get shadowed
1823  * @fake: r3t references contiguous guest memory block, not a r3t
1824  *
1825  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1826  * shadow table structure is incomplete, -ENOMEM if out of memory and
1827  * -EFAULT if an address in the parent gmap could not be resolved.
1828  *
1829  * Called with sg->mm->mmap_lock in read.
1830  */
1831 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1832 		    int fake)
1833 {
1834 	unsigned long raddr, origin, offset, len;
1835 	unsigned long *s_r3t, *table;
1836 	struct page *page;
1837 	int rc;
1838 
1839 	BUG_ON(!gmap_is_shadow(sg));
1840 	/* Allocate a shadow region second table */
1841 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1842 	if (!page)
1843 		return -ENOMEM;
1844 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1845 	if (fake)
1846 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1847 	s_r3t = (unsigned long *) page_to_phys(page);
1848 	/* Install shadow region second table */
1849 	spin_lock(&sg->guest_table_lock);
1850 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1851 	if (!table) {
1852 		rc = -EAGAIN;		/* Race with unshadow */
1853 		goto out_free;
1854 	}
1855 	if (!(*table & _REGION_ENTRY_INVALID)) {
1856 		rc = 0;			/* Already established */
1857 		goto out_free;
1858 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1859 		rc = -EAGAIN;		/* Race with shadow */
1860 		goto out_free;
1861 	}
1862 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1863 	/* mark as invalid as long as the parent table is not protected */
1864 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1865 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1866 	if (sg->edat_level >= 1)
1867 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1868 	list_add(&page->lru, &sg->crst_list);
1869 	if (fake) {
1870 		/* nothing to protect for fake tables */
1871 		*table &= ~_REGION_ENTRY_INVALID;
1872 		spin_unlock(&sg->guest_table_lock);
1873 		return 0;
1874 	}
1875 	spin_unlock(&sg->guest_table_lock);
1876 	/* Make r3t read-only in parent gmap page table */
1877 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1878 	origin = r3t & _REGION_ENTRY_ORIGIN;
1879 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1880 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1881 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1882 	spin_lock(&sg->guest_table_lock);
1883 	if (!rc) {
1884 		table = gmap_table_walk(sg, saddr, 3);
1885 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1886 			      (unsigned long) s_r3t)
1887 			rc = -EAGAIN;		/* Race with unshadow */
1888 		else
1889 			*table &= ~_REGION_ENTRY_INVALID;
1890 	} else {
1891 		gmap_unshadow_r3t(sg, raddr);
1892 	}
1893 	spin_unlock(&sg->guest_table_lock);
1894 	return rc;
1895 out_free:
1896 	spin_unlock(&sg->guest_table_lock);
1897 	__free_pages(page, CRST_ALLOC_ORDER);
1898 	return rc;
1899 }
1900 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1901 
1902 /**
1903  * gmap_shadow_sgt - create a shadow segment table
1904  * @sg: pointer to the shadow guest address space structure
1905  * @saddr: faulting address in the shadow gmap
1906  * @sgt: parent gmap address of the segment table to get shadowed
1907  * @fake: sgt references contiguous guest memory block, not a sgt
1908  *
1909  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1910  * shadow table structure is incomplete, -ENOMEM if out of memory and
1911  * -EFAULT if an address in the parent gmap could not be resolved.
1912  *
1913  * Called with sg->mm->mmap_lock in read.
1914  */
1915 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1916 		    int fake)
1917 {
1918 	unsigned long raddr, origin, offset, len;
1919 	unsigned long *s_sgt, *table;
1920 	struct page *page;
1921 	int rc;
1922 
1923 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1924 	/* Allocate a shadow segment table */
1925 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1926 	if (!page)
1927 		return -ENOMEM;
1928 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1929 	if (fake)
1930 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1931 	s_sgt = (unsigned long *) page_to_phys(page);
1932 	/* Install shadow region second table */
1933 	spin_lock(&sg->guest_table_lock);
1934 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1935 	if (!table) {
1936 		rc = -EAGAIN;		/* Race with unshadow */
1937 		goto out_free;
1938 	}
1939 	if (!(*table & _REGION_ENTRY_INVALID)) {
1940 		rc = 0;			/* Already established */
1941 		goto out_free;
1942 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1943 		rc = -EAGAIN;		/* Race with shadow */
1944 		goto out_free;
1945 	}
1946 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1947 	/* mark as invalid as long as the parent table is not protected */
1948 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1949 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1950 	if (sg->edat_level >= 1)
1951 		*table |= sgt & _REGION_ENTRY_PROTECT;
1952 	list_add(&page->lru, &sg->crst_list);
1953 	if (fake) {
1954 		/* nothing to protect for fake tables */
1955 		*table &= ~_REGION_ENTRY_INVALID;
1956 		spin_unlock(&sg->guest_table_lock);
1957 		return 0;
1958 	}
1959 	spin_unlock(&sg->guest_table_lock);
1960 	/* Make sgt read-only in parent gmap page table */
1961 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1962 	origin = sgt & _REGION_ENTRY_ORIGIN;
1963 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1964 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1965 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1966 	spin_lock(&sg->guest_table_lock);
1967 	if (!rc) {
1968 		table = gmap_table_walk(sg, saddr, 2);
1969 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1970 			      (unsigned long) s_sgt)
1971 			rc = -EAGAIN;		/* Race with unshadow */
1972 		else
1973 			*table &= ~_REGION_ENTRY_INVALID;
1974 	} else {
1975 		gmap_unshadow_sgt(sg, raddr);
1976 	}
1977 	spin_unlock(&sg->guest_table_lock);
1978 	return rc;
1979 out_free:
1980 	spin_unlock(&sg->guest_table_lock);
1981 	__free_pages(page, CRST_ALLOC_ORDER);
1982 	return rc;
1983 }
1984 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1985 
1986 /**
1987  * gmap_shadow_pgt_lookup - find a shadow page table
1988  * @sg: pointer to the shadow guest address space structure
1989  * @saddr: the address in the shadow aguest address space
1990  * @pgt: parent gmap address of the page table to get shadowed
1991  * @dat_protection: if the pgtable is marked as protected by dat
1992  * @fake: pgt references contiguous guest memory block, not a pgtable
1993  *
1994  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1995  * table was not found.
1996  *
1997  * Called with sg->mm->mmap_lock in read.
1998  */
1999 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2000 			   unsigned long *pgt, int *dat_protection,
2001 			   int *fake)
2002 {
2003 	unsigned long *table;
2004 	struct page *page;
2005 	int rc;
2006 
2007 	BUG_ON(!gmap_is_shadow(sg));
2008 	spin_lock(&sg->guest_table_lock);
2009 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2010 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2011 		/* Shadow page tables are full pages (pte+pgste) */
2012 		page = pfn_to_page(*table >> PAGE_SHIFT);
2013 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2014 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2015 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2016 		rc = 0;
2017 	} else  {
2018 		rc = -EAGAIN;
2019 	}
2020 	spin_unlock(&sg->guest_table_lock);
2021 	return rc;
2022 
2023 }
2024 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2025 
2026 /**
2027  * gmap_shadow_pgt - instantiate a shadow page table
2028  * @sg: pointer to the shadow guest address space structure
2029  * @saddr: faulting address in the shadow gmap
2030  * @pgt: parent gmap address of the page table to get shadowed
2031  * @fake: pgt references contiguous guest memory block, not a pgtable
2032  *
2033  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2034  * shadow table structure is incomplete, -ENOMEM if out of memory,
2035  * -EFAULT if an address in the parent gmap could not be resolved and
2036  *
2037  * Called with gmap->mm->mmap_lock in read
2038  */
2039 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2040 		    int fake)
2041 {
2042 	unsigned long raddr, origin;
2043 	unsigned long *s_pgt, *table;
2044 	struct page *page;
2045 	int rc;
2046 
2047 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2048 	/* Allocate a shadow page table */
2049 	page = page_table_alloc_pgste(sg->mm);
2050 	if (!page)
2051 		return -ENOMEM;
2052 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2053 	if (fake)
2054 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2055 	s_pgt = (unsigned long *) page_to_phys(page);
2056 	/* Install shadow page table */
2057 	spin_lock(&sg->guest_table_lock);
2058 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2059 	if (!table) {
2060 		rc = -EAGAIN;		/* Race with unshadow */
2061 		goto out_free;
2062 	}
2063 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2064 		rc = 0;			/* Already established */
2065 		goto out_free;
2066 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2067 		rc = -EAGAIN;		/* Race with shadow */
2068 		goto out_free;
2069 	}
2070 	/* mark as invalid as long as the parent table is not protected */
2071 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2072 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2073 	list_add(&page->lru, &sg->pt_list);
2074 	if (fake) {
2075 		/* nothing to protect for fake tables */
2076 		*table &= ~_SEGMENT_ENTRY_INVALID;
2077 		spin_unlock(&sg->guest_table_lock);
2078 		return 0;
2079 	}
2080 	spin_unlock(&sg->guest_table_lock);
2081 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2082 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2083 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2084 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2085 	spin_lock(&sg->guest_table_lock);
2086 	if (!rc) {
2087 		table = gmap_table_walk(sg, saddr, 1);
2088 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2089 			      (unsigned long) s_pgt)
2090 			rc = -EAGAIN;		/* Race with unshadow */
2091 		else
2092 			*table &= ~_SEGMENT_ENTRY_INVALID;
2093 	} else {
2094 		gmap_unshadow_pgt(sg, raddr);
2095 	}
2096 	spin_unlock(&sg->guest_table_lock);
2097 	return rc;
2098 out_free:
2099 	spin_unlock(&sg->guest_table_lock);
2100 	page_table_free_pgste(page);
2101 	return rc;
2102 
2103 }
2104 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2105 
2106 /**
2107  * gmap_shadow_page - create a shadow page mapping
2108  * @sg: pointer to the shadow guest address space structure
2109  * @saddr: faulting address in the shadow gmap
2110  * @pte: pte in parent gmap address space to get shadowed
2111  *
2112  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2113  * shadow table structure is incomplete, -ENOMEM if out of memory and
2114  * -EFAULT if an address in the parent gmap could not be resolved.
2115  *
2116  * Called with sg->mm->mmap_lock in read.
2117  */
2118 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2119 {
2120 	struct gmap *parent;
2121 	struct gmap_rmap *rmap;
2122 	unsigned long vmaddr, paddr;
2123 	spinlock_t *ptl;
2124 	pte_t *sptep, *tptep;
2125 	int prot;
2126 	int rc;
2127 
2128 	BUG_ON(!gmap_is_shadow(sg));
2129 	parent = sg->parent;
2130 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2131 
2132 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2133 	if (!rmap)
2134 		return -ENOMEM;
2135 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2136 
2137 	while (1) {
2138 		paddr = pte_val(pte) & PAGE_MASK;
2139 		vmaddr = __gmap_translate(parent, paddr);
2140 		if (IS_ERR_VALUE(vmaddr)) {
2141 			rc = vmaddr;
2142 			break;
2143 		}
2144 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2145 		if (rc)
2146 			break;
2147 		rc = -EAGAIN;
2148 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2149 		if (sptep) {
2150 			spin_lock(&sg->guest_table_lock);
2151 			/* Get page table pointer */
2152 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2153 			if (!tptep) {
2154 				spin_unlock(&sg->guest_table_lock);
2155 				gmap_pte_op_end(ptl);
2156 				radix_tree_preload_end();
2157 				break;
2158 			}
2159 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2160 			if (rc > 0) {
2161 				/* Success and a new mapping */
2162 				gmap_insert_rmap(sg, vmaddr, rmap);
2163 				rmap = NULL;
2164 				rc = 0;
2165 			}
2166 			gmap_pte_op_end(ptl);
2167 			spin_unlock(&sg->guest_table_lock);
2168 		}
2169 		radix_tree_preload_end();
2170 		if (!rc)
2171 			break;
2172 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2173 		if (rc)
2174 			break;
2175 	}
2176 	kfree(rmap);
2177 	return rc;
2178 }
2179 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2180 
2181 /*
2182  * gmap_shadow_notify - handle notifications for shadow gmap
2183  *
2184  * Called with sg->parent->shadow_lock.
2185  */
2186 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2187 			       unsigned long gaddr)
2188 {
2189 	struct gmap_rmap *rmap, *rnext, *head;
2190 	unsigned long start, end, bits, raddr;
2191 
2192 	BUG_ON(!gmap_is_shadow(sg));
2193 
2194 	spin_lock(&sg->guest_table_lock);
2195 	if (sg->removed) {
2196 		spin_unlock(&sg->guest_table_lock);
2197 		return;
2198 	}
2199 	/* Check for top level table */
2200 	start = sg->orig_asce & _ASCE_ORIGIN;
2201 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2202 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2203 	    gaddr < end) {
2204 		/* The complete shadow table has to go */
2205 		gmap_unshadow(sg);
2206 		spin_unlock(&sg->guest_table_lock);
2207 		list_del(&sg->list);
2208 		gmap_put(sg);
2209 		return;
2210 	}
2211 	/* Remove the page table tree from on specific entry */
2212 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2213 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2214 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2215 		raddr = rmap->raddr ^ bits;
2216 		switch (bits) {
2217 		case _SHADOW_RMAP_REGION1:
2218 			gmap_unshadow_r2t(sg, raddr);
2219 			break;
2220 		case _SHADOW_RMAP_REGION2:
2221 			gmap_unshadow_r3t(sg, raddr);
2222 			break;
2223 		case _SHADOW_RMAP_REGION3:
2224 			gmap_unshadow_sgt(sg, raddr);
2225 			break;
2226 		case _SHADOW_RMAP_SEGMENT:
2227 			gmap_unshadow_pgt(sg, raddr);
2228 			break;
2229 		case _SHADOW_RMAP_PGTABLE:
2230 			gmap_unshadow_page(sg, raddr);
2231 			break;
2232 		}
2233 		kfree(rmap);
2234 	}
2235 	spin_unlock(&sg->guest_table_lock);
2236 }
2237 
2238 /**
2239  * ptep_notify - call all invalidation callbacks for a specific pte.
2240  * @mm: pointer to the process mm_struct
2241  * @vmaddr: virtual address in the process address space
2242  * @pte: pointer to the page table entry
2243  * @bits: bits from the pgste that caused the notify call
2244  *
2245  * This function is assumed to be called with the page table lock held
2246  * for the pte to notify.
2247  */
2248 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2249 		 pte_t *pte, unsigned long bits)
2250 {
2251 	unsigned long offset, gaddr = 0;
2252 	unsigned long *table;
2253 	struct gmap *gmap, *sg, *next;
2254 
2255 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2256 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2257 	rcu_read_lock();
2258 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2259 		spin_lock(&gmap->guest_table_lock);
2260 		table = radix_tree_lookup(&gmap->host_to_guest,
2261 					  vmaddr >> PMD_SHIFT);
2262 		if (table)
2263 			gaddr = __gmap_segment_gaddr(table) + offset;
2264 		spin_unlock(&gmap->guest_table_lock);
2265 		if (!table)
2266 			continue;
2267 
2268 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2269 			spin_lock(&gmap->shadow_lock);
2270 			list_for_each_entry_safe(sg, next,
2271 						 &gmap->children, list)
2272 				gmap_shadow_notify(sg, vmaddr, gaddr);
2273 			spin_unlock(&gmap->shadow_lock);
2274 		}
2275 		if (bits & PGSTE_IN_BIT)
2276 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2277 	}
2278 	rcu_read_unlock();
2279 }
2280 EXPORT_SYMBOL_GPL(ptep_notify);
2281 
2282 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2283 			     unsigned long gaddr)
2284 {
2285 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2286 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2287 }
2288 
2289 /**
2290  * gmap_pmdp_xchg - exchange a gmap pmd with another
2291  * @gmap: pointer to the guest address space structure
2292  * @pmdp: pointer to the pmd entry
2293  * @new: replacement entry
2294  * @gaddr: the affected guest address
2295  *
2296  * This function is assumed to be called with the guest_table_lock
2297  * held.
2298  */
2299 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2300 			   unsigned long gaddr)
2301 {
2302 	gaddr &= HPAGE_MASK;
2303 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2304 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2305 	if (MACHINE_HAS_TLB_GUEST)
2306 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2307 			    IDTE_GLOBAL);
2308 	else if (MACHINE_HAS_IDTE)
2309 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2310 	else
2311 		__pmdp_csp(pmdp);
2312 	set_pmd(pmdp, new);
2313 }
2314 
2315 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2316 			    int purge)
2317 {
2318 	pmd_t *pmdp;
2319 	struct gmap *gmap;
2320 	unsigned long gaddr;
2321 
2322 	rcu_read_lock();
2323 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2324 		spin_lock(&gmap->guest_table_lock);
2325 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2326 						  vmaddr >> PMD_SHIFT);
2327 		if (pmdp) {
2328 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2329 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2330 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2331 						   _SEGMENT_ENTRY_GMAP_UC));
2332 			if (purge)
2333 				__pmdp_csp(pmdp);
2334 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2335 		}
2336 		spin_unlock(&gmap->guest_table_lock);
2337 	}
2338 	rcu_read_unlock();
2339 }
2340 
2341 /**
2342  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2343  *                        flushing
2344  * @mm: pointer to the process mm_struct
2345  * @vmaddr: virtual address in the process address space
2346  */
2347 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2348 {
2349 	gmap_pmdp_clear(mm, vmaddr, 0);
2350 }
2351 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2352 
2353 /**
2354  * gmap_pmdp_csp - csp all affected guest pmd entries
2355  * @mm: pointer to the process mm_struct
2356  * @vmaddr: virtual address in the process address space
2357  */
2358 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2359 {
2360 	gmap_pmdp_clear(mm, vmaddr, 1);
2361 }
2362 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2363 
2364 /**
2365  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2366  * @mm: pointer to the process mm_struct
2367  * @vmaddr: virtual address in the process address space
2368  */
2369 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2370 {
2371 	unsigned long *entry, gaddr;
2372 	struct gmap *gmap;
2373 	pmd_t *pmdp;
2374 
2375 	rcu_read_lock();
2376 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2377 		spin_lock(&gmap->guest_table_lock);
2378 		entry = radix_tree_delete(&gmap->host_to_guest,
2379 					  vmaddr >> PMD_SHIFT);
2380 		if (entry) {
2381 			pmdp = (pmd_t *)entry;
2382 			gaddr = __gmap_segment_gaddr(entry);
2383 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2384 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2385 					   _SEGMENT_ENTRY_GMAP_UC));
2386 			if (MACHINE_HAS_TLB_GUEST)
2387 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2388 					    gmap->asce, IDTE_LOCAL);
2389 			else if (MACHINE_HAS_IDTE)
2390 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2391 			*entry = _SEGMENT_ENTRY_EMPTY;
2392 		}
2393 		spin_unlock(&gmap->guest_table_lock);
2394 	}
2395 	rcu_read_unlock();
2396 }
2397 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2398 
2399 /**
2400  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2401  * @mm: pointer to the process mm_struct
2402  * @vmaddr: virtual address in the process address space
2403  */
2404 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2405 {
2406 	unsigned long *entry, gaddr;
2407 	struct gmap *gmap;
2408 	pmd_t *pmdp;
2409 
2410 	rcu_read_lock();
2411 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2412 		spin_lock(&gmap->guest_table_lock);
2413 		entry = radix_tree_delete(&gmap->host_to_guest,
2414 					  vmaddr >> PMD_SHIFT);
2415 		if (entry) {
2416 			pmdp = (pmd_t *)entry;
2417 			gaddr = __gmap_segment_gaddr(entry);
2418 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2419 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2420 					   _SEGMENT_ENTRY_GMAP_UC));
2421 			if (MACHINE_HAS_TLB_GUEST)
2422 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2423 					    gmap->asce, IDTE_GLOBAL);
2424 			else if (MACHINE_HAS_IDTE)
2425 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2426 			else
2427 				__pmdp_csp(pmdp);
2428 			*entry = _SEGMENT_ENTRY_EMPTY;
2429 		}
2430 		spin_unlock(&gmap->guest_table_lock);
2431 	}
2432 	rcu_read_unlock();
2433 }
2434 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2435 
2436 /**
2437  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2438  * @gmap: pointer to guest address space
2439  * @pmdp: pointer to the pmd to be tested
2440  * @gaddr: virtual address in the guest address space
2441  *
2442  * This function is assumed to be called with the guest_table_lock
2443  * held.
2444  */
2445 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2446 					  unsigned long gaddr)
2447 {
2448 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2449 		return false;
2450 
2451 	/* Already protected memory, which did not change is clean */
2452 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2453 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2454 		return false;
2455 
2456 	/* Clear UC indication and reset protection */
2457 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2458 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2459 	return true;
2460 }
2461 
2462 /**
2463  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2464  * @gmap: pointer to guest address space
2465  * @bitmap: dirty bitmap for this pmd
2466  * @gaddr: virtual address in the guest address space
2467  * @vmaddr: virtual address in the host address space
2468  *
2469  * This function is assumed to be called with the guest_table_lock
2470  * held.
2471  */
2472 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2473 			     unsigned long gaddr, unsigned long vmaddr)
2474 {
2475 	int i;
2476 	pmd_t *pmdp;
2477 	pte_t *ptep;
2478 	spinlock_t *ptl;
2479 
2480 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2481 	if (!pmdp)
2482 		return;
2483 
2484 	if (pmd_large(*pmdp)) {
2485 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2486 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2487 	} else {
2488 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2489 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2490 			if (!ptep)
2491 				continue;
2492 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2493 				set_bit(i, bitmap);
2494 			spin_unlock(ptl);
2495 		}
2496 	}
2497 	gmap_pmd_op_end(gmap, pmdp);
2498 }
2499 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2500 
2501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2502 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2503 				    unsigned long end, struct mm_walk *walk)
2504 {
2505 	struct vm_area_struct *vma = walk->vma;
2506 
2507 	split_huge_pmd(vma, pmd, addr);
2508 	return 0;
2509 }
2510 
2511 static const struct mm_walk_ops thp_split_walk_ops = {
2512 	.pmd_entry	= thp_split_walk_pmd_entry,
2513 };
2514 
2515 static inline void thp_split_mm(struct mm_struct *mm)
2516 {
2517 	struct vm_area_struct *vma;
2518 
2519 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2520 		vma->vm_flags &= ~VM_HUGEPAGE;
2521 		vma->vm_flags |= VM_NOHUGEPAGE;
2522 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2523 	}
2524 	mm->def_flags |= VM_NOHUGEPAGE;
2525 }
2526 #else
2527 static inline void thp_split_mm(struct mm_struct *mm)
2528 {
2529 }
2530 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2531 
2532 /*
2533  * Remove all empty zero pages from the mapping for lazy refaulting
2534  * - This must be called after mm->context.has_pgste is set, to avoid
2535  *   future creation of zero pages
2536  * - This must be called after THP was enabled
2537  */
2538 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2539 			   unsigned long end, struct mm_walk *walk)
2540 {
2541 	unsigned long addr;
2542 
2543 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2544 		pte_t *ptep;
2545 		spinlock_t *ptl;
2546 
2547 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2548 		if (is_zero_pfn(pte_pfn(*ptep)))
2549 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2550 		pte_unmap_unlock(ptep, ptl);
2551 	}
2552 	return 0;
2553 }
2554 
2555 static const struct mm_walk_ops zap_zero_walk_ops = {
2556 	.pmd_entry	= __zap_zero_pages,
2557 };
2558 
2559 /*
2560  * switch on pgstes for its userspace process (for kvm)
2561  */
2562 int s390_enable_sie(void)
2563 {
2564 	struct mm_struct *mm = current->mm;
2565 
2566 	/* Do we have pgstes? if yes, we are done */
2567 	if (mm_has_pgste(mm))
2568 		return 0;
2569 	/* Fail if the page tables are 2K */
2570 	if (!mm_alloc_pgste(mm))
2571 		return -EINVAL;
2572 	mmap_write_lock(mm);
2573 	mm->context.has_pgste = 1;
2574 	/* split thp mappings and disable thp for future mappings */
2575 	thp_split_mm(mm);
2576 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2577 	mmap_write_unlock(mm);
2578 	return 0;
2579 }
2580 EXPORT_SYMBOL_GPL(s390_enable_sie);
2581 
2582 int gmap_mark_unmergeable(void)
2583 {
2584 	struct mm_struct *mm = current->mm;
2585 	struct vm_area_struct *vma;
2586 	int ret;
2587 
2588 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2589 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2590 				  MADV_UNMERGEABLE, &vma->vm_flags);
2591 		if (ret)
2592 			return ret;
2593 	}
2594 	mm->def_flags &= ~VM_MERGEABLE;
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2598 
2599 /*
2600  * Enable storage key handling from now on and initialize the storage
2601  * keys with the default key.
2602  */
2603 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2604 				  unsigned long next, struct mm_walk *walk)
2605 {
2606 	/* Clear storage key */
2607 	ptep_zap_key(walk->mm, addr, pte);
2608 	return 0;
2609 }
2610 
2611 /*
2612  * Give a chance to schedule after setting a key to 256 pages.
2613  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2614  * Both can sleep.
2615  */
2616 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2617 				  unsigned long next, struct mm_walk *walk)
2618 {
2619 	cond_resched();
2620 	return 0;
2621 }
2622 
2623 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2624 				      unsigned long hmask, unsigned long next,
2625 				      struct mm_walk *walk)
2626 {
2627 	pmd_t *pmd = (pmd_t *)pte;
2628 	unsigned long start, end;
2629 	struct page *page = pmd_page(*pmd);
2630 
2631 	/*
2632 	 * The write check makes sure we do not set a key on shared
2633 	 * memory. This is needed as the walker does not differentiate
2634 	 * between actual guest memory and the process executable or
2635 	 * shared libraries.
2636 	 */
2637 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2638 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2639 		return 0;
2640 
2641 	start = pmd_val(*pmd) & HPAGE_MASK;
2642 	end = start + HPAGE_SIZE - 1;
2643 	__storage_key_init_range(start, end);
2644 	set_bit(PG_arch_1, &page->flags);
2645 	cond_resched();
2646 	return 0;
2647 }
2648 
2649 static const struct mm_walk_ops enable_skey_walk_ops = {
2650 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2651 	.pte_entry		= __s390_enable_skey_pte,
2652 	.pmd_entry		= __s390_enable_skey_pmd,
2653 };
2654 
2655 int s390_enable_skey(void)
2656 {
2657 	struct mm_struct *mm = current->mm;
2658 	int rc = 0;
2659 
2660 	mmap_write_lock(mm);
2661 	if (mm_uses_skeys(mm))
2662 		goto out_up;
2663 
2664 	mm->context.uses_skeys = 1;
2665 	rc = gmap_mark_unmergeable();
2666 	if (rc) {
2667 		mm->context.uses_skeys = 0;
2668 		goto out_up;
2669 	}
2670 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2671 
2672 out_up:
2673 	mmap_write_unlock(mm);
2674 	return rc;
2675 }
2676 EXPORT_SYMBOL_GPL(s390_enable_skey);
2677 
2678 /*
2679  * Reset CMMA state, make all pages stable again.
2680  */
2681 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2682 			     unsigned long next, struct mm_walk *walk)
2683 {
2684 	ptep_zap_unused(walk->mm, addr, pte, 1);
2685 	return 0;
2686 }
2687 
2688 static const struct mm_walk_ops reset_cmma_walk_ops = {
2689 	.pte_entry		= __s390_reset_cmma,
2690 };
2691 
2692 void s390_reset_cmma(struct mm_struct *mm)
2693 {
2694 	mmap_write_lock(mm);
2695 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2696 	mmap_write_unlock(mm);
2697 }
2698 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2699 
2700 #define GATHER_GET_PAGES 32
2701 
2702 struct reset_walk_state {
2703 	unsigned long next;
2704 	unsigned long count;
2705 	unsigned long pfns[GATHER_GET_PAGES];
2706 };
2707 
2708 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2709 			     unsigned long next, struct mm_walk *walk)
2710 {
2711 	struct reset_walk_state *p = walk->private;
2712 	pte_t pte = READ_ONCE(*ptep);
2713 
2714 	if (pte_present(pte)) {
2715 		/* we have a reference from the mapping, take an extra one */
2716 		get_page(phys_to_page(pte_val(pte)));
2717 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2718 		p->next = next;
2719 		p->count++;
2720 	}
2721 	return p->count >= GATHER_GET_PAGES;
2722 }
2723 
2724 static const struct mm_walk_ops gather_pages_ops = {
2725 	.pte_entry = s390_gather_pages,
2726 };
2727 
2728 /*
2729  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2730  * Each page needs to have an extra reference, which will be released here.
2731  */
2732 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2733 {
2734 	unsigned long i;
2735 
2736 	for (i = 0; i < count; i++) {
2737 		/* we always have an extra reference */
2738 		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2739 		/* get rid of the extra reference */
2740 		put_page(pfn_to_page(pfns[i]));
2741 		cond_resched();
2742 	}
2743 }
2744 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2745 
2746 /**
2747  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2748  * in the given range of the given address space.
2749  * @mm: the mm to operate on
2750  * @start: the start of the range
2751  * @end: the end of the range
2752  * @interruptible: if not 0, stop when a fatal signal is received
2753  *
2754  * Walk the given range of the given address space and call the destroy
2755  * secure page UVC on each page. Optionally exit early if a fatal signal is
2756  * pending.
2757  *
2758  * Return: 0 on success, -EINTR if the function stopped before completing
2759  */
2760 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2761 			    unsigned long end, bool interruptible)
2762 {
2763 	struct reset_walk_state state = { .next = start };
2764 	int r = 1;
2765 
2766 	while (r > 0) {
2767 		state.count = 0;
2768 		mmap_read_lock(mm);
2769 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2770 		mmap_read_unlock(mm);
2771 		cond_resched();
2772 		s390_uv_destroy_pfns(state.count, state.pfns);
2773 		if (interruptible && fatal_signal_pending(current))
2774 			return -EINTR;
2775 	}
2776 	return 0;
2777 }
2778 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2779 
2780 /**
2781  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2782  * list of page tables of the gmap.
2783  * @gmap: the gmap whose table is to be removed
2784  *
2785  * On s390x, KVM keeps a list of all pages containing the page tables of the
2786  * gmap (the CRST list). This list is used at tear down time to free all
2787  * pages that are now not needed anymore.
2788  *
2789  * This function removes the topmost page of the tree (the one pointed to by
2790  * the ASCE) from the CRST list.
2791  *
2792  * This means that it will not be freed when the VM is torn down, and needs
2793  * to be handled separately by the caller, unless a leak is actually
2794  * intended. Notice that this function will only remove the page from the
2795  * list, the page will still be used as a top level page table (and ASCE).
2796  */
2797 void s390_unlist_old_asce(struct gmap *gmap)
2798 {
2799 	struct page *old;
2800 
2801 	old = virt_to_page(gmap->table);
2802 	spin_lock(&gmap->guest_table_lock);
2803 	list_del(&old->lru);
2804 	/*
2805 	 * Sometimes the topmost page might need to be "removed" multiple
2806 	 * times, for example if the VM is rebooted into secure mode several
2807 	 * times concurrently, or if s390_replace_asce fails after calling
2808 	 * s390_remove_old_asce and is attempted again later. In that case
2809 	 * the old asce has been removed from the list, and therefore it
2810 	 * will not be freed when the VM terminates, but the ASCE is still
2811 	 * in use and still pointed to.
2812 	 * A subsequent call to replace_asce will follow the pointer and try
2813 	 * to remove the same page from the list again.
2814 	 * Therefore it's necessary that the page of the ASCE has valid
2815 	 * pointers, so list_del can work (and do nothing) without
2816 	 * dereferencing stale or invalid pointers.
2817 	 */
2818 	INIT_LIST_HEAD(&old->lru);
2819 	spin_unlock(&gmap->guest_table_lock);
2820 }
2821 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2822 
2823 /**
2824  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2825  * @gmap: the gmap whose ASCE needs to be replaced
2826  *
2827  * If the allocation of the new top level page table fails, the ASCE is not
2828  * replaced.
2829  * In any case, the old ASCE is always removed from the gmap CRST list.
2830  * Therefore the caller has to make sure to save a pointer to it
2831  * beforehand, unless a leak is actually intended.
2832  */
2833 int s390_replace_asce(struct gmap *gmap)
2834 {
2835 	unsigned long asce;
2836 	struct page *page;
2837 	void *table;
2838 
2839 	s390_unlist_old_asce(gmap);
2840 
2841 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2842 	if (!page)
2843 		return -ENOMEM;
2844 	table = page_to_virt(page);
2845 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2846 
2847 	/*
2848 	 * The caller has to deal with the old ASCE, but here we make sure
2849 	 * the new one is properly added to the CRST list, so that
2850 	 * it will be freed when the VM is torn down.
2851 	 */
2852 	spin_lock(&gmap->guest_table_lock);
2853 	list_add(&page->lru, &gmap->crst_list);
2854 	spin_unlock(&gmap->guest_table_lock);
2855 
2856 	/* Set new table origin while preserving existing ASCE control bits */
2857 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2858 	WRITE_ONCE(gmap->asce, asce);
2859 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2860 	WRITE_ONCE(gmap->table, table);
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(s390_replace_asce);
2865