1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2016, 2018 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/pagewalk.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 #include <linux/pgtable.h> 21 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @mm: pointer to the parent mm_struct 31 * @limit: maximum address of the gmap address space 32 * 33 * Returns a guest address space structure. 34 */ 35 static struct gmap *gmap_alloc(unsigned long limit) 36 { 37 struct gmap *gmap; 38 struct page *page; 39 unsigned long *table; 40 unsigned long etype, atype; 41 42 if (limit < _REGION3_SIZE) { 43 limit = _REGION3_SIZE - 1; 44 atype = _ASCE_TYPE_SEGMENT; 45 etype = _SEGMENT_ENTRY_EMPTY; 46 } else if (limit < _REGION2_SIZE) { 47 limit = _REGION2_SIZE - 1; 48 atype = _ASCE_TYPE_REGION3; 49 etype = _REGION3_ENTRY_EMPTY; 50 } else if (limit < _REGION1_SIZE) { 51 limit = _REGION1_SIZE - 1; 52 atype = _ASCE_TYPE_REGION2; 53 etype = _REGION2_ENTRY_EMPTY; 54 } else { 55 limit = -1UL; 56 atype = _ASCE_TYPE_REGION1; 57 etype = _REGION1_ENTRY_EMPTY; 58 } 59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 60 if (!gmap) 61 goto out; 62 INIT_LIST_HEAD(&gmap->crst_list); 63 INIT_LIST_HEAD(&gmap->children); 64 INIT_LIST_HEAD(&gmap->pt_list); 65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 68 spin_lock_init(&gmap->guest_table_lock); 69 spin_lock_init(&gmap->shadow_lock); 70 refcount_set(&gmap->ref_count, 1); 71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 72 if (!page) 73 goto out_free; 74 page->index = 0; 75 list_add(&page->lru, &gmap->crst_list); 76 table = (unsigned long *) page_to_phys(page); 77 crst_table_init(table, etype); 78 gmap->table = table; 79 gmap->asce = atype | _ASCE_TABLE_LENGTH | 80 _ASCE_USER_BITS | __pa(table); 81 gmap->asce_end = limit; 82 return gmap; 83 84 out_free: 85 kfree(gmap); 86 out: 87 return NULL; 88 } 89 90 /** 91 * gmap_create - create a guest address space 92 * @mm: pointer to the parent mm_struct 93 * @limit: maximum size of the gmap address space 94 * 95 * Returns a guest address space structure. 96 */ 97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 98 { 99 struct gmap *gmap; 100 unsigned long gmap_asce; 101 102 gmap = gmap_alloc(limit); 103 if (!gmap) 104 return NULL; 105 gmap->mm = mm; 106 spin_lock(&mm->context.lock); 107 list_add_rcu(&gmap->list, &mm->context.gmap_list); 108 if (list_is_singular(&mm->context.gmap_list)) 109 gmap_asce = gmap->asce; 110 else 111 gmap_asce = -1UL; 112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 113 spin_unlock(&mm->context.lock); 114 return gmap; 115 } 116 EXPORT_SYMBOL_GPL(gmap_create); 117 118 static void gmap_flush_tlb(struct gmap *gmap) 119 { 120 if (MACHINE_HAS_IDTE) 121 __tlb_flush_idte(gmap->asce); 122 else 123 __tlb_flush_global(); 124 } 125 126 static void gmap_radix_tree_free(struct radix_tree_root *root) 127 { 128 struct radix_tree_iter iter; 129 unsigned long indices[16]; 130 unsigned long index; 131 void __rcu **slot; 132 int i, nr; 133 134 /* A radix tree is freed by deleting all of its entries */ 135 index = 0; 136 do { 137 nr = 0; 138 radix_tree_for_each_slot(slot, root, &iter, index) { 139 indices[nr] = iter.index; 140 if (++nr == 16) 141 break; 142 } 143 for (i = 0; i < nr; i++) { 144 index = indices[i]; 145 radix_tree_delete(root, index); 146 } 147 } while (nr > 0); 148 } 149 150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 151 { 152 struct gmap_rmap *rmap, *rnext, *head; 153 struct radix_tree_iter iter; 154 unsigned long indices[16]; 155 unsigned long index; 156 void __rcu **slot; 157 int i, nr; 158 159 /* A radix tree is freed by deleting all of its entries */ 160 index = 0; 161 do { 162 nr = 0; 163 radix_tree_for_each_slot(slot, root, &iter, index) { 164 indices[nr] = iter.index; 165 if (++nr == 16) 166 break; 167 } 168 for (i = 0; i < nr; i++) { 169 index = indices[i]; 170 head = radix_tree_delete(root, index); 171 gmap_for_each_rmap_safe(rmap, rnext, head) 172 kfree(rmap); 173 } 174 } while (nr > 0); 175 } 176 177 /** 178 * gmap_free - free a guest address space 179 * @gmap: pointer to the guest address space structure 180 * 181 * No locks required. There are no references to this gmap anymore. 182 */ 183 static void gmap_free(struct gmap *gmap) 184 { 185 struct page *page, *next; 186 187 /* Flush tlb of all gmaps (if not already done for shadows) */ 188 if (!(gmap_is_shadow(gmap) && gmap->removed)) 189 gmap_flush_tlb(gmap); 190 /* Free all segment & region tables. */ 191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 192 __free_pages(page, CRST_ALLOC_ORDER); 193 gmap_radix_tree_free(&gmap->guest_to_host); 194 gmap_radix_tree_free(&gmap->host_to_guest); 195 196 /* Free additional data for a shadow gmap */ 197 if (gmap_is_shadow(gmap)) { 198 /* Free all page tables. */ 199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 200 page_table_free_pgste(page); 201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 202 /* Release reference to the parent */ 203 gmap_put(gmap->parent); 204 } 205 206 kfree(gmap); 207 } 208 209 /** 210 * gmap_get - increase reference counter for guest address space 211 * @gmap: pointer to the guest address space structure 212 * 213 * Returns the gmap pointer 214 */ 215 struct gmap *gmap_get(struct gmap *gmap) 216 { 217 refcount_inc(&gmap->ref_count); 218 return gmap; 219 } 220 EXPORT_SYMBOL_GPL(gmap_get); 221 222 /** 223 * gmap_put - decrease reference counter for guest address space 224 * @gmap: pointer to the guest address space structure 225 * 226 * If the reference counter reaches zero the guest address space is freed. 227 */ 228 void gmap_put(struct gmap *gmap) 229 { 230 if (refcount_dec_and_test(&gmap->ref_count)) 231 gmap_free(gmap); 232 } 233 EXPORT_SYMBOL_GPL(gmap_put); 234 235 /** 236 * gmap_remove - remove a guest address space but do not free it yet 237 * @gmap: pointer to the guest address space structure 238 */ 239 void gmap_remove(struct gmap *gmap) 240 { 241 struct gmap *sg, *next; 242 unsigned long gmap_asce; 243 244 /* Remove all shadow gmaps linked to this gmap */ 245 if (!list_empty(&gmap->children)) { 246 spin_lock(&gmap->shadow_lock); 247 list_for_each_entry_safe(sg, next, &gmap->children, list) { 248 list_del(&sg->list); 249 gmap_put(sg); 250 } 251 spin_unlock(&gmap->shadow_lock); 252 } 253 /* Remove gmap from the pre-mm list */ 254 spin_lock(&gmap->mm->context.lock); 255 list_del_rcu(&gmap->list); 256 if (list_empty(&gmap->mm->context.gmap_list)) 257 gmap_asce = 0; 258 else if (list_is_singular(&gmap->mm->context.gmap_list)) 259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 260 struct gmap, list)->asce; 261 else 262 gmap_asce = -1UL; 263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 264 spin_unlock(&gmap->mm->context.lock); 265 synchronize_rcu(); 266 /* Put reference */ 267 gmap_put(gmap); 268 } 269 EXPORT_SYMBOL_GPL(gmap_remove); 270 271 /** 272 * gmap_enable - switch primary space to the guest address space 273 * @gmap: pointer to the guest address space structure 274 */ 275 void gmap_enable(struct gmap *gmap) 276 { 277 S390_lowcore.gmap = (unsigned long) gmap; 278 } 279 EXPORT_SYMBOL_GPL(gmap_enable); 280 281 /** 282 * gmap_disable - switch back to the standard primary address space 283 * @gmap: pointer to the guest address space structure 284 */ 285 void gmap_disable(struct gmap *gmap) 286 { 287 S390_lowcore.gmap = 0UL; 288 } 289 EXPORT_SYMBOL_GPL(gmap_disable); 290 291 /** 292 * gmap_get_enabled - get a pointer to the currently enabled gmap 293 * 294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 295 */ 296 struct gmap *gmap_get_enabled(void) 297 { 298 return (struct gmap *) S390_lowcore.gmap; 299 } 300 EXPORT_SYMBOL_GPL(gmap_get_enabled); 301 302 /* 303 * gmap_alloc_table is assumed to be called with mmap_lock held 304 */ 305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 306 unsigned long init, unsigned long gaddr) 307 { 308 struct page *page; 309 unsigned long *new; 310 311 /* since we dont free the gmap table until gmap_free we can unlock */ 312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 313 if (!page) 314 return -ENOMEM; 315 new = (unsigned long *) page_to_phys(page); 316 crst_table_init(new, init); 317 spin_lock(&gmap->guest_table_lock); 318 if (*table & _REGION_ENTRY_INVALID) { 319 list_add(&page->lru, &gmap->crst_list); 320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 321 (*table & _REGION_ENTRY_TYPE_MASK); 322 page->index = gaddr; 323 page = NULL; 324 } 325 spin_unlock(&gmap->guest_table_lock); 326 if (page) 327 __free_pages(page, CRST_ALLOC_ORDER); 328 return 0; 329 } 330 331 /** 332 * __gmap_segment_gaddr - find virtual address from segment pointer 333 * @entry: pointer to a segment table entry in the guest address space 334 * 335 * Returns the virtual address in the guest address space for the segment 336 */ 337 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 338 { 339 struct page *page; 340 unsigned long offset, mask; 341 342 offset = (unsigned long) entry / sizeof(unsigned long); 343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 345 page = virt_to_page((void *)((unsigned long) entry & mask)); 346 return page->index + offset; 347 } 348 349 /** 350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 351 * @gmap: pointer to the guest address space structure 352 * @vmaddr: address in the host process address space 353 * 354 * Returns 1 if a TLB flush is required 355 */ 356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 357 { 358 unsigned long *entry; 359 int flush = 0; 360 361 BUG_ON(gmap_is_shadow(gmap)); 362 spin_lock(&gmap->guest_table_lock); 363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 364 if (entry) { 365 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 366 *entry = _SEGMENT_ENTRY_EMPTY; 367 } 368 spin_unlock(&gmap->guest_table_lock); 369 return flush; 370 } 371 372 /** 373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 374 * @gmap: pointer to the guest address space structure 375 * @gaddr: address in the guest address space 376 * 377 * Returns 1 if a TLB flush is required 378 */ 379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 380 { 381 unsigned long vmaddr; 382 383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 384 gaddr >> PMD_SHIFT); 385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 386 } 387 388 /** 389 * gmap_unmap_segment - unmap segment from the guest address space 390 * @gmap: pointer to the guest address space structure 391 * @to: address in the guest address space 392 * @len: length of the memory area to unmap 393 * 394 * Returns 0 if the unmap succeeded, -EINVAL if not. 395 */ 396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 397 { 398 unsigned long off; 399 int flush; 400 401 BUG_ON(gmap_is_shadow(gmap)); 402 if ((to | len) & (PMD_SIZE - 1)) 403 return -EINVAL; 404 if (len == 0 || to + len < to) 405 return -EINVAL; 406 407 flush = 0; 408 mmap_write_lock(gmap->mm); 409 for (off = 0; off < len; off += PMD_SIZE) 410 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 411 mmap_write_unlock(gmap->mm); 412 if (flush) 413 gmap_flush_tlb(gmap); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 417 418 /** 419 * gmap_map_segment - map a segment to the guest address space 420 * @gmap: pointer to the guest address space structure 421 * @from: source address in the parent address space 422 * @to: target address in the guest address space 423 * @len: length of the memory area to map 424 * 425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 426 */ 427 int gmap_map_segment(struct gmap *gmap, unsigned long from, 428 unsigned long to, unsigned long len) 429 { 430 unsigned long off; 431 int flush; 432 433 BUG_ON(gmap_is_shadow(gmap)); 434 if ((from | to | len) & (PMD_SIZE - 1)) 435 return -EINVAL; 436 if (len == 0 || from + len < from || to + len < to || 437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 438 return -EINVAL; 439 440 flush = 0; 441 mmap_write_lock(gmap->mm); 442 for (off = 0; off < len; off += PMD_SIZE) { 443 /* Remove old translation */ 444 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 445 /* Store new translation */ 446 if (radix_tree_insert(&gmap->guest_to_host, 447 (to + off) >> PMD_SHIFT, 448 (void *) from + off)) 449 break; 450 } 451 mmap_write_unlock(gmap->mm); 452 if (flush) 453 gmap_flush_tlb(gmap); 454 if (off >= len) 455 return 0; 456 gmap_unmap_segment(gmap, to, len); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(gmap_map_segment); 460 461 /** 462 * __gmap_translate - translate a guest address to a user space address 463 * @gmap: pointer to guest mapping meta data structure 464 * @gaddr: guest address 465 * 466 * Returns user space address which corresponds to the guest address or 467 * -EFAULT if no such mapping exists. 468 * This function does not establish potentially missing page table entries. 469 * The mmap_lock of the mm that belongs to the address space must be held 470 * when this function gets called. 471 * 472 * Note: Can also be called for shadow gmaps. 473 */ 474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 475 { 476 unsigned long vmaddr; 477 478 vmaddr = (unsigned long) 479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 480 /* Note: guest_to_host is empty for a shadow gmap */ 481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 482 } 483 EXPORT_SYMBOL_GPL(__gmap_translate); 484 485 /** 486 * gmap_translate - translate a guest address to a user space address 487 * @gmap: pointer to guest mapping meta data structure 488 * @gaddr: guest address 489 * 490 * Returns user space address which corresponds to the guest address or 491 * -EFAULT if no such mapping exists. 492 * This function does not establish potentially missing page table entries. 493 */ 494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 495 { 496 unsigned long rc; 497 498 mmap_read_lock(gmap->mm); 499 rc = __gmap_translate(gmap, gaddr); 500 mmap_read_unlock(gmap->mm); 501 return rc; 502 } 503 EXPORT_SYMBOL_GPL(gmap_translate); 504 505 /** 506 * gmap_unlink - disconnect a page table from the gmap shadow tables 507 * @gmap: pointer to guest mapping meta data structure 508 * @table: pointer to the host page table 509 * @vmaddr: vm address associated with the host page table 510 */ 511 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 512 unsigned long vmaddr) 513 { 514 struct gmap *gmap; 515 int flush; 516 517 rcu_read_lock(); 518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 520 if (flush) 521 gmap_flush_tlb(gmap); 522 } 523 rcu_read_unlock(); 524 } 525 526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 527 unsigned long gaddr); 528 529 /** 530 * gmap_link - set up shadow page tables to connect a host to a guest address 531 * @gmap: pointer to guest mapping meta data structure 532 * @gaddr: guest address 533 * @vmaddr: vm address 534 * 535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 536 * if the vm address is already mapped to a different guest segment. 537 * The mmap_lock of the mm that belongs to the address space must be held 538 * when this function gets called. 539 */ 540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 541 { 542 struct mm_struct *mm; 543 unsigned long *table; 544 spinlock_t *ptl; 545 pgd_t *pgd; 546 p4d_t *p4d; 547 pud_t *pud; 548 pmd_t *pmd; 549 u64 unprot; 550 int rc; 551 552 BUG_ON(gmap_is_shadow(gmap)); 553 /* Create higher level tables in the gmap page table */ 554 table = gmap->table; 555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 557 if ((*table & _REGION_ENTRY_INVALID) && 558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 559 gaddr & _REGION1_MASK)) 560 return -ENOMEM; 561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 562 } 563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 565 if ((*table & _REGION_ENTRY_INVALID) && 566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 567 gaddr & _REGION2_MASK)) 568 return -ENOMEM; 569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 570 } 571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 573 if ((*table & _REGION_ENTRY_INVALID) && 574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 575 gaddr & _REGION3_MASK)) 576 return -ENOMEM; 577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 578 } 579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 580 /* Walk the parent mm page table */ 581 mm = gmap->mm; 582 pgd = pgd_offset(mm, vmaddr); 583 VM_BUG_ON(pgd_none(*pgd)); 584 p4d = p4d_offset(pgd, vmaddr); 585 VM_BUG_ON(p4d_none(*p4d)); 586 pud = pud_offset(p4d, vmaddr); 587 VM_BUG_ON(pud_none(*pud)); 588 /* large puds cannot yet be handled */ 589 if (pud_large(*pud)) 590 return -EFAULT; 591 pmd = pmd_offset(pud, vmaddr); 592 VM_BUG_ON(pmd_none(*pmd)); 593 /* Are we allowed to use huge pages? */ 594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 595 return -EFAULT; 596 /* Link gmap segment table entry location to page table. */ 597 rc = radix_tree_preload(GFP_KERNEL); 598 if (rc) 599 return rc; 600 ptl = pmd_lock(mm, pmd); 601 spin_lock(&gmap->guest_table_lock); 602 if (*table == _SEGMENT_ENTRY_EMPTY) { 603 rc = radix_tree_insert(&gmap->host_to_guest, 604 vmaddr >> PMD_SHIFT, table); 605 if (!rc) { 606 if (pmd_large(*pmd)) { 607 *table = (pmd_val(*pmd) & 608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 609 | _SEGMENT_ENTRY_GMAP_UC; 610 } else 611 *table = pmd_val(*pmd) & 612 _SEGMENT_ENTRY_HARDWARE_BITS; 613 } 614 } else if (*table & _SEGMENT_ENTRY_PROTECT && 615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 616 unprot = (u64)*table; 617 unprot &= ~_SEGMENT_ENTRY_PROTECT; 618 unprot |= _SEGMENT_ENTRY_GMAP_UC; 619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 620 } 621 spin_unlock(&gmap->guest_table_lock); 622 spin_unlock(ptl); 623 radix_tree_preload_end(); 624 return rc; 625 } 626 627 /** 628 * gmap_fault - resolve a fault on a guest address 629 * @gmap: pointer to guest mapping meta data structure 630 * @gaddr: guest address 631 * @fault_flags: flags to pass down to handle_mm_fault() 632 * 633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 634 * if the vm address is already mapped to a different guest segment. 635 */ 636 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 637 unsigned int fault_flags) 638 { 639 unsigned long vmaddr; 640 int rc; 641 bool unlocked; 642 643 mmap_read_lock(gmap->mm); 644 645 retry: 646 unlocked = false; 647 vmaddr = __gmap_translate(gmap, gaddr); 648 if (IS_ERR_VALUE(vmaddr)) { 649 rc = vmaddr; 650 goto out_up; 651 } 652 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags, 653 &unlocked)) { 654 rc = -EFAULT; 655 goto out_up; 656 } 657 /* 658 * In the case that fixup_user_fault unlocked the mmap_lock during 659 * faultin redo __gmap_translate to not race with a map/unmap_segment. 660 */ 661 if (unlocked) 662 goto retry; 663 664 rc = __gmap_link(gmap, gaddr, vmaddr); 665 out_up: 666 mmap_read_unlock(gmap->mm); 667 return rc; 668 } 669 EXPORT_SYMBOL_GPL(gmap_fault); 670 671 /* 672 * this function is assumed to be called with mmap_lock held 673 */ 674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 675 { 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 /* Get pointer to the page table entry */ 686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 687 if (likely(ptep)) 688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 689 pte_unmap_unlock(ptep, ptl); 690 } 691 } 692 EXPORT_SYMBOL_GPL(__gmap_zap); 693 694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 695 { 696 unsigned long gaddr, vmaddr, size; 697 struct vm_area_struct *vma; 698 699 mmap_read_lock(gmap->mm); 700 for (gaddr = from; gaddr < to; 701 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 702 /* Find the vm address for the guest address */ 703 vmaddr = (unsigned long) 704 radix_tree_lookup(&gmap->guest_to_host, 705 gaddr >> PMD_SHIFT); 706 if (!vmaddr) 707 continue; 708 vmaddr |= gaddr & ~PMD_MASK; 709 /* Find vma in the parent mm */ 710 vma = find_vma(gmap->mm, vmaddr); 711 if (!vma) 712 continue; 713 /* 714 * We do not discard pages that are backed by 715 * hugetlbfs, so we don't have to refault them. 716 */ 717 if (is_vm_hugetlb_page(vma)) 718 continue; 719 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 720 zap_page_range(vma, vmaddr, size); 721 } 722 mmap_read_unlock(gmap->mm); 723 } 724 EXPORT_SYMBOL_GPL(gmap_discard); 725 726 static LIST_HEAD(gmap_notifier_list); 727 static DEFINE_SPINLOCK(gmap_notifier_lock); 728 729 /** 730 * gmap_register_pte_notifier - register a pte invalidation callback 731 * @nb: pointer to the gmap notifier block 732 */ 733 void gmap_register_pte_notifier(struct gmap_notifier *nb) 734 { 735 spin_lock(&gmap_notifier_lock); 736 list_add_rcu(&nb->list, &gmap_notifier_list); 737 spin_unlock(&gmap_notifier_lock); 738 } 739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 740 741 /** 742 * gmap_unregister_pte_notifier - remove a pte invalidation callback 743 * @nb: pointer to the gmap notifier block 744 */ 745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 746 { 747 spin_lock(&gmap_notifier_lock); 748 list_del_rcu(&nb->list); 749 spin_unlock(&gmap_notifier_lock); 750 synchronize_rcu(); 751 } 752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 753 754 /** 755 * gmap_call_notifier - call all registered invalidation callbacks 756 * @gmap: pointer to guest mapping meta data structure 757 * @start: start virtual address in the guest address space 758 * @end: end virtual address in the guest address space 759 */ 760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 761 unsigned long end) 762 { 763 struct gmap_notifier *nb; 764 765 list_for_each_entry(nb, &gmap_notifier_list, list) 766 nb->notifier_call(gmap, start, end); 767 } 768 769 /** 770 * gmap_table_walk - walk the gmap page tables 771 * @gmap: pointer to guest mapping meta data structure 772 * @gaddr: virtual address in the guest address space 773 * @level: page table level to stop at 774 * 775 * Returns a table entry pointer for the given guest address and @level 776 * @level=0 : returns a pointer to a page table table entry (or NULL) 777 * @level=1 : returns a pointer to a segment table entry (or NULL) 778 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 779 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 780 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 781 * 782 * Returns NULL if the gmap page tables could not be walked to the 783 * requested level. 784 * 785 * Note: Can also be called for shadow gmaps. 786 */ 787 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 788 unsigned long gaddr, int level) 789 { 790 const int asce_type = gmap->asce & _ASCE_TYPE_MASK; 791 unsigned long *table = gmap->table; 792 793 if (gmap_is_shadow(gmap) && gmap->removed) 794 return NULL; 795 796 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1)) 797 return NULL; 798 799 if (asce_type != _ASCE_TYPE_REGION1 && 800 gaddr & (-1UL << (31 + (asce_type >> 2) * 11))) 801 return NULL; 802 803 switch (asce_type) { 804 case _ASCE_TYPE_REGION1: 805 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 806 if (level == 4) 807 break; 808 if (*table & _REGION_ENTRY_INVALID) 809 return NULL; 810 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 811 fallthrough; 812 case _ASCE_TYPE_REGION2: 813 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 814 if (level == 3) 815 break; 816 if (*table & _REGION_ENTRY_INVALID) 817 return NULL; 818 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 819 fallthrough; 820 case _ASCE_TYPE_REGION3: 821 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 822 if (level == 2) 823 break; 824 if (*table & _REGION_ENTRY_INVALID) 825 return NULL; 826 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 827 fallthrough; 828 case _ASCE_TYPE_SEGMENT: 829 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 830 if (level == 1) 831 break; 832 if (*table & _REGION_ENTRY_INVALID) 833 return NULL; 834 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 835 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 836 } 837 return table; 838 } 839 840 /** 841 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 842 * and return the pte pointer 843 * @gmap: pointer to guest mapping meta data structure 844 * @gaddr: virtual address in the guest address space 845 * @ptl: pointer to the spinlock pointer 846 * 847 * Returns a pointer to the locked pte for a guest address, or NULL 848 */ 849 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 850 spinlock_t **ptl) 851 { 852 unsigned long *table; 853 854 BUG_ON(gmap_is_shadow(gmap)); 855 /* Walk the gmap page table, lock and get pte pointer */ 856 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 857 if (!table || *table & _SEGMENT_ENTRY_INVALID) 858 return NULL; 859 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 860 } 861 862 /** 863 * gmap_pte_op_fixup - force a page in and connect the gmap page table 864 * @gmap: pointer to guest mapping meta data structure 865 * @gaddr: virtual address in the guest address space 866 * @vmaddr: address in the host process address space 867 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 868 * 869 * Returns 0 if the caller can retry __gmap_translate (might fail again), 870 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 871 * up or connecting the gmap page table. 872 */ 873 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 874 unsigned long vmaddr, int prot) 875 { 876 struct mm_struct *mm = gmap->mm; 877 unsigned int fault_flags; 878 bool unlocked = false; 879 880 BUG_ON(gmap_is_shadow(gmap)); 881 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 882 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked)) 883 return -EFAULT; 884 if (unlocked) 885 /* lost mmap_lock, caller has to retry __gmap_translate */ 886 return 0; 887 /* Connect the page tables */ 888 return __gmap_link(gmap, gaddr, vmaddr); 889 } 890 891 /** 892 * gmap_pte_op_end - release the page table lock 893 * @ptl: pointer to the spinlock pointer 894 */ 895 static void gmap_pte_op_end(spinlock_t *ptl) 896 { 897 if (ptl) 898 spin_unlock(ptl); 899 } 900 901 /** 902 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 903 * and return the pmd pointer 904 * @gmap: pointer to guest mapping meta data structure 905 * @gaddr: virtual address in the guest address space 906 * 907 * Returns a pointer to the pmd for a guest address, or NULL 908 */ 909 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 910 { 911 pmd_t *pmdp; 912 913 BUG_ON(gmap_is_shadow(gmap)); 914 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 915 if (!pmdp) 916 return NULL; 917 918 /* without huge pages, there is no need to take the table lock */ 919 if (!gmap->mm->context.allow_gmap_hpage_1m) 920 return pmd_none(*pmdp) ? NULL : pmdp; 921 922 spin_lock(&gmap->guest_table_lock); 923 if (pmd_none(*pmdp)) { 924 spin_unlock(&gmap->guest_table_lock); 925 return NULL; 926 } 927 928 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 929 if (!pmd_large(*pmdp)) 930 spin_unlock(&gmap->guest_table_lock); 931 return pmdp; 932 } 933 934 /** 935 * gmap_pmd_op_end - release the guest_table_lock if needed 936 * @gmap: pointer to the guest mapping meta data structure 937 * @pmdp: pointer to the pmd 938 */ 939 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 940 { 941 if (pmd_large(*pmdp)) 942 spin_unlock(&gmap->guest_table_lock); 943 } 944 945 /* 946 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 947 * @pmdp: pointer to the pmd to be protected 948 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 949 * @bits: notification bits to set 950 * 951 * Returns: 952 * 0 if successfully protected 953 * -EAGAIN if a fixup is needed 954 * -EINVAL if unsupported notifier bits have been specified 955 * 956 * Expected to be called with sg->mm->mmap_lock in read and 957 * guest_table_lock held. 958 */ 959 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 960 pmd_t *pmdp, int prot, unsigned long bits) 961 { 962 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 963 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 964 pmd_t new = *pmdp; 965 966 /* Fixup needed */ 967 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 968 return -EAGAIN; 969 970 if (prot == PROT_NONE && !pmd_i) { 971 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 972 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 973 } 974 975 if (prot == PROT_READ && !pmd_p) { 976 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 977 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 978 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 979 } 980 981 if (bits & GMAP_NOTIFY_MPROT) 982 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 983 984 /* Shadow GMAP protection needs split PMDs */ 985 if (bits & GMAP_NOTIFY_SHADOW) 986 return -EINVAL; 987 988 return 0; 989 } 990 991 /* 992 * gmap_protect_pte - remove access rights to memory and set pgste bits 993 * @gmap: pointer to guest mapping meta data structure 994 * @gaddr: virtual address in the guest address space 995 * @pmdp: pointer to the pmd associated with the pte 996 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 997 * @bits: notification bits to set 998 * 999 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1000 * -EAGAIN if a fixup is needed. 1001 * 1002 * Expected to be called with sg->mm->mmap_lock in read 1003 */ 1004 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1005 pmd_t *pmdp, int prot, unsigned long bits) 1006 { 1007 int rc; 1008 pte_t *ptep; 1009 spinlock_t *ptl = NULL; 1010 unsigned long pbits = 0; 1011 1012 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1013 return -EAGAIN; 1014 1015 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1016 if (!ptep) 1017 return -ENOMEM; 1018 1019 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1020 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1021 /* Protect and unlock. */ 1022 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1023 gmap_pte_op_end(ptl); 1024 return rc; 1025 } 1026 1027 /* 1028 * gmap_protect_range - remove access rights to memory and set pgste bits 1029 * @gmap: pointer to guest mapping meta data structure 1030 * @gaddr: virtual address in the guest address space 1031 * @len: size of area 1032 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1033 * @bits: pgste notification bits to set 1034 * 1035 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1036 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1037 * 1038 * Called with sg->mm->mmap_lock in read. 1039 */ 1040 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1041 unsigned long len, int prot, unsigned long bits) 1042 { 1043 unsigned long vmaddr, dist; 1044 pmd_t *pmdp; 1045 int rc; 1046 1047 BUG_ON(gmap_is_shadow(gmap)); 1048 while (len) { 1049 rc = -EAGAIN; 1050 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1051 if (pmdp) { 1052 if (!pmd_large(*pmdp)) { 1053 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1054 bits); 1055 if (!rc) { 1056 len -= PAGE_SIZE; 1057 gaddr += PAGE_SIZE; 1058 } 1059 } else { 1060 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1061 bits); 1062 if (!rc) { 1063 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1064 len = len < dist ? 0 : len - dist; 1065 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1066 } 1067 } 1068 gmap_pmd_op_end(gmap, pmdp); 1069 } 1070 if (rc) { 1071 if (rc == -EINVAL) 1072 return rc; 1073 1074 /* -EAGAIN, fixup of userspace mm and gmap */ 1075 vmaddr = __gmap_translate(gmap, gaddr); 1076 if (IS_ERR_VALUE(vmaddr)) 1077 return vmaddr; 1078 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1079 if (rc) 1080 return rc; 1081 } 1082 } 1083 return 0; 1084 } 1085 1086 /** 1087 * gmap_mprotect_notify - change access rights for a range of ptes and 1088 * call the notifier if any pte changes again 1089 * @gmap: pointer to guest mapping meta data structure 1090 * @gaddr: virtual address in the guest address space 1091 * @len: size of area 1092 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1093 * 1094 * Returns 0 if for each page in the given range a gmap mapping exists, 1095 * the new access rights could be set and the notifier could be armed. 1096 * If the gmap mapping is missing for one or more pages -EFAULT is 1097 * returned. If no memory could be allocated -ENOMEM is returned. 1098 * This function establishes missing page table entries. 1099 */ 1100 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1101 unsigned long len, int prot) 1102 { 1103 int rc; 1104 1105 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1106 return -EINVAL; 1107 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1108 return -EINVAL; 1109 mmap_read_lock(gmap->mm); 1110 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1111 mmap_read_unlock(gmap->mm); 1112 return rc; 1113 } 1114 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1115 1116 /** 1117 * gmap_read_table - get an unsigned long value from a guest page table using 1118 * absolute addressing, without marking the page referenced. 1119 * @gmap: pointer to guest mapping meta data structure 1120 * @gaddr: virtual address in the guest address space 1121 * @val: pointer to the unsigned long value to return 1122 * 1123 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1124 * if reading using the virtual address failed. -EINVAL if called on a gmap 1125 * shadow. 1126 * 1127 * Called with gmap->mm->mmap_lock in read. 1128 */ 1129 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1130 { 1131 unsigned long address, vmaddr; 1132 spinlock_t *ptl; 1133 pte_t *ptep, pte; 1134 int rc; 1135 1136 if (gmap_is_shadow(gmap)) 1137 return -EINVAL; 1138 1139 while (1) { 1140 rc = -EAGAIN; 1141 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1142 if (ptep) { 1143 pte = *ptep; 1144 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1145 address = pte_val(pte) & PAGE_MASK; 1146 address += gaddr & ~PAGE_MASK; 1147 *val = *(unsigned long *) address; 1148 pte_val(*ptep) |= _PAGE_YOUNG; 1149 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1150 rc = 0; 1151 } 1152 gmap_pte_op_end(ptl); 1153 } 1154 if (!rc) 1155 break; 1156 vmaddr = __gmap_translate(gmap, gaddr); 1157 if (IS_ERR_VALUE(vmaddr)) { 1158 rc = vmaddr; 1159 break; 1160 } 1161 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1162 if (rc) 1163 break; 1164 } 1165 return rc; 1166 } 1167 EXPORT_SYMBOL_GPL(gmap_read_table); 1168 1169 /** 1170 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1171 * @sg: pointer to the shadow guest address space structure 1172 * @vmaddr: vm address associated with the rmap 1173 * @rmap: pointer to the rmap structure 1174 * 1175 * Called with the sg->guest_table_lock 1176 */ 1177 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1178 struct gmap_rmap *rmap) 1179 { 1180 void __rcu **slot; 1181 1182 BUG_ON(!gmap_is_shadow(sg)); 1183 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1184 if (slot) { 1185 rmap->next = radix_tree_deref_slot_protected(slot, 1186 &sg->guest_table_lock); 1187 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1188 } else { 1189 rmap->next = NULL; 1190 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1191 rmap); 1192 } 1193 } 1194 1195 /** 1196 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1197 * @sg: pointer to the shadow guest address space structure 1198 * @raddr: rmap address in the shadow gmap 1199 * @paddr: address in the parent guest address space 1200 * @len: length of the memory area to protect 1201 * 1202 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1203 * if out of memory and -EFAULT if paddr is invalid. 1204 */ 1205 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1206 unsigned long paddr, unsigned long len) 1207 { 1208 struct gmap *parent; 1209 struct gmap_rmap *rmap; 1210 unsigned long vmaddr; 1211 spinlock_t *ptl; 1212 pte_t *ptep; 1213 int rc; 1214 1215 BUG_ON(!gmap_is_shadow(sg)); 1216 parent = sg->parent; 1217 while (len) { 1218 vmaddr = __gmap_translate(parent, paddr); 1219 if (IS_ERR_VALUE(vmaddr)) 1220 return vmaddr; 1221 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1222 if (!rmap) 1223 return -ENOMEM; 1224 rmap->raddr = raddr; 1225 rc = radix_tree_preload(GFP_KERNEL); 1226 if (rc) { 1227 kfree(rmap); 1228 return rc; 1229 } 1230 rc = -EAGAIN; 1231 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1232 if (ptep) { 1233 spin_lock(&sg->guest_table_lock); 1234 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1235 PGSTE_VSIE_BIT); 1236 if (!rc) 1237 gmap_insert_rmap(sg, vmaddr, rmap); 1238 spin_unlock(&sg->guest_table_lock); 1239 gmap_pte_op_end(ptl); 1240 } 1241 radix_tree_preload_end(); 1242 if (rc) { 1243 kfree(rmap); 1244 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1245 if (rc) 1246 return rc; 1247 continue; 1248 } 1249 paddr += PAGE_SIZE; 1250 len -= PAGE_SIZE; 1251 } 1252 return 0; 1253 } 1254 1255 #define _SHADOW_RMAP_MASK 0x7 1256 #define _SHADOW_RMAP_REGION1 0x5 1257 #define _SHADOW_RMAP_REGION2 0x4 1258 #define _SHADOW_RMAP_REGION3 0x3 1259 #define _SHADOW_RMAP_SEGMENT 0x2 1260 #define _SHADOW_RMAP_PGTABLE 0x1 1261 1262 /** 1263 * gmap_idte_one - invalidate a single region or segment table entry 1264 * @asce: region or segment table *origin* + table-type bits 1265 * @vaddr: virtual address to identify the table entry to flush 1266 * 1267 * The invalid bit of a single region or segment table entry is set 1268 * and the associated TLB entries depending on the entry are flushed. 1269 * The table-type of the @asce identifies the portion of the @vaddr 1270 * that is used as the invalidation index. 1271 */ 1272 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1273 { 1274 asm volatile( 1275 " .insn rrf,0xb98e0000,%0,%1,0,0" 1276 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1277 } 1278 1279 /** 1280 * gmap_unshadow_page - remove a page from a shadow page table 1281 * @sg: pointer to the shadow guest address space structure 1282 * @raddr: rmap address in the shadow guest address space 1283 * 1284 * Called with the sg->guest_table_lock 1285 */ 1286 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1287 { 1288 unsigned long *table; 1289 1290 BUG_ON(!gmap_is_shadow(sg)); 1291 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1292 if (!table || *table & _PAGE_INVALID) 1293 return; 1294 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1295 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1296 } 1297 1298 /** 1299 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1300 * @sg: pointer to the shadow guest address space structure 1301 * @raddr: rmap address in the shadow guest address space 1302 * @pgt: pointer to the start of a shadow page table 1303 * 1304 * Called with the sg->guest_table_lock 1305 */ 1306 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1307 unsigned long *pgt) 1308 { 1309 int i; 1310 1311 BUG_ON(!gmap_is_shadow(sg)); 1312 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1313 pgt[i] = _PAGE_INVALID; 1314 } 1315 1316 /** 1317 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1318 * @sg: pointer to the shadow guest address space structure 1319 * @raddr: address in the shadow guest address space 1320 * 1321 * Called with the sg->guest_table_lock 1322 */ 1323 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1324 { 1325 unsigned long sto, *ste, *pgt; 1326 struct page *page; 1327 1328 BUG_ON(!gmap_is_shadow(sg)); 1329 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1330 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1331 return; 1332 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1333 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1334 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1335 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1336 *ste = _SEGMENT_ENTRY_EMPTY; 1337 __gmap_unshadow_pgt(sg, raddr, pgt); 1338 /* Free page table */ 1339 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1340 list_del(&page->lru); 1341 page_table_free_pgste(page); 1342 } 1343 1344 /** 1345 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1346 * @sg: pointer to the shadow guest address space structure 1347 * @raddr: rmap address in the shadow guest address space 1348 * @sgt: pointer to the start of a shadow segment table 1349 * 1350 * Called with the sg->guest_table_lock 1351 */ 1352 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1353 unsigned long *sgt) 1354 { 1355 unsigned long *pgt; 1356 struct page *page; 1357 int i; 1358 1359 BUG_ON(!gmap_is_shadow(sg)); 1360 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1361 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1362 continue; 1363 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1364 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1365 __gmap_unshadow_pgt(sg, raddr, pgt); 1366 /* Free page table */ 1367 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1368 list_del(&page->lru); 1369 page_table_free_pgste(page); 1370 } 1371 } 1372 1373 /** 1374 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1375 * @sg: pointer to the shadow guest address space structure 1376 * @raddr: rmap address in the shadow guest address space 1377 * 1378 * Called with the shadow->guest_table_lock 1379 */ 1380 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1381 { 1382 unsigned long r3o, *r3e, *sgt; 1383 struct page *page; 1384 1385 BUG_ON(!gmap_is_shadow(sg)); 1386 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1387 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1388 return; 1389 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1390 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1391 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1392 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1393 *r3e = _REGION3_ENTRY_EMPTY; 1394 __gmap_unshadow_sgt(sg, raddr, sgt); 1395 /* Free segment table */ 1396 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1397 list_del(&page->lru); 1398 __free_pages(page, CRST_ALLOC_ORDER); 1399 } 1400 1401 /** 1402 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1403 * @sg: pointer to the shadow guest address space structure 1404 * @raddr: address in the shadow guest address space 1405 * @r3t: pointer to the start of a shadow region-3 table 1406 * 1407 * Called with the sg->guest_table_lock 1408 */ 1409 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1410 unsigned long *r3t) 1411 { 1412 unsigned long *sgt; 1413 struct page *page; 1414 int i; 1415 1416 BUG_ON(!gmap_is_shadow(sg)); 1417 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1418 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1419 continue; 1420 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1421 r3t[i] = _REGION3_ENTRY_EMPTY; 1422 __gmap_unshadow_sgt(sg, raddr, sgt); 1423 /* Free segment table */ 1424 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1425 list_del(&page->lru); 1426 __free_pages(page, CRST_ALLOC_ORDER); 1427 } 1428 } 1429 1430 /** 1431 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1432 * @sg: pointer to the shadow guest address space structure 1433 * @raddr: rmap address in the shadow guest address space 1434 * 1435 * Called with the sg->guest_table_lock 1436 */ 1437 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1438 { 1439 unsigned long r2o, *r2e, *r3t; 1440 struct page *page; 1441 1442 BUG_ON(!gmap_is_shadow(sg)); 1443 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1444 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1445 return; 1446 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1447 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1448 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1449 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1450 *r2e = _REGION2_ENTRY_EMPTY; 1451 __gmap_unshadow_r3t(sg, raddr, r3t); 1452 /* Free region 3 table */ 1453 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1454 list_del(&page->lru); 1455 __free_pages(page, CRST_ALLOC_ORDER); 1456 } 1457 1458 /** 1459 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1460 * @sg: pointer to the shadow guest address space structure 1461 * @raddr: rmap address in the shadow guest address space 1462 * @r2t: pointer to the start of a shadow region-2 table 1463 * 1464 * Called with the sg->guest_table_lock 1465 */ 1466 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1467 unsigned long *r2t) 1468 { 1469 unsigned long *r3t; 1470 struct page *page; 1471 int i; 1472 1473 BUG_ON(!gmap_is_shadow(sg)); 1474 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1475 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1476 continue; 1477 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1478 r2t[i] = _REGION2_ENTRY_EMPTY; 1479 __gmap_unshadow_r3t(sg, raddr, r3t); 1480 /* Free region 3 table */ 1481 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1482 list_del(&page->lru); 1483 __free_pages(page, CRST_ALLOC_ORDER); 1484 } 1485 } 1486 1487 /** 1488 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1489 * @sg: pointer to the shadow guest address space structure 1490 * @raddr: rmap address in the shadow guest address space 1491 * 1492 * Called with the sg->guest_table_lock 1493 */ 1494 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1495 { 1496 unsigned long r1o, *r1e, *r2t; 1497 struct page *page; 1498 1499 BUG_ON(!gmap_is_shadow(sg)); 1500 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1501 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1502 return; 1503 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1504 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1505 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1506 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1507 *r1e = _REGION1_ENTRY_EMPTY; 1508 __gmap_unshadow_r2t(sg, raddr, r2t); 1509 /* Free region 2 table */ 1510 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1511 list_del(&page->lru); 1512 __free_pages(page, CRST_ALLOC_ORDER); 1513 } 1514 1515 /** 1516 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1517 * @sg: pointer to the shadow guest address space structure 1518 * @raddr: rmap address in the shadow guest address space 1519 * @r1t: pointer to the start of a shadow region-1 table 1520 * 1521 * Called with the shadow->guest_table_lock 1522 */ 1523 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1524 unsigned long *r1t) 1525 { 1526 unsigned long asce, *r2t; 1527 struct page *page; 1528 int i; 1529 1530 BUG_ON(!gmap_is_shadow(sg)); 1531 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1532 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1533 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1534 continue; 1535 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1536 __gmap_unshadow_r2t(sg, raddr, r2t); 1537 /* Clear entry and flush translation r1t -> r2t */ 1538 gmap_idte_one(asce, raddr); 1539 r1t[i] = _REGION1_ENTRY_EMPTY; 1540 /* Free region 2 table */ 1541 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1542 list_del(&page->lru); 1543 __free_pages(page, CRST_ALLOC_ORDER); 1544 } 1545 } 1546 1547 /** 1548 * gmap_unshadow - remove a shadow page table completely 1549 * @sg: pointer to the shadow guest address space structure 1550 * 1551 * Called with sg->guest_table_lock 1552 */ 1553 static void gmap_unshadow(struct gmap *sg) 1554 { 1555 unsigned long *table; 1556 1557 BUG_ON(!gmap_is_shadow(sg)); 1558 if (sg->removed) 1559 return; 1560 sg->removed = 1; 1561 gmap_call_notifier(sg, 0, -1UL); 1562 gmap_flush_tlb(sg); 1563 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1564 switch (sg->asce & _ASCE_TYPE_MASK) { 1565 case _ASCE_TYPE_REGION1: 1566 __gmap_unshadow_r1t(sg, 0, table); 1567 break; 1568 case _ASCE_TYPE_REGION2: 1569 __gmap_unshadow_r2t(sg, 0, table); 1570 break; 1571 case _ASCE_TYPE_REGION3: 1572 __gmap_unshadow_r3t(sg, 0, table); 1573 break; 1574 case _ASCE_TYPE_SEGMENT: 1575 __gmap_unshadow_sgt(sg, 0, table); 1576 break; 1577 } 1578 } 1579 1580 /** 1581 * gmap_find_shadow - find a specific asce in the list of shadow tables 1582 * @parent: pointer to the parent gmap 1583 * @asce: ASCE for which the shadow table is created 1584 * @edat_level: edat level to be used for the shadow translation 1585 * 1586 * Returns the pointer to a gmap if a shadow table with the given asce is 1587 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1588 * otherwise NULL 1589 */ 1590 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1591 int edat_level) 1592 { 1593 struct gmap *sg; 1594 1595 list_for_each_entry(sg, &parent->children, list) { 1596 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1597 sg->removed) 1598 continue; 1599 if (!sg->initialized) 1600 return ERR_PTR(-EAGAIN); 1601 refcount_inc(&sg->ref_count); 1602 return sg; 1603 } 1604 return NULL; 1605 } 1606 1607 /** 1608 * gmap_shadow_valid - check if a shadow guest address space matches the 1609 * given properties and is still valid 1610 * @sg: pointer to the shadow guest address space structure 1611 * @asce: ASCE for which the shadow table is requested 1612 * @edat_level: edat level to be used for the shadow translation 1613 * 1614 * Returns 1 if the gmap shadow is still valid and matches the given 1615 * properties, the caller can continue using it. Returns 0 otherwise, the 1616 * caller has to request a new shadow gmap in this case. 1617 * 1618 */ 1619 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1620 { 1621 if (sg->removed) 1622 return 0; 1623 return sg->orig_asce == asce && sg->edat_level == edat_level; 1624 } 1625 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1626 1627 /** 1628 * gmap_shadow - create/find a shadow guest address space 1629 * @parent: pointer to the parent gmap 1630 * @asce: ASCE for which the shadow table is created 1631 * @edat_level: edat level to be used for the shadow translation 1632 * 1633 * The pages of the top level page table referred by the asce parameter 1634 * will be set to read-only and marked in the PGSTEs of the kvm process. 1635 * The shadow table will be removed automatically on any change to the 1636 * PTE mapping for the source table. 1637 * 1638 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1639 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1640 * parent gmap table could not be protected. 1641 */ 1642 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1643 int edat_level) 1644 { 1645 struct gmap *sg, *new; 1646 unsigned long limit; 1647 int rc; 1648 1649 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1650 BUG_ON(gmap_is_shadow(parent)); 1651 spin_lock(&parent->shadow_lock); 1652 sg = gmap_find_shadow(parent, asce, edat_level); 1653 spin_unlock(&parent->shadow_lock); 1654 if (sg) 1655 return sg; 1656 /* Create a new shadow gmap */ 1657 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1658 if (asce & _ASCE_REAL_SPACE) 1659 limit = -1UL; 1660 new = gmap_alloc(limit); 1661 if (!new) 1662 return ERR_PTR(-ENOMEM); 1663 new->mm = parent->mm; 1664 new->parent = gmap_get(parent); 1665 new->orig_asce = asce; 1666 new->edat_level = edat_level; 1667 new->initialized = false; 1668 spin_lock(&parent->shadow_lock); 1669 /* Recheck if another CPU created the same shadow */ 1670 sg = gmap_find_shadow(parent, asce, edat_level); 1671 if (sg) { 1672 spin_unlock(&parent->shadow_lock); 1673 gmap_free(new); 1674 return sg; 1675 } 1676 if (asce & _ASCE_REAL_SPACE) { 1677 /* only allow one real-space gmap shadow */ 1678 list_for_each_entry(sg, &parent->children, list) { 1679 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1680 spin_lock(&sg->guest_table_lock); 1681 gmap_unshadow(sg); 1682 spin_unlock(&sg->guest_table_lock); 1683 list_del(&sg->list); 1684 gmap_put(sg); 1685 break; 1686 } 1687 } 1688 } 1689 refcount_set(&new->ref_count, 2); 1690 list_add(&new->list, &parent->children); 1691 if (asce & _ASCE_REAL_SPACE) { 1692 /* nothing to protect, return right away */ 1693 new->initialized = true; 1694 spin_unlock(&parent->shadow_lock); 1695 return new; 1696 } 1697 spin_unlock(&parent->shadow_lock); 1698 /* protect after insertion, so it will get properly invalidated */ 1699 mmap_read_lock(parent->mm); 1700 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1701 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1702 PROT_READ, GMAP_NOTIFY_SHADOW); 1703 mmap_read_unlock(parent->mm); 1704 spin_lock(&parent->shadow_lock); 1705 new->initialized = true; 1706 if (rc) { 1707 list_del(&new->list); 1708 gmap_free(new); 1709 new = ERR_PTR(rc); 1710 } 1711 spin_unlock(&parent->shadow_lock); 1712 return new; 1713 } 1714 EXPORT_SYMBOL_GPL(gmap_shadow); 1715 1716 /** 1717 * gmap_shadow_r2t - create an empty shadow region 2 table 1718 * @sg: pointer to the shadow guest address space structure 1719 * @saddr: faulting address in the shadow gmap 1720 * @r2t: parent gmap address of the region 2 table to get shadowed 1721 * @fake: r2t references contiguous guest memory block, not a r2t 1722 * 1723 * The r2t parameter specifies the address of the source table. The 1724 * four pages of the source table are made read-only in the parent gmap 1725 * address space. A write to the source table area @r2t will automatically 1726 * remove the shadow r2 table and all of its decendents. 1727 * 1728 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1729 * shadow table structure is incomplete, -ENOMEM if out of memory and 1730 * -EFAULT if an address in the parent gmap could not be resolved. 1731 * 1732 * Called with sg->mm->mmap_lock in read. 1733 */ 1734 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1735 int fake) 1736 { 1737 unsigned long raddr, origin, offset, len; 1738 unsigned long *s_r2t, *table; 1739 struct page *page; 1740 int rc; 1741 1742 BUG_ON(!gmap_is_shadow(sg)); 1743 /* Allocate a shadow region second table */ 1744 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1745 if (!page) 1746 return -ENOMEM; 1747 page->index = r2t & _REGION_ENTRY_ORIGIN; 1748 if (fake) 1749 page->index |= GMAP_SHADOW_FAKE_TABLE; 1750 s_r2t = (unsigned long *) page_to_phys(page); 1751 /* Install shadow region second table */ 1752 spin_lock(&sg->guest_table_lock); 1753 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1754 if (!table) { 1755 rc = -EAGAIN; /* Race with unshadow */ 1756 goto out_free; 1757 } 1758 if (!(*table & _REGION_ENTRY_INVALID)) { 1759 rc = 0; /* Already established */ 1760 goto out_free; 1761 } else if (*table & _REGION_ENTRY_ORIGIN) { 1762 rc = -EAGAIN; /* Race with shadow */ 1763 goto out_free; 1764 } 1765 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1766 /* mark as invalid as long as the parent table is not protected */ 1767 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1768 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1769 if (sg->edat_level >= 1) 1770 *table |= (r2t & _REGION_ENTRY_PROTECT); 1771 list_add(&page->lru, &sg->crst_list); 1772 if (fake) { 1773 /* nothing to protect for fake tables */ 1774 *table &= ~_REGION_ENTRY_INVALID; 1775 spin_unlock(&sg->guest_table_lock); 1776 return 0; 1777 } 1778 spin_unlock(&sg->guest_table_lock); 1779 /* Make r2t read-only in parent gmap page table */ 1780 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1781 origin = r2t & _REGION_ENTRY_ORIGIN; 1782 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1783 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1784 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1785 spin_lock(&sg->guest_table_lock); 1786 if (!rc) { 1787 table = gmap_table_walk(sg, saddr, 4); 1788 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1789 (unsigned long) s_r2t) 1790 rc = -EAGAIN; /* Race with unshadow */ 1791 else 1792 *table &= ~_REGION_ENTRY_INVALID; 1793 } else { 1794 gmap_unshadow_r2t(sg, raddr); 1795 } 1796 spin_unlock(&sg->guest_table_lock); 1797 return rc; 1798 out_free: 1799 spin_unlock(&sg->guest_table_lock); 1800 __free_pages(page, CRST_ALLOC_ORDER); 1801 return rc; 1802 } 1803 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1804 1805 /** 1806 * gmap_shadow_r3t - create a shadow region 3 table 1807 * @sg: pointer to the shadow guest address space structure 1808 * @saddr: faulting address in the shadow gmap 1809 * @r3t: parent gmap address of the region 3 table to get shadowed 1810 * @fake: r3t references contiguous guest memory block, not a r3t 1811 * 1812 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1813 * shadow table structure is incomplete, -ENOMEM if out of memory and 1814 * -EFAULT if an address in the parent gmap could not be resolved. 1815 * 1816 * Called with sg->mm->mmap_lock in read. 1817 */ 1818 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1819 int fake) 1820 { 1821 unsigned long raddr, origin, offset, len; 1822 unsigned long *s_r3t, *table; 1823 struct page *page; 1824 int rc; 1825 1826 BUG_ON(!gmap_is_shadow(sg)); 1827 /* Allocate a shadow region second table */ 1828 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1829 if (!page) 1830 return -ENOMEM; 1831 page->index = r3t & _REGION_ENTRY_ORIGIN; 1832 if (fake) 1833 page->index |= GMAP_SHADOW_FAKE_TABLE; 1834 s_r3t = (unsigned long *) page_to_phys(page); 1835 /* Install shadow region second table */ 1836 spin_lock(&sg->guest_table_lock); 1837 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1838 if (!table) { 1839 rc = -EAGAIN; /* Race with unshadow */ 1840 goto out_free; 1841 } 1842 if (!(*table & _REGION_ENTRY_INVALID)) { 1843 rc = 0; /* Already established */ 1844 goto out_free; 1845 } else if (*table & _REGION_ENTRY_ORIGIN) { 1846 rc = -EAGAIN; /* Race with shadow */ 1847 goto out_free; 1848 } 1849 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1850 /* mark as invalid as long as the parent table is not protected */ 1851 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1852 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1853 if (sg->edat_level >= 1) 1854 *table |= (r3t & _REGION_ENTRY_PROTECT); 1855 list_add(&page->lru, &sg->crst_list); 1856 if (fake) { 1857 /* nothing to protect for fake tables */ 1858 *table &= ~_REGION_ENTRY_INVALID; 1859 spin_unlock(&sg->guest_table_lock); 1860 return 0; 1861 } 1862 spin_unlock(&sg->guest_table_lock); 1863 /* Make r3t read-only in parent gmap page table */ 1864 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1865 origin = r3t & _REGION_ENTRY_ORIGIN; 1866 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1867 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1868 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1869 spin_lock(&sg->guest_table_lock); 1870 if (!rc) { 1871 table = gmap_table_walk(sg, saddr, 3); 1872 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1873 (unsigned long) s_r3t) 1874 rc = -EAGAIN; /* Race with unshadow */ 1875 else 1876 *table &= ~_REGION_ENTRY_INVALID; 1877 } else { 1878 gmap_unshadow_r3t(sg, raddr); 1879 } 1880 spin_unlock(&sg->guest_table_lock); 1881 return rc; 1882 out_free: 1883 spin_unlock(&sg->guest_table_lock); 1884 __free_pages(page, CRST_ALLOC_ORDER); 1885 return rc; 1886 } 1887 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1888 1889 /** 1890 * gmap_shadow_sgt - create a shadow segment table 1891 * @sg: pointer to the shadow guest address space structure 1892 * @saddr: faulting address in the shadow gmap 1893 * @sgt: parent gmap address of the segment table to get shadowed 1894 * @fake: sgt references contiguous guest memory block, not a sgt 1895 * 1896 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1897 * shadow table structure is incomplete, -ENOMEM if out of memory and 1898 * -EFAULT if an address in the parent gmap could not be resolved. 1899 * 1900 * Called with sg->mm->mmap_lock in read. 1901 */ 1902 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1903 int fake) 1904 { 1905 unsigned long raddr, origin, offset, len; 1906 unsigned long *s_sgt, *table; 1907 struct page *page; 1908 int rc; 1909 1910 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1911 /* Allocate a shadow segment table */ 1912 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1913 if (!page) 1914 return -ENOMEM; 1915 page->index = sgt & _REGION_ENTRY_ORIGIN; 1916 if (fake) 1917 page->index |= GMAP_SHADOW_FAKE_TABLE; 1918 s_sgt = (unsigned long *) page_to_phys(page); 1919 /* Install shadow region second table */ 1920 spin_lock(&sg->guest_table_lock); 1921 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1922 if (!table) { 1923 rc = -EAGAIN; /* Race with unshadow */ 1924 goto out_free; 1925 } 1926 if (!(*table & _REGION_ENTRY_INVALID)) { 1927 rc = 0; /* Already established */ 1928 goto out_free; 1929 } else if (*table & _REGION_ENTRY_ORIGIN) { 1930 rc = -EAGAIN; /* Race with shadow */ 1931 goto out_free; 1932 } 1933 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1934 /* mark as invalid as long as the parent table is not protected */ 1935 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1936 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1937 if (sg->edat_level >= 1) 1938 *table |= sgt & _REGION_ENTRY_PROTECT; 1939 list_add(&page->lru, &sg->crst_list); 1940 if (fake) { 1941 /* nothing to protect for fake tables */ 1942 *table &= ~_REGION_ENTRY_INVALID; 1943 spin_unlock(&sg->guest_table_lock); 1944 return 0; 1945 } 1946 spin_unlock(&sg->guest_table_lock); 1947 /* Make sgt read-only in parent gmap page table */ 1948 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1949 origin = sgt & _REGION_ENTRY_ORIGIN; 1950 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1951 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1952 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1953 spin_lock(&sg->guest_table_lock); 1954 if (!rc) { 1955 table = gmap_table_walk(sg, saddr, 2); 1956 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1957 (unsigned long) s_sgt) 1958 rc = -EAGAIN; /* Race with unshadow */ 1959 else 1960 *table &= ~_REGION_ENTRY_INVALID; 1961 } else { 1962 gmap_unshadow_sgt(sg, raddr); 1963 } 1964 spin_unlock(&sg->guest_table_lock); 1965 return rc; 1966 out_free: 1967 spin_unlock(&sg->guest_table_lock); 1968 __free_pages(page, CRST_ALLOC_ORDER); 1969 return rc; 1970 } 1971 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1972 1973 /** 1974 * gmap_shadow_lookup_pgtable - find a shadow page table 1975 * @sg: pointer to the shadow guest address space structure 1976 * @saddr: the address in the shadow aguest address space 1977 * @pgt: parent gmap address of the page table to get shadowed 1978 * @dat_protection: if the pgtable is marked as protected by dat 1979 * @fake: pgt references contiguous guest memory block, not a pgtable 1980 * 1981 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1982 * table was not found. 1983 * 1984 * Called with sg->mm->mmap_lock in read. 1985 */ 1986 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1987 unsigned long *pgt, int *dat_protection, 1988 int *fake) 1989 { 1990 unsigned long *table; 1991 struct page *page; 1992 int rc; 1993 1994 BUG_ON(!gmap_is_shadow(sg)); 1995 spin_lock(&sg->guest_table_lock); 1996 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1997 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1998 /* Shadow page tables are full pages (pte+pgste) */ 1999 page = pfn_to_page(*table >> PAGE_SHIFT); 2000 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 2001 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 2002 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 2003 rc = 0; 2004 } else { 2005 rc = -EAGAIN; 2006 } 2007 spin_unlock(&sg->guest_table_lock); 2008 return rc; 2009 2010 } 2011 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2012 2013 /** 2014 * gmap_shadow_pgt - instantiate a shadow page table 2015 * @sg: pointer to the shadow guest address space structure 2016 * @saddr: faulting address in the shadow gmap 2017 * @pgt: parent gmap address of the page table to get shadowed 2018 * @fake: pgt references contiguous guest memory block, not a pgtable 2019 * 2020 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2021 * shadow table structure is incomplete, -ENOMEM if out of memory, 2022 * -EFAULT if an address in the parent gmap could not be resolved and 2023 * 2024 * Called with gmap->mm->mmap_lock in read 2025 */ 2026 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2027 int fake) 2028 { 2029 unsigned long raddr, origin; 2030 unsigned long *s_pgt, *table; 2031 struct page *page; 2032 int rc; 2033 2034 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2035 /* Allocate a shadow page table */ 2036 page = page_table_alloc_pgste(sg->mm); 2037 if (!page) 2038 return -ENOMEM; 2039 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2040 if (fake) 2041 page->index |= GMAP_SHADOW_FAKE_TABLE; 2042 s_pgt = (unsigned long *) page_to_phys(page); 2043 /* Install shadow page table */ 2044 spin_lock(&sg->guest_table_lock); 2045 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2046 if (!table) { 2047 rc = -EAGAIN; /* Race with unshadow */ 2048 goto out_free; 2049 } 2050 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2051 rc = 0; /* Already established */ 2052 goto out_free; 2053 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2054 rc = -EAGAIN; /* Race with shadow */ 2055 goto out_free; 2056 } 2057 /* mark as invalid as long as the parent table is not protected */ 2058 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2059 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2060 list_add(&page->lru, &sg->pt_list); 2061 if (fake) { 2062 /* nothing to protect for fake tables */ 2063 *table &= ~_SEGMENT_ENTRY_INVALID; 2064 spin_unlock(&sg->guest_table_lock); 2065 return 0; 2066 } 2067 spin_unlock(&sg->guest_table_lock); 2068 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2069 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2070 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2071 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2072 spin_lock(&sg->guest_table_lock); 2073 if (!rc) { 2074 table = gmap_table_walk(sg, saddr, 1); 2075 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2076 (unsigned long) s_pgt) 2077 rc = -EAGAIN; /* Race with unshadow */ 2078 else 2079 *table &= ~_SEGMENT_ENTRY_INVALID; 2080 } else { 2081 gmap_unshadow_pgt(sg, raddr); 2082 } 2083 spin_unlock(&sg->guest_table_lock); 2084 return rc; 2085 out_free: 2086 spin_unlock(&sg->guest_table_lock); 2087 page_table_free_pgste(page); 2088 return rc; 2089 2090 } 2091 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2092 2093 /** 2094 * gmap_shadow_page - create a shadow page mapping 2095 * @sg: pointer to the shadow guest address space structure 2096 * @saddr: faulting address in the shadow gmap 2097 * @pte: pte in parent gmap address space to get shadowed 2098 * 2099 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2100 * shadow table structure is incomplete, -ENOMEM if out of memory and 2101 * -EFAULT if an address in the parent gmap could not be resolved. 2102 * 2103 * Called with sg->mm->mmap_lock in read. 2104 */ 2105 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2106 { 2107 struct gmap *parent; 2108 struct gmap_rmap *rmap; 2109 unsigned long vmaddr, paddr; 2110 spinlock_t *ptl; 2111 pte_t *sptep, *tptep; 2112 int prot; 2113 int rc; 2114 2115 BUG_ON(!gmap_is_shadow(sg)); 2116 parent = sg->parent; 2117 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2118 2119 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 2120 if (!rmap) 2121 return -ENOMEM; 2122 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2123 2124 while (1) { 2125 paddr = pte_val(pte) & PAGE_MASK; 2126 vmaddr = __gmap_translate(parent, paddr); 2127 if (IS_ERR_VALUE(vmaddr)) { 2128 rc = vmaddr; 2129 break; 2130 } 2131 rc = radix_tree_preload(GFP_KERNEL); 2132 if (rc) 2133 break; 2134 rc = -EAGAIN; 2135 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2136 if (sptep) { 2137 spin_lock(&sg->guest_table_lock); 2138 /* Get page table pointer */ 2139 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2140 if (!tptep) { 2141 spin_unlock(&sg->guest_table_lock); 2142 gmap_pte_op_end(ptl); 2143 radix_tree_preload_end(); 2144 break; 2145 } 2146 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2147 if (rc > 0) { 2148 /* Success and a new mapping */ 2149 gmap_insert_rmap(sg, vmaddr, rmap); 2150 rmap = NULL; 2151 rc = 0; 2152 } 2153 gmap_pte_op_end(ptl); 2154 spin_unlock(&sg->guest_table_lock); 2155 } 2156 radix_tree_preload_end(); 2157 if (!rc) 2158 break; 2159 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2160 if (rc) 2161 break; 2162 } 2163 kfree(rmap); 2164 return rc; 2165 } 2166 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2167 2168 /** 2169 * gmap_shadow_notify - handle notifications for shadow gmap 2170 * 2171 * Called with sg->parent->shadow_lock. 2172 */ 2173 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2174 unsigned long gaddr) 2175 { 2176 struct gmap_rmap *rmap, *rnext, *head; 2177 unsigned long start, end, bits, raddr; 2178 2179 BUG_ON(!gmap_is_shadow(sg)); 2180 2181 spin_lock(&sg->guest_table_lock); 2182 if (sg->removed) { 2183 spin_unlock(&sg->guest_table_lock); 2184 return; 2185 } 2186 /* Check for top level table */ 2187 start = sg->orig_asce & _ASCE_ORIGIN; 2188 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2189 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2190 gaddr < end) { 2191 /* The complete shadow table has to go */ 2192 gmap_unshadow(sg); 2193 spin_unlock(&sg->guest_table_lock); 2194 list_del(&sg->list); 2195 gmap_put(sg); 2196 return; 2197 } 2198 /* Remove the page table tree from on specific entry */ 2199 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2200 gmap_for_each_rmap_safe(rmap, rnext, head) { 2201 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2202 raddr = rmap->raddr ^ bits; 2203 switch (bits) { 2204 case _SHADOW_RMAP_REGION1: 2205 gmap_unshadow_r2t(sg, raddr); 2206 break; 2207 case _SHADOW_RMAP_REGION2: 2208 gmap_unshadow_r3t(sg, raddr); 2209 break; 2210 case _SHADOW_RMAP_REGION3: 2211 gmap_unshadow_sgt(sg, raddr); 2212 break; 2213 case _SHADOW_RMAP_SEGMENT: 2214 gmap_unshadow_pgt(sg, raddr); 2215 break; 2216 case _SHADOW_RMAP_PGTABLE: 2217 gmap_unshadow_page(sg, raddr); 2218 break; 2219 } 2220 kfree(rmap); 2221 } 2222 spin_unlock(&sg->guest_table_lock); 2223 } 2224 2225 /** 2226 * ptep_notify - call all invalidation callbacks for a specific pte. 2227 * @mm: pointer to the process mm_struct 2228 * @addr: virtual address in the process address space 2229 * @pte: pointer to the page table entry 2230 * @bits: bits from the pgste that caused the notify call 2231 * 2232 * This function is assumed to be called with the page table lock held 2233 * for the pte to notify. 2234 */ 2235 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2236 pte_t *pte, unsigned long bits) 2237 { 2238 unsigned long offset, gaddr = 0; 2239 unsigned long *table; 2240 struct gmap *gmap, *sg, *next; 2241 2242 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2243 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2244 rcu_read_lock(); 2245 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2246 spin_lock(&gmap->guest_table_lock); 2247 table = radix_tree_lookup(&gmap->host_to_guest, 2248 vmaddr >> PMD_SHIFT); 2249 if (table) 2250 gaddr = __gmap_segment_gaddr(table) + offset; 2251 spin_unlock(&gmap->guest_table_lock); 2252 if (!table) 2253 continue; 2254 2255 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2256 spin_lock(&gmap->shadow_lock); 2257 list_for_each_entry_safe(sg, next, 2258 &gmap->children, list) 2259 gmap_shadow_notify(sg, vmaddr, gaddr); 2260 spin_unlock(&gmap->shadow_lock); 2261 } 2262 if (bits & PGSTE_IN_BIT) 2263 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2264 } 2265 rcu_read_unlock(); 2266 } 2267 EXPORT_SYMBOL_GPL(ptep_notify); 2268 2269 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2270 unsigned long gaddr) 2271 { 2272 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2273 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2274 } 2275 2276 /** 2277 * gmap_pmdp_xchg - exchange a gmap pmd with another 2278 * @gmap: pointer to the guest address space structure 2279 * @pmdp: pointer to the pmd entry 2280 * @new: replacement entry 2281 * @gaddr: the affected guest address 2282 * 2283 * This function is assumed to be called with the guest_table_lock 2284 * held. 2285 */ 2286 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2287 unsigned long gaddr) 2288 { 2289 gaddr &= HPAGE_MASK; 2290 pmdp_notify_gmap(gmap, pmdp, gaddr); 2291 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2292 if (MACHINE_HAS_TLB_GUEST) 2293 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2294 IDTE_GLOBAL); 2295 else if (MACHINE_HAS_IDTE) 2296 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2297 else 2298 __pmdp_csp(pmdp); 2299 *pmdp = new; 2300 } 2301 2302 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2303 int purge) 2304 { 2305 pmd_t *pmdp; 2306 struct gmap *gmap; 2307 unsigned long gaddr; 2308 2309 rcu_read_lock(); 2310 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2311 spin_lock(&gmap->guest_table_lock); 2312 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2313 vmaddr >> PMD_SHIFT); 2314 if (pmdp) { 2315 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2316 pmdp_notify_gmap(gmap, pmdp, gaddr); 2317 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2318 _SEGMENT_ENTRY_GMAP_UC)); 2319 if (purge) 2320 __pmdp_csp(pmdp); 2321 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2322 } 2323 spin_unlock(&gmap->guest_table_lock); 2324 } 2325 rcu_read_unlock(); 2326 } 2327 2328 /** 2329 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2330 * flushing 2331 * @mm: pointer to the process mm_struct 2332 * @vmaddr: virtual address in the process address space 2333 */ 2334 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2335 { 2336 gmap_pmdp_clear(mm, vmaddr, 0); 2337 } 2338 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2339 2340 /** 2341 * gmap_pmdp_csp - csp all affected guest pmd entries 2342 * @mm: pointer to the process mm_struct 2343 * @vmaddr: virtual address in the process address space 2344 */ 2345 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2346 { 2347 gmap_pmdp_clear(mm, vmaddr, 1); 2348 } 2349 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2350 2351 /** 2352 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2353 * @mm: pointer to the process mm_struct 2354 * @vmaddr: virtual address in the process address space 2355 */ 2356 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2357 { 2358 unsigned long *entry, gaddr; 2359 struct gmap *gmap; 2360 pmd_t *pmdp; 2361 2362 rcu_read_lock(); 2363 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2364 spin_lock(&gmap->guest_table_lock); 2365 entry = radix_tree_delete(&gmap->host_to_guest, 2366 vmaddr >> PMD_SHIFT); 2367 if (entry) { 2368 pmdp = (pmd_t *)entry; 2369 gaddr = __gmap_segment_gaddr(entry); 2370 pmdp_notify_gmap(gmap, pmdp, gaddr); 2371 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2372 _SEGMENT_ENTRY_GMAP_UC)); 2373 if (MACHINE_HAS_TLB_GUEST) 2374 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2375 gmap->asce, IDTE_LOCAL); 2376 else if (MACHINE_HAS_IDTE) 2377 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2378 *entry = _SEGMENT_ENTRY_EMPTY; 2379 } 2380 spin_unlock(&gmap->guest_table_lock); 2381 } 2382 rcu_read_unlock(); 2383 } 2384 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2385 2386 /** 2387 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2388 * @mm: pointer to the process mm_struct 2389 * @vmaddr: virtual address in the process address space 2390 */ 2391 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2392 { 2393 unsigned long *entry, gaddr; 2394 struct gmap *gmap; 2395 pmd_t *pmdp; 2396 2397 rcu_read_lock(); 2398 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2399 spin_lock(&gmap->guest_table_lock); 2400 entry = radix_tree_delete(&gmap->host_to_guest, 2401 vmaddr >> PMD_SHIFT); 2402 if (entry) { 2403 pmdp = (pmd_t *)entry; 2404 gaddr = __gmap_segment_gaddr(entry); 2405 pmdp_notify_gmap(gmap, pmdp, gaddr); 2406 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2407 _SEGMENT_ENTRY_GMAP_UC)); 2408 if (MACHINE_HAS_TLB_GUEST) 2409 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2410 gmap->asce, IDTE_GLOBAL); 2411 else if (MACHINE_HAS_IDTE) 2412 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2413 else 2414 __pmdp_csp(pmdp); 2415 *entry = _SEGMENT_ENTRY_EMPTY; 2416 } 2417 spin_unlock(&gmap->guest_table_lock); 2418 } 2419 rcu_read_unlock(); 2420 } 2421 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2422 2423 /** 2424 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2425 * @gmap: pointer to guest address space 2426 * @pmdp: pointer to the pmd to be tested 2427 * @gaddr: virtual address in the guest address space 2428 * 2429 * This function is assumed to be called with the guest_table_lock 2430 * held. 2431 */ 2432 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2433 unsigned long gaddr) 2434 { 2435 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2436 return false; 2437 2438 /* Already protected memory, which did not change is clean */ 2439 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2440 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2441 return false; 2442 2443 /* Clear UC indication and reset protection */ 2444 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2445 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2446 return true; 2447 } 2448 2449 /** 2450 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2451 * @gmap: pointer to guest address space 2452 * @bitmap: dirty bitmap for this pmd 2453 * @gaddr: virtual address in the guest address space 2454 * @vmaddr: virtual address in the host address space 2455 * 2456 * This function is assumed to be called with the guest_table_lock 2457 * held. 2458 */ 2459 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2460 unsigned long gaddr, unsigned long vmaddr) 2461 { 2462 int i; 2463 pmd_t *pmdp; 2464 pte_t *ptep; 2465 spinlock_t *ptl; 2466 2467 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2468 if (!pmdp) 2469 return; 2470 2471 if (pmd_large(*pmdp)) { 2472 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2473 bitmap_fill(bitmap, _PAGE_ENTRIES); 2474 } else { 2475 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2476 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2477 if (!ptep) 2478 continue; 2479 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2480 set_bit(i, bitmap); 2481 spin_unlock(ptl); 2482 } 2483 } 2484 gmap_pmd_op_end(gmap, pmdp); 2485 } 2486 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2487 2488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2489 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr, 2490 unsigned long end, struct mm_walk *walk) 2491 { 2492 struct vm_area_struct *vma = walk->vma; 2493 2494 split_huge_pmd(vma, pmd, addr); 2495 return 0; 2496 } 2497 2498 static const struct mm_walk_ops thp_split_walk_ops = { 2499 .pmd_entry = thp_split_walk_pmd_entry, 2500 }; 2501 2502 static inline void thp_split_mm(struct mm_struct *mm) 2503 { 2504 struct vm_area_struct *vma; 2505 2506 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2507 vma->vm_flags &= ~VM_HUGEPAGE; 2508 vma->vm_flags |= VM_NOHUGEPAGE; 2509 walk_page_vma(vma, &thp_split_walk_ops, NULL); 2510 } 2511 mm->def_flags |= VM_NOHUGEPAGE; 2512 } 2513 #else 2514 static inline void thp_split_mm(struct mm_struct *mm) 2515 { 2516 } 2517 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2518 2519 /* 2520 * Remove all empty zero pages from the mapping for lazy refaulting 2521 * - This must be called after mm->context.has_pgste is set, to avoid 2522 * future creation of zero pages 2523 * - This must be called after THP was enabled 2524 */ 2525 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2526 unsigned long end, struct mm_walk *walk) 2527 { 2528 unsigned long addr; 2529 2530 for (addr = start; addr != end; addr += PAGE_SIZE) { 2531 pte_t *ptep; 2532 spinlock_t *ptl; 2533 2534 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2535 if (is_zero_pfn(pte_pfn(*ptep))) 2536 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2537 pte_unmap_unlock(ptep, ptl); 2538 } 2539 return 0; 2540 } 2541 2542 static const struct mm_walk_ops zap_zero_walk_ops = { 2543 .pmd_entry = __zap_zero_pages, 2544 }; 2545 2546 /* 2547 * switch on pgstes for its userspace process (for kvm) 2548 */ 2549 int s390_enable_sie(void) 2550 { 2551 struct mm_struct *mm = current->mm; 2552 2553 /* Do we have pgstes? if yes, we are done */ 2554 if (mm_has_pgste(mm)) 2555 return 0; 2556 /* Fail if the page tables are 2K */ 2557 if (!mm_alloc_pgste(mm)) 2558 return -EINVAL; 2559 mmap_write_lock(mm); 2560 mm->context.has_pgste = 1; 2561 /* split thp mappings and disable thp for future mappings */ 2562 thp_split_mm(mm); 2563 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL); 2564 mmap_write_unlock(mm); 2565 return 0; 2566 } 2567 EXPORT_SYMBOL_GPL(s390_enable_sie); 2568 2569 int gmap_mark_unmergeable(void) 2570 { 2571 struct mm_struct *mm = current->mm; 2572 struct vm_area_struct *vma; 2573 int ret; 2574 2575 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2576 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 2577 MADV_UNMERGEABLE, &vma->vm_flags); 2578 if (ret) 2579 return ret; 2580 } 2581 mm->def_flags &= ~VM_MERGEABLE; 2582 return 0; 2583 } 2584 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable); 2585 2586 /* 2587 * Enable storage key handling from now on and initialize the storage 2588 * keys with the default key. 2589 */ 2590 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2591 unsigned long next, struct mm_walk *walk) 2592 { 2593 /* Clear storage key */ 2594 ptep_zap_key(walk->mm, addr, pte); 2595 return 0; 2596 } 2597 2598 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2599 unsigned long hmask, unsigned long next, 2600 struct mm_walk *walk) 2601 { 2602 pmd_t *pmd = (pmd_t *)pte; 2603 unsigned long start, end; 2604 struct page *page = pmd_page(*pmd); 2605 2606 /* 2607 * The write check makes sure we do not set a key on shared 2608 * memory. This is needed as the walker does not differentiate 2609 * between actual guest memory and the process executable or 2610 * shared libraries. 2611 */ 2612 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2613 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2614 return 0; 2615 2616 start = pmd_val(*pmd) & HPAGE_MASK; 2617 end = start + HPAGE_SIZE - 1; 2618 __storage_key_init_range(start, end); 2619 set_bit(PG_arch_1, &page->flags); 2620 return 0; 2621 } 2622 2623 static const struct mm_walk_ops enable_skey_walk_ops = { 2624 .hugetlb_entry = __s390_enable_skey_hugetlb, 2625 .pte_entry = __s390_enable_skey_pte, 2626 }; 2627 2628 int s390_enable_skey(void) 2629 { 2630 struct mm_struct *mm = current->mm; 2631 int rc = 0; 2632 2633 mmap_write_lock(mm); 2634 if (mm_uses_skeys(mm)) 2635 goto out_up; 2636 2637 mm->context.uses_skeys = 1; 2638 rc = gmap_mark_unmergeable(); 2639 if (rc) { 2640 mm->context.uses_skeys = 0; 2641 goto out_up; 2642 } 2643 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL); 2644 2645 out_up: 2646 mmap_write_unlock(mm); 2647 return rc; 2648 } 2649 EXPORT_SYMBOL_GPL(s390_enable_skey); 2650 2651 /* 2652 * Reset CMMA state, make all pages stable again. 2653 */ 2654 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2655 unsigned long next, struct mm_walk *walk) 2656 { 2657 ptep_zap_unused(walk->mm, addr, pte, 1); 2658 return 0; 2659 } 2660 2661 static const struct mm_walk_ops reset_cmma_walk_ops = { 2662 .pte_entry = __s390_reset_cmma, 2663 }; 2664 2665 void s390_reset_cmma(struct mm_struct *mm) 2666 { 2667 mmap_write_lock(mm); 2668 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL); 2669 mmap_write_unlock(mm); 2670 } 2671 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2672 2673 /* 2674 * make inaccessible pages accessible again 2675 */ 2676 static int __s390_reset_acc(pte_t *ptep, unsigned long addr, 2677 unsigned long next, struct mm_walk *walk) 2678 { 2679 pte_t pte = READ_ONCE(*ptep); 2680 2681 if (pte_present(pte)) 2682 WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK)); 2683 return 0; 2684 } 2685 2686 static const struct mm_walk_ops reset_acc_walk_ops = { 2687 .pte_entry = __s390_reset_acc, 2688 }; 2689 2690 #include <linux/sched/mm.h> 2691 void s390_reset_acc(struct mm_struct *mm) 2692 { 2693 if (!mm_is_protected(mm)) 2694 return; 2695 /* 2696 * we might be called during 2697 * reset: we walk the pages and clear 2698 * close of all kvm file descriptors: we walk the pages and clear 2699 * exit of process on fd closure: vma already gone, do nothing 2700 */ 2701 if (!mmget_not_zero(mm)) 2702 return; 2703 mmap_read_lock(mm); 2704 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL); 2705 mmap_read_unlock(mm); 2706 mmput(mm); 2707 } 2708 EXPORT_SYMBOL_GPL(s390_reset_acc); 2709