xref: /openbmc/linux/arch/s390/mm/gmap.c (revision dc3401c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @limit: maximum address of the gmap address space
31  *
32  * Returns a guest address space structure.
33  */
34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 	struct gmap *gmap;
37 	struct page *page;
38 	unsigned long *table;
39 	unsigned long etype, atype;
40 
41 	if (limit < _REGION3_SIZE) {
42 		limit = _REGION3_SIZE - 1;
43 		atype = _ASCE_TYPE_SEGMENT;
44 		etype = _SEGMENT_ENTRY_EMPTY;
45 	} else if (limit < _REGION2_SIZE) {
46 		limit = _REGION2_SIZE - 1;
47 		atype = _ASCE_TYPE_REGION3;
48 		etype = _REGION3_ENTRY_EMPTY;
49 	} else if (limit < _REGION1_SIZE) {
50 		limit = _REGION1_SIZE - 1;
51 		atype = _ASCE_TYPE_REGION2;
52 		etype = _REGION2_ENTRY_EMPTY;
53 	} else {
54 		limit = -1UL;
55 		atype = _ASCE_TYPE_REGION1;
56 		etype = _REGION1_ENTRY_EMPTY;
57 	}
58 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 	if (!gmap)
60 		goto out;
61 	INIT_LIST_HEAD(&gmap->crst_list);
62 	INIT_LIST_HEAD(&gmap->children);
63 	INIT_LIST_HEAD(&gmap->pt_list);
64 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 	spin_lock_init(&gmap->guest_table_lock);
68 	spin_lock_init(&gmap->shadow_lock);
69 	refcount_set(&gmap->ref_count, 1);
70 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 	if (!page)
72 		goto out_free;
73 	page->index = 0;
74 	list_add(&page->lru, &gmap->crst_list);
75 	table = (unsigned long *) page_to_phys(page);
76 	crst_table_init(table, etype);
77 	gmap->table = table;
78 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 		_ASCE_USER_BITS | __pa(table);
80 	gmap->asce_end = limit;
81 	return gmap;
82 
83 out_free:
84 	kfree(gmap);
85 out:
86 	return NULL;
87 }
88 
89 /**
90  * gmap_create - create a guest address space
91  * @mm: pointer to the parent mm_struct
92  * @limit: maximum size of the gmap address space
93  *
94  * Returns a guest address space structure.
95  */
96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 	struct gmap *gmap;
99 	unsigned long gmap_asce;
100 
101 	gmap = gmap_alloc(limit);
102 	if (!gmap)
103 		return NULL;
104 	gmap->mm = mm;
105 	spin_lock(&mm->context.lock);
106 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 	if (list_is_singular(&mm->context.gmap_list))
108 		gmap_asce = gmap->asce;
109 	else
110 		gmap_asce = -1UL;
111 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 	spin_unlock(&mm->context.lock);
113 	return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116 
117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 	if (MACHINE_HAS_IDTE)
120 		__tlb_flush_idte(gmap->asce);
121 	else
122 		__tlb_flush_global();
123 }
124 
125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 	struct radix_tree_iter iter;
128 	unsigned long indices[16];
129 	unsigned long index;
130 	void __rcu **slot;
131 	int i, nr;
132 
133 	/* A radix tree is freed by deleting all of its entries */
134 	index = 0;
135 	do {
136 		nr = 0;
137 		radix_tree_for_each_slot(slot, root, &iter, index) {
138 			indices[nr] = iter.index;
139 			if (++nr == 16)
140 				break;
141 		}
142 		for (i = 0; i < nr; i++) {
143 			index = indices[i];
144 			radix_tree_delete(root, index);
145 		}
146 	} while (nr > 0);
147 }
148 
149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 	struct gmap_rmap *rmap, *rnext, *head;
152 	struct radix_tree_iter iter;
153 	unsigned long indices[16];
154 	unsigned long index;
155 	void __rcu **slot;
156 	int i, nr;
157 
158 	/* A radix tree is freed by deleting all of its entries */
159 	index = 0;
160 	do {
161 		nr = 0;
162 		radix_tree_for_each_slot(slot, root, &iter, index) {
163 			indices[nr] = iter.index;
164 			if (++nr == 16)
165 				break;
166 		}
167 		for (i = 0; i < nr; i++) {
168 			index = indices[i];
169 			head = radix_tree_delete(root, index);
170 			gmap_for_each_rmap_safe(rmap, rnext, head)
171 				kfree(rmap);
172 		}
173 	} while (nr > 0);
174 }
175 
176 /**
177  * gmap_free - free a guest address space
178  * @gmap: pointer to the guest address space structure
179  *
180  * No locks required. There are no references to this gmap anymore.
181  */
182 static void gmap_free(struct gmap *gmap)
183 {
184 	struct page *page, *next;
185 
186 	/* Flush tlb of all gmaps (if not already done for shadows) */
187 	if (!(gmap_is_shadow(gmap) && gmap->removed))
188 		gmap_flush_tlb(gmap);
189 	/* Free all segment & region tables. */
190 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 		__free_pages(page, CRST_ALLOC_ORDER);
192 	gmap_radix_tree_free(&gmap->guest_to_host);
193 	gmap_radix_tree_free(&gmap->host_to_guest);
194 
195 	/* Free additional data for a shadow gmap */
196 	if (gmap_is_shadow(gmap)) {
197 		/* Free all page tables. */
198 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 			page_table_free_pgste(page);
200 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 		/* Release reference to the parent */
202 		gmap_put(gmap->parent);
203 	}
204 
205 	kfree(gmap);
206 }
207 
208 /**
209  * gmap_get - increase reference counter for guest address space
210  * @gmap: pointer to the guest address space structure
211  *
212  * Returns the gmap pointer
213  */
214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 	refcount_inc(&gmap->ref_count);
217 	return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220 
221 /**
222  * gmap_put - decrease reference counter for guest address space
223  * @gmap: pointer to the guest address space structure
224  *
225  * If the reference counter reaches zero the guest address space is freed.
226  */
227 void gmap_put(struct gmap *gmap)
228 {
229 	if (refcount_dec_and_test(&gmap->ref_count))
230 		gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233 
234 /**
235  * gmap_remove - remove a guest address space but do not free it yet
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_remove(struct gmap *gmap)
239 {
240 	struct gmap *sg, *next;
241 	unsigned long gmap_asce;
242 
243 	/* Remove all shadow gmaps linked to this gmap */
244 	if (!list_empty(&gmap->children)) {
245 		spin_lock(&gmap->shadow_lock);
246 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 			list_del(&sg->list);
248 			gmap_put(sg);
249 		}
250 		spin_unlock(&gmap->shadow_lock);
251 	}
252 	/* Remove gmap from the pre-mm list */
253 	spin_lock(&gmap->mm->context.lock);
254 	list_del_rcu(&gmap->list);
255 	if (list_empty(&gmap->mm->context.gmap_list))
256 		gmap_asce = 0;
257 	else if (list_is_singular(&gmap->mm->context.gmap_list))
258 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 					     struct gmap, list)->asce;
260 	else
261 		gmap_asce = -1UL;
262 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 	spin_unlock(&gmap->mm->context.lock);
264 	synchronize_rcu();
265 	/* Put reference */
266 	gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269 
270 /**
271  * gmap_enable - switch primary space to the guest address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_enable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279 
280 /**
281  * gmap_disable - switch back to the standard primary address space
282  * @gmap: pointer to the guest address space structure
283  */
284 void gmap_disable(struct gmap *gmap)
285 {
286 	S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289 
290 /**
291  * gmap_get_enabled - get a pointer to the currently enabled gmap
292  *
293  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294  */
295 struct gmap *gmap_get_enabled(void)
296 {
297 	return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300 
301 /*
302  * gmap_alloc_table is assumed to be called with mmap_lock held
303  */
304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 			    unsigned long init, unsigned long gaddr)
306 {
307 	struct page *page;
308 	unsigned long *new;
309 
310 	/* since we dont free the gmap table until gmap_free we can unlock */
311 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 	if (!page)
313 		return -ENOMEM;
314 	new = (unsigned long *) page_to_phys(page);
315 	crst_table_init(new, init);
316 	spin_lock(&gmap->guest_table_lock);
317 	if (*table & _REGION_ENTRY_INVALID) {
318 		list_add(&page->lru, &gmap->crst_list);
319 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
320 			(*table & _REGION_ENTRY_TYPE_MASK);
321 		page->index = gaddr;
322 		page = NULL;
323 	}
324 	spin_unlock(&gmap->guest_table_lock);
325 	if (page)
326 		__free_pages(page, CRST_ALLOC_ORDER);
327 	return 0;
328 }
329 
330 /**
331  * __gmap_segment_gaddr - find virtual address from segment pointer
332  * @entry: pointer to a segment table entry in the guest address space
333  *
334  * Returns the virtual address in the guest address space for the segment
335  */
336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 	struct page *page;
339 	unsigned long offset, mask;
340 
341 	offset = (unsigned long) entry / sizeof(unsigned long);
342 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
344 	page = virt_to_page((void *)((unsigned long) entry & mask));
345 	return page->index + offset;
346 }
347 
348 /**
349  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
350  * @gmap: pointer to the guest address space structure
351  * @vmaddr: address in the host process address space
352  *
353  * Returns 1 if a TLB flush is required
354  */
355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
356 {
357 	unsigned long *entry;
358 	int flush = 0;
359 
360 	BUG_ON(gmap_is_shadow(gmap));
361 	spin_lock(&gmap->guest_table_lock);
362 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
363 	if (entry) {
364 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
365 		*entry = _SEGMENT_ENTRY_EMPTY;
366 	}
367 	spin_unlock(&gmap->guest_table_lock);
368 	return flush;
369 }
370 
371 /**
372  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
373  * @gmap: pointer to the guest address space structure
374  * @gaddr: address in the guest address space
375  *
376  * Returns 1 if a TLB flush is required
377  */
378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
379 {
380 	unsigned long vmaddr;
381 
382 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
383 						   gaddr >> PMD_SHIFT);
384 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
385 }
386 
387 /**
388  * gmap_unmap_segment - unmap segment from the guest address space
389  * @gmap: pointer to the guest address space structure
390  * @to: address in the guest address space
391  * @len: length of the memory area to unmap
392  *
393  * Returns 0 if the unmap succeeded, -EINVAL if not.
394  */
395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
396 {
397 	unsigned long off;
398 	int flush;
399 
400 	BUG_ON(gmap_is_shadow(gmap));
401 	if ((to | len) & (PMD_SIZE - 1))
402 		return -EINVAL;
403 	if (len == 0 || to + len < to)
404 		return -EINVAL;
405 
406 	flush = 0;
407 	mmap_write_lock(gmap->mm);
408 	for (off = 0; off < len; off += PMD_SIZE)
409 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
410 	mmap_write_unlock(gmap->mm);
411 	if (flush)
412 		gmap_flush_tlb(gmap);
413 	return 0;
414 }
415 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
416 
417 /**
418  * gmap_map_segment - map a segment to the guest address space
419  * @gmap: pointer to the guest address space structure
420  * @from: source address in the parent address space
421  * @to: target address in the guest address space
422  * @len: length of the memory area to map
423  *
424  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
425  */
426 int gmap_map_segment(struct gmap *gmap, unsigned long from,
427 		     unsigned long to, unsigned long len)
428 {
429 	unsigned long off;
430 	int flush;
431 
432 	BUG_ON(gmap_is_shadow(gmap));
433 	if ((from | to | len) & (PMD_SIZE - 1))
434 		return -EINVAL;
435 	if (len == 0 || from + len < from || to + len < to ||
436 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
437 		return -EINVAL;
438 
439 	flush = 0;
440 	mmap_write_lock(gmap->mm);
441 	for (off = 0; off < len; off += PMD_SIZE) {
442 		/* Remove old translation */
443 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
444 		/* Store new translation */
445 		if (radix_tree_insert(&gmap->guest_to_host,
446 				      (to + off) >> PMD_SHIFT,
447 				      (void *) from + off))
448 			break;
449 	}
450 	mmap_write_unlock(gmap->mm);
451 	if (flush)
452 		gmap_flush_tlb(gmap);
453 	if (off >= len)
454 		return 0;
455 	gmap_unmap_segment(gmap, to, len);
456 	return -ENOMEM;
457 }
458 EXPORT_SYMBOL_GPL(gmap_map_segment);
459 
460 /**
461  * __gmap_translate - translate a guest address to a user space address
462  * @gmap: pointer to guest mapping meta data structure
463  * @gaddr: guest address
464  *
465  * Returns user space address which corresponds to the guest address or
466  * -EFAULT if no such mapping exists.
467  * This function does not establish potentially missing page table entries.
468  * The mmap_lock of the mm that belongs to the address space must be held
469  * when this function gets called.
470  *
471  * Note: Can also be called for shadow gmaps.
472  */
473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
474 {
475 	unsigned long vmaddr;
476 
477 	vmaddr = (unsigned long)
478 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
479 	/* Note: guest_to_host is empty for a shadow gmap */
480 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
481 }
482 EXPORT_SYMBOL_GPL(__gmap_translate);
483 
484 /**
485  * gmap_translate - translate a guest address to a user space address
486  * @gmap: pointer to guest mapping meta data structure
487  * @gaddr: guest address
488  *
489  * Returns user space address which corresponds to the guest address or
490  * -EFAULT if no such mapping exists.
491  * This function does not establish potentially missing page table entries.
492  */
493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
494 {
495 	unsigned long rc;
496 
497 	mmap_read_lock(gmap->mm);
498 	rc = __gmap_translate(gmap, gaddr);
499 	mmap_read_unlock(gmap->mm);
500 	return rc;
501 }
502 EXPORT_SYMBOL_GPL(gmap_translate);
503 
504 /**
505  * gmap_unlink - disconnect a page table from the gmap shadow tables
506  * @mm: pointer to the parent mm_struct
507  * @table: pointer to the host page table
508  * @vmaddr: vm address associated with the host page table
509  */
510 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
511 		 unsigned long vmaddr)
512 {
513 	struct gmap *gmap;
514 	int flush;
515 
516 	rcu_read_lock();
517 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
518 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
519 		if (flush)
520 			gmap_flush_tlb(gmap);
521 	}
522 	rcu_read_unlock();
523 }
524 
525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
526 			   unsigned long gaddr);
527 
528 /**
529  * __gmap_link - set up shadow page tables to connect a host to a guest address
530  * @gmap: pointer to guest mapping meta data structure
531  * @gaddr: guest address
532  * @vmaddr: vm address
533  *
534  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
535  * if the vm address is already mapped to a different guest segment.
536  * The mmap_lock of the mm that belongs to the address space must be held
537  * when this function gets called.
538  */
539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
540 {
541 	struct mm_struct *mm;
542 	unsigned long *table;
543 	spinlock_t *ptl;
544 	pgd_t *pgd;
545 	p4d_t *p4d;
546 	pud_t *pud;
547 	pmd_t *pmd;
548 	u64 unprot;
549 	int rc;
550 
551 	BUG_ON(gmap_is_shadow(gmap));
552 	/* Create higher level tables in the gmap page table */
553 	table = gmap->table;
554 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
555 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
556 		if ((*table & _REGION_ENTRY_INVALID) &&
557 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
558 				     gaddr & _REGION1_MASK))
559 			return -ENOMEM;
560 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
561 	}
562 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
563 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
564 		if ((*table & _REGION_ENTRY_INVALID) &&
565 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
566 				     gaddr & _REGION2_MASK))
567 			return -ENOMEM;
568 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
569 	}
570 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
571 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
572 		if ((*table & _REGION_ENTRY_INVALID) &&
573 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
574 				     gaddr & _REGION3_MASK))
575 			return -ENOMEM;
576 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
577 	}
578 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
579 	/* Walk the parent mm page table */
580 	mm = gmap->mm;
581 	pgd = pgd_offset(mm, vmaddr);
582 	VM_BUG_ON(pgd_none(*pgd));
583 	p4d = p4d_offset(pgd, vmaddr);
584 	VM_BUG_ON(p4d_none(*p4d));
585 	pud = pud_offset(p4d, vmaddr);
586 	VM_BUG_ON(pud_none(*pud));
587 	/* large puds cannot yet be handled */
588 	if (pud_large(*pud))
589 		return -EFAULT;
590 	pmd = pmd_offset(pud, vmaddr);
591 	VM_BUG_ON(pmd_none(*pmd));
592 	/* Are we allowed to use huge pages? */
593 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
594 		return -EFAULT;
595 	/* Link gmap segment table entry location to page table. */
596 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
597 	if (rc)
598 		return rc;
599 	ptl = pmd_lock(mm, pmd);
600 	spin_lock(&gmap->guest_table_lock);
601 	if (*table == _SEGMENT_ENTRY_EMPTY) {
602 		rc = radix_tree_insert(&gmap->host_to_guest,
603 				       vmaddr >> PMD_SHIFT, table);
604 		if (!rc) {
605 			if (pmd_large(*pmd)) {
606 				*table = (pmd_val(*pmd) &
607 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
608 					| _SEGMENT_ENTRY_GMAP_UC;
609 			} else
610 				*table = pmd_val(*pmd) &
611 					_SEGMENT_ENTRY_HARDWARE_BITS;
612 		}
613 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
614 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
615 		unprot = (u64)*table;
616 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
617 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
618 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
619 	}
620 	spin_unlock(&gmap->guest_table_lock);
621 	spin_unlock(ptl);
622 	radix_tree_preload_end();
623 	return rc;
624 }
625 
626 /**
627  * gmap_fault - resolve a fault on a guest address
628  * @gmap: pointer to guest mapping meta data structure
629  * @gaddr: guest address
630  * @fault_flags: flags to pass down to handle_mm_fault()
631  *
632  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
633  * if the vm address is already mapped to a different guest segment.
634  */
635 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
636 	       unsigned int fault_flags)
637 {
638 	unsigned long vmaddr;
639 	int rc;
640 	bool unlocked;
641 
642 	mmap_read_lock(gmap->mm);
643 
644 retry:
645 	unlocked = false;
646 	vmaddr = __gmap_translate(gmap, gaddr);
647 	if (IS_ERR_VALUE(vmaddr)) {
648 		rc = vmaddr;
649 		goto out_up;
650 	}
651 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
652 			     &unlocked)) {
653 		rc = -EFAULT;
654 		goto out_up;
655 	}
656 	/*
657 	 * In the case that fixup_user_fault unlocked the mmap_lock during
658 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
659 	 */
660 	if (unlocked)
661 		goto retry;
662 
663 	rc = __gmap_link(gmap, gaddr, vmaddr);
664 out_up:
665 	mmap_read_unlock(gmap->mm);
666 	return rc;
667 }
668 EXPORT_SYMBOL_GPL(gmap_fault);
669 
670 /*
671  * this function is assumed to be called with mmap_lock held
672  */
673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
674 {
675 	unsigned long vmaddr;
676 	spinlock_t *ptl;
677 	pte_t *ptep;
678 
679 	/* Find the vm address for the guest address */
680 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
681 						   gaddr >> PMD_SHIFT);
682 	if (vmaddr) {
683 		vmaddr |= gaddr & ~PMD_MASK;
684 		/* Get pointer to the page table entry */
685 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
686 		if (likely(ptep))
687 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
688 		pte_unmap_unlock(ptep, ptl);
689 	}
690 }
691 EXPORT_SYMBOL_GPL(__gmap_zap);
692 
693 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
694 {
695 	unsigned long gaddr, vmaddr, size;
696 	struct vm_area_struct *vma;
697 
698 	mmap_read_lock(gmap->mm);
699 	for (gaddr = from; gaddr < to;
700 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
701 		/* Find the vm address for the guest address */
702 		vmaddr = (unsigned long)
703 			radix_tree_lookup(&gmap->guest_to_host,
704 					  gaddr >> PMD_SHIFT);
705 		if (!vmaddr)
706 			continue;
707 		vmaddr |= gaddr & ~PMD_MASK;
708 		/* Find vma in the parent mm */
709 		vma = find_vma(gmap->mm, vmaddr);
710 		if (!vma)
711 			continue;
712 		/*
713 		 * We do not discard pages that are backed by
714 		 * hugetlbfs, so we don't have to refault them.
715 		 */
716 		if (is_vm_hugetlb_page(vma))
717 			continue;
718 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
719 		zap_page_range(vma, vmaddr, size);
720 	}
721 	mmap_read_unlock(gmap->mm);
722 }
723 EXPORT_SYMBOL_GPL(gmap_discard);
724 
725 static LIST_HEAD(gmap_notifier_list);
726 static DEFINE_SPINLOCK(gmap_notifier_lock);
727 
728 /**
729  * gmap_register_pte_notifier - register a pte invalidation callback
730  * @nb: pointer to the gmap notifier block
731  */
732 void gmap_register_pte_notifier(struct gmap_notifier *nb)
733 {
734 	spin_lock(&gmap_notifier_lock);
735 	list_add_rcu(&nb->list, &gmap_notifier_list);
736 	spin_unlock(&gmap_notifier_lock);
737 }
738 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
739 
740 /**
741  * gmap_unregister_pte_notifier - remove a pte invalidation callback
742  * @nb: pointer to the gmap notifier block
743  */
744 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
745 {
746 	spin_lock(&gmap_notifier_lock);
747 	list_del_rcu(&nb->list);
748 	spin_unlock(&gmap_notifier_lock);
749 	synchronize_rcu();
750 }
751 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
752 
753 /**
754  * gmap_call_notifier - call all registered invalidation callbacks
755  * @gmap: pointer to guest mapping meta data structure
756  * @start: start virtual address in the guest address space
757  * @end: end virtual address in the guest address space
758  */
759 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
760 			       unsigned long end)
761 {
762 	struct gmap_notifier *nb;
763 
764 	list_for_each_entry(nb, &gmap_notifier_list, list)
765 		nb->notifier_call(gmap, start, end);
766 }
767 
768 /**
769  * gmap_table_walk - walk the gmap page tables
770  * @gmap: pointer to guest mapping meta data structure
771  * @gaddr: virtual address in the guest address space
772  * @level: page table level to stop at
773  *
774  * Returns a table entry pointer for the given guest address and @level
775  * @level=0 : returns a pointer to a page table table entry (or NULL)
776  * @level=1 : returns a pointer to a segment table entry (or NULL)
777  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
778  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
779  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
780  *
781  * Returns NULL if the gmap page tables could not be walked to the
782  * requested level.
783  *
784  * Note: Can also be called for shadow gmaps.
785  */
786 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
787 					     unsigned long gaddr, int level)
788 {
789 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
790 	unsigned long *table = gmap->table;
791 
792 	if (gmap_is_shadow(gmap) && gmap->removed)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
796 		return NULL;
797 
798 	if (asce_type != _ASCE_TYPE_REGION1 &&
799 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
800 		return NULL;
801 
802 	switch (asce_type) {
803 	case _ASCE_TYPE_REGION1:
804 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
805 		if (level == 4)
806 			break;
807 		if (*table & _REGION_ENTRY_INVALID)
808 			return NULL;
809 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
810 		fallthrough;
811 	case _ASCE_TYPE_REGION2:
812 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
813 		if (level == 3)
814 			break;
815 		if (*table & _REGION_ENTRY_INVALID)
816 			return NULL;
817 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
818 		fallthrough;
819 	case _ASCE_TYPE_REGION3:
820 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
821 		if (level == 2)
822 			break;
823 		if (*table & _REGION_ENTRY_INVALID)
824 			return NULL;
825 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
826 		fallthrough;
827 	case _ASCE_TYPE_SEGMENT:
828 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
829 		if (level == 1)
830 			break;
831 		if (*table & _REGION_ENTRY_INVALID)
832 			return NULL;
833 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
834 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
835 	}
836 	return table;
837 }
838 
839 /**
840  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
841  *		      and return the pte pointer
842  * @gmap: pointer to guest mapping meta data structure
843  * @gaddr: virtual address in the guest address space
844  * @ptl: pointer to the spinlock pointer
845  *
846  * Returns a pointer to the locked pte for a guest address, or NULL
847  */
848 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
849 			       spinlock_t **ptl)
850 {
851 	unsigned long *table;
852 
853 	BUG_ON(gmap_is_shadow(gmap));
854 	/* Walk the gmap page table, lock and get pte pointer */
855 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
856 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
857 		return NULL;
858 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
859 }
860 
861 /**
862  * gmap_pte_op_fixup - force a page in and connect the gmap page table
863  * @gmap: pointer to guest mapping meta data structure
864  * @gaddr: virtual address in the guest address space
865  * @vmaddr: address in the host process address space
866  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
867  *
868  * Returns 0 if the caller can retry __gmap_translate (might fail again),
869  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
870  * up or connecting the gmap page table.
871  */
872 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
873 			     unsigned long vmaddr, int prot)
874 {
875 	struct mm_struct *mm = gmap->mm;
876 	unsigned int fault_flags;
877 	bool unlocked = false;
878 
879 	BUG_ON(gmap_is_shadow(gmap));
880 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
881 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
882 		return -EFAULT;
883 	if (unlocked)
884 		/* lost mmap_lock, caller has to retry __gmap_translate */
885 		return 0;
886 	/* Connect the page tables */
887 	return __gmap_link(gmap, gaddr, vmaddr);
888 }
889 
890 /**
891  * gmap_pte_op_end - release the page table lock
892  * @ptl: pointer to the spinlock pointer
893  */
894 static void gmap_pte_op_end(spinlock_t *ptl)
895 {
896 	if (ptl)
897 		spin_unlock(ptl);
898 }
899 
900 /**
901  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
902  *		      and return the pmd pointer
903  * @gmap: pointer to guest mapping meta data structure
904  * @gaddr: virtual address in the guest address space
905  *
906  * Returns a pointer to the pmd for a guest address, or NULL
907  */
908 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
909 {
910 	pmd_t *pmdp;
911 
912 	BUG_ON(gmap_is_shadow(gmap));
913 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
914 	if (!pmdp)
915 		return NULL;
916 
917 	/* without huge pages, there is no need to take the table lock */
918 	if (!gmap->mm->context.allow_gmap_hpage_1m)
919 		return pmd_none(*pmdp) ? NULL : pmdp;
920 
921 	spin_lock(&gmap->guest_table_lock);
922 	if (pmd_none(*pmdp)) {
923 		spin_unlock(&gmap->guest_table_lock);
924 		return NULL;
925 	}
926 
927 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
928 	if (!pmd_large(*pmdp))
929 		spin_unlock(&gmap->guest_table_lock);
930 	return pmdp;
931 }
932 
933 /**
934  * gmap_pmd_op_end - release the guest_table_lock if needed
935  * @gmap: pointer to the guest mapping meta data structure
936  * @pmdp: pointer to the pmd
937  */
938 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
939 {
940 	if (pmd_large(*pmdp))
941 		spin_unlock(&gmap->guest_table_lock);
942 }
943 
944 /*
945  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
946  * @pmdp: pointer to the pmd to be protected
947  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
948  * @bits: notification bits to set
949  *
950  * Returns:
951  * 0 if successfully protected
952  * -EAGAIN if a fixup is needed
953  * -EINVAL if unsupported notifier bits have been specified
954  *
955  * Expected to be called with sg->mm->mmap_lock in read and
956  * guest_table_lock held.
957  */
958 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
959 			    pmd_t *pmdp, int prot, unsigned long bits)
960 {
961 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
962 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
963 	pmd_t new = *pmdp;
964 
965 	/* Fixup needed */
966 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
967 		return -EAGAIN;
968 
969 	if (prot == PROT_NONE && !pmd_i) {
970 		pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
971 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
972 	}
973 
974 	if (prot == PROT_READ && !pmd_p) {
975 		pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
976 		pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
977 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
978 	}
979 
980 	if (bits & GMAP_NOTIFY_MPROT)
981 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
982 
983 	/* Shadow GMAP protection needs split PMDs */
984 	if (bits & GMAP_NOTIFY_SHADOW)
985 		return -EINVAL;
986 
987 	return 0;
988 }
989 
990 /*
991  * gmap_protect_pte - remove access rights to memory and set pgste bits
992  * @gmap: pointer to guest mapping meta data structure
993  * @gaddr: virtual address in the guest address space
994  * @pmdp: pointer to the pmd associated with the pte
995  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
996  * @bits: notification bits to set
997  *
998  * Returns 0 if successfully protected, -ENOMEM if out of memory and
999  * -EAGAIN if a fixup is needed.
1000  *
1001  * Expected to be called with sg->mm->mmap_lock in read
1002  */
1003 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1004 			    pmd_t *pmdp, int prot, unsigned long bits)
1005 {
1006 	int rc;
1007 	pte_t *ptep;
1008 	spinlock_t *ptl = NULL;
1009 	unsigned long pbits = 0;
1010 
1011 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1012 		return -EAGAIN;
1013 
1014 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1015 	if (!ptep)
1016 		return -ENOMEM;
1017 
1018 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1019 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1020 	/* Protect and unlock. */
1021 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1022 	gmap_pte_op_end(ptl);
1023 	return rc;
1024 }
1025 
1026 /*
1027  * gmap_protect_range - remove access rights to memory and set pgste bits
1028  * @gmap: pointer to guest mapping meta data structure
1029  * @gaddr: virtual address in the guest address space
1030  * @len: size of area
1031  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1032  * @bits: pgste notification bits to set
1033  *
1034  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1035  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1036  *
1037  * Called with sg->mm->mmap_lock in read.
1038  */
1039 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1040 			      unsigned long len, int prot, unsigned long bits)
1041 {
1042 	unsigned long vmaddr, dist;
1043 	pmd_t *pmdp;
1044 	int rc;
1045 
1046 	BUG_ON(gmap_is_shadow(gmap));
1047 	while (len) {
1048 		rc = -EAGAIN;
1049 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1050 		if (pmdp) {
1051 			if (!pmd_large(*pmdp)) {
1052 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1053 						      bits);
1054 				if (!rc) {
1055 					len -= PAGE_SIZE;
1056 					gaddr += PAGE_SIZE;
1057 				}
1058 			} else {
1059 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1060 						      bits);
1061 				if (!rc) {
1062 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1063 					len = len < dist ? 0 : len - dist;
1064 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1065 				}
1066 			}
1067 			gmap_pmd_op_end(gmap, pmdp);
1068 		}
1069 		if (rc) {
1070 			if (rc == -EINVAL)
1071 				return rc;
1072 
1073 			/* -EAGAIN, fixup of userspace mm and gmap */
1074 			vmaddr = __gmap_translate(gmap, gaddr);
1075 			if (IS_ERR_VALUE(vmaddr))
1076 				return vmaddr;
1077 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1078 			if (rc)
1079 				return rc;
1080 		}
1081 	}
1082 	return 0;
1083 }
1084 
1085 /**
1086  * gmap_mprotect_notify - change access rights for a range of ptes and
1087  *                        call the notifier if any pte changes again
1088  * @gmap: pointer to guest mapping meta data structure
1089  * @gaddr: virtual address in the guest address space
1090  * @len: size of area
1091  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1092  *
1093  * Returns 0 if for each page in the given range a gmap mapping exists,
1094  * the new access rights could be set and the notifier could be armed.
1095  * If the gmap mapping is missing for one or more pages -EFAULT is
1096  * returned. If no memory could be allocated -ENOMEM is returned.
1097  * This function establishes missing page table entries.
1098  */
1099 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1100 			 unsigned long len, int prot)
1101 {
1102 	int rc;
1103 
1104 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1105 		return -EINVAL;
1106 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1107 		return -EINVAL;
1108 	mmap_read_lock(gmap->mm);
1109 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1110 	mmap_read_unlock(gmap->mm);
1111 	return rc;
1112 }
1113 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1114 
1115 /**
1116  * gmap_read_table - get an unsigned long value from a guest page table using
1117  *                   absolute addressing, without marking the page referenced.
1118  * @gmap: pointer to guest mapping meta data structure
1119  * @gaddr: virtual address in the guest address space
1120  * @val: pointer to the unsigned long value to return
1121  *
1122  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1123  * if reading using the virtual address failed. -EINVAL if called on a gmap
1124  * shadow.
1125  *
1126  * Called with gmap->mm->mmap_lock in read.
1127  */
1128 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1129 {
1130 	unsigned long address, vmaddr;
1131 	spinlock_t *ptl;
1132 	pte_t *ptep, pte;
1133 	int rc;
1134 
1135 	if (gmap_is_shadow(gmap))
1136 		return -EINVAL;
1137 
1138 	while (1) {
1139 		rc = -EAGAIN;
1140 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1141 		if (ptep) {
1142 			pte = *ptep;
1143 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1144 				address = pte_val(pte) & PAGE_MASK;
1145 				address += gaddr & ~PAGE_MASK;
1146 				*val = *(unsigned long *) address;
1147 				pte_val(*ptep) |= _PAGE_YOUNG;
1148 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1149 				rc = 0;
1150 			}
1151 			gmap_pte_op_end(ptl);
1152 		}
1153 		if (!rc)
1154 			break;
1155 		vmaddr = __gmap_translate(gmap, gaddr);
1156 		if (IS_ERR_VALUE(vmaddr)) {
1157 			rc = vmaddr;
1158 			break;
1159 		}
1160 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1161 		if (rc)
1162 			break;
1163 	}
1164 	return rc;
1165 }
1166 EXPORT_SYMBOL_GPL(gmap_read_table);
1167 
1168 /**
1169  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1170  * @sg: pointer to the shadow guest address space structure
1171  * @vmaddr: vm address associated with the rmap
1172  * @rmap: pointer to the rmap structure
1173  *
1174  * Called with the sg->guest_table_lock
1175  */
1176 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1177 				    struct gmap_rmap *rmap)
1178 {
1179 	void __rcu **slot;
1180 
1181 	BUG_ON(!gmap_is_shadow(sg));
1182 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1183 	if (slot) {
1184 		rmap->next = radix_tree_deref_slot_protected(slot,
1185 							&sg->guest_table_lock);
1186 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1187 	} else {
1188 		rmap->next = NULL;
1189 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1190 				  rmap);
1191 	}
1192 }
1193 
1194 /**
1195  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1196  * @sg: pointer to the shadow guest address space structure
1197  * @raddr: rmap address in the shadow gmap
1198  * @paddr: address in the parent guest address space
1199  * @len: length of the memory area to protect
1200  *
1201  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1202  * if out of memory and -EFAULT if paddr is invalid.
1203  */
1204 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1205 			     unsigned long paddr, unsigned long len)
1206 {
1207 	struct gmap *parent;
1208 	struct gmap_rmap *rmap;
1209 	unsigned long vmaddr;
1210 	spinlock_t *ptl;
1211 	pte_t *ptep;
1212 	int rc;
1213 
1214 	BUG_ON(!gmap_is_shadow(sg));
1215 	parent = sg->parent;
1216 	while (len) {
1217 		vmaddr = __gmap_translate(parent, paddr);
1218 		if (IS_ERR_VALUE(vmaddr))
1219 			return vmaddr;
1220 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1221 		if (!rmap)
1222 			return -ENOMEM;
1223 		rmap->raddr = raddr;
1224 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1225 		if (rc) {
1226 			kfree(rmap);
1227 			return rc;
1228 		}
1229 		rc = -EAGAIN;
1230 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1231 		if (ptep) {
1232 			spin_lock(&sg->guest_table_lock);
1233 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1234 					     PGSTE_VSIE_BIT);
1235 			if (!rc)
1236 				gmap_insert_rmap(sg, vmaddr, rmap);
1237 			spin_unlock(&sg->guest_table_lock);
1238 			gmap_pte_op_end(ptl);
1239 		}
1240 		radix_tree_preload_end();
1241 		if (rc) {
1242 			kfree(rmap);
1243 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1244 			if (rc)
1245 				return rc;
1246 			continue;
1247 		}
1248 		paddr += PAGE_SIZE;
1249 		len -= PAGE_SIZE;
1250 	}
1251 	return 0;
1252 }
1253 
1254 #define _SHADOW_RMAP_MASK	0x7
1255 #define _SHADOW_RMAP_REGION1	0x5
1256 #define _SHADOW_RMAP_REGION2	0x4
1257 #define _SHADOW_RMAP_REGION3	0x3
1258 #define _SHADOW_RMAP_SEGMENT	0x2
1259 #define _SHADOW_RMAP_PGTABLE	0x1
1260 
1261 /**
1262  * gmap_idte_one - invalidate a single region or segment table entry
1263  * @asce: region or segment table *origin* + table-type bits
1264  * @vaddr: virtual address to identify the table entry to flush
1265  *
1266  * The invalid bit of a single region or segment table entry is set
1267  * and the associated TLB entries depending on the entry are flushed.
1268  * The table-type of the @asce identifies the portion of the @vaddr
1269  * that is used as the invalidation index.
1270  */
1271 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1272 {
1273 	asm volatile(
1274 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1275 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1276 }
1277 
1278 /**
1279  * gmap_unshadow_page - remove a page from a shadow page table
1280  * @sg: pointer to the shadow guest address space structure
1281  * @raddr: rmap address in the shadow guest address space
1282  *
1283  * Called with the sg->guest_table_lock
1284  */
1285 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1286 {
1287 	unsigned long *table;
1288 
1289 	BUG_ON(!gmap_is_shadow(sg));
1290 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1291 	if (!table || *table & _PAGE_INVALID)
1292 		return;
1293 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1294 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1295 }
1296 
1297 /**
1298  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1299  * @sg: pointer to the shadow guest address space structure
1300  * @raddr: rmap address in the shadow guest address space
1301  * @pgt: pointer to the start of a shadow page table
1302  *
1303  * Called with the sg->guest_table_lock
1304  */
1305 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1306 				unsigned long *pgt)
1307 {
1308 	int i;
1309 
1310 	BUG_ON(!gmap_is_shadow(sg));
1311 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1312 		pgt[i] = _PAGE_INVALID;
1313 }
1314 
1315 /**
1316  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1317  * @sg: pointer to the shadow guest address space structure
1318  * @raddr: address in the shadow guest address space
1319  *
1320  * Called with the sg->guest_table_lock
1321  */
1322 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1323 {
1324 	unsigned long sto, *ste, *pgt;
1325 	struct page *page;
1326 
1327 	BUG_ON(!gmap_is_shadow(sg));
1328 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1329 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1330 		return;
1331 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1332 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1333 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1334 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1335 	*ste = _SEGMENT_ENTRY_EMPTY;
1336 	__gmap_unshadow_pgt(sg, raddr, pgt);
1337 	/* Free page table */
1338 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1339 	list_del(&page->lru);
1340 	page_table_free_pgste(page);
1341 }
1342 
1343 /**
1344  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1345  * @sg: pointer to the shadow guest address space structure
1346  * @raddr: rmap address in the shadow guest address space
1347  * @sgt: pointer to the start of a shadow segment table
1348  *
1349  * Called with the sg->guest_table_lock
1350  */
1351 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1352 				unsigned long *sgt)
1353 {
1354 	unsigned long *pgt;
1355 	struct page *page;
1356 	int i;
1357 
1358 	BUG_ON(!gmap_is_shadow(sg));
1359 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1360 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1361 			continue;
1362 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1363 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1364 		__gmap_unshadow_pgt(sg, raddr, pgt);
1365 		/* Free page table */
1366 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1367 		list_del(&page->lru);
1368 		page_table_free_pgste(page);
1369 	}
1370 }
1371 
1372 /**
1373  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1374  * @sg: pointer to the shadow guest address space structure
1375  * @raddr: rmap address in the shadow guest address space
1376  *
1377  * Called with the shadow->guest_table_lock
1378  */
1379 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1380 {
1381 	unsigned long r3o, *r3e, *sgt;
1382 	struct page *page;
1383 
1384 	BUG_ON(!gmap_is_shadow(sg));
1385 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1386 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1387 		return;
1388 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1389 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1390 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1391 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1392 	*r3e = _REGION3_ENTRY_EMPTY;
1393 	__gmap_unshadow_sgt(sg, raddr, sgt);
1394 	/* Free segment table */
1395 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1396 	list_del(&page->lru);
1397 	__free_pages(page, CRST_ALLOC_ORDER);
1398 }
1399 
1400 /**
1401  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1402  * @sg: pointer to the shadow guest address space structure
1403  * @raddr: address in the shadow guest address space
1404  * @r3t: pointer to the start of a shadow region-3 table
1405  *
1406  * Called with the sg->guest_table_lock
1407  */
1408 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1409 				unsigned long *r3t)
1410 {
1411 	unsigned long *sgt;
1412 	struct page *page;
1413 	int i;
1414 
1415 	BUG_ON(!gmap_is_shadow(sg));
1416 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1417 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1418 			continue;
1419 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1420 		r3t[i] = _REGION3_ENTRY_EMPTY;
1421 		__gmap_unshadow_sgt(sg, raddr, sgt);
1422 		/* Free segment table */
1423 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1424 		list_del(&page->lru);
1425 		__free_pages(page, CRST_ALLOC_ORDER);
1426 	}
1427 }
1428 
1429 /**
1430  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1431  * @sg: pointer to the shadow guest address space structure
1432  * @raddr: rmap address in the shadow guest address space
1433  *
1434  * Called with the sg->guest_table_lock
1435  */
1436 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1437 {
1438 	unsigned long r2o, *r2e, *r3t;
1439 	struct page *page;
1440 
1441 	BUG_ON(!gmap_is_shadow(sg));
1442 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1443 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1444 		return;
1445 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1446 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1447 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1448 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1449 	*r2e = _REGION2_ENTRY_EMPTY;
1450 	__gmap_unshadow_r3t(sg, raddr, r3t);
1451 	/* Free region 3 table */
1452 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1453 	list_del(&page->lru);
1454 	__free_pages(page, CRST_ALLOC_ORDER);
1455 }
1456 
1457 /**
1458  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1459  * @sg: pointer to the shadow guest address space structure
1460  * @raddr: rmap address in the shadow guest address space
1461  * @r2t: pointer to the start of a shadow region-2 table
1462  *
1463  * Called with the sg->guest_table_lock
1464  */
1465 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1466 				unsigned long *r2t)
1467 {
1468 	unsigned long *r3t;
1469 	struct page *page;
1470 	int i;
1471 
1472 	BUG_ON(!gmap_is_shadow(sg));
1473 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1474 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1475 			continue;
1476 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1477 		r2t[i] = _REGION2_ENTRY_EMPTY;
1478 		__gmap_unshadow_r3t(sg, raddr, r3t);
1479 		/* Free region 3 table */
1480 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1481 		list_del(&page->lru);
1482 		__free_pages(page, CRST_ALLOC_ORDER);
1483 	}
1484 }
1485 
1486 /**
1487  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1488  * @sg: pointer to the shadow guest address space structure
1489  * @raddr: rmap address in the shadow guest address space
1490  *
1491  * Called with the sg->guest_table_lock
1492  */
1493 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1494 {
1495 	unsigned long r1o, *r1e, *r2t;
1496 	struct page *page;
1497 
1498 	BUG_ON(!gmap_is_shadow(sg));
1499 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1500 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1501 		return;
1502 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1503 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1504 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1505 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1506 	*r1e = _REGION1_ENTRY_EMPTY;
1507 	__gmap_unshadow_r2t(sg, raddr, r2t);
1508 	/* Free region 2 table */
1509 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1510 	list_del(&page->lru);
1511 	__free_pages(page, CRST_ALLOC_ORDER);
1512 }
1513 
1514 /**
1515  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1516  * @sg: pointer to the shadow guest address space structure
1517  * @raddr: rmap address in the shadow guest address space
1518  * @r1t: pointer to the start of a shadow region-1 table
1519  *
1520  * Called with the shadow->guest_table_lock
1521  */
1522 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1523 				unsigned long *r1t)
1524 {
1525 	unsigned long asce, *r2t;
1526 	struct page *page;
1527 	int i;
1528 
1529 	BUG_ON(!gmap_is_shadow(sg));
1530 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1531 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1532 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1533 			continue;
1534 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1535 		__gmap_unshadow_r2t(sg, raddr, r2t);
1536 		/* Clear entry and flush translation r1t -> r2t */
1537 		gmap_idte_one(asce, raddr);
1538 		r1t[i] = _REGION1_ENTRY_EMPTY;
1539 		/* Free region 2 table */
1540 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1541 		list_del(&page->lru);
1542 		__free_pages(page, CRST_ALLOC_ORDER);
1543 	}
1544 }
1545 
1546 /**
1547  * gmap_unshadow - remove a shadow page table completely
1548  * @sg: pointer to the shadow guest address space structure
1549  *
1550  * Called with sg->guest_table_lock
1551  */
1552 static void gmap_unshadow(struct gmap *sg)
1553 {
1554 	unsigned long *table;
1555 
1556 	BUG_ON(!gmap_is_shadow(sg));
1557 	if (sg->removed)
1558 		return;
1559 	sg->removed = 1;
1560 	gmap_call_notifier(sg, 0, -1UL);
1561 	gmap_flush_tlb(sg);
1562 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1563 	switch (sg->asce & _ASCE_TYPE_MASK) {
1564 	case _ASCE_TYPE_REGION1:
1565 		__gmap_unshadow_r1t(sg, 0, table);
1566 		break;
1567 	case _ASCE_TYPE_REGION2:
1568 		__gmap_unshadow_r2t(sg, 0, table);
1569 		break;
1570 	case _ASCE_TYPE_REGION3:
1571 		__gmap_unshadow_r3t(sg, 0, table);
1572 		break;
1573 	case _ASCE_TYPE_SEGMENT:
1574 		__gmap_unshadow_sgt(sg, 0, table);
1575 		break;
1576 	}
1577 }
1578 
1579 /**
1580  * gmap_find_shadow - find a specific asce in the list of shadow tables
1581  * @parent: pointer to the parent gmap
1582  * @asce: ASCE for which the shadow table is created
1583  * @edat_level: edat level to be used for the shadow translation
1584  *
1585  * Returns the pointer to a gmap if a shadow table with the given asce is
1586  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1587  * otherwise NULL
1588  */
1589 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1590 				     int edat_level)
1591 {
1592 	struct gmap *sg;
1593 
1594 	list_for_each_entry(sg, &parent->children, list) {
1595 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1596 		    sg->removed)
1597 			continue;
1598 		if (!sg->initialized)
1599 			return ERR_PTR(-EAGAIN);
1600 		refcount_inc(&sg->ref_count);
1601 		return sg;
1602 	}
1603 	return NULL;
1604 }
1605 
1606 /**
1607  * gmap_shadow_valid - check if a shadow guest address space matches the
1608  *                     given properties and is still valid
1609  * @sg: pointer to the shadow guest address space structure
1610  * @asce: ASCE for which the shadow table is requested
1611  * @edat_level: edat level to be used for the shadow translation
1612  *
1613  * Returns 1 if the gmap shadow is still valid and matches the given
1614  * properties, the caller can continue using it. Returns 0 otherwise, the
1615  * caller has to request a new shadow gmap in this case.
1616  *
1617  */
1618 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1619 {
1620 	if (sg->removed)
1621 		return 0;
1622 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1623 }
1624 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1625 
1626 /**
1627  * gmap_shadow - create/find a shadow guest address space
1628  * @parent: pointer to the parent gmap
1629  * @asce: ASCE for which the shadow table is created
1630  * @edat_level: edat level to be used for the shadow translation
1631  *
1632  * The pages of the top level page table referred by the asce parameter
1633  * will be set to read-only and marked in the PGSTEs of the kvm process.
1634  * The shadow table will be removed automatically on any change to the
1635  * PTE mapping for the source table.
1636  *
1637  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1638  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1639  * parent gmap table could not be protected.
1640  */
1641 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1642 			 int edat_level)
1643 {
1644 	struct gmap *sg, *new;
1645 	unsigned long limit;
1646 	int rc;
1647 
1648 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1649 	BUG_ON(gmap_is_shadow(parent));
1650 	spin_lock(&parent->shadow_lock);
1651 	sg = gmap_find_shadow(parent, asce, edat_level);
1652 	spin_unlock(&parent->shadow_lock);
1653 	if (sg)
1654 		return sg;
1655 	/* Create a new shadow gmap */
1656 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1657 	if (asce & _ASCE_REAL_SPACE)
1658 		limit = -1UL;
1659 	new = gmap_alloc(limit);
1660 	if (!new)
1661 		return ERR_PTR(-ENOMEM);
1662 	new->mm = parent->mm;
1663 	new->parent = gmap_get(parent);
1664 	new->orig_asce = asce;
1665 	new->edat_level = edat_level;
1666 	new->initialized = false;
1667 	spin_lock(&parent->shadow_lock);
1668 	/* Recheck if another CPU created the same shadow */
1669 	sg = gmap_find_shadow(parent, asce, edat_level);
1670 	if (sg) {
1671 		spin_unlock(&parent->shadow_lock);
1672 		gmap_free(new);
1673 		return sg;
1674 	}
1675 	if (asce & _ASCE_REAL_SPACE) {
1676 		/* only allow one real-space gmap shadow */
1677 		list_for_each_entry(sg, &parent->children, list) {
1678 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1679 				spin_lock(&sg->guest_table_lock);
1680 				gmap_unshadow(sg);
1681 				spin_unlock(&sg->guest_table_lock);
1682 				list_del(&sg->list);
1683 				gmap_put(sg);
1684 				break;
1685 			}
1686 		}
1687 	}
1688 	refcount_set(&new->ref_count, 2);
1689 	list_add(&new->list, &parent->children);
1690 	if (asce & _ASCE_REAL_SPACE) {
1691 		/* nothing to protect, return right away */
1692 		new->initialized = true;
1693 		spin_unlock(&parent->shadow_lock);
1694 		return new;
1695 	}
1696 	spin_unlock(&parent->shadow_lock);
1697 	/* protect after insertion, so it will get properly invalidated */
1698 	mmap_read_lock(parent->mm);
1699 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1700 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1701 				PROT_READ, GMAP_NOTIFY_SHADOW);
1702 	mmap_read_unlock(parent->mm);
1703 	spin_lock(&parent->shadow_lock);
1704 	new->initialized = true;
1705 	if (rc) {
1706 		list_del(&new->list);
1707 		gmap_free(new);
1708 		new = ERR_PTR(rc);
1709 	}
1710 	spin_unlock(&parent->shadow_lock);
1711 	return new;
1712 }
1713 EXPORT_SYMBOL_GPL(gmap_shadow);
1714 
1715 /**
1716  * gmap_shadow_r2t - create an empty shadow region 2 table
1717  * @sg: pointer to the shadow guest address space structure
1718  * @saddr: faulting address in the shadow gmap
1719  * @r2t: parent gmap address of the region 2 table to get shadowed
1720  * @fake: r2t references contiguous guest memory block, not a r2t
1721  *
1722  * The r2t parameter specifies the address of the source table. The
1723  * four pages of the source table are made read-only in the parent gmap
1724  * address space. A write to the source table area @r2t will automatically
1725  * remove the shadow r2 table and all of its decendents.
1726  *
1727  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1728  * shadow table structure is incomplete, -ENOMEM if out of memory and
1729  * -EFAULT if an address in the parent gmap could not be resolved.
1730  *
1731  * Called with sg->mm->mmap_lock in read.
1732  */
1733 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1734 		    int fake)
1735 {
1736 	unsigned long raddr, origin, offset, len;
1737 	unsigned long *s_r2t, *table;
1738 	struct page *page;
1739 	int rc;
1740 
1741 	BUG_ON(!gmap_is_shadow(sg));
1742 	/* Allocate a shadow region second table */
1743 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1744 	if (!page)
1745 		return -ENOMEM;
1746 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1747 	if (fake)
1748 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1749 	s_r2t = (unsigned long *) page_to_phys(page);
1750 	/* Install shadow region second table */
1751 	spin_lock(&sg->guest_table_lock);
1752 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1753 	if (!table) {
1754 		rc = -EAGAIN;		/* Race with unshadow */
1755 		goto out_free;
1756 	}
1757 	if (!(*table & _REGION_ENTRY_INVALID)) {
1758 		rc = 0;			/* Already established */
1759 		goto out_free;
1760 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1761 		rc = -EAGAIN;		/* Race with shadow */
1762 		goto out_free;
1763 	}
1764 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1765 	/* mark as invalid as long as the parent table is not protected */
1766 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1767 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1768 	if (sg->edat_level >= 1)
1769 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1770 	list_add(&page->lru, &sg->crst_list);
1771 	if (fake) {
1772 		/* nothing to protect for fake tables */
1773 		*table &= ~_REGION_ENTRY_INVALID;
1774 		spin_unlock(&sg->guest_table_lock);
1775 		return 0;
1776 	}
1777 	spin_unlock(&sg->guest_table_lock);
1778 	/* Make r2t read-only in parent gmap page table */
1779 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1780 	origin = r2t & _REGION_ENTRY_ORIGIN;
1781 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1782 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1783 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1784 	spin_lock(&sg->guest_table_lock);
1785 	if (!rc) {
1786 		table = gmap_table_walk(sg, saddr, 4);
1787 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1788 			      (unsigned long) s_r2t)
1789 			rc = -EAGAIN;		/* Race with unshadow */
1790 		else
1791 			*table &= ~_REGION_ENTRY_INVALID;
1792 	} else {
1793 		gmap_unshadow_r2t(sg, raddr);
1794 	}
1795 	spin_unlock(&sg->guest_table_lock);
1796 	return rc;
1797 out_free:
1798 	spin_unlock(&sg->guest_table_lock);
1799 	__free_pages(page, CRST_ALLOC_ORDER);
1800 	return rc;
1801 }
1802 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1803 
1804 /**
1805  * gmap_shadow_r3t - create a shadow region 3 table
1806  * @sg: pointer to the shadow guest address space structure
1807  * @saddr: faulting address in the shadow gmap
1808  * @r3t: parent gmap address of the region 3 table to get shadowed
1809  * @fake: r3t references contiguous guest memory block, not a r3t
1810  *
1811  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1812  * shadow table structure is incomplete, -ENOMEM if out of memory and
1813  * -EFAULT if an address in the parent gmap could not be resolved.
1814  *
1815  * Called with sg->mm->mmap_lock in read.
1816  */
1817 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1818 		    int fake)
1819 {
1820 	unsigned long raddr, origin, offset, len;
1821 	unsigned long *s_r3t, *table;
1822 	struct page *page;
1823 	int rc;
1824 
1825 	BUG_ON(!gmap_is_shadow(sg));
1826 	/* Allocate a shadow region second table */
1827 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1828 	if (!page)
1829 		return -ENOMEM;
1830 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1831 	if (fake)
1832 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1833 	s_r3t = (unsigned long *) page_to_phys(page);
1834 	/* Install shadow region second table */
1835 	spin_lock(&sg->guest_table_lock);
1836 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1837 	if (!table) {
1838 		rc = -EAGAIN;		/* Race with unshadow */
1839 		goto out_free;
1840 	}
1841 	if (!(*table & _REGION_ENTRY_INVALID)) {
1842 		rc = 0;			/* Already established */
1843 		goto out_free;
1844 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1845 		rc = -EAGAIN;		/* Race with shadow */
1846 		goto out_free;
1847 	}
1848 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1849 	/* mark as invalid as long as the parent table is not protected */
1850 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1851 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1852 	if (sg->edat_level >= 1)
1853 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1854 	list_add(&page->lru, &sg->crst_list);
1855 	if (fake) {
1856 		/* nothing to protect for fake tables */
1857 		*table &= ~_REGION_ENTRY_INVALID;
1858 		spin_unlock(&sg->guest_table_lock);
1859 		return 0;
1860 	}
1861 	spin_unlock(&sg->guest_table_lock);
1862 	/* Make r3t read-only in parent gmap page table */
1863 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1864 	origin = r3t & _REGION_ENTRY_ORIGIN;
1865 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1866 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1867 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1868 	spin_lock(&sg->guest_table_lock);
1869 	if (!rc) {
1870 		table = gmap_table_walk(sg, saddr, 3);
1871 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1872 			      (unsigned long) s_r3t)
1873 			rc = -EAGAIN;		/* Race with unshadow */
1874 		else
1875 			*table &= ~_REGION_ENTRY_INVALID;
1876 	} else {
1877 		gmap_unshadow_r3t(sg, raddr);
1878 	}
1879 	spin_unlock(&sg->guest_table_lock);
1880 	return rc;
1881 out_free:
1882 	spin_unlock(&sg->guest_table_lock);
1883 	__free_pages(page, CRST_ALLOC_ORDER);
1884 	return rc;
1885 }
1886 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1887 
1888 /**
1889  * gmap_shadow_sgt - create a shadow segment table
1890  * @sg: pointer to the shadow guest address space structure
1891  * @saddr: faulting address in the shadow gmap
1892  * @sgt: parent gmap address of the segment table to get shadowed
1893  * @fake: sgt references contiguous guest memory block, not a sgt
1894  *
1895  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1896  * shadow table structure is incomplete, -ENOMEM if out of memory and
1897  * -EFAULT if an address in the parent gmap could not be resolved.
1898  *
1899  * Called with sg->mm->mmap_lock in read.
1900  */
1901 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1902 		    int fake)
1903 {
1904 	unsigned long raddr, origin, offset, len;
1905 	unsigned long *s_sgt, *table;
1906 	struct page *page;
1907 	int rc;
1908 
1909 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1910 	/* Allocate a shadow segment table */
1911 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1912 	if (!page)
1913 		return -ENOMEM;
1914 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1915 	if (fake)
1916 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1917 	s_sgt = (unsigned long *) page_to_phys(page);
1918 	/* Install shadow region second table */
1919 	spin_lock(&sg->guest_table_lock);
1920 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1921 	if (!table) {
1922 		rc = -EAGAIN;		/* Race with unshadow */
1923 		goto out_free;
1924 	}
1925 	if (!(*table & _REGION_ENTRY_INVALID)) {
1926 		rc = 0;			/* Already established */
1927 		goto out_free;
1928 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1929 		rc = -EAGAIN;		/* Race with shadow */
1930 		goto out_free;
1931 	}
1932 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1933 	/* mark as invalid as long as the parent table is not protected */
1934 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1935 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1936 	if (sg->edat_level >= 1)
1937 		*table |= sgt & _REGION_ENTRY_PROTECT;
1938 	list_add(&page->lru, &sg->crst_list);
1939 	if (fake) {
1940 		/* nothing to protect for fake tables */
1941 		*table &= ~_REGION_ENTRY_INVALID;
1942 		spin_unlock(&sg->guest_table_lock);
1943 		return 0;
1944 	}
1945 	spin_unlock(&sg->guest_table_lock);
1946 	/* Make sgt read-only in parent gmap page table */
1947 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1948 	origin = sgt & _REGION_ENTRY_ORIGIN;
1949 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1950 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1951 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1952 	spin_lock(&sg->guest_table_lock);
1953 	if (!rc) {
1954 		table = gmap_table_walk(sg, saddr, 2);
1955 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1956 			      (unsigned long) s_sgt)
1957 			rc = -EAGAIN;		/* Race with unshadow */
1958 		else
1959 			*table &= ~_REGION_ENTRY_INVALID;
1960 	} else {
1961 		gmap_unshadow_sgt(sg, raddr);
1962 	}
1963 	spin_unlock(&sg->guest_table_lock);
1964 	return rc;
1965 out_free:
1966 	spin_unlock(&sg->guest_table_lock);
1967 	__free_pages(page, CRST_ALLOC_ORDER);
1968 	return rc;
1969 }
1970 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1971 
1972 /**
1973  * gmap_shadow_pgt_lookup - find a shadow page table
1974  * @sg: pointer to the shadow guest address space structure
1975  * @saddr: the address in the shadow aguest address space
1976  * @pgt: parent gmap address of the page table to get shadowed
1977  * @dat_protection: if the pgtable is marked as protected by dat
1978  * @fake: pgt references contiguous guest memory block, not a pgtable
1979  *
1980  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1981  * table was not found.
1982  *
1983  * Called with sg->mm->mmap_lock in read.
1984  */
1985 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1986 			   unsigned long *pgt, int *dat_protection,
1987 			   int *fake)
1988 {
1989 	unsigned long *table;
1990 	struct page *page;
1991 	int rc;
1992 
1993 	BUG_ON(!gmap_is_shadow(sg));
1994 	spin_lock(&sg->guest_table_lock);
1995 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1996 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1997 		/* Shadow page tables are full pages (pte+pgste) */
1998 		page = pfn_to_page(*table >> PAGE_SHIFT);
1999 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2000 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2001 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2002 		rc = 0;
2003 	} else  {
2004 		rc = -EAGAIN;
2005 	}
2006 	spin_unlock(&sg->guest_table_lock);
2007 	return rc;
2008 
2009 }
2010 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2011 
2012 /**
2013  * gmap_shadow_pgt - instantiate a shadow page table
2014  * @sg: pointer to the shadow guest address space structure
2015  * @saddr: faulting address in the shadow gmap
2016  * @pgt: parent gmap address of the page table to get shadowed
2017  * @fake: pgt references contiguous guest memory block, not a pgtable
2018  *
2019  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2020  * shadow table structure is incomplete, -ENOMEM if out of memory,
2021  * -EFAULT if an address in the parent gmap could not be resolved and
2022  *
2023  * Called with gmap->mm->mmap_lock in read
2024  */
2025 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2026 		    int fake)
2027 {
2028 	unsigned long raddr, origin;
2029 	unsigned long *s_pgt, *table;
2030 	struct page *page;
2031 	int rc;
2032 
2033 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2034 	/* Allocate a shadow page table */
2035 	page = page_table_alloc_pgste(sg->mm);
2036 	if (!page)
2037 		return -ENOMEM;
2038 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2039 	if (fake)
2040 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2041 	s_pgt = (unsigned long *) page_to_phys(page);
2042 	/* Install shadow page table */
2043 	spin_lock(&sg->guest_table_lock);
2044 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2045 	if (!table) {
2046 		rc = -EAGAIN;		/* Race with unshadow */
2047 		goto out_free;
2048 	}
2049 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2050 		rc = 0;			/* Already established */
2051 		goto out_free;
2052 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2053 		rc = -EAGAIN;		/* Race with shadow */
2054 		goto out_free;
2055 	}
2056 	/* mark as invalid as long as the parent table is not protected */
2057 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2058 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2059 	list_add(&page->lru, &sg->pt_list);
2060 	if (fake) {
2061 		/* nothing to protect for fake tables */
2062 		*table &= ~_SEGMENT_ENTRY_INVALID;
2063 		spin_unlock(&sg->guest_table_lock);
2064 		return 0;
2065 	}
2066 	spin_unlock(&sg->guest_table_lock);
2067 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2068 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2069 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2070 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2071 	spin_lock(&sg->guest_table_lock);
2072 	if (!rc) {
2073 		table = gmap_table_walk(sg, saddr, 1);
2074 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2075 			      (unsigned long) s_pgt)
2076 			rc = -EAGAIN;		/* Race with unshadow */
2077 		else
2078 			*table &= ~_SEGMENT_ENTRY_INVALID;
2079 	} else {
2080 		gmap_unshadow_pgt(sg, raddr);
2081 	}
2082 	spin_unlock(&sg->guest_table_lock);
2083 	return rc;
2084 out_free:
2085 	spin_unlock(&sg->guest_table_lock);
2086 	page_table_free_pgste(page);
2087 	return rc;
2088 
2089 }
2090 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2091 
2092 /**
2093  * gmap_shadow_page - create a shadow page mapping
2094  * @sg: pointer to the shadow guest address space structure
2095  * @saddr: faulting address in the shadow gmap
2096  * @pte: pte in parent gmap address space to get shadowed
2097  *
2098  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2099  * shadow table structure is incomplete, -ENOMEM if out of memory and
2100  * -EFAULT if an address in the parent gmap could not be resolved.
2101  *
2102  * Called with sg->mm->mmap_lock in read.
2103  */
2104 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2105 {
2106 	struct gmap *parent;
2107 	struct gmap_rmap *rmap;
2108 	unsigned long vmaddr, paddr;
2109 	spinlock_t *ptl;
2110 	pte_t *sptep, *tptep;
2111 	int prot;
2112 	int rc;
2113 
2114 	BUG_ON(!gmap_is_shadow(sg));
2115 	parent = sg->parent;
2116 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2117 
2118 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2119 	if (!rmap)
2120 		return -ENOMEM;
2121 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2122 
2123 	while (1) {
2124 		paddr = pte_val(pte) & PAGE_MASK;
2125 		vmaddr = __gmap_translate(parent, paddr);
2126 		if (IS_ERR_VALUE(vmaddr)) {
2127 			rc = vmaddr;
2128 			break;
2129 		}
2130 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2131 		if (rc)
2132 			break;
2133 		rc = -EAGAIN;
2134 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2135 		if (sptep) {
2136 			spin_lock(&sg->guest_table_lock);
2137 			/* Get page table pointer */
2138 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2139 			if (!tptep) {
2140 				spin_unlock(&sg->guest_table_lock);
2141 				gmap_pte_op_end(ptl);
2142 				radix_tree_preload_end();
2143 				break;
2144 			}
2145 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2146 			if (rc > 0) {
2147 				/* Success and a new mapping */
2148 				gmap_insert_rmap(sg, vmaddr, rmap);
2149 				rmap = NULL;
2150 				rc = 0;
2151 			}
2152 			gmap_pte_op_end(ptl);
2153 			spin_unlock(&sg->guest_table_lock);
2154 		}
2155 		radix_tree_preload_end();
2156 		if (!rc)
2157 			break;
2158 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2159 		if (rc)
2160 			break;
2161 	}
2162 	kfree(rmap);
2163 	return rc;
2164 }
2165 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2166 
2167 /*
2168  * gmap_shadow_notify - handle notifications for shadow gmap
2169  *
2170  * Called with sg->parent->shadow_lock.
2171  */
2172 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2173 			       unsigned long gaddr)
2174 {
2175 	struct gmap_rmap *rmap, *rnext, *head;
2176 	unsigned long start, end, bits, raddr;
2177 
2178 	BUG_ON(!gmap_is_shadow(sg));
2179 
2180 	spin_lock(&sg->guest_table_lock);
2181 	if (sg->removed) {
2182 		spin_unlock(&sg->guest_table_lock);
2183 		return;
2184 	}
2185 	/* Check for top level table */
2186 	start = sg->orig_asce & _ASCE_ORIGIN;
2187 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2188 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2189 	    gaddr < end) {
2190 		/* The complete shadow table has to go */
2191 		gmap_unshadow(sg);
2192 		spin_unlock(&sg->guest_table_lock);
2193 		list_del(&sg->list);
2194 		gmap_put(sg);
2195 		return;
2196 	}
2197 	/* Remove the page table tree from on specific entry */
2198 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2199 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2200 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2201 		raddr = rmap->raddr ^ bits;
2202 		switch (bits) {
2203 		case _SHADOW_RMAP_REGION1:
2204 			gmap_unshadow_r2t(sg, raddr);
2205 			break;
2206 		case _SHADOW_RMAP_REGION2:
2207 			gmap_unshadow_r3t(sg, raddr);
2208 			break;
2209 		case _SHADOW_RMAP_REGION3:
2210 			gmap_unshadow_sgt(sg, raddr);
2211 			break;
2212 		case _SHADOW_RMAP_SEGMENT:
2213 			gmap_unshadow_pgt(sg, raddr);
2214 			break;
2215 		case _SHADOW_RMAP_PGTABLE:
2216 			gmap_unshadow_page(sg, raddr);
2217 			break;
2218 		}
2219 		kfree(rmap);
2220 	}
2221 	spin_unlock(&sg->guest_table_lock);
2222 }
2223 
2224 /**
2225  * ptep_notify - call all invalidation callbacks for a specific pte.
2226  * @mm: pointer to the process mm_struct
2227  * @vmaddr: virtual address in the process address space
2228  * @pte: pointer to the page table entry
2229  * @bits: bits from the pgste that caused the notify call
2230  *
2231  * This function is assumed to be called with the page table lock held
2232  * for the pte to notify.
2233  */
2234 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2235 		 pte_t *pte, unsigned long bits)
2236 {
2237 	unsigned long offset, gaddr = 0;
2238 	unsigned long *table;
2239 	struct gmap *gmap, *sg, *next;
2240 
2241 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2242 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2243 	rcu_read_lock();
2244 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2245 		spin_lock(&gmap->guest_table_lock);
2246 		table = radix_tree_lookup(&gmap->host_to_guest,
2247 					  vmaddr >> PMD_SHIFT);
2248 		if (table)
2249 			gaddr = __gmap_segment_gaddr(table) + offset;
2250 		spin_unlock(&gmap->guest_table_lock);
2251 		if (!table)
2252 			continue;
2253 
2254 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2255 			spin_lock(&gmap->shadow_lock);
2256 			list_for_each_entry_safe(sg, next,
2257 						 &gmap->children, list)
2258 				gmap_shadow_notify(sg, vmaddr, gaddr);
2259 			spin_unlock(&gmap->shadow_lock);
2260 		}
2261 		if (bits & PGSTE_IN_BIT)
2262 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2263 	}
2264 	rcu_read_unlock();
2265 }
2266 EXPORT_SYMBOL_GPL(ptep_notify);
2267 
2268 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2269 			     unsigned long gaddr)
2270 {
2271 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2272 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2273 }
2274 
2275 /**
2276  * gmap_pmdp_xchg - exchange a gmap pmd with another
2277  * @gmap: pointer to the guest address space structure
2278  * @pmdp: pointer to the pmd entry
2279  * @new: replacement entry
2280  * @gaddr: the affected guest address
2281  *
2282  * This function is assumed to be called with the guest_table_lock
2283  * held.
2284  */
2285 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2286 			   unsigned long gaddr)
2287 {
2288 	gaddr &= HPAGE_MASK;
2289 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2290 	pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2291 	if (MACHINE_HAS_TLB_GUEST)
2292 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2293 			    IDTE_GLOBAL);
2294 	else if (MACHINE_HAS_IDTE)
2295 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2296 	else
2297 		__pmdp_csp(pmdp);
2298 	*pmdp = new;
2299 }
2300 
2301 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2302 			    int purge)
2303 {
2304 	pmd_t *pmdp;
2305 	struct gmap *gmap;
2306 	unsigned long gaddr;
2307 
2308 	rcu_read_lock();
2309 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2310 		spin_lock(&gmap->guest_table_lock);
2311 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2312 						  vmaddr >> PMD_SHIFT);
2313 		if (pmdp) {
2314 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2315 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2316 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2317 						   _SEGMENT_ENTRY_GMAP_UC));
2318 			if (purge)
2319 				__pmdp_csp(pmdp);
2320 			pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2321 		}
2322 		spin_unlock(&gmap->guest_table_lock);
2323 	}
2324 	rcu_read_unlock();
2325 }
2326 
2327 /**
2328  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2329  *                        flushing
2330  * @mm: pointer to the process mm_struct
2331  * @vmaddr: virtual address in the process address space
2332  */
2333 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2334 {
2335 	gmap_pmdp_clear(mm, vmaddr, 0);
2336 }
2337 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2338 
2339 /**
2340  * gmap_pmdp_csp - csp all affected guest pmd entries
2341  * @mm: pointer to the process mm_struct
2342  * @vmaddr: virtual address in the process address space
2343  */
2344 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2345 {
2346 	gmap_pmdp_clear(mm, vmaddr, 1);
2347 }
2348 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2349 
2350 /**
2351  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2352  * @mm: pointer to the process mm_struct
2353  * @vmaddr: virtual address in the process address space
2354  */
2355 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2356 {
2357 	unsigned long *entry, gaddr;
2358 	struct gmap *gmap;
2359 	pmd_t *pmdp;
2360 
2361 	rcu_read_lock();
2362 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2363 		spin_lock(&gmap->guest_table_lock);
2364 		entry = radix_tree_delete(&gmap->host_to_guest,
2365 					  vmaddr >> PMD_SHIFT);
2366 		if (entry) {
2367 			pmdp = (pmd_t *)entry;
2368 			gaddr = __gmap_segment_gaddr(entry);
2369 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2370 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2371 					   _SEGMENT_ENTRY_GMAP_UC));
2372 			if (MACHINE_HAS_TLB_GUEST)
2373 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2374 					    gmap->asce, IDTE_LOCAL);
2375 			else if (MACHINE_HAS_IDTE)
2376 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2377 			*entry = _SEGMENT_ENTRY_EMPTY;
2378 		}
2379 		spin_unlock(&gmap->guest_table_lock);
2380 	}
2381 	rcu_read_unlock();
2382 }
2383 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2384 
2385 /**
2386  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2387  * @mm: pointer to the process mm_struct
2388  * @vmaddr: virtual address in the process address space
2389  */
2390 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2391 {
2392 	unsigned long *entry, gaddr;
2393 	struct gmap *gmap;
2394 	pmd_t *pmdp;
2395 
2396 	rcu_read_lock();
2397 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2398 		spin_lock(&gmap->guest_table_lock);
2399 		entry = radix_tree_delete(&gmap->host_to_guest,
2400 					  vmaddr >> PMD_SHIFT);
2401 		if (entry) {
2402 			pmdp = (pmd_t *)entry;
2403 			gaddr = __gmap_segment_gaddr(entry);
2404 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2405 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2406 					   _SEGMENT_ENTRY_GMAP_UC));
2407 			if (MACHINE_HAS_TLB_GUEST)
2408 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2409 					    gmap->asce, IDTE_GLOBAL);
2410 			else if (MACHINE_HAS_IDTE)
2411 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2412 			else
2413 				__pmdp_csp(pmdp);
2414 			*entry = _SEGMENT_ENTRY_EMPTY;
2415 		}
2416 		spin_unlock(&gmap->guest_table_lock);
2417 	}
2418 	rcu_read_unlock();
2419 }
2420 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2421 
2422 /**
2423  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2424  * @gmap: pointer to guest address space
2425  * @pmdp: pointer to the pmd to be tested
2426  * @gaddr: virtual address in the guest address space
2427  *
2428  * This function is assumed to be called with the guest_table_lock
2429  * held.
2430  */
2431 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2432 					  unsigned long gaddr)
2433 {
2434 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2435 		return false;
2436 
2437 	/* Already protected memory, which did not change is clean */
2438 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2439 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2440 		return false;
2441 
2442 	/* Clear UC indication and reset protection */
2443 	pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2444 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2445 	return true;
2446 }
2447 
2448 /**
2449  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2450  * @gmap: pointer to guest address space
2451  * @bitmap: dirty bitmap for this pmd
2452  * @gaddr: virtual address in the guest address space
2453  * @vmaddr: virtual address in the host address space
2454  *
2455  * This function is assumed to be called with the guest_table_lock
2456  * held.
2457  */
2458 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2459 			     unsigned long gaddr, unsigned long vmaddr)
2460 {
2461 	int i;
2462 	pmd_t *pmdp;
2463 	pte_t *ptep;
2464 	spinlock_t *ptl;
2465 
2466 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2467 	if (!pmdp)
2468 		return;
2469 
2470 	if (pmd_large(*pmdp)) {
2471 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2472 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2473 	} else {
2474 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2475 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2476 			if (!ptep)
2477 				continue;
2478 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2479 				set_bit(i, bitmap);
2480 			spin_unlock(ptl);
2481 		}
2482 	}
2483 	gmap_pmd_op_end(gmap, pmdp);
2484 }
2485 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2486 
2487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2488 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2489 				    unsigned long end, struct mm_walk *walk)
2490 {
2491 	struct vm_area_struct *vma = walk->vma;
2492 
2493 	split_huge_pmd(vma, pmd, addr);
2494 	return 0;
2495 }
2496 
2497 static const struct mm_walk_ops thp_split_walk_ops = {
2498 	.pmd_entry	= thp_split_walk_pmd_entry,
2499 };
2500 
2501 static inline void thp_split_mm(struct mm_struct *mm)
2502 {
2503 	struct vm_area_struct *vma;
2504 
2505 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2506 		vma->vm_flags &= ~VM_HUGEPAGE;
2507 		vma->vm_flags |= VM_NOHUGEPAGE;
2508 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2509 	}
2510 	mm->def_flags |= VM_NOHUGEPAGE;
2511 }
2512 #else
2513 static inline void thp_split_mm(struct mm_struct *mm)
2514 {
2515 }
2516 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2517 
2518 /*
2519  * Remove all empty zero pages from the mapping for lazy refaulting
2520  * - This must be called after mm->context.has_pgste is set, to avoid
2521  *   future creation of zero pages
2522  * - This must be called after THP was enabled
2523  */
2524 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2525 			   unsigned long end, struct mm_walk *walk)
2526 {
2527 	unsigned long addr;
2528 
2529 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2530 		pte_t *ptep;
2531 		spinlock_t *ptl;
2532 
2533 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2534 		if (is_zero_pfn(pte_pfn(*ptep)))
2535 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2536 		pte_unmap_unlock(ptep, ptl);
2537 	}
2538 	return 0;
2539 }
2540 
2541 static const struct mm_walk_ops zap_zero_walk_ops = {
2542 	.pmd_entry	= __zap_zero_pages,
2543 };
2544 
2545 /*
2546  * switch on pgstes for its userspace process (for kvm)
2547  */
2548 int s390_enable_sie(void)
2549 {
2550 	struct mm_struct *mm = current->mm;
2551 
2552 	/* Do we have pgstes? if yes, we are done */
2553 	if (mm_has_pgste(mm))
2554 		return 0;
2555 	/* Fail if the page tables are 2K */
2556 	if (!mm_alloc_pgste(mm))
2557 		return -EINVAL;
2558 	mmap_write_lock(mm);
2559 	mm->context.has_pgste = 1;
2560 	/* split thp mappings and disable thp for future mappings */
2561 	thp_split_mm(mm);
2562 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2563 	mmap_write_unlock(mm);
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL_GPL(s390_enable_sie);
2567 
2568 int gmap_mark_unmergeable(void)
2569 {
2570 	struct mm_struct *mm = current->mm;
2571 	struct vm_area_struct *vma;
2572 	int ret;
2573 
2574 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2575 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2576 				  MADV_UNMERGEABLE, &vma->vm_flags);
2577 		if (ret)
2578 			return ret;
2579 	}
2580 	mm->def_flags &= ~VM_MERGEABLE;
2581 	return 0;
2582 }
2583 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2584 
2585 /*
2586  * Enable storage key handling from now on and initialize the storage
2587  * keys with the default key.
2588  */
2589 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2590 				  unsigned long next, struct mm_walk *walk)
2591 {
2592 	/* Clear storage key */
2593 	ptep_zap_key(walk->mm, addr, pte);
2594 	return 0;
2595 }
2596 
2597 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2598 				      unsigned long hmask, unsigned long next,
2599 				      struct mm_walk *walk)
2600 {
2601 	pmd_t *pmd = (pmd_t *)pte;
2602 	unsigned long start, end;
2603 	struct page *page = pmd_page(*pmd);
2604 
2605 	/*
2606 	 * The write check makes sure we do not set a key on shared
2607 	 * memory. This is needed as the walker does not differentiate
2608 	 * between actual guest memory and the process executable or
2609 	 * shared libraries.
2610 	 */
2611 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2612 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2613 		return 0;
2614 
2615 	start = pmd_val(*pmd) & HPAGE_MASK;
2616 	end = start + HPAGE_SIZE - 1;
2617 	__storage_key_init_range(start, end);
2618 	set_bit(PG_arch_1, &page->flags);
2619 	return 0;
2620 }
2621 
2622 static const struct mm_walk_ops enable_skey_walk_ops = {
2623 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2624 	.pte_entry		= __s390_enable_skey_pte,
2625 };
2626 
2627 int s390_enable_skey(void)
2628 {
2629 	struct mm_struct *mm = current->mm;
2630 	int rc = 0;
2631 
2632 	mmap_write_lock(mm);
2633 	if (mm_uses_skeys(mm))
2634 		goto out_up;
2635 
2636 	mm->context.uses_skeys = 1;
2637 	rc = gmap_mark_unmergeable();
2638 	if (rc) {
2639 		mm->context.uses_skeys = 0;
2640 		goto out_up;
2641 	}
2642 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2643 
2644 out_up:
2645 	mmap_write_unlock(mm);
2646 	return rc;
2647 }
2648 EXPORT_SYMBOL_GPL(s390_enable_skey);
2649 
2650 /*
2651  * Reset CMMA state, make all pages stable again.
2652  */
2653 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2654 			     unsigned long next, struct mm_walk *walk)
2655 {
2656 	ptep_zap_unused(walk->mm, addr, pte, 1);
2657 	return 0;
2658 }
2659 
2660 static const struct mm_walk_ops reset_cmma_walk_ops = {
2661 	.pte_entry		= __s390_reset_cmma,
2662 };
2663 
2664 void s390_reset_cmma(struct mm_struct *mm)
2665 {
2666 	mmap_write_lock(mm);
2667 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2668 	mmap_write_unlock(mm);
2669 }
2670 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2671 
2672 /*
2673  * make inaccessible pages accessible again
2674  */
2675 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2676 			    unsigned long next, struct mm_walk *walk)
2677 {
2678 	pte_t pte = READ_ONCE(*ptep);
2679 
2680 	if (pte_present(pte))
2681 		WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK));
2682 	return 0;
2683 }
2684 
2685 static const struct mm_walk_ops reset_acc_walk_ops = {
2686 	.pte_entry		= __s390_reset_acc,
2687 };
2688 
2689 #include <linux/sched/mm.h>
2690 void s390_reset_acc(struct mm_struct *mm)
2691 {
2692 	if (!mm_is_protected(mm))
2693 		return;
2694 	/*
2695 	 * we might be called during
2696 	 * reset:                             we walk the pages and clear
2697 	 * close of all kvm file descriptors: we walk the pages and clear
2698 	 * exit of process on fd closure:     vma already gone, do nothing
2699 	 */
2700 	if (!mmget_not_zero(mm))
2701 		return;
2702 	mmap_read_lock(mm);
2703 	walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2704 	mmap_read_unlock(mm);
2705 	mmput(mm);
2706 }
2707 EXPORT_SYMBOL_GPL(s390_reset_acc);
2708