1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2016, 2018 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @mm: pointer to the parent mm_struct 31 * @limit: maximum address of the gmap address space 32 * 33 * Returns a guest address space structure. 34 */ 35 static struct gmap *gmap_alloc(unsigned long limit) 36 { 37 struct gmap *gmap; 38 struct page *page; 39 unsigned long *table; 40 unsigned long etype, atype; 41 42 if (limit < _REGION3_SIZE) { 43 limit = _REGION3_SIZE - 1; 44 atype = _ASCE_TYPE_SEGMENT; 45 etype = _SEGMENT_ENTRY_EMPTY; 46 } else if (limit < _REGION2_SIZE) { 47 limit = _REGION2_SIZE - 1; 48 atype = _ASCE_TYPE_REGION3; 49 etype = _REGION3_ENTRY_EMPTY; 50 } else if (limit < _REGION1_SIZE) { 51 limit = _REGION1_SIZE - 1; 52 atype = _ASCE_TYPE_REGION2; 53 etype = _REGION2_ENTRY_EMPTY; 54 } else { 55 limit = -1UL; 56 atype = _ASCE_TYPE_REGION1; 57 etype = _REGION1_ENTRY_EMPTY; 58 } 59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 60 if (!gmap) 61 goto out; 62 INIT_LIST_HEAD(&gmap->crst_list); 63 INIT_LIST_HEAD(&gmap->children); 64 INIT_LIST_HEAD(&gmap->pt_list); 65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 68 spin_lock_init(&gmap->guest_table_lock); 69 spin_lock_init(&gmap->shadow_lock); 70 atomic_set(&gmap->ref_count, 1); 71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 72 if (!page) 73 goto out_free; 74 page->index = 0; 75 list_add(&page->lru, &gmap->crst_list); 76 table = (unsigned long *) page_to_phys(page); 77 crst_table_init(table, etype); 78 gmap->table = table; 79 gmap->asce = atype | _ASCE_TABLE_LENGTH | 80 _ASCE_USER_BITS | __pa(table); 81 gmap->asce_end = limit; 82 return gmap; 83 84 out_free: 85 kfree(gmap); 86 out: 87 return NULL; 88 } 89 90 /** 91 * gmap_create - create a guest address space 92 * @mm: pointer to the parent mm_struct 93 * @limit: maximum size of the gmap address space 94 * 95 * Returns a guest address space structure. 96 */ 97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 98 { 99 struct gmap *gmap; 100 unsigned long gmap_asce; 101 102 gmap = gmap_alloc(limit); 103 if (!gmap) 104 return NULL; 105 gmap->mm = mm; 106 spin_lock(&mm->context.lock); 107 list_add_rcu(&gmap->list, &mm->context.gmap_list); 108 if (list_is_singular(&mm->context.gmap_list)) 109 gmap_asce = gmap->asce; 110 else 111 gmap_asce = -1UL; 112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 113 spin_unlock(&mm->context.lock); 114 return gmap; 115 } 116 EXPORT_SYMBOL_GPL(gmap_create); 117 118 static void gmap_flush_tlb(struct gmap *gmap) 119 { 120 if (MACHINE_HAS_IDTE) 121 __tlb_flush_idte(gmap->asce); 122 else 123 __tlb_flush_global(); 124 } 125 126 static void gmap_radix_tree_free(struct radix_tree_root *root) 127 { 128 struct radix_tree_iter iter; 129 unsigned long indices[16]; 130 unsigned long index; 131 void __rcu **slot; 132 int i, nr; 133 134 /* A radix tree is freed by deleting all of its entries */ 135 index = 0; 136 do { 137 nr = 0; 138 radix_tree_for_each_slot(slot, root, &iter, index) { 139 indices[nr] = iter.index; 140 if (++nr == 16) 141 break; 142 } 143 for (i = 0; i < nr; i++) { 144 index = indices[i]; 145 radix_tree_delete(root, index); 146 } 147 } while (nr > 0); 148 } 149 150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 151 { 152 struct gmap_rmap *rmap, *rnext, *head; 153 struct radix_tree_iter iter; 154 unsigned long indices[16]; 155 unsigned long index; 156 void __rcu **slot; 157 int i, nr; 158 159 /* A radix tree is freed by deleting all of its entries */ 160 index = 0; 161 do { 162 nr = 0; 163 radix_tree_for_each_slot(slot, root, &iter, index) { 164 indices[nr] = iter.index; 165 if (++nr == 16) 166 break; 167 } 168 for (i = 0; i < nr; i++) { 169 index = indices[i]; 170 head = radix_tree_delete(root, index); 171 gmap_for_each_rmap_safe(rmap, rnext, head) 172 kfree(rmap); 173 } 174 } while (nr > 0); 175 } 176 177 /** 178 * gmap_free - free a guest address space 179 * @gmap: pointer to the guest address space structure 180 * 181 * No locks required. There are no references to this gmap anymore. 182 */ 183 static void gmap_free(struct gmap *gmap) 184 { 185 struct page *page, *next; 186 187 /* Flush tlb of all gmaps (if not already done for shadows) */ 188 if (!(gmap_is_shadow(gmap) && gmap->removed)) 189 gmap_flush_tlb(gmap); 190 /* Free all segment & region tables. */ 191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 192 __free_pages(page, CRST_ALLOC_ORDER); 193 gmap_radix_tree_free(&gmap->guest_to_host); 194 gmap_radix_tree_free(&gmap->host_to_guest); 195 196 /* Free additional data for a shadow gmap */ 197 if (gmap_is_shadow(gmap)) { 198 /* Free all page tables. */ 199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 200 page_table_free_pgste(page); 201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 202 /* Release reference to the parent */ 203 gmap_put(gmap->parent); 204 } 205 206 kfree(gmap); 207 } 208 209 /** 210 * gmap_get - increase reference counter for guest address space 211 * @gmap: pointer to the guest address space structure 212 * 213 * Returns the gmap pointer 214 */ 215 struct gmap *gmap_get(struct gmap *gmap) 216 { 217 atomic_inc(&gmap->ref_count); 218 return gmap; 219 } 220 EXPORT_SYMBOL_GPL(gmap_get); 221 222 /** 223 * gmap_put - decrease reference counter for guest address space 224 * @gmap: pointer to the guest address space structure 225 * 226 * If the reference counter reaches zero the guest address space is freed. 227 */ 228 void gmap_put(struct gmap *gmap) 229 { 230 if (atomic_dec_return(&gmap->ref_count) == 0) 231 gmap_free(gmap); 232 } 233 EXPORT_SYMBOL_GPL(gmap_put); 234 235 /** 236 * gmap_remove - remove a guest address space but do not free it yet 237 * @gmap: pointer to the guest address space structure 238 */ 239 void gmap_remove(struct gmap *gmap) 240 { 241 struct gmap *sg, *next; 242 unsigned long gmap_asce; 243 244 /* Remove all shadow gmaps linked to this gmap */ 245 if (!list_empty(&gmap->children)) { 246 spin_lock(&gmap->shadow_lock); 247 list_for_each_entry_safe(sg, next, &gmap->children, list) { 248 list_del(&sg->list); 249 gmap_put(sg); 250 } 251 spin_unlock(&gmap->shadow_lock); 252 } 253 /* Remove gmap from the pre-mm list */ 254 spin_lock(&gmap->mm->context.lock); 255 list_del_rcu(&gmap->list); 256 if (list_empty(&gmap->mm->context.gmap_list)) 257 gmap_asce = 0; 258 else if (list_is_singular(&gmap->mm->context.gmap_list)) 259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 260 struct gmap, list)->asce; 261 else 262 gmap_asce = -1UL; 263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 264 spin_unlock(&gmap->mm->context.lock); 265 synchronize_rcu(); 266 /* Put reference */ 267 gmap_put(gmap); 268 } 269 EXPORT_SYMBOL_GPL(gmap_remove); 270 271 /** 272 * gmap_enable - switch primary space to the guest address space 273 * @gmap: pointer to the guest address space structure 274 */ 275 void gmap_enable(struct gmap *gmap) 276 { 277 S390_lowcore.gmap = (unsigned long) gmap; 278 } 279 EXPORT_SYMBOL_GPL(gmap_enable); 280 281 /** 282 * gmap_disable - switch back to the standard primary address space 283 * @gmap: pointer to the guest address space structure 284 */ 285 void gmap_disable(struct gmap *gmap) 286 { 287 S390_lowcore.gmap = 0UL; 288 } 289 EXPORT_SYMBOL_GPL(gmap_disable); 290 291 /** 292 * gmap_get_enabled - get a pointer to the currently enabled gmap 293 * 294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 295 */ 296 struct gmap *gmap_get_enabled(void) 297 { 298 return (struct gmap *) S390_lowcore.gmap; 299 } 300 EXPORT_SYMBOL_GPL(gmap_get_enabled); 301 302 /* 303 * gmap_alloc_table is assumed to be called with mmap_sem held 304 */ 305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 306 unsigned long init, unsigned long gaddr) 307 { 308 struct page *page; 309 unsigned long *new; 310 311 /* since we dont free the gmap table until gmap_free we can unlock */ 312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 313 if (!page) 314 return -ENOMEM; 315 new = (unsigned long *) page_to_phys(page); 316 crst_table_init(new, init); 317 spin_lock(&gmap->guest_table_lock); 318 if (*table & _REGION_ENTRY_INVALID) { 319 list_add(&page->lru, &gmap->crst_list); 320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 321 (*table & _REGION_ENTRY_TYPE_MASK); 322 page->index = gaddr; 323 page = NULL; 324 } 325 spin_unlock(&gmap->guest_table_lock); 326 if (page) 327 __free_pages(page, CRST_ALLOC_ORDER); 328 return 0; 329 } 330 331 /** 332 * __gmap_segment_gaddr - find virtual address from segment pointer 333 * @entry: pointer to a segment table entry in the guest address space 334 * 335 * Returns the virtual address in the guest address space for the segment 336 */ 337 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 338 { 339 struct page *page; 340 unsigned long offset, mask; 341 342 offset = (unsigned long) entry / sizeof(unsigned long); 343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 345 page = virt_to_page((void *)((unsigned long) entry & mask)); 346 return page->index + offset; 347 } 348 349 /** 350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 351 * @gmap: pointer to the guest address space structure 352 * @vmaddr: address in the host process address space 353 * 354 * Returns 1 if a TLB flush is required 355 */ 356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 357 { 358 unsigned long *entry; 359 int flush = 0; 360 361 BUG_ON(gmap_is_shadow(gmap)); 362 spin_lock(&gmap->guest_table_lock); 363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 364 if (entry) { 365 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 366 *entry = _SEGMENT_ENTRY_EMPTY; 367 } 368 spin_unlock(&gmap->guest_table_lock); 369 return flush; 370 } 371 372 /** 373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 374 * @gmap: pointer to the guest address space structure 375 * @gaddr: address in the guest address space 376 * 377 * Returns 1 if a TLB flush is required 378 */ 379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 380 { 381 unsigned long vmaddr; 382 383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 384 gaddr >> PMD_SHIFT); 385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 386 } 387 388 /** 389 * gmap_unmap_segment - unmap segment from the guest address space 390 * @gmap: pointer to the guest address space structure 391 * @to: address in the guest address space 392 * @len: length of the memory area to unmap 393 * 394 * Returns 0 if the unmap succeeded, -EINVAL if not. 395 */ 396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 397 { 398 unsigned long off; 399 int flush; 400 401 BUG_ON(gmap_is_shadow(gmap)); 402 if ((to | len) & (PMD_SIZE - 1)) 403 return -EINVAL; 404 if (len == 0 || to + len < to) 405 return -EINVAL; 406 407 flush = 0; 408 down_write(&gmap->mm->mmap_sem); 409 for (off = 0; off < len; off += PMD_SIZE) 410 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 411 up_write(&gmap->mm->mmap_sem); 412 if (flush) 413 gmap_flush_tlb(gmap); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 417 418 /** 419 * gmap_map_segment - map a segment to the guest address space 420 * @gmap: pointer to the guest address space structure 421 * @from: source address in the parent address space 422 * @to: target address in the guest address space 423 * @len: length of the memory area to map 424 * 425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 426 */ 427 int gmap_map_segment(struct gmap *gmap, unsigned long from, 428 unsigned long to, unsigned long len) 429 { 430 unsigned long off; 431 int flush; 432 433 BUG_ON(gmap_is_shadow(gmap)); 434 if ((from | to | len) & (PMD_SIZE - 1)) 435 return -EINVAL; 436 if (len == 0 || from + len < from || to + len < to || 437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 438 return -EINVAL; 439 440 flush = 0; 441 down_write(&gmap->mm->mmap_sem); 442 for (off = 0; off < len; off += PMD_SIZE) { 443 /* Remove old translation */ 444 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 445 /* Store new translation */ 446 if (radix_tree_insert(&gmap->guest_to_host, 447 (to + off) >> PMD_SHIFT, 448 (void *) from + off)) 449 break; 450 } 451 up_write(&gmap->mm->mmap_sem); 452 if (flush) 453 gmap_flush_tlb(gmap); 454 if (off >= len) 455 return 0; 456 gmap_unmap_segment(gmap, to, len); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(gmap_map_segment); 460 461 /** 462 * __gmap_translate - translate a guest address to a user space address 463 * @gmap: pointer to guest mapping meta data structure 464 * @gaddr: guest address 465 * 466 * Returns user space address which corresponds to the guest address or 467 * -EFAULT if no such mapping exists. 468 * This function does not establish potentially missing page table entries. 469 * The mmap_sem of the mm that belongs to the address space must be held 470 * when this function gets called. 471 * 472 * Note: Can also be called for shadow gmaps. 473 */ 474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 475 { 476 unsigned long vmaddr; 477 478 vmaddr = (unsigned long) 479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 480 /* Note: guest_to_host is empty for a shadow gmap */ 481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 482 } 483 EXPORT_SYMBOL_GPL(__gmap_translate); 484 485 /** 486 * gmap_translate - translate a guest address to a user space address 487 * @gmap: pointer to guest mapping meta data structure 488 * @gaddr: guest address 489 * 490 * Returns user space address which corresponds to the guest address or 491 * -EFAULT if no such mapping exists. 492 * This function does not establish potentially missing page table entries. 493 */ 494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 495 { 496 unsigned long rc; 497 498 down_read(&gmap->mm->mmap_sem); 499 rc = __gmap_translate(gmap, gaddr); 500 up_read(&gmap->mm->mmap_sem); 501 return rc; 502 } 503 EXPORT_SYMBOL_GPL(gmap_translate); 504 505 /** 506 * gmap_unlink - disconnect a page table from the gmap shadow tables 507 * @gmap: pointer to guest mapping meta data structure 508 * @table: pointer to the host page table 509 * @vmaddr: vm address associated with the host page table 510 */ 511 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 512 unsigned long vmaddr) 513 { 514 struct gmap *gmap; 515 int flush; 516 517 rcu_read_lock(); 518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 520 if (flush) 521 gmap_flush_tlb(gmap); 522 } 523 rcu_read_unlock(); 524 } 525 526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 527 unsigned long gaddr); 528 529 /** 530 * gmap_link - set up shadow page tables to connect a host to a guest address 531 * @gmap: pointer to guest mapping meta data structure 532 * @gaddr: guest address 533 * @vmaddr: vm address 534 * 535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 536 * if the vm address is already mapped to a different guest segment. 537 * The mmap_sem of the mm that belongs to the address space must be held 538 * when this function gets called. 539 */ 540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 541 { 542 struct mm_struct *mm; 543 unsigned long *table; 544 spinlock_t *ptl; 545 pgd_t *pgd; 546 p4d_t *p4d; 547 pud_t *pud; 548 pmd_t *pmd; 549 u64 unprot; 550 int rc; 551 552 BUG_ON(gmap_is_shadow(gmap)); 553 /* Create higher level tables in the gmap page table */ 554 table = gmap->table; 555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 557 if ((*table & _REGION_ENTRY_INVALID) && 558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 559 gaddr & _REGION1_MASK)) 560 return -ENOMEM; 561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 562 } 563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 565 if ((*table & _REGION_ENTRY_INVALID) && 566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 567 gaddr & _REGION2_MASK)) 568 return -ENOMEM; 569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 570 } 571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 573 if ((*table & _REGION_ENTRY_INVALID) && 574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 575 gaddr & _REGION3_MASK)) 576 return -ENOMEM; 577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 578 } 579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 580 /* Walk the parent mm page table */ 581 mm = gmap->mm; 582 pgd = pgd_offset(mm, vmaddr); 583 VM_BUG_ON(pgd_none(*pgd)); 584 p4d = p4d_offset(pgd, vmaddr); 585 VM_BUG_ON(p4d_none(*p4d)); 586 pud = pud_offset(p4d, vmaddr); 587 VM_BUG_ON(pud_none(*pud)); 588 /* large puds cannot yet be handled */ 589 if (pud_large(*pud)) 590 return -EFAULT; 591 pmd = pmd_offset(pud, vmaddr); 592 VM_BUG_ON(pmd_none(*pmd)); 593 /* Are we allowed to use huge pages? */ 594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 595 return -EFAULT; 596 /* Link gmap segment table entry location to page table. */ 597 rc = radix_tree_preload(GFP_KERNEL); 598 if (rc) 599 return rc; 600 ptl = pmd_lock(mm, pmd); 601 spin_lock(&gmap->guest_table_lock); 602 if (*table == _SEGMENT_ENTRY_EMPTY) { 603 rc = radix_tree_insert(&gmap->host_to_guest, 604 vmaddr >> PMD_SHIFT, table); 605 if (!rc) { 606 if (pmd_large(*pmd)) { 607 *table = (pmd_val(*pmd) & 608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 609 | _SEGMENT_ENTRY_GMAP_UC; 610 } else 611 *table = pmd_val(*pmd) & 612 _SEGMENT_ENTRY_HARDWARE_BITS; 613 } 614 } else if (*table & _SEGMENT_ENTRY_PROTECT && 615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 616 unprot = (u64)*table; 617 unprot &= ~_SEGMENT_ENTRY_PROTECT; 618 unprot |= _SEGMENT_ENTRY_GMAP_UC; 619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 620 } 621 spin_unlock(&gmap->guest_table_lock); 622 spin_unlock(ptl); 623 radix_tree_preload_end(); 624 return rc; 625 } 626 627 /** 628 * gmap_fault - resolve a fault on a guest address 629 * @gmap: pointer to guest mapping meta data structure 630 * @gaddr: guest address 631 * @fault_flags: flags to pass down to handle_mm_fault() 632 * 633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 634 * if the vm address is already mapped to a different guest segment. 635 */ 636 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 637 unsigned int fault_flags) 638 { 639 unsigned long vmaddr; 640 int rc; 641 bool unlocked; 642 643 down_read(&gmap->mm->mmap_sem); 644 645 retry: 646 unlocked = false; 647 vmaddr = __gmap_translate(gmap, gaddr); 648 if (IS_ERR_VALUE(vmaddr)) { 649 rc = vmaddr; 650 goto out_up; 651 } 652 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags, 653 &unlocked)) { 654 rc = -EFAULT; 655 goto out_up; 656 } 657 /* 658 * In the case that fixup_user_fault unlocked the mmap_sem during 659 * faultin redo __gmap_translate to not race with a map/unmap_segment. 660 */ 661 if (unlocked) 662 goto retry; 663 664 rc = __gmap_link(gmap, gaddr, vmaddr); 665 out_up: 666 up_read(&gmap->mm->mmap_sem); 667 return rc; 668 } 669 EXPORT_SYMBOL_GPL(gmap_fault); 670 671 /* 672 * this function is assumed to be called with mmap_sem held 673 */ 674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 675 { 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 /* Get pointer to the page table entry */ 686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 687 if (likely(ptep)) 688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 689 pte_unmap_unlock(ptep, ptl); 690 } 691 } 692 EXPORT_SYMBOL_GPL(__gmap_zap); 693 694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 695 { 696 unsigned long gaddr, vmaddr, size; 697 struct vm_area_struct *vma; 698 699 down_read(&gmap->mm->mmap_sem); 700 for (gaddr = from; gaddr < to; 701 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 702 /* Find the vm address for the guest address */ 703 vmaddr = (unsigned long) 704 radix_tree_lookup(&gmap->guest_to_host, 705 gaddr >> PMD_SHIFT); 706 if (!vmaddr) 707 continue; 708 vmaddr |= gaddr & ~PMD_MASK; 709 /* Find vma in the parent mm */ 710 vma = find_vma(gmap->mm, vmaddr); 711 if (!vma) 712 continue; 713 /* 714 * We do not discard pages that are backed by 715 * hugetlbfs, so we don't have to refault them. 716 */ 717 if (is_vm_hugetlb_page(vma)) 718 continue; 719 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 720 zap_page_range(vma, vmaddr, size); 721 } 722 up_read(&gmap->mm->mmap_sem); 723 } 724 EXPORT_SYMBOL_GPL(gmap_discard); 725 726 static LIST_HEAD(gmap_notifier_list); 727 static DEFINE_SPINLOCK(gmap_notifier_lock); 728 729 /** 730 * gmap_register_pte_notifier - register a pte invalidation callback 731 * @nb: pointer to the gmap notifier block 732 */ 733 void gmap_register_pte_notifier(struct gmap_notifier *nb) 734 { 735 spin_lock(&gmap_notifier_lock); 736 list_add_rcu(&nb->list, &gmap_notifier_list); 737 spin_unlock(&gmap_notifier_lock); 738 } 739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 740 741 /** 742 * gmap_unregister_pte_notifier - remove a pte invalidation callback 743 * @nb: pointer to the gmap notifier block 744 */ 745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 746 { 747 spin_lock(&gmap_notifier_lock); 748 list_del_rcu(&nb->list); 749 spin_unlock(&gmap_notifier_lock); 750 synchronize_rcu(); 751 } 752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 753 754 /** 755 * gmap_call_notifier - call all registered invalidation callbacks 756 * @gmap: pointer to guest mapping meta data structure 757 * @start: start virtual address in the guest address space 758 * @end: end virtual address in the guest address space 759 */ 760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 761 unsigned long end) 762 { 763 struct gmap_notifier *nb; 764 765 list_for_each_entry(nb, &gmap_notifier_list, list) 766 nb->notifier_call(gmap, start, end); 767 } 768 769 /** 770 * gmap_table_walk - walk the gmap page tables 771 * @gmap: pointer to guest mapping meta data structure 772 * @gaddr: virtual address in the guest address space 773 * @level: page table level to stop at 774 * 775 * Returns a table entry pointer for the given guest address and @level 776 * @level=0 : returns a pointer to a page table table entry (or NULL) 777 * @level=1 : returns a pointer to a segment table entry (or NULL) 778 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 779 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 780 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 781 * 782 * Returns NULL if the gmap page tables could not be walked to the 783 * requested level. 784 * 785 * Note: Can also be called for shadow gmaps. 786 */ 787 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 788 unsigned long gaddr, int level) 789 { 790 unsigned long *table; 791 792 if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4)) 793 return NULL; 794 if (gmap_is_shadow(gmap) && gmap->removed) 795 return NULL; 796 if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11))) 797 return NULL; 798 table = gmap->table; 799 switch (gmap->asce & _ASCE_TYPE_MASK) { 800 case _ASCE_TYPE_REGION1: 801 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 802 if (level == 4) 803 break; 804 if (*table & _REGION_ENTRY_INVALID) 805 return NULL; 806 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 807 /* Fallthrough */ 808 case _ASCE_TYPE_REGION2: 809 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 810 if (level == 3) 811 break; 812 if (*table & _REGION_ENTRY_INVALID) 813 return NULL; 814 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 815 /* Fallthrough */ 816 case _ASCE_TYPE_REGION3: 817 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 818 if (level == 2) 819 break; 820 if (*table & _REGION_ENTRY_INVALID) 821 return NULL; 822 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 823 /* Fallthrough */ 824 case _ASCE_TYPE_SEGMENT: 825 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 826 if (level == 1) 827 break; 828 if (*table & _REGION_ENTRY_INVALID) 829 return NULL; 830 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 831 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 832 } 833 return table; 834 } 835 836 /** 837 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 838 * and return the pte pointer 839 * @gmap: pointer to guest mapping meta data structure 840 * @gaddr: virtual address in the guest address space 841 * @ptl: pointer to the spinlock pointer 842 * 843 * Returns a pointer to the locked pte for a guest address, or NULL 844 */ 845 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 846 spinlock_t **ptl) 847 { 848 unsigned long *table; 849 850 BUG_ON(gmap_is_shadow(gmap)); 851 /* Walk the gmap page table, lock and get pte pointer */ 852 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 853 if (!table || *table & _SEGMENT_ENTRY_INVALID) 854 return NULL; 855 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 856 } 857 858 /** 859 * gmap_pte_op_fixup - force a page in and connect the gmap page table 860 * @gmap: pointer to guest mapping meta data structure 861 * @gaddr: virtual address in the guest address space 862 * @vmaddr: address in the host process address space 863 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 864 * 865 * Returns 0 if the caller can retry __gmap_translate (might fail again), 866 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 867 * up or connecting the gmap page table. 868 */ 869 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 870 unsigned long vmaddr, int prot) 871 { 872 struct mm_struct *mm = gmap->mm; 873 unsigned int fault_flags; 874 bool unlocked = false; 875 876 BUG_ON(gmap_is_shadow(gmap)); 877 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 878 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked)) 879 return -EFAULT; 880 if (unlocked) 881 /* lost mmap_sem, caller has to retry __gmap_translate */ 882 return 0; 883 /* Connect the page tables */ 884 return __gmap_link(gmap, gaddr, vmaddr); 885 } 886 887 /** 888 * gmap_pte_op_end - release the page table lock 889 * @ptl: pointer to the spinlock pointer 890 */ 891 static void gmap_pte_op_end(spinlock_t *ptl) 892 { 893 if (ptl) 894 spin_unlock(ptl); 895 } 896 897 /** 898 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 899 * and return the pmd pointer 900 * @gmap: pointer to guest mapping meta data structure 901 * @gaddr: virtual address in the guest address space 902 * 903 * Returns a pointer to the pmd for a guest address, or NULL 904 */ 905 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 906 { 907 pmd_t *pmdp; 908 909 BUG_ON(gmap_is_shadow(gmap)); 910 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 911 if (!pmdp) 912 return NULL; 913 914 /* without huge pages, there is no need to take the table lock */ 915 if (!gmap->mm->context.allow_gmap_hpage_1m) 916 return pmd_none(*pmdp) ? NULL : pmdp; 917 918 spin_lock(&gmap->guest_table_lock); 919 if (pmd_none(*pmdp)) { 920 spin_unlock(&gmap->guest_table_lock); 921 return NULL; 922 } 923 924 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 925 if (!pmd_large(*pmdp)) 926 spin_unlock(&gmap->guest_table_lock); 927 return pmdp; 928 } 929 930 /** 931 * gmap_pmd_op_end - release the guest_table_lock if needed 932 * @gmap: pointer to the guest mapping meta data structure 933 * @pmdp: pointer to the pmd 934 */ 935 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 936 { 937 if (pmd_large(*pmdp)) 938 spin_unlock(&gmap->guest_table_lock); 939 } 940 941 /* 942 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 943 * @pmdp: pointer to the pmd to be protected 944 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 945 * @bits: notification bits to set 946 * 947 * Returns: 948 * 0 if successfully protected 949 * -EAGAIN if a fixup is needed 950 * -EINVAL if unsupported notifier bits have been specified 951 * 952 * Expected to be called with sg->mm->mmap_sem in read and 953 * guest_table_lock held. 954 */ 955 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 956 pmd_t *pmdp, int prot, unsigned long bits) 957 { 958 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 959 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 960 pmd_t new = *pmdp; 961 962 /* Fixup needed */ 963 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 964 return -EAGAIN; 965 966 if (prot == PROT_NONE && !pmd_i) { 967 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 968 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 969 } 970 971 if (prot == PROT_READ && !pmd_p) { 972 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 973 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 974 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 975 } 976 977 if (bits & GMAP_NOTIFY_MPROT) 978 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 979 980 /* Shadow GMAP protection needs split PMDs */ 981 if (bits & GMAP_NOTIFY_SHADOW) 982 return -EINVAL; 983 984 return 0; 985 } 986 987 /* 988 * gmap_protect_pte - remove access rights to memory and set pgste bits 989 * @gmap: pointer to guest mapping meta data structure 990 * @gaddr: virtual address in the guest address space 991 * @pmdp: pointer to the pmd associated with the pte 992 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 993 * @bits: notification bits to set 994 * 995 * Returns 0 if successfully protected, -ENOMEM if out of memory and 996 * -EAGAIN if a fixup is needed. 997 * 998 * Expected to be called with sg->mm->mmap_sem in read 999 */ 1000 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1001 pmd_t *pmdp, int prot, unsigned long bits) 1002 { 1003 int rc; 1004 pte_t *ptep; 1005 spinlock_t *ptl = NULL; 1006 unsigned long pbits = 0; 1007 1008 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1009 return -EAGAIN; 1010 1011 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1012 if (!ptep) 1013 return -ENOMEM; 1014 1015 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1016 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1017 /* Protect and unlock. */ 1018 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1019 gmap_pte_op_end(ptl); 1020 return rc; 1021 } 1022 1023 /* 1024 * gmap_protect_range - remove access rights to memory and set pgste bits 1025 * @gmap: pointer to guest mapping meta data structure 1026 * @gaddr: virtual address in the guest address space 1027 * @len: size of area 1028 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1029 * @bits: pgste notification bits to set 1030 * 1031 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1032 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1033 * 1034 * Called with sg->mm->mmap_sem in read. 1035 */ 1036 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1037 unsigned long len, int prot, unsigned long bits) 1038 { 1039 unsigned long vmaddr, dist; 1040 pmd_t *pmdp; 1041 int rc; 1042 1043 BUG_ON(gmap_is_shadow(gmap)); 1044 while (len) { 1045 rc = -EAGAIN; 1046 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1047 if (pmdp) { 1048 if (!pmd_large(*pmdp)) { 1049 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1050 bits); 1051 if (!rc) { 1052 len -= PAGE_SIZE; 1053 gaddr += PAGE_SIZE; 1054 } 1055 } else { 1056 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1057 bits); 1058 if (!rc) { 1059 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1060 len = len < dist ? 0 : len - dist; 1061 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1062 } 1063 } 1064 gmap_pmd_op_end(gmap, pmdp); 1065 } 1066 if (rc) { 1067 if (rc == -EINVAL) 1068 return rc; 1069 1070 /* -EAGAIN, fixup of userspace mm and gmap */ 1071 vmaddr = __gmap_translate(gmap, gaddr); 1072 if (IS_ERR_VALUE(vmaddr)) 1073 return vmaddr; 1074 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1075 if (rc) 1076 return rc; 1077 } 1078 } 1079 return 0; 1080 } 1081 1082 /** 1083 * gmap_mprotect_notify - change access rights for a range of ptes and 1084 * call the notifier if any pte changes again 1085 * @gmap: pointer to guest mapping meta data structure 1086 * @gaddr: virtual address in the guest address space 1087 * @len: size of area 1088 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1089 * 1090 * Returns 0 if for each page in the given range a gmap mapping exists, 1091 * the new access rights could be set and the notifier could be armed. 1092 * If the gmap mapping is missing for one or more pages -EFAULT is 1093 * returned. If no memory could be allocated -ENOMEM is returned. 1094 * This function establishes missing page table entries. 1095 */ 1096 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1097 unsigned long len, int prot) 1098 { 1099 int rc; 1100 1101 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1102 return -EINVAL; 1103 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1104 return -EINVAL; 1105 down_read(&gmap->mm->mmap_sem); 1106 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1107 up_read(&gmap->mm->mmap_sem); 1108 return rc; 1109 } 1110 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1111 1112 /** 1113 * gmap_read_table - get an unsigned long value from a guest page table using 1114 * absolute addressing, without marking the page referenced. 1115 * @gmap: pointer to guest mapping meta data structure 1116 * @gaddr: virtual address in the guest address space 1117 * @val: pointer to the unsigned long value to return 1118 * 1119 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1120 * if reading using the virtual address failed. -EINVAL if called on a gmap 1121 * shadow. 1122 * 1123 * Called with gmap->mm->mmap_sem in read. 1124 */ 1125 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1126 { 1127 unsigned long address, vmaddr; 1128 spinlock_t *ptl; 1129 pte_t *ptep, pte; 1130 int rc; 1131 1132 if (gmap_is_shadow(gmap)) 1133 return -EINVAL; 1134 1135 while (1) { 1136 rc = -EAGAIN; 1137 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1138 if (ptep) { 1139 pte = *ptep; 1140 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1141 address = pte_val(pte) & PAGE_MASK; 1142 address += gaddr & ~PAGE_MASK; 1143 *val = *(unsigned long *) address; 1144 pte_val(*ptep) |= _PAGE_YOUNG; 1145 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1146 rc = 0; 1147 } 1148 gmap_pte_op_end(ptl); 1149 } 1150 if (!rc) 1151 break; 1152 vmaddr = __gmap_translate(gmap, gaddr); 1153 if (IS_ERR_VALUE(vmaddr)) { 1154 rc = vmaddr; 1155 break; 1156 } 1157 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1158 if (rc) 1159 break; 1160 } 1161 return rc; 1162 } 1163 EXPORT_SYMBOL_GPL(gmap_read_table); 1164 1165 /** 1166 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1167 * @sg: pointer to the shadow guest address space structure 1168 * @vmaddr: vm address associated with the rmap 1169 * @rmap: pointer to the rmap structure 1170 * 1171 * Called with the sg->guest_table_lock 1172 */ 1173 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1174 struct gmap_rmap *rmap) 1175 { 1176 void __rcu **slot; 1177 1178 BUG_ON(!gmap_is_shadow(sg)); 1179 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1180 if (slot) { 1181 rmap->next = radix_tree_deref_slot_protected(slot, 1182 &sg->guest_table_lock); 1183 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1184 } else { 1185 rmap->next = NULL; 1186 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1187 rmap); 1188 } 1189 } 1190 1191 /** 1192 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1193 * @sg: pointer to the shadow guest address space structure 1194 * @raddr: rmap address in the shadow gmap 1195 * @paddr: address in the parent guest address space 1196 * @len: length of the memory area to protect 1197 * 1198 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1199 * if out of memory and -EFAULT if paddr is invalid. 1200 */ 1201 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1202 unsigned long paddr, unsigned long len) 1203 { 1204 struct gmap *parent; 1205 struct gmap_rmap *rmap; 1206 unsigned long vmaddr; 1207 spinlock_t *ptl; 1208 pte_t *ptep; 1209 int rc; 1210 1211 BUG_ON(!gmap_is_shadow(sg)); 1212 parent = sg->parent; 1213 while (len) { 1214 vmaddr = __gmap_translate(parent, paddr); 1215 if (IS_ERR_VALUE(vmaddr)) 1216 return vmaddr; 1217 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1218 if (!rmap) 1219 return -ENOMEM; 1220 rmap->raddr = raddr; 1221 rc = radix_tree_preload(GFP_KERNEL); 1222 if (rc) { 1223 kfree(rmap); 1224 return rc; 1225 } 1226 rc = -EAGAIN; 1227 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1228 if (ptep) { 1229 spin_lock(&sg->guest_table_lock); 1230 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1231 PGSTE_VSIE_BIT); 1232 if (!rc) 1233 gmap_insert_rmap(sg, vmaddr, rmap); 1234 spin_unlock(&sg->guest_table_lock); 1235 gmap_pte_op_end(ptl); 1236 } 1237 radix_tree_preload_end(); 1238 if (rc) { 1239 kfree(rmap); 1240 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1241 if (rc) 1242 return rc; 1243 continue; 1244 } 1245 paddr += PAGE_SIZE; 1246 len -= PAGE_SIZE; 1247 } 1248 return 0; 1249 } 1250 1251 #define _SHADOW_RMAP_MASK 0x7 1252 #define _SHADOW_RMAP_REGION1 0x5 1253 #define _SHADOW_RMAP_REGION2 0x4 1254 #define _SHADOW_RMAP_REGION3 0x3 1255 #define _SHADOW_RMAP_SEGMENT 0x2 1256 #define _SHADOW_RMAP_PGTABLE 0x1 1257 1258 /** 1259 * gmap_idte_one - invalidate a single region or segment table entry 1260 * @asce: region or segment table *origin* + table-type bits 1261 * @vaddr: virtual address to identify the table entry to flush 1262 * 1263 * The invalid bit of a single region or segment table entry is set 1264 * and the associated TLB entries depending on the entry are flushed. 1265 * The table-type of the @asce identifies the portion of the @vaddr 1266 * that is used as the invalidation index. 1267 */ 1268 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1269 { 1270 asm volatile( 1271 " .insn rrf,0xb98e0000,%0,%1,0,0" 1272 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1273 } 1274 1275 /** 1276 * gmap_unshadow_page - remove a page from a shadow page table 1277 * @sg: pointer to the shadow guest address space structure 1278 * @raddr: rmap address in the shadow guest address space 1279 * 1280 * Called with the sg->guest_table_lock 1281 */ 1282 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1283 { 1284 unsigned long *table; 1285 1286 BUG_ON(!gmap_is_shadow(sg)); 1287 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1288 if (!table || *table & _PAGE_INVALID) 1289 return; 1290 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1291 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1292 } 1293 1294 /** 1295 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1296 * @sg: pointer to the shadow guest address space structure 1297 * @raddr: rmap address in the shadow guest address space 1298 * @pgt: pointer to the start of a shadow page table 1299 * 1300 * Called with the sg->guest_table_lock 1301 */ 1302 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1303 unsigned long *pgt) 1304 { 1305 int i; 1306 1307 BUG_ON(!gmap_is_shadow(sg)); 1308 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1309 pgt[i] = _PAGE_INVALID; 1310 } 1311 1312 /** 1313 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1314 * @sg: pointer to the shadow guest address space structure 1315 * @raddr: address in the shadow guest address space 1316 * 1317 * Called with the sg->guest_table_lock 1318 */ 1319 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1320 { 1321 unsigned long sto, *ste, *pgt; 1322 struct page *page; 1323 1324 BUG_ON(!gmap_is_shadow(sg)); 1325 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1326 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1327 return; 1328 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1329 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1330 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1331 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1332 *ste = _SEGMENT_ENTRY_EMPTY; 1333 __gmap_unshadow_pgt(sg, raddr, pgt); 1334 /* Free page table */ 1335 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1336 list_del(&page->lru); 1337 page_table_free_pgste(page); 1338 } 1339 1340 /** 1341 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1342 * @sg: pointer to the shadow guest address space structure 1343 * @raddr: rmap address in the shadow guest address space 1344 * @sgt: pointer to the start of a shadow segment table 1345 * 1346 * Called with the sg->guest_table_lock 1347 */ 1348 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1349 unsigned long *sgt) 1350 { 1351 unsigned long *pgt; 1352 struct page *page; 1353 int i; 1354 1355 BUG_ON(!gmap_is_shadow(sg)); 1356 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1357 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1358 continue; 1359 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1360 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1361 __gmap_unshadow_pgt(sg, raddr, pgt); 1362 /* Free page table */ 1363 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1364 list_del(&page->lru); 1365 page_table_free_pgste(page); 1366 } 1367 } 1368 1369 /** 1370 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1371 * @sg: pointer to the shadow guest address space structure 1372 * @raddr: rmap address in the shadow guest address space 1373 * 1374 * Called with the shadow->guest_table_lock 1375 */ 1376 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1377 { 1378 unsigned long r3o, *r3e, *sgt; 1379 struct page *page; 1380 1381 BUG_ON(!gmap_is_shadow(sg)); 1382 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1383 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1384 return; 1385 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1386 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1387 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1388 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1389 *r3e = _REGION3_ENTRY_EMPTY; 1390 __gmap_unshadow_sgt(sg, raddr, sgt); 1391 /* Free segment table */ 1392 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1393 list_del(&page->lru); 1394 __free_pages(page, CRST_ALLOC_ORDER); 1395 } 1396 1397 /** 1398 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1399 * @sg: pointer to the shadow guest address space structure 1400 * @raddr: address in the shadow guest address space 1401 * @r3t: pointer to the start of a shadow region-3 table 1402 * 1403 * Called with the sg->guest_table_lock 1404 */ 1405 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1406 unsigned long *r3t) 1407 { 1408 unsigned long *sgt; 1409 struct page *page; 1410 int i; 1411 1412 BUG_ON(!gmap_is_shadow(sg)); 1413 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1414 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1415 continue; 1416 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1417 r3t[i] = _REGION3_ENTRY_EMPTY; 1418 __gmap_unshadow_sgt(sg, raddr, sgt); 1419 /* Free segment table */ 1420 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1421 list_del(&page->lru); 1422 __free_pages(page, CRST_ALLOC_ORDER); 1423 } 1424 } 1425 1426 /** 1427 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1428 * @sg: pointer to the shadow guest address space structure 1429 * @raddr: rmap address in the shadow guest address space 1430 * 1431 * Called with the sg->guest_table_lock 1432 */ 1433 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1434 { 1435 unsigned long r2o, *r2e, *r3t; 1436 struct page *page; 1437 1438 BUG_ON(!gmap_is_shadow(sg)); 1439 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1440 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1441 return; 1442 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1443 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1444 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1445 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1446 *r2e = _REGION2_ENTRY_EMPTY; 1447 __gmap_unshadow_r3t(sg, raddr, r3t); 1448 /* Free region 3 table */ 1449 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1450 list_del(&page->lru); 1451 __free_pages(page, CRST_ALLOC_ORDER); 1452 } 1453 1454 /** 1455 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1456 * @sg: pointer to the shadow guest address space structure 1457 * @raddr: rmap address in the shadow guest address space 1458 * @r2t: pointer to the start of a shadow region-2 table 1459 * 1460 * Called with the sg->guest_table_lock 1461 */ 1462 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1463 unsigned long *r2t) 1464 { 1465 unsigned long *r3t; 1466 struct page *page; 1467 int i; 1468 1469 BUG_ON(!gmap_is_shadow(sg)); 1470 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1471 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1472 continue; 1473 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1474 r2t[i] = _REGION2_ENTRY_EMPTY; 1475 __gmap_unshadow_r3t(sg, raddr, r3t); 1476 /* Free region 3 table */ 1477 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1478 list_del(&page->lru); 1479 __free_pages(page, CRST_ALLOC_ORDER); 1480 } 1481 } 1482 1483 /** 1484 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1485 * @sg: pointer to the shadow guest address space structure 1486 * @raddr: rmap address in the shadow guest address space 1487 * 1488 * Called with the sg->guest_table_lock 1489 */ 1490 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1491 { 1492 unsigned long r1o, *r1e, *r2t; 1493 struct page *page; 1494 1495 BUG_ON(!gmap_is_shadow(sg)); 1496 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1497 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1498 return; 1499 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1500 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1501 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1502 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1503 *r1e = _REGION1_ENTRY_EMPTY; 1504 __gmap_unshadow_r2t(sg, raddr, r2t); 1505 /* Free region 2 table */ 1506 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1507 list_del(&page->lru); 1508 __free_pages(page, CRST_ALLOC_ORDER); 1509 } 1510 1511 /** 1512 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1513 * @sg: pointer to the shadow guest address space structure 1514 * @raddr: rmap address in the shadow guest address space 1515 * @r1t: pointer to the start of a shadow region-1 table 1516 * 1517 * Called with the shadow->guest_table_lock 1518 */ 1519 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1520 unsigned long *r1t) 1521 { 1522 unsigned long asce, *r2t; 1523 struct page *page; 1524 int i; 1525 1526 BUG_ON(!gmap_is_shadow(sg)); 1527 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1528 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1529 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1530 continue; 1531 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1532 __gmap_unshadow_r2t(sg, raddr, r2t); 1533 /* Clear entry and flush translation r1t -> r2t */ 1534 gmap_idte_one(asce, raddr); 1535 r1t[i] = _REGION1_ENTRY_EMPTY; 1536 /* Free region 2 table */ 1537 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1538 list_del(&page->lru); 1539 __free_pages(page, CRST_ALLOC_ORDER); 1540 } 1541 } 1542 1543 /** 1544 * gmap_unshadow - remove a shadow page table completely 1545 * @sg: pointer to the shadow guest address space structure 1546 * 1547 * Called with sg->guest_table_lock 1548 */ 1549 static void gmap_unshadow(struct gmap *sg) 1550 { 1551 unsigned long *table; 1552 1553 BUG_ON(!gmap_is_shadow(sg)); 1554 if (sg->removed) 1555 return; 1556 sg->removed = 1; 1557 gmap_call_notifier(sg, 0, -1UL); 1558 gmap_flush_tlb(sg); 1559 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1560 switch (sg->asce & _ASCE_TYPE_MASK) { 1561 case _ASCE_TYPE_REGION1: 1562 __gmap_unshadow_r1t(sg, 0, table); 1563 break; 1564 case _ASCE_TYPE_REGION2: 1565 __gmap_unshadow_r2t(sg, 0, table); 1566 break; 1567 case _ASCE_TYPE_REGION3: 1568 __gmap_unshadow_r3t(sg, 0, table); 1569 break; 1570 case _ASCE_TYPE_SEGMENT: 1571 __gmap_unshadow_sgt(sg, 0, table); 1572 break; 1573 } 1574 } 1575 1576 /** 1577 * gmap_find_shadow - find a specific asce in the list of shadow tables 1578 * @parent: pointer to the parent gmap 1579 * @asce: ASCE for which the shadow table is created 1580 * @edat_level: edat level to be used for the shadow translation 1581 * 1582 * Returns the pointer to a gmap if a shadow table with the given asce is 1583 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1584 * otherwise NULL 1585 */ 1586 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1587 int edat_level) 1588 { 1589 struct gmap *sg; 1590 1591 list_for_each_entry(sg, &parent->children, list) { 1592 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1593 sg->removed) 1594 continue; 1595 if (!sg->initialized) 1596 return ERR_PTR(-EAGAIN); 1597 atomic_inc(&sg->ref_count); 1598 return sg; 1599 } 1600 return NULL; 1601 } 1602 1603 /** 1604 * gmap_shadow_valid - check if a shadow guest address space matches the 1605 * given properties and is still valid 1606 * @sg: pointer to the shadow guest address space structure 1607 * @asce: ASCE for which the shadow table is requested 1608 * @edat_level: edat level to be used for the shadow translation 1609 * 1610 * Returns 1 if the gmap shadow is still valid and matches the given 1611 * properties, the caller can continue using it. Returns 0 otherwise, the 1612 * caller has to request a new shadow gmap in this case. 1613 * 1614 */ 1615 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1616 { 1617 if (sg->removed) 1618 return 0; 1619 return sg->orig_asce == asce && sg->edat_level == edat_level; 1620 } 1621 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1622 1623 /** 1624 * gmap_shadow - create/find a shadow guest address space 1625 * @parent: pointer to the parent gmap 1626 * @asce: ASCE for which the shadow table is created 1627 * @edat_level: edat level to be used for the shadow translation 1628 * 1629 * The pages of the top level page table referred by the asce parameter 1630 * will be set to read-only and marked in the PGSTEs of the kvm process. 1631 * The shadow table will be removed automatically on any change to the 1632 * PTE mapping for the source table. 1633 * 1634 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1635 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1636 * parent gmap table could not be protected. 1637 */ 1638 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1639 int edat_level) 1640 { 1641 struct gmap *sg, *new; 1642 unsigned long limit; 1643 int rc; 1644 1645 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1646 BUG_ON(gmap_is_shadow(parent)); 1647 spin_lock(&parent->shadow_lock); 1648 sg = gmap_find_shadow(parent, asce, edat_level); 1649 spin_unlock(&parent->shadow_lock); 1650 if (sg) 1651 return sg; 1652 /* Create a new shadow gmap */ 1653 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1654 if (asce & _ASCE_REAL_SPACE) 1655 limit = -1UL; 1656 new = gmap_alloc(limit); 1657 if (!new) 1658 return ERR_PTR(-ENOMEM); 1659 new->mm = parent->mm; 1660 new->parent = gmap_get(parent); 1661 new->orig_asce = asce; 1662 new->edat_level = edat_level; 1663 new->initialized = false; 1664 spin_lock(&parent->shadow_lock); 1665 /* Recheck if another CPU created the same shadow */ 1666 sg = gmap_find_shadow(parent, asce, edat_level); 1667 if (sg) { 1668 spin_unlock(&parent->shadow_lock); 1669 gmap_free(new); 1670 return sg; 1671 } 1672 if (asce & _ASCE_REAL_SPACE) { 1673 /* only allow one real-space gmap shadow */ 1674 list_for_each_entry(sg, &parent->children, list) { 1675 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1676 spin_lock(&sg->guest_table_lock); 1677 gmap_unshadow(sg); 1678 spin_unlock(&sg->guest_table_lock); 1679 list_del(&sg->list); 1680 gmap_put(sg); 1681 break; 1682 } 1683 } 1684 } 1685 atomic_set(&new->ref_count, 2); 1686 list_add(&new->list, &parent->children); 1687 if (asce & _ASCE_REAL_SPACE) { 1688 /* nothing to protect, return right away */ 1689 new->initialized = true; 1690 spin_unlock(&parent->shadow_lock); 1691 return new; 1692 } 1693 spin_unlock(&parent->shadow_lock); 1694 /* protect after insertion, so it will get properly invalidated */ 1695 down_read(&parent->mm->mmap_sem); 1696 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1697 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1698 PROT_READ, GMAP_NOTIFY_SHADOW); 1699 up_read(&parent->mm->mmap_sem); 1700 spin_lock(&parent->shadow_lock); 1701 new->initialized = true; 1702 if (rc) { 1703 list_del(&new->list); 1704 gmap_free(new); 1705 new = ERR_PTR(rc); 1706 } 1707 spin_unlock(&parent->shadow_lock); 1708 return new; 1709 } 1710 EXPORT_SYMBOL_GPL(gmap_shadow); 1711 1712 /** 1713 * gmap_shadow_r2t - create an empty shadow region 2 table 1714 * @sg: pointer to the shadow guest address space structure 1715 * @saddr: faulting address in the shadow gmap 1716 * @r2t: parent gmap address of the region 2 table to get shadowed 1717 * @fake: r2t references contiguous guest memory block, not a r2t 1718 * 1719 * The r2t parameter specifies the address of the source table. The 1720 * four pages of the source table are made read-only in the parent gmap 1721 * address space. A write to the source table area @r2t will automatically 1722 * remove the shadow r2 table and all of its decendents. 1723 * 1724 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1725 * shadow table structure is incomplete, -ENOMEM if out of memory and 1726 * -EFAULT if an address in the parent gmap could not be resolved. 1727 * 1728 * Called with sg->mm->mmap_sem in read. 1729 */ 1730 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1731 int fake) 1732 { 1733 unsigned long raddr, origin, offset, len; 1734 unsigned long *s_r2t, *table; 1735 struct page *page; 1736 int rc; 1737 1738 BUG_ON(!gmap_is_shadow(sg)); 1739 /* Allocate a shadow region second table */ 1740 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1741 if (!page) 1742 return -ENOMEM; 1743 page->index = r2t & _REGION_ENTRY_ORIGIN; 1744 if (fake) 1745 page->index |= GMAP_SHADOW_FAKE_TABLE; 1746 s_r2t = (unsigned long *) page_to_phys(page); 1747 /* Install shadow region second table */ 1748 spin_lock(&sg->guest_table_lock); 1749 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1750 if (!table) { 1751 rc = -EAGAIN; /* Race with unshadow */ 1752 goto out_free; 1753 } 1754 if (!(*table & _REGION_ENTRY_INVALID)) { 1755 rc = 0; /* Already established */ 1756 goto out_free; 1757 } else if (*table & _REGION_ENTRY_ORIGIN) { 1758 rc = -EAGAIN; /* Race with shadow */ 1759 goto out_free; 1760 } 1761 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1762 /* mark as invalid as long as the parent table is not protected */ 1763 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1764 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1765 if (sg->edat_level >= 1) 1766 *table |= (r2t & _REGION_ENTRY_PROTECT); 1767 list_add(&page->lru, &sg->crst_list); 1768 if (fake) { 1769 /* nothing to protect for fake tables */ 1770 *table &= ~_REGION_ENTRY_INVALID; 1771 spin_unlock(&sg->guest_table_lock); 1772 return 0; 1773 } 1774 spin_unlock(&sg->guest_table_lock); 1775 /* Make r2t read-only in parent gmap page table */ 1776 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1777 origin = r2t & _REGION_ENTRY_ORIGIN; 1778 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1779 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1780 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1781 spin_lock(&sg->guest_table_lock); 1782 if (!rc) { 1783 table = gmap_table_walk(sg, saddr, 4); 1784 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1785 (unsigned long) s_r2t) 1786 rc = -EAGAIN; /* Race with unshadow */ 1787 else 1788 *table &= ~_REGION_ENTRY_INVALID; 1789 } else { 1790 gmap_unshadow_r2t(sg, raddr); 1791 } 1792 spin_unlock(&sg->guest_table_lock); 1793 return rc; 1794 out_free: 1795 spin_unlock(&sg->guest_table_lock); 1796 __free_pages(page, CRST_ALLOC_ORDER); 1797 return rc; 1798 } 1799 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1800 1801 /** 1802 * gmap_shadow_r3t - create a shadow region 3 table 1803 * @sg: pointer to the shadow guest address space structure 1804 * @saddr: faulting address in the shadow gmap 1805 * @r3t: parent gmap address of the region 3 table to get shadowed 1806 * @fake: r3t references contiguous guest memory block, not a r3t 1807 * 1808 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1809 * shadow table structure is incomplete, -ENOMEM if out of memory and 1810 * -EFAULT if an address in the parent gmap could not be resolved. 1811 * 1812 * Called with sg->mm->mmap_sem in read. 1813 */ 1814 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1815 int fake) 1816 { 1817 unsigned long raddr, origin, offset, len; 1818 unsigned long *s_r3t, *table; 1819 struct page *page; 1820 int rc; 1821 1822 BUG_ON(!gmap_is_shadow(sg)); 1823 /* Allocate a shadow region second table */ 1824 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1825 if (!page) 1826 return -ENOMEM; 1827 page->index = r3t & _REGION_ENTRY_ORIGIN; 1828 if (fake) 1829 page->index |= GMAP_SHADOW_FAKE_TABLE; 1830 s_r3t = (unsigned long *) page_to_phys(page); 1831 /* Install shadow region second table */ 1832 spin_lock(&sg->guest_table_lock); 1833 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1834 if (!table) { 1835 rc = -EAGAIN; /* Race with unshadow */ 1836 goto out_free; 1837 } 1838 if (!(*table & _REGION_ENTRY_INVALID)) { 1839 rc = 0; /* Already established */ 1840 goto out_free; 1841 } else if (*table & _REGION_ENTRY_ORIGIN) { 1842 rc = -EAGAIN; /* Race with shadow */ 1843 } 1844 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1845 /* mark as invalid as long as the parent table is not protected */ 1846 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1847 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1848 if (sg->edat_level >= 1) 1849 *table |= (r3t & _REGION_ENTRY_PROTECT); 1850 list_add(&page->lru, &sg->crst_list); 1851 if (fake) { 1852 /* nothing to protect for fake tables */ 1853 *table &= ~_REGION_ENTRY_INVALID; 1854 spin_unlock(&sg->guest_table_lock); 1855 return 0; 1856 } 1857 spin_unlock(&sg->guest_table_lock); 1858 /* Make r3t read-only in parent gmap page table */ 1859 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1860 origin = r3t & _REGION_ENTRY_ORIGIN; 1861 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1862 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1863 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1864 spin_lock(&sg->guest_table_lock); 1865 if (!rc) { 1866 table = gmap_table_walk(sg, saddr, 3); 1867 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1868 (unsigned long) s_r3t) 1869 rc = -EAGAIN; /* Race with unshadow */ 1870 else 1871 *table &= ~_REGION_ENTRY_INVALID; 1872 } else { 1873 gmap_unshadow_r3t(sg, raddr); 1874 } 1875 spin_unlock(&sg->guest_table_lock); 1876 return rc; 1877 out_free: 1878 spin_unlock(&sg->guest_table_lock); 1879 __free_pages(page, CRST_ALLOC_ORDER); 1880 return rc; 1881 } 1882 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1883 1884 /** 1885 * gmap_shadow_sgt - create a shadow segment table 1886 * @sg: pointer to the shadow guest address space structure 1887 * @saddr: faulting address in the shadow gmap 1888 * @sgt: parent gmap address of the segment table to get shadowed 1889 * @fake: sgt references contiguous guest memory block, not a sgt 1890 * 1891 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1892 * shadow table structure is incomplete, -ENOMEM if out of memory and 1893 * -EFAULT if an address in the parent gmap could not be resolved. 1894 * 1895 * Called with sg->mm->mmap_sem in read. 1896 */ 1897 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1898 int fake) 1899 { 1900 unsigned long raddr, origin, offset, len; 1901 unsigned long *s_sgt, *table; 1902 struct page *page; 1903 int rc; 1904 1905 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1906 /* Allocate a shadow segment table */ 1907 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1908 if (!page) 1909 return -ENOMEM; 1910 page->index = sgt & _REGION_ENTRY_ORIGIN; 1911 if (fake) 1912 page->index |= GMAP_SHADOW_FAKE_TABLE; 1913 s_sgt = (unsigned long *) page_to_phys(page); 1914 /* Install shadow region second table */ 1915 spin_lock(&sg->guest_table_lock); 1916 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1917 if (!table) { 1918 rc = -EAGAIN; /* Race with unshadow */ 1919 goto out_free; 1920 } 1921 if (!(*table & _REGION_ENTRY_INVALID)) { 1922 rc = 0; /* Already established */ 1923 goto out_free; 1924 } else if (*table & _REGION_ENTRY_ORIGIN) { 1925 rc = -EAGAIN; /* Race with shadow */ 1926 goto out_free; 1927 } 1928 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1929 /* mark as invalid as long as the parent table is not protected */ 1930 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1931 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1932 if (sg->edat_level >= 1) 1933 *table |= sgt & _REGION_ENTRY_PROTECT; 1934 list_add(&page->lru, &sg->crst_list); 1935 if (fake) { 1936 /* nothing to protect for fake tables */ 1937 *table &= ~_REGION_ENTRY_INVALID; 1938 spin_unlock(&sg->guest_table_lock); 1939 return 0; 1940 } 1941 spin_unlock(&sg->guest_table_lock); 1942 /* Make sgt read-only in parent gmap page table */ 1943 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1944 origin = sgt & _REGION_ENTRY_ORIGIN; 1945 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1946 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1947 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1948 spin_lock(&sg->guest_table_lock); 1949 if (!rc) { 1950 table = gmap_table_walk(sg, saddr, 2); 1951 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1952 (unsigned long) s_sgt) 1953 rc = -EAGAIN; /* Race with unshadow */ 1954 else 1955 *table &= ~_REGION_ENTRY_INVALID; 1956 } else { 1957 gmap_unshadow_sgt(sg, raddr); 1958 } 1959 spin_unlock(&sg->guest_table_lock); 1960 return rc; 1961 out_free: 1962 spin_unlock(&sg->guest_table_lock); 1963 __free_pages(page, CRST_ALLOC_ORDER); 1964 return rc; 1965 } 1966 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1967 1968 /** 1969 * gmap_shadow_lookup_pgtable - find a shadow page table 1970 * @sg: pointer to the shadow guest address space structure 1971 * @saddr: the address in the shadow aguest address space 1972 * @pgt: parent gmap address of the page table to get shadowed 1973 * @dat_protection: if the pgtable is marked as protected by dat 1974 * @fake: pgt references contiguous guest memory block, not a pgtable 1975 * 1976 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1977 * table was not found. 1978 * 1979 * Called with sg->mm->mmap_sem in read. 1980 */ 1981 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1982 unsigned long *pgt, int *dat_protection, 1983 int *fake) 1984 { 1985 unsigned long *table; 1986 struct page *page; 1987 int rc; 1988 1989 BUG_ON(!gmap_is_shadow(sg)); 1990 spin_lock(&sg->guest_table_lock); 1991 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1992 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1993 /* Shadow page tables are full pages (pte+pgste) */ 1994 page = pfn_to_page(*table >> PAGE_SHIFT); 1995 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 1996 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 1997 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 1998 rc = 0; 1999 } else { 2000 rc = -EAGAIN; 2001 } 2002 spin_unlock(&sg->guest_table_lock); 2003 return rc; 2004 2005 } 2006 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2007 2008 /** 2009 * gmap_shadow_pgt - instantiate a shadow page table 2010 * @sg: pointer to the shadow guest address space structure 2011 * @saddr: faulting address in the shadow gmap 2012 * @pgt: parent gmap address of the page table to get shadowed 2013 * @fake: pgt references contiguous guest memory block, not a pgtable 2014 * 2015 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2016 * shadow table structure is incomplete, -ENOMEM if out of memory, 2017 * -EFAULT if an address in the parent gmap could not be resolved and 2018 * 2019 * Called with gmap->mm->mmap_sem in read 2020 */ 2021 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2022 int fake) 2023 { 2024 unsigned long raddr, origin; 2025 unsigned long *s_pgt, *table; 2026 struct page *page; 2027 int rc; 2028 2029 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2030 /* Allocate a shadow page table */ 2031 page = page_table_alloc_pgste(sg->mm); 2032 if (!page) 2033 return -ENOMEM; 2034 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2035 if (fake) 2036 page->index |= GMAP_SHADOW_FAKE_TABLE; 2037 s_pgt = (unsigned long *) page_to_phys(page); 2038 /* Install shadow page table */ 2039 spin_lock(&sg->guest_table_lock); 2040 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2041 if (!table) { 2042 rc = -EAGAIN; /* Race with unshadow */ 2043 goto out_free; 2044 } 2045 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2046 rc = 0; /* Already established */ 2047 goto out_free; 2048 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2049 rc = -EAGAIN; /* Race with shadow */ 2050 goto out_free; 2051 } 2052 /* mark as invalid as long as the parent table is not protected */ 2053 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2054 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2055 list_add(&page->lru, &sg->pt_list); 2056 if (fake) { 2057 /* nothing to protect for fake tables */ 2058 *table &= ~_SEGMENT_ENTRY_INVALID; 2059 spin_unlock(&sg->guest_table_lock); 2060 return 0; 2061 } 2062 spin_unlock(&sg->guest_table_lock); 2063 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2064 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2065 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2066 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2067 spin_lock(&sg->guest_table_lock); 2068 if (!rc) { 2069 table = gmap_table_walk(sg, saddr, 1); 2070 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2071 (unsigned long) s_pgt) 2072 rc = -EAGAIN; /* Race with unshadow */ 2073 else 2074 *table &= ~_SEGMENT_ENTRY_INVALID; 2075 } else { 2076 gmap_unshadow_pgt(sg, raddr); 2077 } 2078 spin_unlock(&sg->guest_table_lock); 2079 return rc; 2080 out_free: 2081 spin_unlock(&sg->guest_table_lock); 2082 page_table_free_pgste(page); 2083 return rc; 2084 2085 } 2086 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2087 2088 /** 2089 * gmap_shadow_page - create a shadow page mapping 2090 * @sg: pointer to the shadow guest address space structure 2091 * @saddr: faulting address in the shadow gmap 2092 * @pte: pte in parent gmap address space to get shadowed 2093 * 2094 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2095 * shadow table structure is incomplete, -ENOMEM if out of memory and 2096 * -EFAULT if an address in the parent gmap could not be resolved. 2097 * 2098 * Called with sg->mm->mmap_sem in read. 2099 */ 2100 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2101 { 2102 struct gmap *parent; 2103 struct gmap_rmap *rmap; 2104 unsigned long vmaddr, paddr; 2105 spinlock_t *ptl; 2106 pte_t *sptep, *tptep; 2107 int prot; 2108 int rc; 2109 2110 BUG_ON(!gmap_is_shadow(sg)); 2111 parent = sg->parent; 2112 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2113 2114 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 2115 if (!rmap) 2116 return -ENOMEM; 2117 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2118 2119 while (1) { 2120 paddr = pte_val(pte) & PAGE_MASK; 2121 vmaddr = __gmap_translate(parent, paddr); 2122 if (IS_ERR_VALUE(vmaddr)) { 2123 rc = vmaddr; 2124 break; 2125 } 2126 rc = radix_tree_preload(GFP_KERNEL); 2127 if (rc) 2128 break; 2129 rc = -EAGAIN; 2130 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2131 if (sptep) { 2132 spin_lock(&sg->guest_table_lock); 2133 /* Get page table pointer */ 2134 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2135 if (!tptep) { 2136 spin_unlock(&sg->guest_table_lock); 2137 gmap_pte_op_end(ptl); 2138 radix_tree_preload_end(); 2139 break; 2140 } 2141 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2142 if (rc > 0) { 2143 /* Success and a new mapping */ 2144 gmap_insert_rmap(sg, vmaddr, rmap); 2145 rmap = NULL; 2146 rc = 0; 2147 } 2148 gmap_pte_op_end(ptl); 2149 spin_unlock(&sg->guest_table_lock); 2150 } 2151 radix_tree_preload_end(); 2152 if (!rc) 2153 break; 2154 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2155 if (rc) 2156 break; 2157 } 2158 kfree(rmap); 2159 return rc; 2160 } 2161 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2162 2163 /** 2164 * gmap_shadow_notify - handle notifications for shadow gmap 2165 * 2166 * Called with sg->parent->shadow_lock. 2167 */ 2168 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2169 unsigned long gaddr) 2170 { 2171 struct gmap_rmap *rmap, *rnext, *head; 2172 unsigned long start, end, bits, raddr; 2173 2174 BUG_ON(!gmap_is_shadow(sg)); 2175 2176 spin_lock(&sg->guest_table_lock); 2177 if (sg->removed) { 2178 spin_unlock(&sg->guest_table_lock); 2179 return; 2180 } 2181 /* Check for top level table */ 2182 start = sg->orig_asce & _ASCE_ORIGIN; 2183 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2184 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2185 gaddr < end) { 2186 /* The complete shadow table has to go */ 2187 gmap_unshadow(sg); 2188 spin_unlock(&sg->guest_table_lock); 2189 list_del(&sg->list); 2190 gmap_put(sg); 2191 return; 2192 } 2193 /* Remove the page table tree from on specific entry */ 2194 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2195 gmap_for_each_rmap_safe(rmap, rnext, head) { 2196 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2197 raddr = rmap->raddr ^ bits; 2198 switch (bits) { 2199 case _SHADOW_RMAP_REGION1: 2200 gmap_unshadow_r2t(sg, raddr); 2201 break; 2202 case _SHADOW_RMAP_REGION2: 2203 gmap_unshadow_r3t(sg, raddr); 2204 break; 2205 case _SHADOW_RMAP_REGION3: 2206 gmap_unshadow_sgt(sg, raddr); 2207 break; 2208 case _SHADOW_RMAP_SEGMENT: 2209 gmap_unshadow_pgt(sg, raddr); 2210 break; 2211 case _SHADOW_RMAP_PGTABLE: 2212 gmap_unshadow_page(sg, raddr); 2213 break; 2214 } 2215 kfree(rmap); 2216 } 2217 spin_unlock(&sg->guest_table_lock); 2218 } 2219 2220 /** 2221 * ptep_notify - call all invalidation callbacks for a specific pte. 2222 * @mm: pointer to the process mm_struct 2223 * @addr: virtual address in the process address space 2224 * @pte: pointer to the page table entry 2225 * @bits: bits from the pgste that caused the notify call 2226 * 2227 * This function is assumed to be called with the page table lock held 2228 * for the pte to notify. 2229 */ 2230 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2231 pte_t *pte, unsigned long bits) 2232 { 2233 unsigned long offset, gaddr = 0; 2234 unsigned long *table; 2235 struct gmap *gmap, *sg, *next; 2236 2237 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2238 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2239 rcu_read_lock(); 2240 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2241 spin_lock(&gmap->guest_table_lock); 2242 table = radix_tree_lookup(&gmap->host_to_guest, 2243 vmaddr >> PMD_SHIFT); 2244 if (table) 2245 gaddr = __gmap_segment_gaddr(table) + offset; 2246 spin_unlock(&gmap->guest_table_lock); 2247 if (!table) 2248 continue; 2249 2250 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2251 spin_lock(&gmap->shadow_lock); 2252 list_for_each_entry_safe(sg, next, 2253 &gmap->children, list) 2254 gmap_shadow_notify(sg, vmaddr, gaddr); 2255 spin_unlock(&gmap->shadow_lock); 2256 } 2257 if (bits & PGSTE_IN_BIT) 2258 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2259 } 2260 rcu_read_unlock(); 2261 } 2262 EXPORT_SYMBOL_GPL(ptep_notify); 2263 2264 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2265 unsigned long gaddr) 2266 { 2267 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2268 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2269 } 2270 2271 /** 2272 * gmap_pmdp_xchg - exchange a gmap pmd with another 2273 * @gmap: pointer to the guest address space structure 2274 * @pmdp: pointer to the pmd entry 2275 * @new: replacement entry 2276 * @gaddr: the affected guest address 2277 * 2278 * This function is assumed to be called with the guest_table_lock 2279 * held. 2280 */ 2281 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2282 unsigned long gaddr) 2283 { 2284 gaddr &= HPAGE_MASK; 2285 pmdp_notify_gmap(gmap, pmdp, gaddr); 2286 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2287 if (MACHINE_HAS_TLB_GUEST) 2288 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2289 IDTE_GLOBAL); 2290 else if (MACHINE_HAS_IDTE) 2291 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2292 else 2293 __pmdp_csp(pmdp); 2294 *pmdp = new; 2295 } 2296 2297 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2298 int purge) 2299 { 2300 pmd_t *pmdp; 2301 struct gmap *gmap; 2302 unsigned long gaddr; 2303 2304 rcu_read_lock(); 2305 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2306 spin_lock(&gmap->guest_table_lock); 2307 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2308 vmaddr >> PMD_SHIFT); 2309 if (pmdp) { 2310 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2311 pmdp_notify_gmap(gmap, pmdp, gaddr); 2312 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2313 _SEGMENT_ENTRY_GMAP_UC)); 2314 if (purge) 2315 __pmdp_csp(pmdp); 2316 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2317 } 2318 spin_unlock(&gmap->guest_table_lock); 2319 } 2320 rcu_read_unlock(); 2321 } 2322 2323 /** 2324 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2325 * flushing 2326 * @mm: pointer to the process mm_struct 2327 * @vmaddr: virtual address in the process address space 2328 */ 2329 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2330 { 2331 gmap_pmdp_clear(mm, vmaddr, 0); 2332 } 2333 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2334 2335 /** 2336 * gmap_pmdp_csp - csp all affected guest pmd entries 2337 * @mm: pointer to the process mm_struct 2338 * @vmaddr: virtual address in the process address space 2339 */ 2340 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2341 { 2342 gmap_pmdp_clear(mm, vmaddr, 1); 2343 } 2344 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2345 2346 /** 2347 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2348 * @mm: pointer to the process mm_struct 2349 * @vmaddr: virtual address in the process address space 2350 */ 2351 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2352 { 2353 unsigned long *entry, gaddr; 2354 struct gmap *gmap; 2355 pmd_t *pmdp; 2356 2357 rcu_read_lock(); 2358 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2359 spin_lock(&gmap->guest_table_lock); 2360 entry = radix_tree_delete(&gmap->host_to_guest, 2361 vmaddr >> PMD_SHIFT); 2362 if (entry) { 2363 pmdp = (pmd_t *)entry; 2364 gaddr = __gmap_segment_gaddr(entry); 2365 pmdp_notify_gmap(gmap, pmdp, gaddr); 2366 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2367 _SEGMENT_ENTRY_GMAP_UC)); 2368 if (MACHINE_HAS_TLB_GUEST) 2369 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2370 gmap->asce, IDTE_LOCAL); 2371 else if (MACHINE_HAS_IDTE) 2372 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2373 *entry = _SEGMENT_ENTRY_EMPTY; 2374 } 2375 spin_unlock(&gmap->guest_table_lock); 2376 } 2377 rcu_read_unlock(); 2378 } 2379 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2380 2381 /** 2382 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2383 * @mm: pointer to the process mm_struct 2384 * @vmaddr: virtual address in the process address space 2385 */ 2386 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2387 { 2388 unsigned long *entry, gaddr; 2389 struct gmap *gmap; 2390 pmd_t *pmdp; 2391 2392 rcu_read_lock(); 2393 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2394 spin_lock(&gmap->guest_table_lock); 2395 entry = radix_tree_delete(&gmap->host_to_guest, 2396 vmaddr >> PMD_SHIFT); 2397 if (entry) { 2398 pmdp = (pmd_t *)entry; 2399 gaddr = __gmap_segment_gaddr(entry); 2400 pmdp_notify_gmap(gmap, pmdp, gaddr); 2401 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2402 _SEGMENT_ENTRY_GMAP_UC)); 2403 if (MACHINE_HAS_TLB_GUEST) 2404 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2405 gmap->asce, IDTE_GLOBAL); 2406 else if (MACHINE_HAS_IDTE) 2407 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2408 else 2409 __pmdp_csp(pmdp); 2410 *entry = _SEGMENT_ENTRY_EMPTY; 2411 } 2412 spin_unlock(&gmap->guest_table_lock); 2413 } 2414 rcu_read_unlock(); 2415 } 2416 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2417 2418 /** 2419 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2420 * @gmap: pointer to guest address space 2421 * @pmdp: pointer to the pmd to be tested 2422 * @gaddr: virtual address in the guest address space 2423 * 2424 * This function is assumed to be called with the guest_table_lock 2425 * held. 2426 */ 2427 bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2428 unsigned long gaddr) 2429 { 2430 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2431 return false; 2432 2433 /* Already protected memory, which did not change is clean */ 2434 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2435 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2436 return false; 2437 2438 /* Clear UC indication and reset protection */ 2439 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2440 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2441 return true; 2442 } 2443 2444 /** 2445 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2446 * @gmap: pointer to guest address space 2447 * @bitmap: dirty bitmap for this pmd 2448 * @gaddr: virtual address in the guest address space 2449 * @vmaddr: virtual address in the host address space 2450 * 2451 * This function is assumed to be called with the guest_table_lock 2452 * held. 2453 */ 2454 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2455 unsigned long gaddr, unsigned long vmaddr) 2456 { 2457 int i; 2458 pmd_t *pmdp; 2459 pte_t *ptep; 2460 spinlock_t *ptl; 2461 2462 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2463 if (!pmdp) 2464 return; 2465 2466 if (pmd_large(*pmdp)) { 2467 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2468 bitmap_fill(bitmap, _PAGE_ENTRIES); 2469 } else { 2470 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2471 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2472 if (!ptep) 2473 continue; 2474 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2475 set_bit(i, bitmap); 2476 spin_unlock(ptl); 2477 } 2478 } 2479 gmap_pmd_op_end(gmap, pmdp); 2480 } 2481 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2482 2483 static inline void thp_split_mm(struct mm_struct *mm) 2484 { 2485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2486 struct vm_area_struct *vma; 2487 unsigned long addr; 2488 2489 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2490 for (addr = vma->vm_start; 2491 addr < vma->vm_end; 2492 addr += PAGE_SIZE) 2493 follow_page(vma, addr, FOLL_SPLIT); 2494 vma->vm_flags &= ~VM_HUGEPAGE; 2495 vma->vm_flags |= VM_NOHUGEPAGE; 2496 } 2497 mm->def_flags |= VM_NOHUGEPAGE; 2498 #endif 2499 } 2500 2501 /* 2502 * Remove all empty zero pages from the mapping for lazy refaulting 2503 * - This must be called after mm->context.has_pgste is set, to avoid 2504 * future creation of zero pages 2505 * - This must be called after THP was enabled 2506 */ 2507 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2508 unsigned long end, struct mm_walk *walk) 2509 { 2510 unsigned long addr; 2511 2512 for (addr = start; addr != end; addr += PAGE_SIZE) { 2513 pte_t *ptep; 2514 spinlock_t *ptl; 2515 2516 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2517 if (is_zero_pfn(pte_pfn(*ptep))) 2518 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2519 pte_unmap_unlock(ptep, ptl); 2520 } 2521 return 0; 2522 } 2523 2524 static inline void zap_zero_pages(struct mm_struct *mm) 2525 { 2526 struct mm_walk walk = { .pmd_entry = __zap_zero_pages }; 2527 2528 walk.mm = mm; 2529 walk_page_range(0, TASK_SIZE, &walk); 2530 } 2531 2532 /* 2533 * switch on pgstes for its userspace process (for kvm) 2534 */ 2535 int s390_enable_sie(void) 2536 { 2537 struct mm_struct *mm = current->mm; 2538 2539 /* Do we have pgstes? if yes, we are done */ 2540 if (mm_has_pgste(mm)) 2541 return 0; 2542 /* Fail if the page tables are 2K */ 2543 if (!mm_alloc_pgste(mm)) 2544 return -EINVAL; 2545 down_write(&mm->mmap_sem); 2546 mm->context.has_pgste = 1; 2547 /* split thp mappings and disable thp for future mappings */ 2548 thp_split_mm(mm); 2549 zap_zero_pages(mm); 2550 up_write(&mm->mmap_sem); 2551 return 0; 2552 } 2553 EXPORT_SYMBOL_GPL(s390_enable_sie); 2554 2555 /* 2556 * Enable storage key handling from now on and initialize the storage 2557 * keys with the default key. 2558 */ 2559 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2560 unsigned long next, struct mm_walk *walk) 2561 { 2562 /* Clear storage key */ 2563 ptep_zap_key(walk->mm, addr, pte); 2564 return 0; 2565 } 2566 2567 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2568 unsigned long hmask, unsigned long next, 2569 struct mm_walk *walk) 2570 { 2571 pmd_t *pmd = (pmd_t *)pte; 2572 unsigned long start, end; 2573 struct page *page = pmd_page(*pmd); 2574 2575 /* 2576 * The write check makes sure we do not set a key on shared 2577 * memory. This is needed as the walker does not differentiate 2578 * between actual guest memory and the process executable or 2579 * shared libraries. 2580 */ 2581 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2582 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2583 return 0; 2584 2585 start = pmd_val(*pmd) & HPAGE_MASK; 2586 end = start + HPAGE_SIZE - 1; 2587 __storage_key_init_range(start, end); 2588 set_bit(PG_arch_1, &page->flags); 2589 return 0; 2590 } 2591 2592 int s390_enable_skey(void) 2593 { 2594 struct mm_walk walk = { 2595 .hugetlb_entry = __s390_enable_skey_hugetlb, 2596 .pte_entry = __s390_enable_skey_pte, 2597 }; 2598 struct mm_struct *mm = current->mm; 2599 struct vm_area_struct *vma; 2600 int rc = 0; 2601 2602 down_write(&mm->mmap_sem); 2603 if (mm_uses_skeys(mm)) 2604 goto out_up; 2605 2606 mm->context.uses_skeys = 1; 2607 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2608 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 2609 MADV_UNMERGEABLE, &vma->vm_flags)) { 2610 mm->context.uses_skeys = 0; 2611 rc = -ENOMEM; 2612 goto out_up; 2613 } 2614 } 2615 mm->def_flags &= ~VM_MERGEABLE; 2616 2617 walk.mm = mm; 2618 walk_page_range(0, TASK_SIZE, &walk); 2619 2620 out_up: 2621 up_write(&mm->mmap_sem); 2622 return rc; 2623 } 2624 EXPORT_SYMBOL_GPL(s390_enable_skey); 2625 2626 /* 2627 * Reset CMMA state, make all pages stable again. 2628 */ 2629 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2630 unsigned long next, struct mm_walk *walk) 2631 { 2632 ptep_zap_unused(walk->mm, addr, pte, 1); 2633 return 0; 2634 } 2635 2636 void s390_reset_cmma(struct mm_struct *mm) 2637 { 2638 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 2639 2640 down_write(&mm->mmap_sem); 2641 walk.mm = mm; 2642 walk_page_range(0, TASK_SIZE, &walk); 2643 up_write(&mm->mmap_sem); 2644 } 2645 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2646