1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2016, 2018 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @mm: pointer to the parent mm_struct 31 * @limit: maximum address of the gmap address space 32 * 33 * Returns a guest address space structure. 34 */ 35 static struct gmap *gmap_alloc(unsigned long limit) 36 { 37 struct gmap *gmap; 38 struct page *page; 39 unsigned long *table; 40 unsigned long etype, atype; 41 42 if (limit < _REGION3_SIZE) { 43 limit = _REGION3_SIZE - 1; 44 atype = _ASCE_TYPE_SEGMENT; 45 etype = _SEGMENT_ENTRY_EMPTY; 46 } else if (limit < _REGION2_SIZE) { 47 limit = _REGION2_SIZE - 1; 48 atype = _ASCE_TYPE_REGION3; 49 etype = _REGION3_ENTRY_EMPTY; 50 } else if (limit < _REGION1_SIZE) { 51 limit = _REGION1_SIZE - 1; 52 atype = _ASCE_TYPE_REGION2; 53 etype = _REGION2_ENTRY_EMPTY; 54 } else { 55 limit = -1UL; 56 atype = _ASCE_TYPE_REGION1; 57 etype = _REGION1_ENTRY_EMPTY; 58 } 59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 60 if (!gmap) 61 goto out; 62 INIT_LIST_HEAD(&gmap->crst_list); 63 INIT_LIST_HEAD(&gmap->children); 64 INIT_LIST_HEAD(&gmap->pt_list); 65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 68 spin_lock_init(&gmap->guest_table_lock); 69 spin_lock_init(&gmap->shadow_lock); 70 atomic_set(&gmap->ref_count, 1); 71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 72 if (!page) 73 goto out_free; 74 page->index = 0; 75 list_add(&page->lru, &gmap->crst_list); 76 table = (unsigned long *) page_to_phys(page); 77 crst_table_init(table, etype); 78 gmap->table = table; 79 gmap->asce = atype | _ASCE_TABLE_LENGTH | 80 _ASCE_USER_BITS | __pa(table); 81 gmap->asce_end = limit; 82 return gmap; 83 84 out_free: 85 kfree(gmap); 86 out: 87 return NULL; 88 } 89 90 /** 91 * gmap_create - create a guest address space 92 * @mm: pointer to the parent mm_struct 93 * @limit: maximum size of the gmap address space 94 * 95 * Returns a guest address space structure. 96 */ 97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 98 { 99 struct gmap *gmap; 100 unsigned long gmap_asce; 101 102 gmap = gmap_alloc(limit); 103 if (!gmap) 104 return NULL; 105 gmap->mm = mm; 106 spin_lock(&mm->context.lock); 107 list_add_rcu(&gmap->list, &mm->context.gmap_list); 108 if (list_is_singular(&mm->context.gmap_list)) 109 gmap_asce = gmap->asce; 110 else 111 gmap_asce = -1UL; 112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 113 spin_unlock(&mm->context.lock); 114 return gmap; 115 } 116 EXPORT_SYMBOL_GPL(gmap_create); 117 118 static void gmap_flush_tlb(struct gmap *gmap) 119 { 120 if (MACHINE_HAS_IDTE) 121 __tlb_flush_idte(gmap->asce); 122 else 123 __tlb_flush_global(); 124 } 125 126 static void gmap_radix_tree_free(struct radix_tree_root *root) 127 { 128 struct radix_tree_iter iter; 129 unsigned long indices[16]; 130 unsigned long index; 131 void __rcu **slot; 132 int i, nr; 133 134 /* A radix tree is freed by deleting all of its entries */ 135 index = 0; 136 do { 137 nr = 0; 138 radix_tree_for_each_slot(slot, root, &iter, index) { 139 indices[nr] = iter.index; 140 if (++nr == 16) 141 break; 142 } 143 for (i = 0; i < nr; i++) { 144 index = indices[i]; 145 radix_tree_delete(root, index); 146 } 147 } while (nr > 0); 148 } 149 150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 151 { 152 struct gmap_rmap *rmap, *rnext, *head; 153 struct radix_tree_iter iter; 154 unsigned long indices[16]; 155 unsigned long index; 156 void __rcu **slot; 157 int i, nr; 158 159 /* A radix tree is freed by deleting all of its entries */ 160 index = 0; 161 do { 162 nr = 0; 163 radix_tree_for_each_slot(slot, root, &iter, index) { 164 indices[nr] = iter.index; 165 if (++nr == 16) 166 break; 167 } 168 for (i = 0; i < nr; i++) { 169 index = indices[i]; 170 head = radix_tree_delete(root, index); 171 gmap_for_each_rmap_safe(rmap, rnext, head) 172 kfree(rmap); 173 } 174 } while (nr > 0); 175 } 176 177 /** 178 * gmap_free - free a guest address space 179 * @gmap: pointer to the guest address space structure 180 * 181 * No locks required. There are no references to this gmap anymore. 182 */ 183 static void gmap_free(struct gmap *gmap) 184 { 185 struct page *page, *next; 186 187 /* Flush tlb of all gmaps (if not already done for shadows) */ 188 if (!(gmap_is_shadow(gmap) && gmap->removed)) 189 gmap_flush_tlb(gmap); 190 /* Free all segment & region tables. */ 191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 192 __free_pages(page, CRST_ALLOC_ORDER); 193 gmap_radix_tree_free(&gmap->guest_to_host); 194 gmap_radix_tree_free(&gmap->host_to_guest); 195 196 /* Free additional data for a shadow gmap */ 197 if (gmap_is_shadow(gmap)) { 198 /* Free all page tables. */ 199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 200 page_table_free_pgste(page); 201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 202 /* Release reference to the parent */ 203 gmap_put(gmap->parent); 204 } 205 206 kfree(gmap); 207 } 208 209 /** 210 * gmap_get - increase reference counter for guest address space 211 * @gmap: pointer to the guest address space structure 212 * 213 * Returns the gmap pointer 214 */ 215 struct gmap *gmap_get(struct gmap *gmap) 216 { 217 atomic_inc(&gmap->ref_count); 218 return gmap; 219 } 220 EXPORT_SYMBOL_GPL(gmap_get); 221 222 /** 223 * gmap_put - decrease reference counter for guest address space 224 * @gmap: pointer to the guest address space structure 225 * 226 * If the reference counter reaches zero the guest address space is freed. 227 */ 228 void gmap_put(struct gmap *gmap) 229 { 230 if (atomic_dec_return(&gmap->ref_count) == 0) 231 gmap_free(gmap); 232 } 233 EXPORT_SYMBOL_GPL(gmap_put); 234 235 /** 236 * gmap_remove - remove a guest address space but do not free it yet 237 * @gmap: pointer to the guest address space structure 238 */ 239 void gmap_remove(struct gmap *gmap) 240 { 241 struct gmap *sg, *next; 242 unsigned long gmap_asce; 243 244 /* Remove all shadow gmaps linked to this gmap */ 245 if (!list_empty(&gmap->children)) { 246 spin_lock(&gmap->shadow_lock); 247 list_for_each_entry_safe(sg, next, &gmap->children, list) { 248 list_del(&sg->list); 249 gmap_put(sg); 250 } 251 spin_unlock(&gmap->shadow_lock); 252 } 253 /* Remove gmap from the pre-mm list */ 254 spin_lock(&gmap->mm->context.lock); 255 list_del_rcu(&gmap->list); 256 if (list_empty(&gmap->mm->context.gmap_list)) 257 gmap_asce = 0; 258 else if (list_is_singular(&gmap->mm->context.gmap_list)) 259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 260 struct gmap, list)->asce; 261 else 262 gmap_asce = -1UL; 263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 264 spin_unlock(&gmap->mm->context.lock); 265 synchronize_rcu(); 266 /* Put reference */ 267 gmap_put(gmap); 268 } 269 EXPORT_SYMBOL_GPL(gmap_remove); 270 271 /** 272 * gmap_enable - switch primary space to the guest address space 273 * @gmap: pointer to the guest address space structure 274 */ 275 void gmap_enable(struct gmap *gmap) 276 { 277 S390_lowcore.gmap = (unsigned long) gmap; 278 } 279 EXPORT_SYMBOL_GPL(gmap_enable); 280 281 /** 282 * gmap_disable - switch back to the standard primary address space 283 * @gmap: pointer to the guest address space structure 284 */ 285 void gmap_disable(struct gmap *gmap) 286 { 287 S390_lowcore.gmap = 0UL; 288 } 289 EXPORT_SYMBOL_GPL(gmap_disable); 290 291 /** 292 * gmap_get_enabled - get a pointer to the currently enabled gmap 293 * 294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 295 */ 296 struct gmap *gmap_get_enabled(void) 297 { 298 return (struct gmap *) S390_lowcore.gmap; 299 } 300 EXPORT_SYMBOL_GPL(gmap_get_enabled); 301 302 /* 303 * gmap_alloc_table is assumed to be called with mmap_sem held 304 */ 305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 306 unsigned long init, unsigned long gaddr) 307 { 308 struct page *page; 309 unsigned long *new; 310 311 /* since we dont free the gmap table until gmap_free we can unlock */ 312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 313 if (!page) 314 return -ENOMEM; 315 new = (unsigned long *) page_to_phys(page); 316 crst_table_init(new, init); 317 spin_lock(&gmap->guest_table_lock); 318 if (*table & _REGION_ENTRY_INVALID) { 319 list_add(&page->lru, &gmap->crst_list); 320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 321 (*table & _REGION_ENTRY_TYPE_MASK); 322 page->index = gaddr; 323 page = NULL; 324 } 325 spin_unlock(&gmap->guest_table_lock); 326 if (page) 327 __free_pages(page, CRST_ALLOC_ORDER); 328 return 0; 329 } 330 331 /** 332 * __gmap_segment_gaddr - find virtual address from segment pointer 333 * @entry: pointer to a segment table entry in the guest address space 334 * 335 * Returns the virtual address in the guest address space for the segment 336 */ 337 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 338 { 339 struct page *page; 340 unsigned long offset, mask; 341 342 offset = (unsigned long) entry / sizeof(unsigned long); 343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 345 page = virt_to_page((void *)((unsigned long) entry & mask)); 346 return page->index + offset; 347 } 348 349 /** 350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 351 * @gmap: pointer to the guest address space structure 352 * @vmaddr: address in the host process address space 353 * 354 * Returns 1 if a TLB flush is required 355 */ 356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 357 { 358 unsigned long *entry; 359 int flush = 0; 360 361 BUG_ON(gmap_is_shadow(gmap)); 362 spin_lock(&gmap->guest_table_lock); 363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 364 if (entry) { 365 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 366 *entry = _SEGMENT_ENTRY_EMPTY; 367 } 368 spin_unlock(&gmap->guest_table_lock); 369 return flush; 370 } 371 372 /** 373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 374 * @gmap: pointer to the guest address space structure 375 * @gaddr: address in the guest address space 376 * 377 * Returns 1 if a TLB flush is required 378 */ 379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 380 { 381 unsigned long vmaddr; 382 383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 384 gaddr >> PMD_SHIFT); 385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 386 } 387 388 /** 389 * gmap_unmap_segment - unmap segment from the guest address space 390 * @gmap: pointer to the guest address space structure 391 * @to: address in the guest address space 392 * @len: length of the memory area to unmap 393 * 394 * Returns 0 if the unmap succeeded, -EINVAL if not. 395 */ 396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 397 { 398 unsigned long off; 399 int flush; 400 401 BUG_ON(gmap_is_shadow(gmap)); 402 if ((to | len) & (PMD_SIZE - 1)) 403 return -EINVAL; 404 if (len == 0 || to + len < to) 405 return -EINVAL; 406 407 flush = 0; 408 down_write(&gmap->mm->mmap_sem); 409 for (off = 0; off < len; off += PMD_SIZE) 410 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 411 up_write(&gmap->mm->mmap_sem); 412 if (flush) 413 gmap_flush_tlb(gmap); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 417 418 /** 419 * gmap_map_segment - map a segment to the guest address space 420 * @gmap: pointer to the guest address space structure 421 * @from: source address in the parent address space 422 * @to: target address in the guest address space 423 * @len: length of the memory area to map 424 * 425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 426 */ 427 int gmap_map_segment(struct gmap *gmap, unsigned long from, 428 unsigned long to, unsigned long len) 429 { 430 unsigned long off; 431 int flush; 432 433 BUG_ON(gmap_is_shadow(gmap)); 434 if ((from | to | len) & (PMD_SIZE - 1)) 435 return -EINVAL; 436 if (len == 0 || from + len < from || to + len < to || 437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 438 return -EINVAL; 439 440 flush = 0; 441 down_write(&gmap->mm->mmap_sem); 442 for (off = 0; off < len; off += PMD_SIZE) { 443 /* Remove old translation */ 444 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 445 /* Store new translation */ 446 if (radix_tree_insert(&gmap->guest_to_host, 447 (to + off) >> PMD_SHIFT, 448 (void *) from + off)) 449 break; 450 } 451 up_write(&gmap->mm->mmap_sem); 452 if (flush) 453 gmap_flush_tlb(gmap); 454 if (off >= len) 455 return 0; 456 gmap_unmap_segment(gmap, to, len); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(gmap_map_segment); 460 461 /** 462 * __gmap_translate - translate a guest address to a user space address 463 * @gmap: pointer to guest mapping meta data structure 464 * @gaddr: guest address 465 * 466 * Returns user space address which corresponds to the guest address or 467 * -EFAULT if no such mapping exists. 468 * This function does not establish potentially missing page table entries. 469 * The mmap_sem of the mm that belongs to the address space must be held 470 * when this function gets called. 471 * 472 * Note: Can also be called for shadow gmaps. 473 */ 474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 475 { 476 unsigned long vmaddr; 477 478 vmaddr = (unsigned long) 479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 480 /* Note: guest_to_host is empty for a shadow gmap */ 481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 482 } 483 EXPORT_SYMBOL_GPL(__gmap_translate); 484 485 /** 486 * gmap_translate - translate a guest address to a user space address 487 * @gmap: pointer to guest mapping meta data structure 488 * @gaddr: guest address 489 * 490 * Returns user space address which corresponds to the guest address or 491 * -EFAULT if no such mapping exists. 492 * This function does not establish potentially missing page table entries. 493 */ 494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 495 { 496 unsigned long rc; 497 498 down_read(&gmap->mm->mmap_sem); 499 rc = __gmap_translate(gmap, gaddr); 500 up_read(&gmap->mm->mmap_sem); 501 return rc; 502 } 503 EXPORT_SYMBOL_GPL(gmap_translate); 504 505 /** 506 * gmap_unlink - disconnect a page table from the gmap shadow tables 507 * @gmap: pointer to guest mapping meta data structure 508 * @table: pointer to the host page table 509 * @vmaddr: vm address associated with the host page table 510 */ 511 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 512 unsigned long vmaddr) 513 { 514 struct gmap *gmap; 515 int flush; 516 517 rcu_read_lock(); 518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 520 if (flush) 521 gmap_flush_tlb(gmap); 522 } 523 rcu_read_unlock(); 524 } 525 526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 527 unsigned long gaddr); 528 529 /** 530 * gmap_link - set up shadow page tables to connect a host to a guest address 531 * @gmap: pointer to guest mapping meta data structure 532 * @gaddr: guest address 533 * @vmaddr: vm address 534 * 535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 536 * if the vm address is already mapped to a different guest segment. 537 * The mmap_sem of the mm that belongs to the address space must be held 538 * when this function gets called. 539 */ 540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 541 { 542 struct mm_struct *mm; 543 unsigned long *table; 544 spinlock_t *ptl; 545 pgd_t *pgd; 546 p4d_t *p4d; 547 pud_t *pud; 548 pmd_t *pmd; 549 u64 unprot; 550 int rc; 551 552 BUG_ON(gmap_is_shadow(gmap)); 553 /* Create higher level tables in the gmap page table */ 554 table = gmap->table; 555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 557 if ((*table & _REGION_ENTRY_INVALID) && 558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 559 gaddr & _REGION1_MASK)) 560 return -ENOMEM; 561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 562 } 563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 565 if ((*table & _REGION_ENTRY_INVALID) && 566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 567 gaddr & _REGION2_MASK)) 568 return -ENOMEM; 569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 570 } 571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 573 if ((*table & _REGION_ENTRY_INVALID) && 574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 575 gaddr & _REGION3_MASK)) 576 return -ENOMEM; 577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 578 } 579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 580 /* Walk the parent mm page table */ 581 mm = gmap->mm; 582 pgd = pgd_offset(mm, vmaddr); 583 VM_BUG_ON(pgd_none(*pgd)); 584 p4d = p4d_offset(pgd, vmaddr); 585 VM_BUG_ON(p4d_none(*p4d)); 586 pud = pud_offset(p4d, vmaddr); 587 VM_BUG_ON(pud_none(*pud)); 588 /* large puds cannot yet be handled */ 589 if (pud_large(*pud)) 590 return -EFAULT; 591 pmd = pmd_offset(pud, vmaddr); 592 VM_BUG_ON(pmd_none(*pmd)); 593 /* Are we allowed to use huge pages? */ 594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 595 return -EFAULT; 596 /* Link gmap segment table entry location to page table. */ 597 rc = radix_tree_preload(GFP_KERNEL); 598 if (rc) 599 return rc; 600 ptl = pmd_lock(mm, pmd); 601 spin_lock(&gmap->guest_table_lock); 602 if (*table == _SEGMENT_ENTRY_EMPTY) { 603 rc = radix_tree_insert(&gmap->host_to_guest, 604 vmaddr >> PMD_SHIFT, table); 605 if (!rc) { 606 if (pmd_large(*pmd)) { 607 *table = (pmd_val(*pmd) & 608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 609 | _SEGMENT_ENTRY_GMAP_UC; 610 } else 611 *table = pmd_val(*pmd) & 612 _SEGMENT_ENTRY_HARDWARE_BITS; 613 } 614 } else if (*table & _SEGMENT_ENTRY_PROTECT && 615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 616 unprot = (u64)*table; 617 unprot &= ~_SEGMENT_ENTRY_PROTECT; 618 unprot |= _SEGMENT_ENTRY_GMAP_UC; 619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 620 } 621 spin_unlock(&gmap->guest_table_lock); 622 spin_unlock(ptl); 623 radix_tree_preload_end(); 624 return rc; 625 } 626 627 /** 628 * gmap_fault - resolve a fault on a guest address 629 * @gmap: pointer to guest mapping meta data structure 630 * @gaddr: guest address 631 * @fault_flags: flags to pass down to handle_mm_fault() 632 * 633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 634 * if the vm address is already mapped to a different guest segment. 635 */ 636 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 637 unsigned int fault_flags) 638 { 639 unsigned long vmaddr; 640 int rc; 641 bool unlocked; 642 643 down_read(&gmap->mm->mmap_sem); 644 645 retry: 646 unlocked = false; 647 vmaddr = __gmap_translate(gmap, gaddr); 648 if (IS_ERR_VALUE(vmaddr)) { 649 rc = vmaddr; 650 goto out_up; 651 } 652 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags, 653 &unlocked)) { 654 rc = -EFAULT; 655 goto out_up; 656 } 657 /* 658 * In the case that fixup_user_fault unlocked the mmap_sem during 659 * faultin redo __gmap_translate to not race with a map/unmap_segment. 660 */ 661 if (unlocked) 662 goto retry; 663 664 rc = __gmap_link(gmap, gaddr, vmaddr); 665 out_up: 666 up_read(&gmap->mm->mmap_sem); 667 return rc; 668 } 669 EXPORT_SYMBOL_GPL(gmap_fault); 670 671 /* 672 * this function is assumed to be called with mmap_sem held 673 */ 674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 675 { 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 /* Get pointer to the page table entry */ 686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 687 if (likely(ptep)) 688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 689 pte_unmap_unlock(ptep, ptl); 690 } 691 } 692 EXPORT_SYMBOL_GPL(__gmap_zap); 693 694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 695 { 696 unsigned long gaddr, vmaddr, size; 697 struct vm_area_struct *vma; 698 699 down_read(&gmap->mm->mmap_sem); 700 for (gaddr = from; gaddr < to; 701 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 702 /* Find the vm address for the guest address */ 703 vmaddr = (unsigned long) 704 radix_tree_lookup(&gmap->guest_to_host, 705 gaddr >> PMD_SHIFT); 706 if (!vmaddr) 707 continue; 708 vmaddr |= gaddr & ~PMD_MASK; 709 /* Find vma in the parent mm */ 710 vma = find_vma(gmap->mm, vmaddr); 711 /* 712 * We do not discard pages that are backed by 713 * hugetlbfs, so we don't have to refault them. 714 */ 715 if (vma && is_vm_hugetlb_page(vma)) 716 continue; 717 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 718 zap_page_range(vma, vmaddr, size); 719 } 720 up_read(&gmap->mm->mmap_sem); 721 } 722 EXPORT_SYMBOL_GPL(gmap_discard); 723 724 static LIST_HEAD(gmap_notifier_list); 725 static DEFINE_SPINLOCK(gmap_notifier_lock); 726 727 /** 728 * gmap_register_pte_notifier - register a pte invalidation callback 729 * @nb: pointer to the gmap notifier block 730 */ 731 void gmap_register_pte_notifier(struct gmap_notifier *nb) 732 { 733 spin_lock(&gmap_notifier_lock); 734 list_add_rcu(&nb->list, &gmap_notifier_list); 735 spin_unlock(&gmap_notifier_lock); 736 } 737 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 738 739 /** 740 * gmap_unregister_pte_notifier - remove a pte invalidation callback 741 * @nb: pointer to the gmap notifier block 742 */ 743 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 744 { 745 spin_lock(&gmap_notifier_lock); 746 list_del_rcu(&nb->list); 747 spin_unlock(&gmap_notifier_lock); 748 synchronize_rcu(); 749 } 750 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 751 752 /** 753 * gmap_call_notifier - call all registered invalidation callbacks 754 * @gmap: pointer to guest mapping meta data structure 755 * @start: start virtual address in the guest address space 756 * @end: end virtual address in the guest address space 757 */ 758 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 759 unsigned long end) 760 { 761 struct gmap_notifier *nb; 762 763 list_for_each_entry(nb, &gmap_notifier_list, list) 764 nb->notifier_call(gmap, start, end); 765 } 766 767 /** 768 * gmap_table_walk - walk the gmap page tables 769 * @gmap: pointer to guest mapping meta data structure 770 * @gaddr: virtual address in the guest address space 771 * @level: page table level to stop at 772 * 773 * Returns a table entry pointer for the given guest address and @level 774 * @level=0 : returns a pointer to a page table table entry (or NULL) 775 * @level=1 : returns a pointer to a segment table entry (or NULL) 776 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 777 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 778 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 779 * 780 * Returns NULL if the gmap page tables could not be walked to the 781 * requested level. 782 * 783 * Note: Can also be called for shadow gmaps. 784 */ 785 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 786 unsigned long gaddr, int level) 787 { 788 unsigned long *table; 789 790 if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4)) 791 return NULL; 792 if (gmap_is_shadow(gmap) && gmap->removed) 793 return NULL; 794 if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11))) 795 return NULL; 796 table = gmap->table; 797 switch (gmap->asce & _ASCE_TYPE_MASK) { 798 case _ASCE_TYPE_REGION1: 799 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 800 if (level == 4) 801 break; 802 if (*table & _REGION_ENTRY_INVALID) 803 return NULL; 804 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 805 /* Fallthrough */ 806 case _ASCE_TYPE_REGION2: 807 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 808 if (level == 3) 809 break; 810 if (*table & _REGION_ENTRY_INVALID) 811 return NULL; 812 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 813 /* Fallthrough */ 814 case _ASCE_TYPE_REGION3: 815 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 816 if (level == 2) 817 break; 818 if (*table & _REGION_ENTRY_INVALID) 819 return NULL; 820 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 821 /* Fallthrough */ 822 case _ASCE_TYPE_SEGMENT: 823 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 824 if (level == 1) 825 break; 826 if (*table & _REGION_ENTRY_INVALID) 827 return NULL; 828 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 829 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 830 } 831 return table; 832 } 833 834 /** 835 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 836 * and return the pte pointer 837 * @gmap: pointer to guest mapping meta data structure 838 * @gaddr: virtual address in the guest address space 839 * @ptl: pointer to the spinlock pointer 840 * 841 * Returns a pointer to the locked pte for a guest address, or NULL 842 */ 843 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 844 spinlock_t **ptl) 845 { 846 unsigned long *table; 847 848 BUG_ON(gmap_is_shadow(gmap)); 849 /* Walk the gmap page table, lock and get pte pointer */ 850 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 851 if (!table || *table & _SEGMENT_ENTRY_INVALID) 852 return NULL; 853 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 854 } 855 856 /** 857 * gmap_pte_op_fixup - force a page in and connect the gmap page table 858 * @gmap: pointer to guest mapping meta data structure 859 * @gaddr: virtual address in the guest address space 860 * @vmaddr: address in the host process address space 861 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 862 * 863 * Returns 0 if the caller can retry __gmap_translate (might fail again), 864 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 865 * up or connecting the gmap page table. 866 */ 867 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 868 unsigned long vmaddr, int prot) 869 { 870 struct mm_struct *mm = gmap->mm; 871 unsigned int fault_flags; 872 bool unlocked = false; 873 874 BUG_ON(gmap_is_shadow(gmap)); 875 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 876 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked)) 877 return -EFAULT; 878 if (unlocked) 879 /* lost mmap_sem, caller has to retry __gmap_translate */ 880 return 0; 881 /* Connect the page tables */ 882 return __gmap_link(gmap, gaddr, vmaddr); 883 } 884 885 /** 886 * gmap_pte_op_end - release the page table lock 887 * @ptl: pointer to the spinlock pointer 888 */ 889 static void gmap_pte_op_end(spinlock_t *ptl) 890 { 891 if (ptl) 892 spin_unlock(ptl); 893 } 894 895 /** 896 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 897 * and return the pmd pointer 898 * @gmap: pointer to guest mapping meta data structure 899 * @gaddr: virtual address in the guest address space 900 * 901 * Returns a pointer to the pmd for a guest address, or NULL 902 */ 903 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 904 { 905 pmd_t *pmdp; 906 907 BUG_ON(gmap_is_shadow(gmap)); 908 spin_lock(&gmap->guest_table_lock); 909 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 910 911 if (!pmdp || pmd_none(*pmdp)) { 912 spin_unlock(&gmap->guest_table_lock); 913 return NULL; 914 } 915 916 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 917 if (!pmd_large(*pmdp)) 918 spin_unlock(&gmap->guest_table_lock); 919 return pmdp; 920 } 921 922 /** 923 * gmap_pmd_op_end - release the guest_table_lock if needed 924 * @gmap: pointer to the guest mapping meta data structure 925 * @pmdp: pointer to the pmd 926 */ 927 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 928 { 929 if (pmd_large(*pmdp)) 930 spin_unlock(&gmap->guest_table_lock); 931 } 932 933 /* 934 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 935 * @pmdp: pointer to the pmd to be protected 936 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 937 * @bits: notification bits to set 938 * 939 * Returns: 940 * 0 if successfully protected 941 * -EAGAIN if a fixup is needed 942 * -EINVAL if unsupported notifier bits have been specified 943 * 944 * Expected to be called with sg->mm->mmap_sem in read and 945 * guest_table_lock held. 946 */ 947 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 948 pmd_t *pmdp, int prot, unsigned long bits) 949 { 950 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 951 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 952 pmd_t new = *pmdp; 953 954 /* Fixup needed */ 955 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 956 return -EAGAIN; 957 958 if (prot == PROT_NONE && !pmd_i) { 959 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 960 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 961 } 962 963 if (prot == PROT_READ && !pmd_p) { 964 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 965 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 966 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 967 } 968 969 if (bits & GMAP_NOTIFY_MPROT) 970 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 971 972 /* Shadow GMAP protection needs split PMDs */ 973 if (bits & GMAP_NOTIFY_SHADOW) 974 return -EINVAL; 975 976 return 0; 977 } 978 979 /* 980 * gmap_protect_pte - remove access rights to memory and set pgste bits 981 * @gmap: pointer to guest mapping meta data structure 982 * @gaddr: virtual address in the guest address space 983 * @pmdp: pointer to the pmd associated with the pte 984 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 985 * @bits: notification bits to set 986 * 987 * Returns 0 if successfully protected, -ENOMEM if out of memory and 988 * -EAGAIN if a fixup is needed. 989 * 990 * Expected to be called with sg->mm->mmap_sem in read 991 */ 992 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 993 pmd_t *pmdp, int prot, unsigned long bits) 994 { 995 int rc; 996 pte_t *ptep; 997 spinlock_t *ptl = NULL; 998 unsigned long pbits = 0; 999 1000 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1001 return -EAGAIN; 1002 1003 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1004 if (!ptep) 1005 return -ENOMEM; 1006 1007 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1008 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1009 /* Protect and unlock. */ 1010 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1011 gmap_pte_op_end(ptl); 1012 return rc; 1013 } 1014 1015 /* 1016 * gmap_protect_range - remove access rights to memory and set pgste bits 1017 * @gmap: pointer to guest mapping meta data structure 1018 * @gaddr: virtual address in the guest address space 1019 * @len: size of area 1020 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1021 * @bits: pgste notification bits to set 1022 * 1023 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1024 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1025 * 1026 * Called with sg->mm->mmap_sem in read. 1027 */ 1028 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1029 unsigned long len, int prot, unsigned long bits) 1030 { 1031 unsigned long vmaddr, dist; 1032 pmd_t *pmdp; 1033 int rc; 1034 1035 BUG_ON(gmap_is_shadow(gmap)); 1036 while (len) { 1037 rc = -EAGAIN; 1038 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1039 if (pmdp) { 1040 if (!pmd_large(*pmdp)) { 1041 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1042 bits); 1043 if (!rc) { 1044 len -= PAGE_SIZE; 1045 gaddr += PAGE_SIZE; 1046 } 1047 } else { 1048 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1049 bits); 1050 if (!rc) { 1051 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1052 len = len < dist ? 0 : len - dist; 1053 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1054 } 1055 } 1056 gmap_pmd_op_end(gmap, pmdp); 1057 } 1058 if (rc) { 1059 if (rc == -EINVAL) 1060 return rc; 1061 1062 /* -EAGAIN, fixup of userspace mm and gmap */ 1063 vmaddr = __gmap_translate(gmap, gaddr); 1064 if (IS_ERR_VALUE(vmaddr)) 1065 return vmaddr; 1066 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1067 if (rc) 1068 return rc; 1069 } 1070 } 1071 return 0; 1072 } 1073 1074 /** 1075 * gmap_mprotect_notify - change access rights for a range of ptes and 1076 * call the notifier if any pte changes again 1077 * @gmap: pointer to guest mapping meta data structure 1078 * @gaddr: virtual address in the guest address space 1079 * @len: size of area 1080 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1081 * 1082 * Returns 0 if for each page in the given range a gmap mapping exists, 1083 * the new access rights could be set and the notifier could be armed. 1084 * If the gmap mapping is missing for one or more pages -EFAULT is 1085 * returned. If no memory could be allocated -ENOMEM is returned. 1086 * This function establishes missing page table entries. 1087 */ 1088 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1089 unsigned long len, int prot) 1090 { 1091 int rc; 1092 1093 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1094 return -EINVAL; 1095 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1096 return -EINVAL; 1097 down_read(&gmap->mm->mmap_sem); 1098 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1099 up_read(&gmap->mm->mmap_sem); 1100 return rc; 1101 } 1102 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1103 1104 /** 1105 * gmap_read_table - get an unsigned long value from a guest page table using 1106 * absolute addressing, without marking the page referenced. 1107 * @gmap: pointer to guest mapping meta data structure 1108 * @gaddr: virtual address in the guest address space 1109 * @val: pointer to the unsigned long value to return 1110 * 1111 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1112 * if reading using the virtual address failed. -EINVAL if called on a gmap 1113 * shadow. 1114 * 1115 * Called with gmap->mm->mmap_sem in read. 1116 */ 1117 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1118 { 1119 unsigned long address, vmaddr; 1120 spinlock_t *ptl; 1121 pte_t *ptep, pte; 1122 int rc; 1123 1124 if (gmap_is_shadow(gmap)) 1125 return -EINVAL; 1126 1127 while (1) { 1128 rc = -EAGAIN; 1129 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1130 if (ptep) { 1131 pte = *ptep; 1132 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1133 address = pte_val(pte) & PAGE_MASK; 1134 address += gaddr & ~PAGE_MASK; 1135 *val = *(unsigned long *) address; 1136 pte_val(*ptep) |= _PAGE_YOUNG; 1137 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1138 rc = 0; 1139 } 1140 gmap_pte_op_end(ptl); 1141 } 1142 if (!rc) 1143 break; 1144 vmaddr = __gmap_translate(gmap, gaddr); 1145 if (IS_ERR_VALUE(vmaddr)) { 1146 rc = vmaddr; 1147 break; 1148 } 1149 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1150 if (rc) 1151 break; 1152 } 1153 return rc; 1154 } 1155 EXPORT_SYMBOL_GPL(gmap_read_table); 1156 1157 /** 1158 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1159 * @sg: pointer to the shadow guest address space structure 1160 * @vmaddr: vm address associated with the rmap 1161 * @rmap: pointer to the rmap structure 1162 * 1163 * Called with the sg->guest_table_lock 1164 */ 1165 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1166 struct gmap_rmap *rmap) 1167 { 1168 void __rcu **slot; 1169 1170 BUG_ON(!gmap_is_shadow(sg)); 1171 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1172 if (slot) { 1173 rmap->next = radix_tree_deref_slot_protected(slot, 1174 &sg->guest_table_lock); 1175 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1176 } else { 1177 rmap->next = NULL; 1178 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1179 rmap); 1180 } 1181 } 1182 1183 /** 1184 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1185 * @sg: pointer to the shadow guest address space structure 1186 * @raddr: rmap address in the shadow gmap 1187 * @paddr: address in the parent guest address space 1188 * @len: length of the memory area to protect 1189 * 1190 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1191 * if out of memory and -EFAULT if paddr is invalid. 1192 */ 1193 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1194 unsigned long paddr, unsigned long len) 1195 { 1196 struct gmap *parent; 1197 struct gmap_rmap *rmap; 1198 unsigned long vmaddr; 1199 spinlock_t *ptl; 1200 pte_t *ptep; 1201 int rc; 1202 1203 BUG_ON(!gmap_is_shadow(sg)); 1204 parent = sg->parent; 1205 while (len) { 1206 vmaddr = __gmap_translate(parent, paddr); 1207 if (IS_ERR_VALUE(vmaddr)) 1208 return vmaddr; 1209 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1210 if (!rmap) 1211 return -ENOMEM; 1212 rmap->raddr = raddr; 1213 rc = radix_tree_preload(GFP_KERNEL); 1214 if (rc) { 1215 kfree(rmap); 1216 return rc; 1217 } 1218 rc = -EAGAIN; 1219 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1220 if (ptep) { 1221 spin_lock(&sg->guest_table_lock); 1222 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1223 PGSTE_VSIE_BIT); 1224 if (!rc) 1225 gmap_insert_rmap(sg, vmaddr, rmap); 1226 spin_unlock(&sg->guest_table_lock); 1227 gmap_pte_op_end(ptl); 1228 } 1229 radix_tree_preload_end(); 1230 if (rc) { 1231 kfree(rmap); 1232 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1233 if (rc) 1234 return rc; 1235 continue; 1236 } 1237 paddr += PAGE_SIZE; 1238 len -= PAGE_SIZE; 1239 } 1240 return 0; 1241 } 1242 1243 #define _SHADOW_RMAP_MASK 0x7 1244 #define _SHADOW_RMAP_REGION1 0x5 1245 #define _SHADOW_RMAP_REGION2 0x4 1246 #define _SHADOW_RMAP_REGION3 0x3 1247 #define _SHADOW_RMAP_SEGMENT 0x2 1248 #define _SHADOW_RMAP_PGTABLE 0x1 1249 1250 /** 1251 * gmap_idte_one - invalidate a single region or segment table entry 1252 * @asce: region or segment table *origin* + table-type bits 1253 * @vaddr: virtual address to identify the table entry to flush 1254 * 1255 * The invalid bit of a single region or segment table entry is set 1256 * and the associated TLB entries depending on the entry are flushed. 1257 * The table-type of the @asce identifies the portion of the @vaddr 1258 * that is used as the invalidation index. 1259 */ 1260 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1261 { 1262 asm volatile( 1263 " .insn rrf,0xb98e0000,%0,%1,0,0" 1264 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1265 } 1266 1267 /** 1268 * gmap_unshadow_page - remove a page from a shadow page table 1269 * @sg: pointer to the shadow guest address space structure 1270 * @raddr: rmap address in the shadow guest address space 1271 * 1272 * Called with the sg->guest_table_lock 1273 */ 1274 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1275 { 1276 unsigned long *table; 1277 1278 BUG_ON(!gmap_is_shadow(sg)); 1279 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1280 if (!table || *table & _PAGE_INVALID) 1281 return; 1282 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1283 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1284 } 1285 1286 /** 1287 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1288 * @sg: pointer to the shadow guest address space structure 1289 * @raddr: rmap address in the shadow guest address space 1290 * @pgt: pointer to the start of a shadow page table 1291 * 1292 * Called with the sg->guest_table_lock 1293 */ 1294 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1295 unsigned long *pgt) 1296 { 1297 int i; 1298 1299 BUG_ON(!gmap_is_shadow(sg)); 1300 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1301 pgt[i] = _PAGE_INVALID; 1302 } 1303 1304 /** 1305 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1306 * @sg: pointer to the shadow guest address space structure 1307 * @raddr: address in the shadow guest address space 1308 * 1309 * Called with the sg->guest_table_lock 1310 */ 1311 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1312 { 1313 unsigned long sto, *ste, *pgt; 1314 struct page *page; 1315 1316 BUG_ON(!gmap_is_shadow(sg)); 1317 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1318 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1319 return; 1320 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1321 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1322 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1323 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1324 *ste = _SEGMENT_ENTRY_EMPTY; 1325 __gmap_unshadow_pgt(sg, raddr, pgt); 1326 /* Free page table */ 1327 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1328 list_del(&page->lru); 1329 page_table_free_pgste(page); 1330 } 1331 1332 /** 1333 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1334 * @sg: pointer to the shadow guest address space structure 1335 * @raddr: rmap address in the shadow guest address space 1336 * @sgt: pointer to the start of a shadow segment table 1337 * 1338 * Called with the sg->guest_table_lock 1339 */ 1340 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1341 unsigned long *sgt) 1342 { 1343 unsigned long *pgt; 1344 struct page *page; 1345 int i; 1346 1347 BUG_ON(!gmap_is_shadow(sg)); 1348 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1349 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1350 continue; 1351 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1352 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1353 __gmap_unshadow_pgt(sg, raddr, pgt); 1354 /* Free page table */ 1355 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1356 list_del(&page->lru); 1357 page_table_free_pgste(page); 1358 } 1359 } 1360 1361 /** 1362 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1363 * @sg: pointer to the shadow guest address space structure 1364 * @raddr: rmap address in the shadow guest address space 1365 * 1366 * Called with the shadow->guest_table_lock 1367 */ 1368 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1369 { 1370 unsigned long r3o, *r3e, *sgt; 1371 struct page *page; 1372 1373 BUG_ON(!gmap_is_shadow(sg)); 1374 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1375 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1376 return; 1377 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1378 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1379 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1380 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1381 *r3e = _REGION3_ENTRY_EMPTY; 1382 __gmap_unshadow_sgt(sg, raddr, sgt); 1383 /* Free segment table */ 1384 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1385 list_del(&page->lru); 1386 __free_pages(page, CRST_ALLOC_ORDER); 1387 } 1388 1389 /** 1390 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1391 * @sg: pointer to the shadow guest address space structure 1392 * @raddr: address in the shadow guest address space 1393 * @r3t: pointer to the start of a shadow region-3 table 1394 * 1395 * Called with the sg->guest_table_lock 1396 */ 1397 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1398 unsigned long *r3t) 1399 { 1400 unsigned long *sgt; 1401 struct page *page; 1402 int i; 1403 1404 BUG_ON(!gmap_is_shadow(sg)); 1405 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1406 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1407 continue; 1408 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1409 r3t[i] = _REGION3_ENTRY_EMPTY; 1410 __gmap_unshadow_sgt(sg, raddr, sgt); 1411 /* Free segment table */ 1412 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1413 list_del(&page->lru); 1414 __free_pages(page, CRST_ALLOC_ORDER); 1415 } 1416 } 1417 1418 /** 1419 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1420 * @sg: pointer to the shadow guest address space structure 1421 * @raddr: rmap address in the shadow guest address space 1422 * 1423 * Called with the sg->guest_table_lock 1424 */ 1425 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1426 { 1427 unsigned long r2o, *r2e, *r3t; 1428 struct page *page; 1429 1430 BUG_ON(!gmap_is_shadow(sg)); 1431 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1432 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1433 return; 1434 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1435 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1436 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1437 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1438 *r2e = _REGION2_ENTRY_EMPTY; 1439 __gmap_unshadow_r3t(sg, raddr, r3t); 1440 /* Free region 3 table */ 1441 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1442 list_del(&page->lru); 1443 __free_pages(page, CRST_ALLOC_ORDER); 1444 } 1445 1446 /** 1447 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1448 * @sg: pointer to the shadow guest address space structure 1449 * @raddr: rmap address in the shadow guest address space 1450 * @r2t: pointer to the start of a shadow region-2 table 1451 * 1452 * Called with the sg->guest_table_lock 1453 */ 1454 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1455 unsigned long *r2t) 1456 { 1457 unsigned long *r3t; 1458 struct page *page; 1459 int i; 1460 1461 BUG_ON(!gmap_is_shadow(sg)); 1462 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1463 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1464 continue; 1465 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1466 r2t[i] = _REGION2_ENTRY_EMPTY; 1467 __gmap_unshadow_r3t(sg, raddr, r3t); 1468 /* Free region 3 table */ 1469 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1470 list_del(&page->lru); 1471 __free_pages(page, CRST_ALLOC_ORDER); 1472 } 1473 } 1474 1475 /** 1476 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1477 * @sg: pointer to the shadow guest address space structure 1478 * @raddr: rmap address in the shadow guest address space 1479 * 1480 * Called with the sg->guest_table_lock 1481 */ 1482 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1483 { 1484 unsigned long r1o, *r1e, *r2t; 1485 struct page *page; 1486 1487 BUG_ON(!gmap_is_shadow(sg)); 1488 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1489 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1490 return; 1491 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1492 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1493 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1494 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1495 *r1e = _REGION1_ENTRY_EMPTY; 1496 __gmap_unshadow_r2t(sg, raddr, r2t); 1497 /* Free region 2 table */ 1498 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1499 list_del(&page->lru); 1500 __free_pages(page, CRST_ALLOC_ORDER); 1501 } 1502 1503 /** 1504 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1505 * @sg: pointer to the shadow guest address space structure 1506 * @raddr: rmap address in the shadow guest address space 1507 * @r1t: pointer to the start of a shadow region-1 table 1508 * 1509 * Called with the shadow->guest_table_lock 1510 */ 1511 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1512 unsigned long *r1t) 1513 { 1514 unsigned long asce, *r2t; 1515 struct page *page; 1516 int i; 1517 1518 BUG_ON(!gmap_is_shadow(sg)); 1519 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1520 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1521 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1522 continue; 1523 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1524 __gmap_unshadow_r2t(sg, raddr, r2t); 1525 /* Clear entry and flush translation r1t -> r2t */ 1526 gmap_idte_one(asce, raddr); 1527 r1t[i] = _REGION1_ENTRY_EMPTY; 1528 /* Free region 2 table */ 1529 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1530 list_del(&page->lru); 1531 __free_pages(page, CRST_ALLOC_ORDER); 1532 } 1533 } 1534 1535 /** 1536 * gmap_unshadow - remove a shadow page table completely 1537 * @sg: pointer to the shadow guest address space structure 1538 * 1539 * Called with sg->guest_table_lock 1540 */ 1541 static void gmap_unshadow(struct gmap *sg) 1542 { 1543 unsigned long *table; 1544 1545 BUG_ON(!gmap_is_shadow(sg)); 1546 if (sg->removed) 1547 return; 1548 sg->removed = 1; 1549 gmap_call_notifier(sg, 0, -1UL); 1550 gmap_flush_tlb(sg); 1551 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1552 switch (sg->asce & _ASCE_TYPE_MASK) { 1553 case _ASCE_TYPE_REGION1: 1554 __gmap_unshadow_r1t(sg, 0, table); 1555 break; 1556 case _ASCE_TYPE_REGION2: 1557 __gmap_unshadow_r2t(sg, 0, table); 1558 break; 1559 case _ASCE_TYPE_REGION3: 1560 __gmap_unshadow_r3t(sg, 0, table); 1561 break; 1562 case _ASCE_TYPE_SEGMENT: 1563 __gmap_unshadow_sgt(sg, 0, table); 1564 break; 1565 } 1566 } 1567 1568 /** 1569 * gmap_find_shadow - find a specific asce in the list of shadow tables 1570 * @parent: pointer to the parent gmap 1571 * @asce: ASCE for which the shadow table is created 1572 * @edat_level: edat level to be used for the shadow translation 1573 * 1574 * Returns the pointer to a gmap if a shadow table with the given asce is 1575 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1576 * otherwise NULL 1577 */ 1578 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1579 int edat_level) 1580 { 1581 struct gmap *sg; 1582 1583 list_for_each_entry(sg, &parent->children, list) { 1584 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1585 sg->removed) 1586 continue; 1587 if (!sg->initialized) 1588 return ERR_PTR(-EAGAIN); 1589 atomic_inc(&sg->ref_count); 1590 return sg; 1591 } 1592 return NULL; 1593 } 1594 1595 /** 1596 * gmap_shadow_valid - check if a shadow guest address space matches the 1597 * given properties and is still valid 1598 * @sg: pointer to the shadow guest address space structure 1599 * @asce: ASCE for which the shadow table is requested 1600 * @edat_level: edat level to be used for the shadow translation 1601 * 1602 * Returns 1 if the gmap shadow is still valid and matches the given 1603 * properties, the caller can continue using it. Returns 0 otherwise, the 1604 * caller has to request a new shadow gmap in this case. 1605 * 1606 */ 1607 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1608 { 1609 if (sg->removed) 1610 return 0; 1611 return sg->orig_asce == asce && sg->edat_level == edat_level; 1612 } 1613 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1614 1615 /** 1616 * gmap_shadow - create/find a shadow guest address space 1617 * @parent: pointer to the parent gmap 1618 * @asce: ASCE for which the shadow table is created 1619 * @edat_level: edat level to be used for the shadow translation 1620 * 1621 * The pages of the top level page table referred by the asce parameter 1622 * will be set to read-only and marked in the PGSTEs of the kvm process. 1623 * The shadow table will be removed automatically on any change to the 1624 * PTE mapping for the source table. 1625 * 1626 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1627 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1628 * parent gmap table could not be protected. 1629 */ 1630 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1631 int edat_level) 1632 { 1633 struct gmap *sg, *new; 1634 unsigned long limit; 1635 int rc; 1636 1637 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1638 BUG_ON(gmap_is_shadow(parent)); 1639 spin_lock(&parent->shadow_lock); 1640 sg = gmap_find_shadow(parent, asce, edat_level); 1641 spin_unlock(&parent->shadow_lock); 1642 if (sg) 1643 return sg; 1644 /* Create a new shadow gmap */ 1645 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1646 if (asce & _ASCE_REAL_SPACE) 1647 limit = -1UL; 1648 new = gmap_alloc(limit); 1649 if (!new) 1650 return ERR_PTR(-ENOMEM); 1651 new->mm = parent->mm; 1652 new->parent = gmap_get(parent); 1653 new->orig_asce = asce; 1654 new->edat_level = edat_level; 1655 new->initialized = false; 1656 spin_lock(&parent->shadow_lock); 1657 /* Recheck if another CPU created the same shadow */ 1658 sg = gmap_find_shadow(parent, asce, edat_level); 1659 if (sg) { 1660 spin_unlock(&parent->shadow_lock); 1661 gmap_free(new); 1662 return sg; 1663 } 1664 if (asce & _ASCE_REAL_SPACE) { 1665 /* only allow one real-space gmap shadow */ 1666 list_for_each_entry(sg, &parent->children, list) { 1667 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1668 spin_lock(&sg->guest_table_lock); 1669 gmap_unshadow(sg); 1670 spin_unlock(&sg->guest_table_lock); 1671 list_del(&sg->list); 1672 gmap_put(sg); 1673 break; 1674 } 1675 } 1676 } 1677 atomic_set(&new->ref_count, 2); 1678 list_add(&new->list, &parent->children); 1679 if (asce & _ASCE_REAL_SPACE) { 1680 /* nothing to protect, return right away */ 1681 new->initialized = true; 1682 spin_unlock(&parent->shadow_lock); 1683 return new; 1684 } 1685 spin_unlock(&parent->shadow_lock); 1686 /* protect after insertion, so it will get properly invalidated */ 1687 down_read(&parent->mm->mmap_sem); 1688 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1689 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1690 PROT_READ, GMAP_NOTIFY_SHADOW); 1691 up_read(&parent->mm->mmap_sem); 1692 spin_lock(&parent->shadow_lock); 1693 new->initialized = true; 1694 if (rc) { 1695 list_del(&new->list); 1696 gmap_free(new); 1697 new = ERR_PTR(rc); 1698 } 1699 spin_unlock(&parent->shadow_lock); 1700 return new; 1701 } 1702 EXPORT_SYMBOL_GPL(gmap_shadow); 1703 1704 /** 1705 * gmap_shadow_r2t - create an empty shadow region 2 table 1706 * @sg: pointer to the shadow guest address space structure 1707 * @saddr: faulting address in the shadow gmap 1708 * @r2t: parent gmap address of the region 2 table to get shadowed 1709 * @fake: r2t references contiguous guest memory block, not a r2t 1710 * 1711 * The r2t parameter specifies the address of the source table. The 1712 * four pages of the source table are made read-only in the parent gmap 1713 * address space. A write to the source table area @r2t will automatically 1714 * remove the shadow r2 table and all of its decendents. 1715 * 1716 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1717 * shadow table structure is incomplete, -ENOMEM if out of memory and 1718 * -EFAULT if an address in the parent gmap could not be resolved. 1719 * 1720 * Called with sg->mm->mmap_sem in read. 1721 */ 1722 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1723 int fake) 1724 { 1725 unsigned long raddr, origin, offset, len; 1726 unsigned long *s_r2t, *table; 1727 struct page *page; 1728 int rc; 1729 1730 BUG_ON(!gmap_is_shadow(sg)); 1731 /* Allocate a shadow region second table */ 1732 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1733 if (!page) 1734 return -ENOMEM; 1735 page->index = r2t & _REGION_ENTRY_ORIGIN; 1736 if (fake) 1737 page->index |= GMAP_SHADOW_FAKE_TABLE; 1738 s_r2t = (unsigned long *) page_to_phys(page); 1739 /* Install shadow region second table */ 1740 spin_lock(&sg->guest_table_lock); 1741 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1742 if (!table) { 1743 rc = -EAGAIN; /* Race with unshadow */ 1744 goto out_free; 1745 } 1746 if (!(*table & _REGION_ENTRY_INVALID)) { 1747 rc = 0; /* Already established */ 1748 goto out_free; 1749 } else if (*table & _REGION_ENTRY_ORIGIN) { 1750 rc = -EAGAIN; /* Race with shadow */ 1751 goto out_free; 1752 } 1753 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1754 /* mark as invalid as long as the parent table is not protected */ 1755 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1756 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1757 if (sg->edat_level >= 1) 1758 *table |= (r2t & _REGION_ENTRY_PROTECT); 1759 list_add(&page->lru, &sg->crst_list); 1760 if (fake) { 1761 /* nothing to protect for fake tables */ 1762 *table &= ~_REGION_ENTRY_INVALID; 1763 spin_unlock(&sg->guest_table_lock); 1764 return 0; 1765 } 1766 spin_unlock(&sg->guest_table_lock); 1767 /* Make r2t read-only in parent gmap page table */ 1768 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1769 origin = r2t & _REGION_ENTRY_ORIGIN; 1770 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1771 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1772 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1773 spin_lock(&sg->guest_table_lock); 1774 if (!rc) { 1775 table = gmap_table_walk(sg, saddr, 4); 1776 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1777 (unsigned long) s_r2t) 1778 rc = -EAGAIN; /* Race with unshadow */ 1779 else 1780 *table &= ~_REGION_ENTRY_INVALID; 1781 } else { 1782 gmap_unshadow_r2t(sg, raddr); 1783 } 1784 spin_unlock(&sg->guest_table_lock); 1785 return rc; 1786 out_free: 1787 spin_unlock(&sg->guest_table_lock); 1788 __free_pages(page, CRST_ALLOC_ORDER); 1789 return rc; 1790 } 1791 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1792 1793 /** 1794 * gmap_shadow_r3t - create a shadow region 3 table 1795 * @sg: pointer to the shadow guest address space structure 1796 * @saddr: faulting address in the shadow gmap 1797 * @r3t: parent gmap address of the region 3 table to get shadowed 1798 * @fake: r3t references contiguous guest memory block, not a r3t 1799 * 1800 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1801 * shadow table structure is incomplete, -ENOMEM if out of memory and 1802 * -EFAULT if an address in the parent gmap could not be resolved. 1803 * 1804 * Called with sg->mm->mmap_sem in read. 1805 */ 1806 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1807 int fake) 1808 { 1809 unsigned long raddr, origin, offset, len; 1810 unsigned long *s_r3t, *table; 1811 struct page *page; 1812 int rc; 1813 1814 BUG_ON(!gmap_is_shadow(sg)); 1815 /* Allocate a shadow region second table */ 1816 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1817 if (!page) 1818 return -ENOMEM; 1819 page->index = r3t & _REGION_ENTRY_ORIGIN; 1820 if (fake) 1821 page->index |= GMAP_SHADOW_FAKE_TABLE; 1822 s_r3t = (unsigned long *) page_to_phys(page); 1823 /* Install shadow region second table */ 1824 spin_lock(&sg->guest_table_lock); 1825 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1826 if (!table) { 1827 rc = -EAGAIN; /* Race with unshadow */ 1828 goto out_free; 1829 } 1830 if (!(*table & _REGION_ENTRY_INVALID)) { 1831 rc = 0; /* Already established */ 1832 goto out_free; 1833 } else if (*table & _REGION_ENTRY_ORIGIN) { 1834 rc = -EAGAIN; /* Race with shadow */ 1835 } 1836 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1837 /* mark as invalid as long as the parent table is not protected */ 1838 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1839 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1840 if (sg->edat_level >= 1) 1841 *table |= (r3t & _REGION_ENTRY_PROTECT); 1842 list_add(&page->lru, &sg->crst_list); 1843 if (fake) { 1844 /* nothing to protect for fake tables */ 1845 *table &= ~_REGION_ENTRY_INVALID; 1846 spin_unlock(&sg->guest_table_lock); 1847 return 0; 1848 } 1849 spin_unlock(&sg->guest_table_lock); 1850 /* Make r3t read-only in parent gmap page table */ 1851 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1852 origin = r3t & _REGION_ENTRY_ORIGIN; 1853 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1854 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1855 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1856 spin_lock(&sg->guest_table_lock); 1857 if (!rc) { 1858 table = gmap_table_walk(sg, saddr, 3); 1859 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1860 (unsigned long) s_r3t) 1861 rc = -EAGAIN; /* Race with unshadow */ 1862 else 1863 *table &= ~_REGION_ENTRY_INVALID; 1864 } else { 1865 gmap_unshadow_r3t(sg, raddr); 1866 } 1867 spin_unlock(&sg->guest_table_lock); 1868 return rc; 1869 out_free: 1870 spin_unlock(&sg->guest_table_lock); 1871 __free_pages(page, CRST_ALLOC_ORDER); 1872 return rc; 1873 } 1874 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1875 1876 /** 1877 * gmap_shadow_sgt - create a shadow segment table 1878 * @sg: pointer to the shadow guest address space structure 1879 * @saddr: faulting address in the shadow gmap 1880 * @sgt: parent gmap address of the segment table to get shadowed 1881 * @fake: sgt references contiguous guest memory block, not a sgt 1882 * 1883 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1884 * shadow table structure is incomplete, -ENOMEM if out of memory and 1885 * -EFAULT if an address in the parent gmap could not be resolved. 1886 * 1887 * Called with sg->mm->mmap_sem in read. 1888 */ 1889 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1890 int fake) 1891 { 1892 unsigned long raddr, origin, offset, len; 1893 unsigned long *s_sgt, *table; 1894 struct page *page; 1895 int rc; 1896 1897 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1898 /* Allocate a shadow segment table */ 1899 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1900 if (!page) 1901 return -ENOMEM; 1902 page->index = sgt & _REGION_ENTRY_ORIGIN; 1903 if (fake) 1904 page->index |= GMAP_SHADOW_FAKE_TABLE; 1905 s_sgt = (unsigned long *) page_to_phys(page); 1906 /* Install shadow region second table */ 1907 spin_lock(&sg->guest_table_lock); 1908 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1909 if (!table) { 1910 rc = -EAGAIN; /* Race with unshadow */ 1911 goto out_free; 1912 } 1913 if (!(*table & _REGION_ENTRY_INVALID)) { 1914 rc = 0; /* Already established */ 1915 goto out_free; 1916 } else if (*table & _REGION_ENTRY_ORIGIN) { 1917 rc = -EAGAIN; /* Race with shadow */ 1918 goto out_free; 1919 } 1920 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1921 /* mark as invalid as long as the parent table is not protected */ 1922 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1923 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1924 if (sg->edat_level >= 1) 1925 *table |= sgt & _REGION_ENTRY_PROTECT; 1926 list_add(&page->lru, &sg->crst_list); 1927 if (fake) { 1928 /* nothing to protect for fake tables */ 1929 *table &= ~_REGION_ENTRY_INVALID; 1930 spin_unlock(&sg->guest_table_lock); 1931 return 0; 1932 } 1933 spin_unlock(&sg->guest_table_lock); 1934 /* Make sgt read-only in parent gmap page table */ 1935 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1936 origin = sgt & _REGION_ENTRY_ORIGIN; 1937 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1938 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1939 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1940 spin_lock(&sg->guest_table_lock); 1941 if (!rc) { 1942 table = gmap_table_walk(sg, saddr, 2); 1943 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1944 (unsigned long) s_sgt) 1945 rc = -EAGAIN; /* Race with unshadow */ 1946 else 1947 *table &= ~_REGION_ENTRY_INVALID; 1948 } else { 1949 gmap_unshadow_sgt(sg, raddr); 1950 } 1951 spin_unlock(&sg->guest_table_lock); 1952 return rc; 1953 out_free: 1954 spin_unlock(&sg->guest_table_lock); 1955 __free_pages(page, CRST_ALLOC_ORDER); 1956 return rc; 1957 } 1958 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1959 1960 /** 1961 * gmap_shadow_lookup_pgtable - find a shadow page table 1962 * @sg: pointer to the shadow guest address space structure 1963 * @saddr: the address in the shadow aguest address space 1964 * @pgt: parent gmap address of the page table to get shadowed 1965 * @dat_protection: if the pgtable is marked as protected by dat 1966 * @fake: pgt references contiguous guest memory block, not a pgtable 1967 * 1968 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1969 * table was not found. 1970 * 1971 * Called with sg->mm->mmap_sem in read. 1972 */ 1973 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1974 unsigned long *pgt, int *dat_protection, 1975 int *fake) 1976 { 1977 unsigned long *table; 1978 struct page *page; 1979 int rc; 1980 1981 BUG_ON(!gmap_is_shadow(sg)); 1982 spin_lock(&sg->guest_table_lock); 1983 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1984 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1985 /* Shadow page tables are full pages (pte+pgste) */ 1986 page = pfn_to_page(*table >> PAGE_SHIFT); 1987 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 1988 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 1989 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 1990 rc = 0; 1991 } else { 1992 rc = -EAGAIN; 1993 } 1994 spin_unlock(&sg->guest_table_lock); 1995 return rc; 1996 1997 } 1998 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 1999 2000 /** 2001 * gmap_shadow_pgt - instantiate a shadow page table 2002 * @sg: pointer to the shadow guest address space structure 2003 * @saddr: faulting address in the shadow gmap 2004 * @pgt: parent gmap address of the page table to get shadowed 2005 * @fake: pgt references contiguous guest memory block, not a pgtable 2006 * 2007 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2008 * shadow table structure is incomplete, -ENOMEM if out of memory, 2009 * -EFAULT if an address in the parent gmap could not be resolved and 2010 * 2011 * Called with gmap->mm->mmap_sem in read 2012 */ 2013 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2014 int fake) 2015 { 2016 unsigned long raddr, origin; 2017 unsigned long *s_pgt, *table; 2018 struct page *page; 2019 int rc; 2020 2021 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2022 /* Allocate a shadow page table */ 2023 page = page_table_alloc_pgste(sg->mm); 2024 if (!page) 2025 return -ENOMEM; 2026 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2027 if (fake) 2028 page->index |= GMAP_SHADOW_FAKE_TABLE; 2029 s_pgt = (unsigned long *) page_to_phys(page); 2030 /* Install shadow page table */ 2031 spin_lock(&sg->guest_table_lock); 2032 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2033 if (!table) { 2034 rc = -EAGAIN; /* Race with unshadow */ 2035 goto out_free; 2036 } 2037 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2038 rc = 0; /* Already established */ 2039 goto out_free; 2040 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2041 rc = -EAGAIN; /* Race with shadow */ 2042 goto out_free; 2043 } 2044 /* mark as invalid as long as the parent table is not protected */ 2045 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2046 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2047 list_add(&page->lru, &sg->pt_list); 2048 if (fake) { 2049 /* nothing to protect for fake tables */ 2050 *table &= ~_SEGMENT_ENTRY_INVALID; 2051 spin_unlock(&sg->guest_table_lock); 2052 return 0; 2053 } 2054 spin_unlock(&sg->guest_table_lock); 2055 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2056 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2057 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2058 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2059 spin_lock(&sg->guest_table_lock); 2060 if (!rc) { 2061 table = gmap_table_walk(sg, saddr, 1); 2062 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2063 (unsigned long) s_pgt) 2064 rc = -EAGAIN; /* Race with unshadow */ 2065 else 2066 *table &= ~_SEGMENT_ENTRY_INVALID; 2067 } else { 2068 gmap_unshadow_pgt(sg, raddr); 2069 } 2070 spin_unlock(&sg->guest_table_lock); 2071 return rc; 2072 out_free: 2073 spin_unlock(&sg->guest_table_lock); 2074 page_table_free_pgste(page); 2075 return rc; 2076 2077 } 2078 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2079 2080 /** 2081 * gmap_shadow_page - create a shadow page mapping 2082 * @sg: pointer to the shadow guest address space structure 2083 * @saddr: faulting address in the shadow gmap 2084 * @pte: pte in parent gmap address space to get shadowed 2085 * 2086 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2087 * shadow table structure is incomplete, -ENOMEM if out of memory and 2088 * -EFAULT if an address in the parent gmap could not be resolved. 2089 * 2090 * Called with sg->mm->mmap_sem in read. 2091 */ 2092 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2093 { 2094 struct gmap *parent; 2095 struct gmap_rmap *rmap; 2096 unsigned long vmaddr, paddr; 2097 spinlock_t *ptl; 2098 pte_t *sptep, *tptep; 2099 int prot; 2100 int rc; 2101 2102 BUG_ON(!gmap_is_shadow(sg)); 2103 parent = sg->parent; 2104 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2105 2106 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 2107 if (!rmap) 2108 return -ENOMEM; 2109 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2110 2111 while (1) { 2112 paddr = pte_val(pte) & PAGE_MASK; 2113 vmaddr = __gmap_translate(parent, paddr); 2114 if (IS_ERR_VALUE(vmaddr)) { 2115 rc = vmaddr; 2116 break; 2117 } 2118 rc = radix_tree_preload(GFP_KERNEL); 2119 if (rc) 2120 break; 2121 rc = -EAGAIN; 2122 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2123 if (sptep) { 2124 spin_lock(&sg->guest_table_lock); 2125 /* Get page table pointer */ 2126 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2127 if (!tptep) { 2128 spin_unlock(&sg->guest_table_lock); 2129 gmap_pte_op_end(ptl); 2130 radix_tree_preload_end(); 2131 break; 2132 } 2133 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2134 if (rc > 0) { 2135 /* Success and a new mapping */ 2136 gmap_insert_rmap(sg, vmaddr, rmap); 2137 rmap = NULL; 2138 rc = 0; 2139 } 2140 gmap_pte_op_end(ptl); 2141 spin_unlock(&sg->guest_table_lock); 2142 } 2143 radix_tree_preload_end(); 2144 if (!rc) 2145 break; 2146 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2147 if (rc) 2148 break; 2149 } 2150 kfree(rmap); 2151 return rc; 2152 } 2153 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2154 2155 /** 2156 * gmap_shadow_notify - handle notifications for shadow gmap 2157 * 2158 * Called with sg->parent->shadow_lock. 2159 */ 2160 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2161 unsigned long gaddr) 2162 { 2163 struct gmap_rmap *rmap, *rnext, *head; 2164 unsigned long start, end, bits, raddr; 2165 2166 BUG_ON(!gmap_is_shadow(sg)); 2167 2168 spin_lock(&sg->guest_table_lock); 2169 if (sg->removed) { 2170 spin_unlock(&sg->guest_table_lock); 2171 return; 2172 } 2173 /* Check for top level table */ 2174 start = sg->orig_asce & _ASCE_ORIGIN; 2175 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2176 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2177 gaddr < end) { 2178 /* The complete shadow table has to go */ 2179 gmap_unshadow(sg); 2180 spin_unlock(&sg->guest_table_lock); 2181 list_del(&sg->list); 2182 gmap_put(sg); 2183 return; 2184 } 2185 /* Remove the page table tree from on specific entry */ 2186 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2187 gmap_for_each_rmap_safe(rmap, rnext, head) { 2188 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2189 raddr = rmap->raddr ^ bits; 2190 switch (bits) { 2191 case _SHADOW_RMAP_REGION1: 2192 gmap_unshadow_r2t(sg, raddr); 2193 break; 2194 case _SHADOW_RMAP_REGION2: 2195 gmap_unshadow_r3t(sg, raddr); 2196 break; 2197 case _SHADOW_RMAP_REGION3: 2198 gmap_unshadow_sgt(sg, raddr); 2199 break; 2200 case _SHADOW_RMAP_SEGMENT: 2201 gmap_unshadow_pgt(sg, raddr); 2202 break; 2203 case _SHADOW_RMAP_PGTABLE: 2204 gmap_unshadow_page(sg, raddr); 2205 break; 2206 } 2207 kfree(rmap); 2208 } 2209 spin_unlock(&sg->guest_table_lock); 2210 } 2211 2212 /** 2213 * ptep_notify - call all invalidation callbacks for a specific pte. 2214 * @mm: pointer to the process mm_struct 2215 * @addr: virtual address in the process address space 2216 * @pte: pointer to the page table entry 2217 * @bits: bits from the pgste that caused the notify call 2218 * 2219 * This function is assumed to be called with the page table lock held 2220 * for the pte to notify. 2221 */ 2222 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2223 pte_t *pte, unsigned long bits) 2224 { 2225 unsigned long offset, gaddr = 0; 2226 unsigned long *table; 2227 struct gmap *gmap, *sg, *next; 2228 2229 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2230 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2231 rcu_read_lock(); 2232 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2233 spin_lock(&gmap->guest_table_lock); 2234 table = radix_tree_lookup(&gmap->host_to_guest, 2235 vmaddr >> PMD_SHIFT); 2236 if (table) 2237 gaddr = __gmap_segment_gaddr(table) + offset; 2238 spin_unlock(&gmap->guest_table_lock); 2239 if (!table) 2240 continue; 2241 2242 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2243 spin_lock(&gmap->shadow_lock); 2244 list_for_each_entry_safe(sg, next, 2245 &gmap->children, list) 2246 gmap_shadow_notify(sg, vmaddr, gaddr); 2247 spin_unlock(&gmap->shadow_lock); 2248 } 2249 if (bits & PGSTE_IN_BIT) 2250 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2251 } 2252 rcu_read_unlock(); 2253 } 2254 EXPORT_SYMBOL_GPL(ptep_notify); 2255 2256 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2257 unsigned long gaddr) 2258 { 2259 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2260 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2261 } 2262 2263 /** 2264 * gmap_pmdp_xchg - exchange a gmap pmd with another 2265 * @gmap: pointer to the guest address space structure 2266 * @pmdp: pointer to the pmd entry 2267 * @new: replacement entry 2268 * @gaddr: the affected guest address 2269 * 2270 * This function is assumed to be called with the guest_table_lock 2271 * held. 2272 */ 2273 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2274 unsigned long gaddr) 2275 { 2276 gaddr &= HPAGE_MASK; 2277 pmdp_notify_gmap(gmap, pmdp, gaddr); 2278 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2279 if (MACHINE_HAS_TLB_GUEST) 2280 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2281 IDTE_GLOBAL); 2282 else if (MACHINE_HAS_IDTE) 2283 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2284 else 2285 __pmdp_csp(pmdp); 2286 *pmdp = new; 2287 } 2288 2289 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2290 int purge) 2291 { 2292 pmd_t *pmdp; 2293 struct gmap *gmap; 2294 unsigned long gaddr; 2295 2296 rcu_read_lock(); 2297 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2298 spin_lock(&gmap->guest_table_lock); 2299 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2300 vmaddr >> PMD_SHIFT); 2301 if (pmdp) { 2302 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2303 pmdp_notify_gmap(gmap, pmdp, gaddr); 2304 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2305 _SEGMENT_ENTRY_GMAP_UC)); 2306 if (purge) 2307 __pmdp_csp(pmdp); 2308 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2309 } 2310 spin_unlock(&gmap->guest_table_lock); 2311 } 2312 rcu_read_unlock(); 2313 } 2314 2315 /** 2316 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2317 * flushing 2318 * @mm: pointer to the process mm_struct 2319 * @vmaddr: virtual address in the process address space 2320 */ 2321 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2322 { 2323 gmap_pmdp_clear(mm, vmaddr, 0); 2324 } 2325 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2326 2327 /** 2328 * gmap_pmdp_csp - csp all affected guest pmd entries 2329 * @mm: pointer to the process mm_struct 2330 * @vmaddr: virtual address in the process address space 2331 */ 2332 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2333 { 2334 gmap_pmdp_clear(mm, vmaddr, 1); 2335 } 2336 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2337 2338 /** 2339 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2340 * @mm: pointer to the process mm_struct 2341 * @vmaddr: virtual address in the process address space 2342 */ 2343 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2344 { 2345 unsigned long *entry, gaddr; 2346 struct gmap *gmap; 2347 pmd_t *pmdp; 2348 2349 rcu_read_lock(); 2350 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2351 spin_lock(&gmap->guest_table_lock); 2352 entry = radix_tree_delete(&gmap->host_to_guest, 2353 vmaddr >> PMD_SHIFT); 2354 if (entry) { 2355 pmdp = (pmd_t *)entry; 2356 gaddr = __gmap_segment_gaddr(entry); 2357 pmdp_notify_gmap(gmap, pmdp, gaddr); 2358 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2359 _SEGMENT_ENTRY_GMAP_UC)); 2360 if (MACHINE_HAS_TLB_GUEST) 2361 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2362 gmap->asce, IDTE_LOCAL); 2363 else if (MACHINE_HAS_IDTE) 2364 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2365 *entry = _SEGMENT_ENTRY_EMPTY; 2366 } 2367 spin_unlock(&gmap->guest_table_lock); 2368 } 2369 rcu_read_unlock(); 2370 } 2371 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2372 2373 /** 2374 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2375 * @mm: pointer to the process mm_struct 2376 * @vmaddr: virtual address in the process address space 2377 */ 2378 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2379 { 2380 unsigned long *entry, gaddr; 2381 struct gmap *gmap; 2382 pmd_t *pmdp; 2383 2384 rcu_read_lock(); 2385 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2386 spin_lock(&gmap->guest_table_lock); 2387 entry = radix_tree_delete(&gmap->host_to_guest, 2388 vmaddr >> PMD_SHIFT); 2389 if (entry) { 2390 pmdp = (pmd_t *)entry; 2391 gaddr = __gmap_segment_gaddr(entry); 2392 pmdp_notify_gmap(gmap, pmdp, gaddr); 2393 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2394 _SEGMENT_ENTRY_GMAP_UC)); 2395 if (MACHINE_HAS_TLB_GUEST) 2396 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2397 gmap->asce, IDTE_GLOBAL); 2398 else if (MACHINE_HAS_IDTE) 2399 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2400 else 2401 __pmdp_csp(pmdp); 2402 *entry = _SEGMENT_ENTRY_EMPTY; 2403 } 2404 spin_unlock(&gmap->guest_table_lock); 2405 } 2406 rcu_read_unlock(); 2407 } 2408 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2409 2410 /** 2411 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2412 * @gmap: pointer to guest address space 2413 * @pmdp: pointer to the pmd to be tested 2414 * @gaddr: virtual address in the guest address space 2415 * 2416 * This function is assumed to be called with the guest_table_lock 2417 * held. 2418 */ 2419 bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2420 unsigned long gaddr) 2421 { 2422 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2423 return false; 2424 2425 /* Already protected memory, which did not change is clean */ 2426 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2427 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2428 return false; 2429 2430 /* Clear UC indication and reset protection */ 2431 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2432 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2433 return true; 2434 } 2435 2436 /** 2437 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2438 * @gmap: pointer to guest address space 2439 * @bitmap: dirty bitmap for this pmd 2440 * @gaddr: virtual address in the guest address space 2441 * @vmaddr: virtual address in the host address space 2442 * 2443 * This function is assumed to be called with the guest_table_lock 2444 * held. 2445 */ 2446 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2447 unsigned long gaddr, unsigned long vmaddr) 2448 { 2449 int i; 2450 pmd_t *pmdp; 2451 pte_t *ptep; 2452 spinlock_t *ptl; 2453 2454 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2455 if (!pmdp) 2456 return; 2457 2458 if (pmd_large(*pmdp)) { 2459 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2460 bitmap_fill(bitmap, _PAGE_ENTRIES); 2461 } else { 2462 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2463 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2464 if (!ptep) 2465 continue; 2466 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2467 set_bit(i, bitmap); 2468 spin_unlock(ptl); 2469 } 2470 } 2471 gmap_pmd_op_end(gmap, pmdp); 2472 } 2473 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2474 2475 static inline void thp_split_mm(struct mm_struct *mm) 2476 { 2477 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2478 struct vm_area_struct *vma; 2479 unsigned long addr; 2480 2481 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2482 for (addr = vma->vm_start; 2483 addr < vma->vm_end; 2484 addr += PAGE_SIZE) 2485 follow_page(vma, addr, FOLL_SPLIT); 2486 vma->vm_flags &= ~VM_HUGEPAGE; 2487 vma->vm_flags |= VM_NOHUGEPAGE; 2488 } 2489 mm->def_flags |= VM_NOHUGEPAGE; 2490 #endif 2491 } 2492 2493 /* 2494 * Remove all empty zero pages from the mapping for lazy refaulting 2495 * - This must be called after mm->context.has_pgste is set, to avoid 2496 * future creation of zero pages 2497 * - This must be called after THP was enabled 2498 */ 2499 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2500 unsigned long end, struct mm_walk *walk) 2501 { 2502 unsigned long addr; 2503 2504 for (addr = start; addr != end; addr += PAGE_SIZE) { 2505 pte_t *ptep; 2506 spinlock_t *ptl; 2507 2508 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2509 if (is_zero_pfn(pte_pfn(*ptep))) 2510 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2511 pte_unmap_unlock(ptep, ptl); 2512 } 2513 return 0; 2514 } 2515 2516 static inline void zap_zero_pages(struct mm_struct *mm) 2517 { 2518 struct mm_walk walk = { .pmd_entry = __zap_zero_pages }; 2519 2520 walk.mm = mm; 2521 walk_page_range(0, TASK_SIZE, &walk); 2522 } 2523 2524 /* 2525 * switch on pgstes for its userspace process (for kvm) 2526 */ 2527 int s390_enable_sie(void) 2528 { 2529 struct mm_struct *mm = current->mm; 2530 2531 /* Do we have pgstes? if yes, we are done */ 2532 if (mm_has_pgste(mm)) 2533 return 0; 2534 /* Fail if the page tables are 2K */ 2535 if (!mm_alloc_pgste(mm)) 2536 return -EINVAL; 2537 down_write(&mm->mmap_sem); 2538 mm->context.has_pgste = 1; 2539 /* split thp mappings and disable thp for future mappings */ 2540 thp_split_mm(mm); 2541 zap_zero_pages(mm); 2542 up_write(&mm->mmap_sem); 2543 return 0; 2544 } 2545 EXPORT_SYMBOL_GPL(s390_enable_sie); 2546 2547 /* 2548 * Enable storage key handling from now on and initialize the storage 2549 * keys with the default key. 2550 */ 2551 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2552 unsigned long next, struct mm_walk *walk) 2553 { 2554 /* Clear storage key */ 2555 ptep_zap_key(walk->mm, addr, pte); 2556 return 0; 2557 } 2558 2559 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2560 unsigned long hmask, unsigned long next, 2561 struct mm_walk *walk) 2562 { 2563 pmd_t *pmd = (pmd_t *)pte; 2564 unsigned long start, end; 2565 struct page *page = pmd_page(*pmd); 2566 2567 /* 2568 * The write check makes sure we do not set a key on shared 2569 * memory. This is needed as the walker does not differentiate 2570 * between actual guest memory and the process executable or 2571 * shared libraries. 2572 */ 2573 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2574 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2575 return 0; 2576 2577 start = pmd_val(*pmd) & HPAGE_MASK; 2578 end = start + HPAGE_SIZE - 1; 2579 __storage_key_init_range(start, end); 2580 set_bit(PG_arch_1, &page->flags); 2581 return 0; 2582 } 2583 2584 int s390_enable_skey(void) 2585 { 2586 struct mm_walk walk = { 2587 .hugetlb_entry = __s390_enable_skey_hugetlb, 2588 .pte_entry = __s390_enable_skey_pte, 2589 }; 2590 struct mm_struct *mm = current->mm; 2591 struct vm_area_struct *vma; 2592 int rc = 0; 2593 2594 down_write(&mm->mmap_sem); 2595 if (mm_uses_skeys(mm)) 2596 goto out_up; 2597 2598 mm->context.uses_skeys = 1; 2599 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2600 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 2601 MADV_UNMERGEABLE, &vma->vm_flags)) { 2602 mm->context.uses_skeys = 0; 2603 rc = -ENOMEM; 2604 goto out_up; 2605 } 2606 } 2607 mm->def_flags &= ~VM_MERGEABLE; 2608 2609 walk.mm = mm; 2610 walk_page_range(0, TASK_SIZE, &walk); 2611 2612 out_up: 2613 up_write(&mm->mmap_sem); 2614 return rc; 2615 } 2616 EXPORT_SYMBOL_GPL(s390_enable_skey); 2617 2618 /* 2619 * Reset CMMA state, make all pages stable again. 2620 */ 2621 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2622 unsigned long next, struct mm_walk *walk) 2623 { 2624 ptep_zap_unused(walk->mm, addr, pte, 1); 2625 return 0; 2626 } 2627 2628 void s390_reset_cmma(struct mm_struct *mm) 2629 { 2630 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 2631 2632 down_write(&mm->mmap_sem); 2633 walk.mm = mm; 2634 walk_page_range(0, TASK_SIZE, &walk); 2635 up_write(&mm->mmap_sem); 2636 } 2637 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2638