xref: /openbmc/linux/arch/s390/mm/gmap.c (revision 93707cbabcc8baf2b2b5f4a99c1f08ee83eb7abd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2016
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/slab.h>
15 #include <linux/swapops.h>
16 #include <linux/ksm.h>
17 #include <linux/mman.h>
18 
19 #include <asm/pgtable.h>
20 #include <asm/pgalloc.h>
21 #include <asm/gmap.h>
22 #include <asm/tlb.h>
23 
24 #define GMAP_SHADOW_FAKE_TABLE 1ULL
25 
26 /**
27  * gmap_alloc - allocate and initialize a guest address space
28  * @mm: pointer to the parent mm_struct
29  * @limit: maximum address of the gmap address space
30  *
31  * Returns a guest address space structure.
32  */
33 static struct gmap *gmap_alloc(unsigned long limit)
34 {
35 	struct gmap *gmap;
36 	struct page *page;
37 	unsigned long *table;
38 	unsigned long etype, atype;
39 
40 	if (limit < _REGION3_SIZE) {
41 		limit = _REGION3_SIZE - 1;
42 		atype = _ASCE_TYPE_SEGMENT;
43 		etype = _SEGMENT_ENTRY_EMPTY;
44 	} else if (limit < _REGION2_SIZE) {
45 		limit = _REGION2_SIZE - 1;
46 		atype = _ASCE_TYPE_REGION3;
47 		etype = _REGION3_ENTRY_EMPTY;
48 	} else if (limit < _REGION1_SIZE) {
49 		limit = _REGION1_SIZE - 1;
50 		atype = _ASCE_TYPE_REGION2;
51 		etype = _REGION2_ENTRY_EMPTY;
52 	} else {
53 		limit = -1UL;
54 		atype = _ASCE_TYPE_REGION1;
55 		etype = _REGION1_ENTRY_EMPTY;
56 	}
57 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
58 	if (!gmap)
59 		goto out;
60 	INIT_LIST_HEAD(&gmap->crst_list);
61 	INIT_LIST_HEAD(&gmap->children);
62 	INIT_LIST_HEAD(&gmap->pt_list);
63 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
64 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
65 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
66 	spin_lock_init(&gmap->guest_table_lock);
67 	spin_lock_init(&gmap->shadow_lock);
68 	atomic_set(&gmap->ref_count, 1);
69 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
70 	if (!page)
71 		goto out_free;
72 	page->index = 0;
73 	list_add(&page->lru, &gmap->crst_list);
74 	table = (unsigned long *) page_to_phys(page);
75 	crst_table_init(table, etype);
76 	gmap->table = table;
77 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
78 		_ASCE_USER_BITS | __pa(table);
79 	gmap->asce_end = limit;
80 	return gmap;
81 
82 out_free:
83 	kfree(gmap);
84 out:
85 	return NULL;
86 }
87 
88 /**
89  * gmap_create - create a guest address space
90  * @mm: pointer to the parent mm_struct
91  * @limit: maximum size of the gmap address space
92  *
93  * Returns a guest address space structure.
94  */
95 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
96 {
97 	struct gmap *gmap;
98 	unsigned long gmap_asce;
99 
100 	gmap = gmap_alloc(limit);
101 	if (!gmap)
102 		return NULL;
103 	gmap->mm = mm;
104 	spin_lock(&mm->context.lock);
105 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
106 	if (list_is_singular(&mm->context.gmap_list))
107 		gmap_asce = gmap->asce;
108 	else
109 		gmap_asce = -1UL;
110 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
111 	spin_unlock(&mm->context.lock);
112 	return gmap;
113 }
114 EXPORT_SYMBOL_GPL(gmap_create);
115 
116 static void gmap_flush_tlb(struct gmap *gmap)
117 {
118 	if (MACHINE_HAS_IDTE)
119 		__tlb_flush_idte(gmap->asce);
120 	else
121 		__tlb_flush_global();
122 }
123 
124 static void gmap_radix_tree_free(struct radix_tree_root *root)
125 {
126 	struct radix_tree_iter iter;
127 	unsigned long indices[16];
128 	unsigned long index;
129 	void __rcu **slot;
130 	int i, nr;
131 
132 	/* A radix tree is freed by deleting all of its entries */
133 	index = 0;
134 	do {
135 		nr = 0;
136 		radix_tree_for_each_slot(slot, root, &iter, index) {
137 			indices[nr] = iter.index;
138 			if (++nr == 16)
139 				break;
140 		}
141 		for (i = 0; i < nr; i++) {
142 			index = indices[i];
143 			radix_tree_delete(root, index);
144 		}
145 	} while (nr > 0);
146 }
147 
148 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
149 {
150 	struct gmap_rmap *rmap, *rnext, *head;
151 	struct radix_tree_iter iter;
152 	unsigned long indices[16];
153 	unsigned long index;
154 	void __rcu **slot;
155 	int i, nr;
156 
157 	/* A radix tree is freed by deleting all of its entries */
158 	index = 0;
159 	do {
160 		nr = 0;
161 		radix_tree_for_each_slot(slot, root, &iter, index) {
162 			indices[nr] = iter.index;
163 			if (++nr == 16)
164 				break;
165 		}
166 		for (i = 0; i < nr; i++) {
167 			index = indices[i];
168 			head = radix_tree_delete(root, index);
169 			gmap_for_each_rmap_safe(rmap, rnext, head)
170 				kfree(rmap);
171 		}
172 	} while (nr > 0);
173 }
174 
175 /**
176  * gmap_free - free a guest address space
177  * @gmap: pointer to the guest address space structure
178  *
179  * No locks required. There are no references to this gmap anymore.
180  */
181 static void gmap_free(struct gmap *gmap)
182 {
183 	struct page *page, *next;
184 
185 	/* Flush tlb of all gmaps (if not already done for shadows) */
186 	if (!(gmap_is_shadow(gmap) && gmap->removed))
187 		gmap_flush_tlb(gmap);
188 	/* Free all segment & region tables. */
189 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
190 		__free_pages(page, CRST_ALLOC_ORDER);
191 	gmap_radix_tree_free(&gmap->guest_to_host);
192 	gmap_radix_tree_free(&gmap->host_to_guest);
193 
194 	/* Free additional data for a shadow gmap */
195 	if (gmap_is_shadow(gmap)) {
196 		/* Free all page tables. */
197 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
198 			page_table_free_pgste(page);
199 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
200 		/* Release reference to the parent */
201 		gmap_put(gmap->parent);
202 	}
203 
204 	kfree(gmap);
205 }
206 
207 /**
208  * gmap_get - increase reference counter for guest address space
209  * @gmap: pointer to the guest address space structure
210  *
211  * Returns the gmap pointer
212  */
213 struct gmap *gmap_get(struct gmap *gmap)
214 {
215 	atomic_inc(&gmap->ref_count);
216 	return gmap;
217 }
218 EXPORT_SYMBOL_GPL(gmap_get);
219 
220 /**
221  * gmap_put - decrease reference counter for guest address space
222  * @gmap: pointer to the guest address space structure
223  *
224  * If the reference counter reaches zero the guest address space is freed.
225  */
226 void gmap_put(struct gmap *gmap)
227 {
228 	if (atomic_dec_return(&gmap->ref_count) == 0)
229 		gmap_free(gmap);
230 }
231 EXPORT_SYMBOL_GPL(gmap_put);
232 
233 /**
234  * gmap_remove - remove a guest address space but do not free it yet
235  * @gmap: pointer to the guest address space structure
236  */
237 void gmap_remove(struct gmap *gmap)
238 {
239 	struct gmap *sg, *next;
240 	unsigned long gmap_asce;
241 
242 	/* Remove all shadow gmaps linked to this gmap */
243 	if (!list_empty(&gmap->children)) {
244 		spin_lock(&gmap->shadow_lock);
245 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
246 			list_del(&sg->list);
247 			gmap_put(sg);
248 		}
249 		spin_unlock(&gmap->shadow_lock);
250 	}
251 	/* Remove gmap from the pre-mm list */
252 	spin_lock(&gmap->mm->context.lock);
253 	list_del_rcu(&gmap->list);
254 	if (list_empty(&gmap->mm->context.gmap_list))
255 		gmap_asce = 0;
256 	else if (list_is_singular(&gmap->mm->context.gmap_list))
257 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
258 					     struct gmap, list)->asce;
259 	else
260 		gmap_asce = -1UL;
261 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
262 	spin_unlock(&gmap->mm->context.lock);
263 	synchronize_rcu();
264 	/* Put reference */
265 	gmap_put(gmap);
266 }
267 EXPORT_SYMBOL_GPL(gmap_remove);
268 
269 /**
270  * gmap_enable - switch primary space to the guest address space
271  * @gmap: pointer to the guest address space structure
272  */
273 void gmap_enable(struct gmap *gmap)
274 {
275 	S390_lowcore.gmap = (unsigned long) gmap;
276 }
277 EXPORT_SYMBOL_GPL(gmap_enable);
278 
279 /**
280  * gmap_disable - switch back to the standard primary address space
281  * @gmap: pointer to the guest address space structure
282  */
283 void gmap_disable(struct gmap *gmap)
284 {
285 	S390_lowcore.gmap = 0UL;
286 }
287 EXPORT_SYMBOL_GPL(gmap_disable);
288 
289 /**
290  * gmap_get_enabled - get a pointer to the currently enabled gmap
291  *
292  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
293  */
294 struct gmap *gmap_get_enabled(void)
295 {
296 	return (struct gmap *) S390_lowcore.gmap;
297 }
298 EXPORT_SYMBOL_GPL(gmap_get_enabled);
299 
300 /*
301  * gmap_alloc_table is assumed to be called with mmap_sem held
302  */
303 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
304 			    unsigned long init, unsigned long gaddr)
305 {
306 	struct page *page;
307 	unsigned long *new;
308 
309 	/* since we dont free the gmap table until gmap_free we can unlock */
310 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
311 	if (!page)
312 		return -ENOMEM;
313 	new = (unsigned long *) page_to_phys(page);
314 	crst_table_init(new, init);
315 	spin_lock(&gmap->guest_table_lock);
316 	if (*table & _REGION_ENTRY_INVALID) {
317 		list_add(&page->lru, &gmap->crst_list);
318 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
319 			(*table & _REGION_ENTRY_TYPE_MASK);
320 		page->index = gaddr;
321 		page = NULL;
322 	}
323 	spin_unlock(&gmap->guest_table_lock);
324 	if (page)
325 		__free_pages(page, CRST_ALLOC_ORDER);
326 	return 0;
327 }
328 
329 /**
330  * __gmap_segment_gaddr - find virtual address from segment pointer
331  * @entry: pointer to a segment table entry in the guest address space
332  *
333  * Returns the virtual address in the guest address space for the segment
334  */
335 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
336 {
337 	struct page *page;
338 	unsigned long offset, mask;
339 
340 	offset = (unsigned long) entry / sizeof(unsigned long);
341 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
342 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
343 	page = virt_to_page((void *)((unsigned long) entry & mask));
344 	return page->index + offset;
345 }
346 
347 /**
348  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
349  * @gmap: pointer to the guest address space structure
350  * @vmaddr: address in the host process address space
351  *
352  * Returns 1 if a TLB flush is required
353  */
354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
355 {
356 	unsigned long *entry;
357 	int flush = 0;
358 
359 	BUG_ON(gmap_is_shadow(gmap));
360 	spin_lock(&gmap->guest_table_lock);
361 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
362 	if (entry) {
363 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
364 		*entry = _SEGMENT_ENTRY_EMPTY;
365 	}
366 	spin_unlock(&gmap->guest_table_lock);
367 	return flush;
368 }
369 
370 /**
371  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
372  * @gmap: pointer to the guest address space structure
373  * @gaddr: address in the guest address space
374  *
375  * Returns 1 if a TLB flush is required
376  */
377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
378 {
379 	unsigned long vmaddr;
380 
381 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
382 						   gaddr >> PMD_SHIFT);
383 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
384 }
385 
386 /**
387  * gmap_unmap_segment - unmap segment from the guest address space
388  * @gmap: pointer to the guest address space structure
389  * @to: address in the guest address space
390  * @len: length of the memory area to unmap
391  *
392  * Returns 0 if the unmap succeeded, -EINVAL if not.
393  */
394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
395 {
396 	unsigned long off;
397 	int flush;
398 
399 	BUG_ON(gmap_is_shadow(gmap));
400 	if ((to | len) & (PMD_SIZE - 1))
401 		return -EINVAL;
402 	if (len == 0 || to + len < to)
403 		return -EINVAL;
404 
405 	flush = 0;
406 	down_write(&gmap->mm->mmap_sem);
407 	for (off = 0; off < len; off += PMD_SIZE)
408 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
409 	up_write(&gmap->mm->mmap_sem);
410 	if (flush)
411 		gmap_flush_tlb(gmap);
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
415 
416 /**
417  * gmap_map_segment - map a segment to the guest address space
418  * @gmap: pointer to the guest address space structure
419  * @from: source address in the parent address space
420  * @to: target address in the guest address space
421  * @len: length of the memory area to map
422  *
423  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
424  */
425 int gmap_map_segment(struct gmap *gmap, unsigned long from,
426 		     unsigned long to, unsigned long len)
427 {
428 	unsigned long off;
429 	int flush;
430 
431 	BUG_ON(gmap_is_shadow(gmap));
432 	if ((from | to | len) & (PMD_SIZE - 1))
433 		return -EINVAL;
434 	if (len == 0 || from + len < from || to + len < to ||
435 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
436 		return -EINVAL;
437 
438 	flush = 0;
439 	down_write(&gmap->mm->mmap_sem);
440 	for (off = 0; off < len; off += PMD_SIZE) {
441 		/* Remove old translation */
442 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
443 		/* Store new translation */
444 		if (radix_tree_insert(&gmap->guest_to_host,
445 				      (to + off) >> PMD_SHIFT,
446 				      (void *) from + off))
447 			break;
448 	}
449 	up_write(&gmap->mm->mmap_sem);
450 	if (flush)
451 		gmap_flush_tlb(gmap);
452 	if (off >= len)
453 		return 0;
454 	gmap_unmap_segment(gmap, to, len);
455 	return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(gmap_map_segment);
458 
459 /**
460  * __gmap_translate - translate a guest address to a user space address
461  * @gmap: pointer to guest mapping meta data structure
462  * @gaddr: guest address
463  *
464  * Returns user space address which corresponds to the guest address or
465  * -EFAULT if no such mapping exists.
466  * This function does not establish potentially missing page table entries.
467  * The mmap_sem of the mm that belongs to the address space must be held
468  * when this function gets called.
469  *
470  * Note: Can also be called for shadow gmaps.
471  */
472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 	unsigned long vmaddr;
475 
476 	vmaddr = (unsigned long)
477 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
478 	/* Note: guest_to_host is empty for a shadow gmap */
479 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
480 }
481 EXPORT_SYMBOL_GPL(__gmap_translate);
482 
483 /**
484  * gmap_translate - translate a guest address to a user space address
485  * @gmap: pointer to guest mapping meta data structure
486  * @gaddr: guest address
487  *
488  * Returns user space address which corresponds to the guest address or
489  * -EFAULT if no such mapping exists.
490  * This function does not establish potentially missing page table entries.
491  */
492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
493 {
494 	unsigned long rc;
495 
496 	down_read(&gmap->mm->mmap_sem);
497 	rc = __gmap_translate(gmap, gaddr);
498 	up_read(&gmap->mm->mmap_sem);
499 	return rc;
500 }
501 EXPORT_SYMBOL_GPL(gmap_translate);
502 
503 /**
504  * gmap_unlink - disconnect a page table from the gmap shadow tables
505  * @gmap: pointer to guest mapping meta data structure
506  * @table: pointer to the host page table
507  * @vmaddr: vm address associated with the host page table
508  */
509 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
510 		 unsigned long vmaddr)
511 {
512 	struct gmap *gmap;
513 	int flush;
514 
515 	rcu_read_lock();
516 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
517 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
518 		if (flush)
519 			gmap_flush_tlb(gmap);
520 	}
521 	rcu_read_unlock();
522 }
523 
524 /**
525  * gmap_link - set up shadow page tables to connect a host to a guest address
526  * @gmap: pointer to guest mapping meta data structure
527  * @gaddr: guest address
528  * @vmaddr: vm address
529  *
530  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
531  * if the vm address is already mapped to a different guest segment.
532  * The mmap_sem of the mm that belongs to the address space must be held
533  * when this function gets called.
534  */
535 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
536 {
537 	struct mm_struct *mm;
538 	unsigned long *table;
539 	spinlock_t *ptl;
540 	pgd_t *pgd;
541 	p4d_t *p4d;
542 	pud_t *pud;
543 	pmd_t *pmd;
544 	int rc;
545 
546 	BUG_ON(gmap_is_shadow(gmap));
547 	/* Create higher level tables in the gmap page table */
548 	table = gmap->table;
549 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
550 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
551 		if ((*table & _REGION_ENTRY_INVALID) &&
552 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
553 				     gaddr & _REGION1_MASK))
554 			return -ENOMEM;
555 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
556 	}
557 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
558 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
559 		if ((*table & _REGION_ENTRY_INVALID) &&
560 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
561 				     gaddr & _REGION2_MASK))
562 			return -ENOMEM;
563 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
564 	}
565 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
566 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
567 		if ((*table & _REGION_ENTRY_INVALID) &&
568 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
569 				     gaddr & _REGION3_MASK))
570 			return -ENOMEM;
571 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
572 	}
573 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
574 	/* Walk the parent mm page table */
575 	mm = gmap->mm;
576 	pgd = pgd_offset(mm, vmaddr);
577 	VM_BUG_ON(pgd_none(*pgd));
578 	p4d = p4d_offset(pgd, vmaddr);
579 	VM_BUG_ON(p4d_none(*p4d));
580 	pud = pud_offset(p4d, vmaddr);
581 	VM_BUG_ON(pud_none(*pud));
582 	/* large puds cannot yet be handled */
583 	if (pud_large(*pud))
584 		return -EFAULT;
585 	pmd = pmd_offset(pud, vmaddr);
586 	VM_BUG_ON(pmd_none(*pmd));
587 	/* large pmds cannot yet be handled */
588 	if (pmd_large(*pmd))
589 		return -EFAULT;
590 	/* Link gmap segment table entry location to page table. */
591 	rc = radix_tree_preload(GFP_KERNEL);
592 	if (rc)
593 		return rc;
594 	ptl = pmd_lock(mm, pmd);
595 	spin_lock(&gmap->guest_table_lock);
596 	if (*table == _SEGMENT_ENTRY_EMPTY) {
597 		rc = radix_tree_insert(&gmap->host_to_guest,
598 				       vmaddr >> PMD_SHIFT, table);
599 		if (!rc)
600 			*table = pmd_val(*pmd);
601 	} else
602 		rc = 0;
603 	spin_unlock(&gmap->guest_table_lock);
604 	spin_unlock(ptl);
605 	radix_tree_preload_end();
606 	return rc;
607 }
608 
609 /**
610  * gmap_fault - resolve a fault on a guest address
611  * @gmap: pointer to guest mapping meta data structure
612  * @gaddr: guest address
613  * @fault_flags: flags to pass down to handle_mm_fault()
614  *
615  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
616  * if the vm address is already mapped to a different guest segment.
617  */
618 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
619 	       unsigned int fault_flags)
620 {
621 	unsigned long vmaddr;
622 	int rc;
623 	bool unlocked;
624 
625 	down_read(&gmap->mm->mmap_sem);
626 
627 retry:
628 	unlocked = false;
629 	vmaddr = __gmap_translate(gmap, gaddr);
630 	if (IS_ERR_VALUE(vmaddr)) {
631 		rc = vmaddr;
632 		goto out_up;
633 	}
634 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
635 			     &unlocked)) {
636 		rc = -EFAULT;
637 		goto out_up;
638 	}
639 	/*
640 	 * In the case that fixup_user_fault unlocked the mmap_sem during
641 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
642 	 */
643 	if (unlocked)
644 		goto retry;
645 
646 	rc = __gmap_link(gmap, gaddr, vmaddr);
647 out_up:
648 	up_read(&gmap->mm->mmap_sem);
649 	return rc;
650 }
651 EXPORT_SYMBOL_GPL(gmap_fault);
652 
653 /*
654  * this function is assumed to be called with mmap_sem held
655  */
656 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
657 {
658 	unsigned long vmaddr;
659 	spinlock_t *ptl;
660 	pte_t *ptep;
661 
662 	/* Find the vm address for the guest address */
663 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
664 						   gaddr >> PMD_SHIFT);
665 	if (vmaddr) {
666 		vmaddr |= gaddr & ~PMD_MASK;
667 		/* Get pointer to the page table entry */
668 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
669 		if (likely(ptep))
670 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
671 		pte_unmap_unlock(ptep, ptl);
672 	}
673 }
674 EXPORT_SYMBOL_GPL(__gmap_zap);
675 
676 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
677 {
678 	unsigned long gaddr, vmaddr, size;
679 	struct vm_area_struct *vma;
680 
681 	down_read(&gmap->mm->mmap_sem);
682 	for (gaddr = from; gaddr < to;
683 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
684 		/* Find the vm address for the guest address */
685 		vmaddr = (unsigned long)
686 			radix_tree_lookup(&gmap->guest_to_host,
687 					  gaddr >> PMD_SHIFT);
688 		if (!vmaddr)
689 			continue;
690 		vmaddr |= gaddr & ~PMD_MASK;
691 		/* Find vma in the parent mm */
692 		vma = find_vma(gmap->mm, vmaddr);
693 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
694 		zap_page_range(vma, vmaddr, size);
695 	}
696 	up_read(&gmap->mm->mmap_sem);
697 }
698 EXPORT_SYMBOL_GPL(gmap_discard);
699 
700 static LIST_HEAD(gmap_notifier_list);
701 static DEFINE_SPINLOCK(gmap_notifier_lock);
702 
703 /**
704  * gmap_register_pte_notifier - register a pte invalidation callback
705  * @nb: pointer to the gmap notifier block
706  */
707 void gmap_register_pte_notifier(struct gmap_notifier *nb)
708 {
709 	spin_lock(&gmap_notifier_lock);
710 	list_add_rcu(&nb->list, &gmap_notifier_list);
711 	spin_unlock(&gmap_notifier_lock);
712 }
713 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
714 
715 /**
716  * gmap_unregister_pte_notifier - remove a pte invalidation callback
717  * @nb: pointer to the gmap notifier block
718  */
719 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
720 {
721 	spin_lock(&gmap_notifier_lock);
722 	list_del_rcu(&nb->list);
723 	spin_unlock(&gmap_notifier_lock);
724 	synchronize_rcu();
725 }
726 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
727 
728 /**
729  * gmap_call_notifier - call all registered invalidation callbacks
730  * @gmap: pointer to guest mapping meta data structure
731  * @start: start virtual address in the guest address space
732  * @end: end virtual address in the guest address space
733  */
734 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
735 			       unsigned long end)
736 {
737 	struct gmap_notifier *nb;
738 
739 	list_for_each_entry(nb, &gmap_notifier_list, list)
740 		nb->notifier_call(gmap, start, end);
741 }
742 
743 /**
744  * gmap_table_walk - walk the gmap page tables
745  * @gmap: pointer to guest mapping meta data structure
746  * @gaddr: virtual address in the guest address space
747  * @level: page table level to stop at
748  *
749  * Returns a table entry pointer for the given guest address and @level
750  * @level=0 : returns a pointer to a page table table entry (or NULL)
751  * @level=1 : returns a pointer to a segment table entry (or NULL)
752  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
753  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
754  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
755  *
756  * Returns NULL if the gmap page tables could not be walked to the
757  * requested level.
758  *
759  * Note: Can also be called for shadow gmaps.
760  */
761 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
762 					     unsigned long gaddr, int level)
763 {
764 	unsigned long *table;
765 
766 	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
767 		return NULL;
768 	if (gmap_is_shadow(gmap) && gmap->removed)
769 		return NULL;
770 	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
771 		return NULL;
772 	table = gmap->table;
773 	switch (gmap->asce & _ASCE_TYPE_MASK) {
774 	case _ASCE_TYPE_REGION1:
775 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
776 		if (level == 4)
777 			break;
778 		if (*table & _REGION_ENTRY_INVALID)
779 			return NULL;
780 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
781 		/* Fallthrough */
782 	case _ASCE_TYPE_REGION2:
783 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
784 		if (level == 3)
785 			break;
786 		if (*table & _REGION_ENTRY_INVALID)
787 			return NULL;
788 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
789 		/* Fallthrough */
790 	case _ASCE_TYPE_REGION3:
791 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
792 		if (level == 2)
793 			break;
794 		if (*table & _REGION_ENTRY_INVALID)
795 			return NULL;
796 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
797 		/* Fallthrough */
798 	case _ASCE_TYPE_SEGMENT:
799 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
800 		if (level == 1)
801 			break;
802 		if (*table & _REGION_ENTRY_INVALID)
803 			return NULL;
804 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
805 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
806 	}
807 	return table;
808 }
809 
810 /**
811  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
812  *		      and return the pte pointer
813  * @gmap: pointer to guest mapping meta data structure
814  * @gaddr: virtual address in the guest address space
815  * @ptl: pointer to the spinlock pointer
816  *
817  * Returns a pointer to the locked pte for a guest address, or NULL
818  */
819 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
820 			       spinlock_t **ptl)
821 {
822 	unsigned long *table;
823 
824 	BUG_ON(gmap_is_shadow(gmap));
825 	/* Walk the gmap page table, lock and get pte pointer */
826 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
827 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
828 		return NULL;
829 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
830 }
831 
832 /**
833  * gmap_pte_op_fixup - force a page in and connect the gmap page table
834  * @gmap: pointer to guest mapping meta data structure
835  * @gaddr: virtual address in the guest address space
836  * @vmaddr: address in the host process address space
837  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
838  *
839  * Returns 0 if the caller can retry __gmap_translate (might fail again),
840  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
841  * up or connecting the gmap page table.
842  */
843 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
844 			     unsigned long vmaddr, int prot)
845 {
846 	struct mm_struct *mm = gmap->mm;
847 	unsigned int fault_flags;
848 	bool unlocked = false;
849 
850 	BUG_ON(gmap_is_shadow(gmap));
851 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
852 	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
853 		return -EFAULT;
854 	if (unlocked)
855 		/* lost mmap_sem, caller has to retry __gmap_translate */
856 		return 0;
857 	/* Connect the page tables */
858 	return __gmap_link(gmap, gaddr, vmaddr);
859 }
860 
861 /**
862  * gmap_pte_op_end - release the page table lock
863  * @ptl: pointer to the spinlock pointer
864  */
865 static void gmap_pte_op_end(spinlock_t *ptl)
866 {
867 	spin_unlock(ptl);
868 }
869 
870 /*
871  * gmap_protect_range - remove access rights to memory and set pgste bits
872  * @gmap: pointer to guest mapping meta data structure
873  * @gaddr: virtual address in the guest address space
874  * @len: size of area
875  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
876  * @bits: pgste notification bits to set
877  *
878  * Returns 0 if successfully protected, -ENOMEM if out of memory and
879  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
880  *
881  * Called with sg->mm->mmap_sem in read.
882  */
883 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
884 			      unsigned long len, int prot, unsigned long bits)
885 {
886 	unsigned long vmaddr;
887 	spinlock_t *ptl;
888 	pte_t *ptep;
889 	int rc;
890 
891 	BUG_ON(gmap_is_shadow(gmap));
892 	while (len) {
893 		rc = -EAGAIN;
894 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
895 		if (ptep) {
896 			rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits);
897 			gmap_pte_op_end(ptl);
898 		}
899 		if (rc) {
900 			vmaddr = __gmap_translate(gmap, gaddr);
901 			if (IS_ERR_VALUE(vmaddr))
902 				return vmaddr;
903 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
904 			if (rc)
905 				return rc;
906 			continue;
907 		}
908 		gaddr += PAGE_SIZE;
909 		len -= PAGE_SIZE;
910 	}
911 	return 0;
912 }
913 
914 /**
915  * gmap_mprotect_notify - change access rights for a range of ptes and
916  *                        call the notifier if any pte changes again
917  * @gmap: pointer to guest mapping meta data structure
918  * @gaddr: virtual address in the guest address space
919  * @len: size of area
920  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
921  *
922  * Returns 0 if for each page in the given range a gmap mapping exists,
923  * the new access rights could be set and the notifier could be armed.
924  * If the gmap mapping is missing for one or more pages -EFAULT is
925  * returned. If no memory could be allocated -ENOMEM is returned.
926  * This function establishes missing page table entries.
927  */
928 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
929 			 unsigned long len, int prot)
930 {
931 	int rc;
932 
933 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
934 		return -EINVAL;
935 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
936 		return -EINVAL;
937 	down_read(&gmap->mm->mmap_sem);
938 	rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT);
939 	up_read(&gmap->mm->mmap_sem);
940 	return rc;
941 }
942 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
943 
944 /**
945  * gmap_read_table - get an unsigned long value from a guest page table using
946  *                   absolute addressing, without marking the page referenced.
947  * @gmap: pointer to guest mapping meta data structure
948  * @gaddr: virtual address in the guest address space
949  * @val: pointer to the unsigned long value to return
950  *
951  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
952  * if reading using the virtual address failed. -EINVAL if called on a gmap
953  * shadow.
954  *
955  * Called with gmap->mm->mmap_sem in read.
956  */
957 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
958 {
959 	unsigned long address, vmaddr;
960 	spinlock_t *ptl;
961 	pte_t *ptep, pte;
962 	int rc;
963 
964 	if (gmap_is_shadow(gmap))
965 		return -EINVAL;
966 
967 	while (1) {
968 		rc = -EAGAIN;
969 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
970 		if (ptep) {
971 			pte = *ptep;
972 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
973 				address = pte_val(pte) & PAGE_MASK;
974 				address += gaddr & ~PAGE_MASK;
975 				*val = *(unsigned long *) address;
976 				pte_val(*ptep) |= _PAGE_YOUNG;
977 				/* Do *NOT* clear the _PAGE_INVALID bit! */
978 				rc = 0;
979 			}
980 			gmap_pte_op_end(ptl);
981 		}
982 		if (!rc)
983 			break;
984 		vmaddr = __gmap_translate(gmap, gaddr);
985 		if (IS_ERR_VALUE(vmaddr)) {
986 			rc = vmaddr;
987 			break;
988 		}
989 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
990 		if (rc)
991 			break;
992 	}
993 	return rc;
994 }
995 EXPORT_SYMBOL_GPL(gmap_read_table);
996 
997 /**
998  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
999  * @sg: pointer to the shadow guest address space structure
1000  * @vmaddr: vm address associated with the rmap
1001  * @rmap: pointer to the rmap structure
1002  *
1003  * Called with the sg->guest_table_lock
1004  */
1005 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1006 				    struct gmap_rmap *rmap)
1007 {
1008 	void __rcu **slot;
1009 
1010 	BUG_ON(!gmap_is_shadow(sg));
1011 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1012 	if (slot) {
1013 		rmap->next = radix_tree_deref_slot_protected(slot,
1014 							&sg->guest_table_lock);
1015 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1016 	} else {
1017 		rmap->next = NULL;
1018 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1019 				  rmap);
1020 	}
1021 }
1022 
1023 /**
1024  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1025  * @sg: pointer to the shadow guest address space structure
1026  * @raddr: rmap address in the shadow gmap
1027  * @paddr: address in the parent guest address space
1028  * @len: length of the memory area to protect
1029  *
1030  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1031  * if out of memory and -EFAULT if paddr is invalid.
1032  */
1033 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1034 			     unsigned long paddr, unsigned long len)
1035 {
1036 	struct gmap *parent;
1037 	struct gmap_rmap *rmap;
1038 	unsigned long vmaddr;
1039 	spinlock_t *ptl;
1040 	pte_t *ptep;
1041 	int rc;
1042 
1043 	BUG_ON(!gmap_is_shadow(sg));
1044 	parent = sg->parent;
1045 	while (len) {
1046 		vmaddr = __gmap_translate(parent, paddr);
1047 		if (IS_ERR_VALUE(vmaddr))
1048 			return vmaddr;
1049 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1050 		if (!rmap)
1051 			return -ENOMEM;
1052 		rmap->raddr = raddr;
1053 		rc = radix_tree_preload(GFP_KERNEL);
1054 		if (rc) {
1055 			kfree(rmap);
1056 			return rc;
1057 		}
1058 		rc = -EAGAIN;
1059 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1060 		if (ptep) {
1061 			spin_lock(&sg->guest_table_lock);
1062 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1063 					     PGSTE_VSIE_BIT);
1064 			if (!rc)
1065 				gmap_insert_rmap(sg, vmaddr, rmap);
1066 			spin_unlock(&sg->guest_table_lock);
1067 			gmap_pte_op_end(ptl);
1068 		}
1069 		radix_tree_preload_end();
1070 		if (rc) {
1071 			kfree(rmap);
1072 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1073 			if (rc)
1074 				return rc;
1075 			continue;
1076 		}
1077 		paddr += PAGE_SIZE;
1078 		len -= PAGE_SIZE;
1079 	}
1080 	return 0;
1081 }
1082 
1083 #define _SHADOW_RMAP_MASK	0x7
1084 #define _SHADOW_RMAP_REGION1	0x5
1085 #define _SHADOW_RMAP_REGION2	0x4
1086 #define _SHADOW_RMAP_REGION3	0x3
1087 #define _SHADOW_RMAP_SEGMENT	0x2
1088 #define _SHADOW_RMAP_PGTABLE	0x1
1089 
1090 /**
1091  * gmap_idte_one - invalidate a single region or segment table entry
1092  * @asce: region or segment table *origin* + table-type bits
1093  * @vaddr: virtual address to identify the table entry to flush
1094  *
1095  * The invalid bit of a single region or segment table entry is set
1096  * and the associated TLB entries depending on the entry are flushed.
1097  * The table-type of the @asce identifies the portion of the @vaddr
1098  * that is used as the invalidation index.
1099  */
1100 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1101 {
1102 	asm volatile(
1103 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1104 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1105 }
1106 
1107 /**
1108  * gmap_unshadow_page - remove a page from a shadow page table
1109  * @sg: pointer to the shadow guest address space structure
1110  * @raddr: rmap address in the shadow guest address space
1111  *
1112  * Called with the sg->guest_table_lock
1113  */
1114 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1115 {
1116 	unsigned long *table;
1117 
1118 	BUG_ON(!gmap_is_shadow(sg));
1119 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1120 	if (!table || *table & _PAGE_INVALID)
1121 		return;
1122 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1123 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1124 }
1125 
1126 /**
1127  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1128  * @sg: pointer to the shadow guest address space structure
1129  * @raddr: rmap address in the shadow guest address space
1130  * @pgt: pointer to the start of a shadow page table
1131  *
1132  * Called with the sg->guest_table_lock
1133  */
1134 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1135 				unsigned long *pgt)
1136 {
1137 	int i;
1138 
1139 	BUG_ON(!gmap_is_shadow(sg));
1140 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1141 		pgt[i] = _PAGE_INVALID;
1142 }
1143 
1144 /**
1145  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1146  * @sg: pointer to the shadow guest address space structure
1147  * @raddr: address in the shadow guest address space
1148  *
1149  * Called with the sg->guest_table_lock
1150  */
1151 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1152 {
1153 	unsigned long sto, *ste, *pgt;
1154 	struct page *page;
1155 
1156 	BUG_ON(!gmap_is_shadow(sg));
1157 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1158 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1159 		return;
1160 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1161 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1162 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1163 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1164 	*ste = _SEGMENT_ENTRY_EMPTY;
1165 	__gmap_unshadow_pgt(sg, raddr, pgt);
1166 	/* Free page table */
1167 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1168 	list_del(&page->lru);
1169 	page_table_free_pgste(page);
1170 }
1171 
1172 /**
1173  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1174  * @sg: pointer to the shadow guest address space structure
1175  * @raddr: rmap address in the shadow guest address space
1176  * @sgt: pointer to the start of a shadow segment table
1177  *
1178  * Called with the sg->guest_table_lock
1179  */
1180 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1181 				unsigned long *sgt)
1182 {
1183 	unsigned long *pgt;
1184 	struct page *page;
1185 	int i;
1186 
1187 	BUG_ON(!gmap_is_shadow(sg));
1188 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1189 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1190 			continue;
1191 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1192 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1193 		__gmap_unshadow_pgt(sg, raddr, pgt);
1194 		/* Free page table */
1195 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1196 		list_del(&page->lru);
1197 		page_table_free_pgste(page);
1198 	}
1199 }
1200 
1201 /**
1202  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1203  * @sg: pointer to the shadow guest address space structure
1204  * @raddr: rmap address in the shadow guest address space
1205  *
1206  * Called with the shadow->guest_table_lock
1207  */
1208 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1209 {
1210 	unsigned long r3o, *r3e, *sgt;
1211 	struct page *page;
1212 
1213 	BUG_ON(!gmap_is_shadow(sg));
1214 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1215 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1216 		return;
1217 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1218 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1219 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1220 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1221 	*r3e = _REGION3_ENTRY_EMPTY;
1222 	__gmap_unshadow_sgt(sg, raddr, sgt);
1223 	/* Free segment table */
1224 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1225 	list_del(&page->lru);
1226 	__free_pages(page, CRST_ALLOC_ORDER);
1227 }
1228 
1229 /**
1230  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1231  * @sg: pointer to the shadow guest address space structure
1232  * @raddr: address in the shadow guest address space
1233  * @r3t: pointer to the start of a shadow region-3 table
1234  *
1235  * Called with the sg->guest_table_lock
1236  */
1237 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1238 				unsigned long *r3t)
1239 {
1240 	unsigned long *sgt;
1241 	struct page *page;
1242 	int i;
1243 
1244 	BUG_ON(!gmap_is_shadow(sg));
1245 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1246 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1247 			continue;
1248 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1249 		r3t[i] = _REGION3_ENTRY_EMPTY;
1250 		__gmap_unshadow_sgt(sg, raddr, sgt);
1251 		/* Free segment table */
1252 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1253 		list_del(&page->lru);
1254 		__free_pages(page, CRST_ALLOC_ORDER);
1255 	}
1256 }
1257 
1258 /**
1259  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1260  * @sg: pointer to the shadow guest address space structure
1261  * @raddr: rmap address in the shadow guest address space
1262  *
1263  * Called with the sg->guest_table_lock
1264  */
1265 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1266 {
1267 	unsigned long r2o, *r2e, *r3t;
1268 	struct page *page;
1269 
1270 	BUG_ON(!gmap_is_shadow(sg));
1271 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1272 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1273 		return;
1274 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1275 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1276 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1277 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1278 	*r2e = _REGION2_ENTRY_EMPTY;
1279 	__gmap_unshadow_r3t(sg, raddr, r3t);
1280 	/* Free region 3 table */
1281 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1282 	list_del(&page->lru);
1283 	__free_pages(page, CRST_ALLOC_ORDER);
1284 }
1285 
1286 /**
1287  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1288  * @sg: pointer to the shadow guest address space structure
1289  * @raddr: rmap address in the shadow guest address space
1290  * @r2t: pointer to the start of a shadow region-2 table
1291  *
1292  * Called with the sg->guest_table_lock
1293  */
1294 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1295 				unsigned long *r2t)
1296 {
1297 	unsigned long *r3t;
1298 	struct page *page;
1299 	int i;
1300 
1301 	BUG_ON(!gmap_is_shadow(sg));
1302 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1303 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1304 			continue;
1305 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1306 		r2t[i] = _REGION2_ENTRY_EMPTY;
1307 		__gmap_unshadow_r3t(sg, raddr, r3t);
1308 		/* Free region 3 table */
1309 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1310 		list_del(&page->lru);
1311 		__free_pages(page, CRST_ALLOC_ORDER);
1312 	}
1313 }
1314 
1315 /**
1316  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1317  * @sg: pointer to the shadow guest address space structure
1318  * @raddr: rmap address in the shadow guest address space
1319  *
1320  * Called with the sg->guest_table_lock
1321  */
1322 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1323 {
1324 	unsigned long r1o, *r1e, *r2t;
1325 	struct page *page;
1326 
1327 	BUG_ON(!gmap_is_shadow(sg));
1328 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1329 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1330 		return;
1331 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1332 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1333 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1334 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1335 	*r1e = _REGION1_ENTRY_EMPTY;
1336 	__gmap_unshadow_r2t(sg, raddr, r2t);
1337 	/* Free region 2 table */
1338 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1339 	list_del(&page->lru);
1340 	__free_pages(page, CRST_ALLOC_ORDER);
1341 }
1342 
1343 /**
1344  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1345  * @sg: pointer to the shadow guest address space structure
1346  * @raddr: rmap address in the shadow guest address space
1347  * @r1t: pointer to the start of a shadow region-1 table
1348  *
1349  * Called with the shadow->guest_table_lock
1350  */
1351 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1352 				unsigned long *r1t)
1353 {
1354 	unsigned long asce, *r2t;
1355 	struct page *page;
1356 	int i;
1357 
1358 	BUG_ON(!gmap_is_shadow(sg));
1359 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1360 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1361 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1362 			continue;
1363 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1364 		__gmap_unshadow_r2t(sg, raddr, r2t);
1365 		/* Clear entry and flush translation r1t -> r2t */
1366 		gmap_idte_one(asce, raddr);
1367 		r1t[i] = _REGION1_ENTRY_EMPTY;
1368 		/* Free region 2 table */
1369 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1370 		list_del(&page->lru);
1371 		__free_pages(page, CRST_ALLOC_ORDER);
1372 	}
1373 }
1374 
1375 /**
1376  * gmap_unshadow - remove a shadow page table completely
1377  * @sg: pointer to the shadow guest address space structure
1378  *
1379  * Called with sg->guest_table_lock
1380  */
1381 static void gmap_unshadow(struct gmap *sg)
1382 {
1383 	unsigned long *table;
1384 
1385 	BUG_ON(!gmap_is_shadow(sg));
1386 	if (sg->removed)
1387 		return;
1388 	sg->removed = 1;
1389 	gmap_call_notifier(sg, 0, -1UL);
1390 	gmap_flush_tlb(sg);
1391 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1392 	switch (sg->asce & _ASCE_TYPE_MASK) {
1393 	case _ASCE_TYPE_REGION1:
1394 		__gmap_unshadow_r1t(sg, 0, table);
1395 		break;
1396 	case _ASCE_TYPE_REGION2:
1397 		__gmap_unshadow_r2t(sg, 0, table);
1398 		break;
1399 	case _ASCE_TYPE_REGION3:
1400 		__gmap_unshadow_r3t(sg, 0, table);
1401 		break;
1402 	case _ASCE_TYPE_SEGMENT:
1403 		__gmap_unshadow_sgt(sg, 0, table);
1404 		break;
1405 	}
1406 }
1407 
1408 /**
1409  * gmap_find_shadow - find a specific asce in the list of shadow tables
1410  * @parent: pointer to the parent gmap
1411  * @asce: ASCE for which the shadow table is created
1412  * @edat_level: edat level to be used for the shadow translation
1413  *
1414  * Returns the pointer to a gmap if a shadow table with the given asce is
1415  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1416  * otherwise NULL
1417  */
1418 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1419 				     int edat_level)
1420 {
1421 	struct gmap *sg;
1422 
1423 	list_for_each_entry(sg, &parent->children, list) {
1424 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1425 		    sg->removed)
1426 			continue;
1427 		if (!sg->initialized)
1428 			return ERR_PTR(-EAGAIN);
1429 		atomic_inc(&sg->ref_count);
1430 		return sg;
1431 	}
1432 	return NULL;
1433 }
1434 
1435 /**
1436  * gmap_shadow_valid - check if a shadow guest address space matches the
1437  *                     given properties and is still valid
1438  * @sg: pointer to the shadow guest address space structure
1439  * @asce: ASCE for which the shadow table is requested
1440  * @edat_level: edat level to be used for the shadow translation
1441  *
1442  * Returns 1 if the gmap shadow is still valid and matches the given
1443  * properties, the caller can continue using it. Returns 0 otherwise, the
1444  * caller has to request a new shadow gmap in this case.
1445  *
1446  */
1447 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1448 {
1449 	if (sg->removed)
1450 		return 0;
1451 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1452 }
1453 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1454 
1455 /**
1456  * gmap_shadow - create/find a shadow guest address space
1457  * @parent: pointer to the parent gmap
1458  * @asce: ASCE for which the shadow table is created
1459  * @edat_level: edat level to be used for the shadow translation
1460  *
1461  * The pages of the top level page table referred by the asce parameter
1462  * will be set to read-only and marked in the PGSTEs of the kvm process.
1463  * The shadow table will be removed automatically on any change to the
1464  * PTE mapping for the source table.
1465  *
1466  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1467  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1468  * parent gmap table could not be protected.
1469  */
1470 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1471 			 int edat_level)
1472 {
1473 	struct gmap *sg, *new;
1474 	unsigned long limit;
1475 	int rc;
1476 
1477 	BUG_ON(gmap_is_shadow(parent));
1478 	spin_lock(&parent->shadow_lock);
1479 	sg = gmap_find_shadow(parent, asce, edat_level);
1480 	spin_unlock(&parent->shadow_lock);
1481 	if (sg)
1482 		return sg;
1483 	/* Create a new shadow gmap */
1484 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1485 	if (asce & _ASCE_REAL_SPACE)
1486 		limit = -1UL;
1487 	new = gmap_alloc(limit);
1488 	if (!new)
1489 		return ERR_PTR(-ENOMEM);
1490 	new->mm = parent->mm;
1491 	new->parent = gmap_get(parent);
1492 	new->orig_asce = asce;
1493 	new->edat_level = edat_level;
1494 	new->initialized = false;
1495 	spin_lock(&parent->shadow_lock);
1496 	/* Recheck if another CPU created the same shadow */
1497 	sg = gmap_find_shadow(parent, asce, edat_level);
1498 	if (sg) {
1499 		spin_unlock(&parent->shadow_lock);
1500 		gmap_free(new);
1501 		return sg;
1502 	}
1503 	if (asce & _ASCE_REAL_SPACE) {
1504 		/* only allow one real-space gmap shadow */
1505 		list_for_each_entry(sg, &parent->children, list) {
1506 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1507 				spin_lock(&sg->guest_table_lock);
1508 				gmap_unshadow(sg);
1509 				spin_unlock(&sg->guest_table_lock);
1510 				list_del(&sg->list);
1511 				gmap_put(sg);
1512 				break;
1513 			}
1514 		}
1515 	}
1516 	atomic_set(&new->ref_count, 2);
1517 	list_add(&new->list, &parent->children);
1518 	if (asce & _ASCE_REAL_SPACE) {
1519 		/* nothing to protect, return right away */
1520 		new->initialized = true;
1521 		spin_unlock(&parent->shadow_lock);
1522 		return new;
1523 	}
1524 	spin_unlock(&parent->shadow_lock);
1525 	/* protect after insertion, so it will get properly invalidated */
1526 	down_read(&parent->mm->mmap_sem);
1527 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1528 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1529 				PROT_READ, PGSTE_VSIE_BIT);
1530 	up_read(&parent->mm->mmap_sem);
1531 	spin_lock(&parent->shadow_lock);
1532 	new->initialized = true;
1533 	if (rc) {
1534 		list_del(&new->list);
1535 		gmap_free(new);
1536 		new = ERR_PTR(rc);
1537 	}
1538 	spin_unlock(&parent->shadow_lock);
1539 	return new;
1540 }
1541 EXPORT_SYMBOL_GPL(gmap_shadow);
1542 
1543 /**
1544  * gmap_shadow_r2t - create an empty shadow region 2 table
1545  * @sg: pointer to the shadow guest address space structure
1546  * @saddr: faulting address in the shadow gmap
1547  * @r2t: parent gmap address of the region 2 table to get shadowed
1548  * @fake: r2t references contiguous guest memory block, not a r2t
1549  *
1550  * The r2t parameter specifies the address of the source table. The
1551  * four pages of the source table are made read-only in the parent gmap
1552  * address space. A write to the source table area @r2t will automatically
1553  * remove the shadow r2 table and all of its decendents.
1554  *
1555  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1556  * shadow table structure is incomplete, -ENOMEM if out of memory and
1557  * -EFAULT if an address in the parent gmap could not be resolved.
1558  *
1559  * Called with sg->mm->mmap_sem in read.
1560  */
1561 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1562 		    int fake)
1563 {
1564 	unsigned long raddr, origin, offset, len;
1565 	unsigned long *s_r2t, *table;
1566 	struct page *page;
1567 	int rc;
1568 
1569 	BUG_ON(!gmap_is_shadow(sg));
1570 	/* Allocate a shadow region second table */
1571 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1572 	if (!page)
1573 		return -ENOMEM;
1574 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1575 	if (fake)
1576 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1577 	s_r2t = (unsigned long *) page_to_phys(page);
1578 	/* Install shadow region second table */
1579 	spin_lock(&sg->guest_table_lock);
1580 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1581 	if (!table) {
1582 		rc = -EAGAIN;		/* Race with unshadow */
1583 		goto out_free;
1584 	}
1585 	if (!(*table & _REGION_ENTRY_INVALID)) {
1586 		rc = 0;			/* Already established */
1587 		goto out_free;
1588 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1589 		rc = -EAGAIN;		/* Race with shadow */
1590 		goto out_free;
1591 	}
1592 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1593 	/* mark as invalid as long as the parent table is not protected */
1594 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1595 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1596 	if (sg->edat_level >= 1)
1597 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1598 	list_add(&page->lru, &sg->crst_list);
1599 	if (fake) {
1600 		/* nothing to protect for fake tables */
1601 		*table &= ~_REGION_ENTRY_INVALID;
1602 		spin_unlock(&sg->guest_table_lock);
1603 		return 0;
1604 	}
1605 	spin_unlock(&sg->guest_table_lock);
1606 	/* Make r2t read-only in parent gmap page table */
1607 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1608 	origin = r2t & _REGION_ENTRY_ORIGIN;
1609 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1610 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1611 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1612 	spin_lock(&sg->guest_table_lock);
1613 	if (!rc) {
1614 		table = gmap_table_walk(sg, saddr, 4);
1615 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1616 			      (unsigned long) s_r2t)
1617 			rc = -EAGAIN;		/* Race with unshadow */
1618 		else
1619 			*table &= ~_REGION_ENTRY_INVALID;
1620 	} else {
1621 		gmap_unshadow_r2t(sg, raddr);
1622 	}
1623 	spin_unlock(&sg->guest_table_lock);
1624 	return rc;
1625 out_free:
1626 	spin_unlock(&sg->guest_table_lock);
1627 	__free_pages(page, CRST_ALLOC_ORDER);
1628 	return rc;
1629 }
1630 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1631 
1632 /**
1633  * gmap_shadow_r3t - create a shadow region 3 table
1634  * @sg: pointer to the shadow guest address space structure
1635  * @saddr: faulting address in the shadow gmap
1636  * @r3t: parent gmap address of the region 3 table to get shadowed
1637  * @fake: r3t references contiguous guest memory block, not a r3t
1638  *
1639  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1640  * shadow table structure is incomplete, -ENOMEM if out of memory and
1641  * -EFAULT if an address in the parent gmap could not be resolved.
1642  *
1643  * Called with sg->mm->mmap_sem in read.
1644  */
1645 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1646 		    int fake)
1647 {
1648 	unsigned long raddr, origin, offset, len;
1649 	unsigned long *s_r3t, *table;
1650 	struct page *page;
1651 	int rc;
1652 
1653 	BUG_ON(!gmap_is_shadow(sg));
1654 	/* Allocate a shadow region second table */
1655 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1656 	if (!page)
1657 		return -ENOMEM;
1658 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1659 	if (fake)
1660 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1661 	s_r3t = (unsigned long *) page_to_phys(page);
1662 	/* Install shadow region second table */
1663 	spin_lock(&sg->guest_table_lock);
1664 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1665 	if (!table) {
1666 		rc = -EAGAIN;		/* Race with unshadow */
1667 		goto out_free;
1668 	}
1669 	if (!(*table & _REGION_ENTRY_INVALID)) {
1670 		rc = 0;			/* Already established */
1671 		goto out_free;
1672 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1673 		rc = -EAGAIN;		/* Race with shadow */
1674 	}
1675 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1676 	/* mark as invalid as long as the parent table is not protected */
1677 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1678 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1679 	if (sg->edat_level >= 1)
1680 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1681 	list_add(&page->lru, &sg->crst_list);
1682 	if (fake) {
1683 		/* nothing to protect for fake tables */
1684 		*table &= ~_REGION_ENTRY_INVALID;
1685 		spin_unlock(&sg->guest_table_lock);
1686 		return 0;
1687 	}
1688 	spin_unlock(&sg->guest_table_lock);
1689 	/* Make r3t read-only in parent gmap page table */
1690 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1691 	origin = r3t & _REGION_ENTRY_ORIGIN;
1692 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1693 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1694 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1695 	spin_lock(&sg->guest_table_lock);
1696 	if (!rc) {
1697 		table = gmap_table_walk(sg, saddr, 3);
1698 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1699 			      (unsigned long) s_r3t)
1700 			rc = -EAGAIN;		/* Race with unshadow */
1701 		else
1702 			*table &= ~_REGION_ENTRY_INVALID;
1703 	} else {
1704 		gmap_unshadow_r3t(sg, raddr);
1705 	}
1706 	spin_unlock(&sg->guest_table_lock);
1707 	return rc;
1708 out_free:
1709 	spin_unlock(&sg->guest_table_lock);
1710 	__free_pages(page, CRST_ALLOC_ORDER);
1711 	return rc;
1712 }
1713 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1714 
1715 /**
1716  * gmap_shadow_sgt - create a shadow segment table
1717  * @sg: pointer to the shadow guest address space structure
1718  * @saddr: faulting address in the shadow gmap
1719  * @sgt: parent gmap address of the segment table to get shadowed
1720  * @fake: sgt references contiguous guest memory block, not a sgt
1721  *
1722  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1723  * shadow table structure is incomplete, -ENOMEM if out of memory and
1724  * -EFAULT if an address in the parent gmap could not be resolved.
1725  *
1726  * Called with sg->mm->mmap_sem in read.
1727  */
1728 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1729 		    int fake)
1730 {
1731 	unsigned long raddr, origin, offset, len;
1732 	unsigned long *s_sgt, *table;
1733 	struct page *page;
1734 	int rc;
1735 
1736 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1737 	/* Allocate a shadow segment table */
1738 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1739 	if (!page)
1740 		return -ENOMEM;
1741 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1742 	if (fake)
1743 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1744 	s_sgt = (unsigned long *) page_to_phys(page);
1745 	/* Install shadow region second table */
1746 	spin_lock(&sg->guest_table_lock);
1747 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1748 	if (!table) {
1749 		rc = -EAGAIN;		/* Race with unshadow */
1750 		goto out_free;
1751 	}
1752 	if (!(*table & _REGION_ENTRY_INVALID)) {
1753 		rc = 0;			/* Already established */
1754 		goto out_free;
1755 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1756 		rc = -EAGAIN;		/* Race with shadow */
1757 		goto out_free;
1758 	}
1759 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1760 	/* mark as invalid as long as the parent table is not protected */
1761 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1762 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1763 	if (sg->edat_level >= 1)
1764 		*table |= sgt & _REGION_ENTRY_PROTECT;
1765 	list_add(&page->lru, &sg->crst_list);
1766 	if (fake) {
1767 		/* nothing to protect for fake tables */
1768 		*table &= ~_REGION_ENTRY_INVALID;
1769 		spin_unlock(&sg->guest_table_lock);
1770 		return 0;
1771 	}
1772 	spin_unlock(&sg->guest_table_lock);
1773 	/* Make sgt read-only in parent gmap page table */
1774 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1775 	origin = sgt & _REGION_ENTRY_ORIGIN;
1776 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1777 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1778 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1779 	spin_lock(&sg->guest_table_lock);
1780 	if (!rc) {
1781 		table = gmap_table_walk(sg, saddr, 2);
1782 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1783 			      (unsigned long) s_sgt)
1784 			rc = -EAGAIN;		/* Race with unshadow */
1785 		else
1786 			*table &= ~_REGION_ENTRY_INVALID;
1787 	} else {
1788 		gmap_unshadow_sgt(sg, raddr);
1789 	}
1790 	spin_unlock(&sg->guest_table_lock);
1791 	return rc;
1792 out_free:
1793 	spin_unlock(&sg->guest_table_lock);
1794 	__free_pages(page, CRST_ALLOC_ORDER);
1795 	return rc;
1796 }
1797 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1798 
1799 /**
1800  * gmap_shadow_lookup_pgtable - find a shadow page table
1801  * @sg: pointer to the shadow guest address space structure
1802  * @saddr: the address in the shadow aguest address space
1803  * @pgt: parent gmap address of the page table to get shadowed
1804  * @dat_protection: if the pgtable is marked as protected by dat
1805  * @fake: pgt references contiguous guest memory block, not a pgtable
1806  *
1807  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1808  * table was not found.
1809  *
1810  * Called with sg->mm->mmap_sem in read.
1811  */
1812 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1813 			   unsigned long *pgt, int *dat_protection,
1814 			   int *fake)
1815 {
1816 	unsigned long *table;
1817 	struct page *page;
1818 	int rc;
1819 
1820 	BUG_ON(!gmap_is_shadow(sg));
1821 	spin_lock(&sg->guest_table_lock);
1822 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1823 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1824 		/* Shadow page tables are full pages (pte+pgste) */
1825 		page = pfn_to_page(*table >> PAGE_SHIFT);
1826 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1827 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1828 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1829 		rc = 0;
1830 	} else  {
1831 		rc = -EAGAIN;
1832 	}
1833 	spin_unlock(&sg->guest_table_lock);
1834 	return rc;
1835 
1836 }
1837 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
1838 
1839 /**
1840  * gmap_shadow_pgt - instantiate a shadow page table
1841  * @sg: pointer to the shadow guest address space structure
1842  * @saddr: faulting address in the shadow gmap
1843  * @pgt: parent gmap address of the page table to get shadowed
1844  * @fake: pgt references contiguous guest memory block, not a pgtable
1845  *
1846  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1847  * shadow table structure is incomplete, -ENOMEM if out of memory,
1848  * -EFAULT if an address in the parent gmap could not be resolved and
1849  *
1850  * Called with gmap->mm->mmap_sem in read
1851  */
1852 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1853 		    int fake)
1854 {
1855 	unsigned long raddr, origin;
1856 	unsigned long *s_pgt, *table;
1857 	struct page *page;
1858 	int rc;
1859 
1860 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1861 	/* Allocate a shadow page table */
1862 	page = page_table_alloc_pgste(sg->mm);
1863 	if (!page)
1864 		return -ENOMEM;
1865 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
1866 	if (fake)
1867 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1868 	s_pgt = (unsigned long *) page_to_phys(page);
1869 	/* Install shadow page table */
1870 	spin_lock(&sg->guest_table_lock);
1871 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1872 	if (!table) {
1873 		rc = -EAGAIN;		/* Race with unshadow */
1874 		goto out_free;
1875 	}
1876 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1877 		rc = 0;			/* Already established */
1878 		goto out_free;
1879 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1880 		rc = -EAGAIN;		/* Race with shadow */
1881 		goto out_free;
1882 	}
1883 	/* mark as invalid as long as the parent table is not protected */
1884 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1885 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1886 	list_add(&page->lru, &sg->pt_list);
1887 	if (fake) {
1888 		/* nothing to protect for fake tables */
1889 		*table &= ~_SEGMENT_ENTRY_INVALID;
1890 		spin_unlock(&sg->guest_table_lock);
1891 		return 0;
1892 	}
1893 	spin_unlock(&sg->guest_table_lock);
1894 	/* Make pgt read-only in parent gmap page table (not the pgste) */
1895 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1896 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1897 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
1898 	spin_lock(&sg->guest_table_lock);
1899 	if (!rc) {
1900 		table = gmap_table_walk(sg, saddr, 1);
1901 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
1902 			      (unsigned long) s_pgt)
1903 			rc = -EAGAIN;		/* Race with unshadow */
1904 		else
1905 			*table &= ~_SEGMENT_ENTRY_INVALID;
1906 	} else {
1907 		gmap_unshadow_pgt(sg, raddr);
1908 	}
1909 	spin_unlock(&sg->guest_table_lock);
1910 	return rc;
1911 out_free:
1912 	spin_unlock(&sg->guest_table_lock);
1913 	page_table_free_pgste(page);
1914 	return rc;
1915 
1916 }
1917 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1918 
1919 /**
1920  * gmap_shadow_page - create a shadow page mapping
1921  * @sg: pointer to the shadow guest address space structure
1922  * @saddr: faulting address in the shadow gmap
1923  * @pte: pte in parent gmap address space to get shadowed
1924  *
1925  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1926  * shadow table structure is incomplete, -ENOMEM if out of memory and
1927  * -EFAULT if an address in the parent gmap could not be resolved.
1928  *
1929  * Called with sg->mm->mmap_sem in read.
1930  */
1931 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1932 {
1933 	struct gmap *parent;
1934 	struct gmap_rmap *rmap;
1935 	unsigned long vmaddr, paddr;
1936 	spinlock_t *ptl;
1937 	pte_t *sptep, *tptep;
1938 	int prot;
1939 	int rc;
1940 
1941 	BUG_ON(!gmap_is_shadow(sg));
1942 	parent = sg->parent;
1943 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1944 
1945 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1946 	if (!rmap)
1947 		return -ENOMEM;
1948 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1949 
1950 	while (1) {
1951 		paddr = pte_val(pte) & PAGE_MASK;
1952 		vmaddr = __gmap_translate(parent, paddr);
1953 		if (IS_ERR_VALUE(vmaddr)) {
1954 			rc = vmaddr;
1955 			break;
1956 		}
1957 		rc = radix_tree_preload(GFP_KERNEL);
1958 		if (rc)
1959 			break;
1960 		rc = -EAGAIN;
1961 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1962 		if (sptep) {
1963 			spin_lock(&sg->guest_table_lock);
1964 			/* Get page table pointer */
1965 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1966 			if (!tptep) {
1967 				spin_unlock(&sg->guest_table_lock);
1968 				gmap_pte_op_end(ptl);
1969 				radix_tree_preload_end();
1970 				break;
1971 			}
1972 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1973 			if (rc > 0) {
1974 				/* Success and a new mapping */
1975 				gmap_insert_rmap(sg, vmaddr, rmap);
1976 				rmap = NULL;
1977 				rc = 0;
1978 			}
1979 			gmap_pte_op_end(ptl);
1980 			spin_unlock(&sg->guest_table_lock);
1981 		}
1982 		radix_tree_preload_end();
1983 		if (!rc)
1984 			break;
1985 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1986 		if (rc)
1987 			break;
1988 	}
1989 	kfree(rmap);
1990 	return rc;
1991 }
1992 EXPORT_SYMBOL_GPL(gmap_shadow_page);
1993 
1994 /**
1995  * gmap_shadow_notify - handle notifications for shadow gmap
1996  *
1997  * Called with sg->parent->shadow_lock.
1998  */
1999 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2000 			       unsigned long gaddr)
2001 {
2002 	struct gmap_rmap *rmap, *rnext, *head;
2003 	unsigned long start, end, bits, raddr;
2004 
2005 	BUG_ON(!gmap_is_shadow(sg));
2006 
2007 	spin_lock(&sg->guest_table_lock);
2008 	if (sg->removed) {
2009 		spin_unlock(&sg->guest_table_lock);
2010 		return;
2011 	}
2012 	/* Check for top level table */
2013 	start = sg->orig_asce & _ASCE_ORIGIN;
2014 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2015 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2016 	    gaddr < end) {
2017 		/* The complete shadow table has to go */
2018 		gmap_unshadow(sg);
2019 		spin_unlock(&sg->guest_table_lock);
2020 		list_del(&sg->list);
2021 		gmap_put(sg);
2022 		return;
2023 	}
2024 	/* Remove the page table tree from on specific entry */
2025 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2026 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2027 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2028 		raddr = rmap->raddr ^ bits;
2029 		switch (bits) {
2030 		case _SHADOW_RMAP_REGION1:
2031 			gmap_unshadow_r2t(sg, raddr);
2032 			break;
2033 		case _SHADOW_RMAP_REGION2:
2034 			gmap_unshadow_r3t(sg, raddr);
2035 			break;
2036 		case _SHADOW_RMAP_REGION3:
2037 			gmap_unshadow_sgt(sg, raddr);
2038 			break;
2039 		case _SHADOW_RMAP_SEGMENT:
2040 			gmap_unshadow_pgt(sg, raddr);
2041 			break;
2042 		case _SHADOW_RMAP_PGTABLE:
2043 			gmap_unshadow_page(sg, raddr);
2044 			break;
2045 		}
2046 		kfree(rmap);
2047 	}
2048 	spin_unlock(&sg->guest_table_lock);
2049 }
2050 
2051 /**
2052  * ptep_notify - call all invalidation callbacks for a specific pte.
2053  * @mm: pointer to the process mm_struct
2054  * @addr: virtual address in the process address space
2055  * @pte: pointer to the page table entry
2056  * @bits: bits from the pgste that caused the notify call
2057  *
2058  * This function is assumed to be called with the page table lock held
2059  * for the pte to notify.
2060  */
2061 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2062 		 pte_t *pte, unsigned long bits)
2063 {
2064 	unsigned long offset, gaddr = 0;
2065 	unsigned long *table;
2066 	struct gmap *gmap, *sg, *next;
2067 
2068 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2069 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2070 	rcu_read_lock();
2071 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2072 		spin_lock(&gmap->guest_table_lock);
2073 		table = radix_tree_lookup(&gmap->host_to_guest,
2074 					  vmaddr >> PMD_SHIFT);
2075 		if (table)
2076 			gaddr = __gmap_segment_gaddr(table) + offset;
2077 		spin_unlock(&gmap->guest_table_lock);
2078 		if (!table)
2079 			continue;
2080 
2081 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2082 			spin_lock(&gmap->shadow_lock);
2083 			list_for_each_entry_safe(sg, next,
2084 						 &gmap->children, list)
2085 				gmap_shadow_notify(sg, vmaddr, gaddr);
2086 			spin_unlock(&gmap->shadow_lock);
2087 		}
2088 		if (bits & PGSTE_IN_BIT)
2089 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2090 	}
2091 	rcu_read_unlock();
2092 }
2093 EXPORT_SYMBOL_GPL(ptep_notify);
2094 
2095 static inline void thp_split_mm(struct mm_struct *mm)
2096 {
2097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2098 	struct vm_area_struct *vma;
2099 	unsigned long addr;
2100 
2101 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2102 		for (addr = vma->vm_start;
2103 		     addr < vma->vm_end;
2104 		     addr += PAGE_SIZE)
2105 			follow_page(vma, addr, FOLL_SPLIT);
2106 		vma->vm_flags &= ~VM_HUGEPAGE;
2107 		vma->vm_flags |= VM_NOHUGEPAGE;
2108 	}
2109 	mm->def_flags |= VM_NOHUGEPAGE;
2110 #endif
2111 }
2112 
2113 /*
2114  * Remove all empty zero pages from the mapping for lazy refaulting
2115  * - This must be called after mm->context.has_pgste is set, to avoid
2116  *   future creation of zero pages
2117  * - This must be called after THP was enabled
2118  */
2119 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2120 			   unsigned long end, struct mm_walk *walk)
2121 {
2122 	unsigned long addr;
2123 
2124 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2125 		pte_t *ptep;
2126 		spinlock_t *ptl;
2127 
2128 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2129 		if (is_zero_pfn(pte_pfn(*ptep)))
2130 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2131 		pte_unmap_unlock(ptep, ptl);
2132 	}
2133 	return 0;
2134 }
2135 
2136 static inline void zap_zero_pages(struct mm_struct *mm)
2137 {
2138 	struct mm_walk walk = { .pmd_entry = __zap_zero_pages };
2139 
2140 	walk.mm = mm;
2141 	walk_page_range(0, TASK_SIZE, &walk);
2142 }
2143 
2144 /*
2145  * switch on pgstes for its userspace process (for kvm)
2146  */
2147 int s390_enable_sie(void)
2148 {
2149 	struct mm_struct *mm = current->mm;
2150 
2151 	/* Do we have pgstes? if yes, we are done */
2152 	if (mm_has_pgste(mm))
2153 		return 0;
2154 	/* Fail if the page tables are 2K */
2155 	if (!mm_alloc_pgste(mm))
2156 		return -EINVAL;
2157 	down_write(&mm->mmap_sem);
2158 	mm->context.has_pgste = 1;
2159 	/* split thp mappings and disable thp for future mappings */
2160 	thp_split_mm(mm);
2161 	zap_zero_pages(mm);
2162 	up_write(&mm->mmap_sem);
2163 	return 0;
2164 }
2165 EXPORT_SYMBOL_GPL(s390_enable_sie);
2166 
2167 /*
2168  * Enable storage key handling from now on and initialize the storage
2169  * keys with the default key.
2170  */
2171 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
2172 			      unsigned long next, struct mm_walk *walk)
2173 {
2174 	/* Clear storage key */
2175 	ptep_zap_key(walk->mm, addr, pte);
2176 	return 0;
2177 }
2178 
2179 int s390_enable_skey(void)
2180 {
2181 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
2182 	struct mm_struct *mm = current->mm;
2183 	struct vm_area_struct *vma;
2184 	int rc = 0;
2185 
2186 	down_write(&mm->mmap_sem);
2187 	if (mm_use_skey(mm))
2188 		goto out_up;
2189 
2190 	mm->context.use_skey = 1;
2191 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2192 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2193 				MADV_UNMERGEABLE, &vma->vm_flags)) {
2194 			mm->context.use_skey = 0;
2195 			rc = -ENOMEM;
2196 			goto out_up;
2197 		}
2198 	}
2199 	mm->def_flags &= ~VM_MERGEABLE;
2200 
2201 	walk.mm = mm;
2202 	walk_page_range(0, TASK_SIZE, &walk);
2203 
2204 out_up:
2205 	up_write(&mm->mmap_sem);
2206 	return rc;
2207 }
2208 EXPORT_SYMBOL_GPL(s390_enable_skey);
2209 
2210 /*
2211  * Reset CMMA state, make all pages stable again.
2212  */
2213 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2214 			     unsigned long next, struct mm_walk *walk)
2215 {
2216 	ptep_zap_unused(walk->mm, addr, pte, 1);
2217 	return 0;
2218 }
2219 
2220 void s390_reset_cmma(struct mm_struct *mm)
2221 {
2222 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
2223 
2224 	down_write(&mm->mmap_sem);
2225 	walk.mm = mm;
2226 	walk_page_range(0, TASK_SIZE, &walk);
2227 	up_write(&mm->mmap_sem);
2228 }
2229 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2230