1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2016, 2018 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/mm.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 21 #include <asm/pgtable.h> 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @mm: pointer to the parent mm_struct 31 * @limit: maximum address of the gmap address space 32 * 33 * Returns a guest address space structure. 34 */ 35 static struct gmap *gmap_alloc(unsigned long limit) 36 { 37 struct gmap *gmap; 38 struct page *page; 39 unsigned long *table; 40 unsigned long etype, atype; 41 42 if (limit < _REGION3_SIZE) { 43 limit = _REGION3_SIZE - 1; 44 atype = _ASCE_TYPE_SEGMENT; 45 etype = _SEGMENT_ENTRY_EMPTY; 46 } else if (limit < _REGION2_SIZE) { 47 limit = _REGION2_SIZE - 1; 48 atype = _ASCE_TYPE_REGION3; 49 etype = _REGION3_ENTRY_EMPTY; 50 } else if (limit < _REGION1_SIZE) { 51 limit = _REGION1_SIZE - 1; 52 atype = _ASCE_TYPE_REGION2; 53 etype = _REGION2_ENTRY_EMPTY; 54 } else { 55 limit = -1UL; 56 atype = _ASCE_TYPE_REGION1; 57 etype = _REGION1_ENTRY_EMPTY; 58 } 59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 60 if (!gmap) 61 goto out; 62 INIT_LIST_HEAD(&gmap->crst_list); 63 INIT_LIST_HEAD(&gmap->children); 64 INIT_LIST_HEAD(&gmap->pt_list); 65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 68 spin_lock_init(&gmap->guest_table_lock); 69 spin_lock_init(&gmap->shadow_lock); 70 atomic_set(&gmap->ref_count, 1); 71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 72 if (!page) 73 goto out_free; 74 page->index = 0; 75 list_add(&page->lru, &gmap->crst_list); 76 table = (unsigned long *) page_to_phys(page); 77 crst_table_init(table, etype); 78 gmap->table = table; 79 gmap->asce = atype | _ASCE_TABLE_LENGTH | 80 _ASCE_USER_BITS | __pa(table); 81 gmap->asce_end = limit; 82 return gmap; 83 84 out_free: 85 kfree(gmap); 86 out: 87 return NULL; 88 } 89 90 /** 91 * gmap_create - create a guest address space 92 * @mm: pointer to the parent mm_struct 93 * @limit: maximum size of the gmap address space 94 * 95 * Returns a guest address space structure. 96 */ 97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 98 { 99 struct gmap *gmap; 100 unsigned long gmap_asce; 101 102 gmap = gmap_alloc(limit); 103 if (!gmap) 104 return NULL; 105 gmap->mm = mm; 106 spin_lock(&mm->context.lock); 107 list_add_rcu(&gmap->list, &mm->context.gmap_list); 108 if (list_is_singular(&mm->context.gmap_list)) 109 gmap_asce = gmap->asce; 110 else 111 gmap_asce = -1UL; 112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 113 spin_unlock(&mm->context.lock); 114 return gmap; 115 } 116 EXPORT_SYMBOL_GPL(gmap_create); 117 118 static void gmap_flush_tlb(struct gmap *gmap) 119 { 120 if (MACHINE_HAS_IDTE) 121 __tlb_flush_idte(gmap->asce); 122 else 123 __tlb_flush_global(); 124 } 125 126 static void gmap_radix_tree_free(struct radix_tree_root *root) 127 { 128 struct radix_tree_iter iter; 129 unsigned long indices[16]; 130 unsigned long index; 131 void __rcu **slot; 132 int i, nr; 133 134 /* A radix tree is freed by deleting all of its entries */ 135 index = 0; 136 do { 137 nr = 0; 138 radix_tree_for_each_slot(slot, root, &iter, index) { 139 indices[nr] = iter.index; 140 if (++nr == 16) 141 break; 142 } 143 for (i = 0; i < nr; i++) { 144 index = indices[i]; 145 radix_tree_delete(root, index); 146 } 147 } while (nr > 0); 148 } 149 150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 151 { 152 struct gmap_rmap *rmap, *rnext, *head; 153 struct radix_tree_iter iter; 154 unsigned long indices[16]; 155 unsigned long index; 156 void __rcu **slot; 157 int i, nr; 158 159 /* A radix tree is freed by deleting all of its entries */ 160 index = 0; 161 do { 162 nr = 0; 163 radix_tree_for_each_slot(slot, root, &iter, index) { 164 indices[nr] = iter.index; 165 if (++nr == 16) 166 break; 167 } 168 for (i = 0; i < nr; i++) { 169 index = indices[i]; 170 head = radix_tree_delete(root, index); 171 gmap_for_each_rmap_safe(rmap, rnext, head) 172 kfree(rmap); 173 } 174 } while (nr > 0); 175 } 176 177 /** 178 * gmap_free - free a guest address space 179 * @gmap: pointer to the guest address space structure 180 * 181 * No locks required. There are no references to this gmap anymore. 182 */ 183 static void gmap_free(struct gmap *gmap) 184 { 185 struct page *page, *next; 186 187 /* Flush tlb of all gmaps (if not already done for shadows) */ 188 if (!(gmap_is_shadow(gmap) && gmap->removed)) 189 gmap_flush_tlb(gmap); 190 /* Free all segment & region tables. */ 191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 192 __free_pages(page, CRST_ALLOC_ORDER); 193 gmap_radix_tree_free(&gmap->guest_to_host); 194 gmap_radix_tree_free(&gmap->host_to_guest); 195 196 /* Free additional data for a shadow gmap */ 197 if (gmap_is_shadow(gmap)) { 198 /* Free all page tables. */ 199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 200 page_table_free_pgste(page); 201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 202 /* Release reference to the parent */ 203 gmap_put(gmap->parent); 204 } 205 206 kfree(gmap); 207 } 208 209 /** 210 * gmap_get - increase reference counter for guest address space 211 * @gmap: pointer to the guest address space structure 212 * 213 * Returns the gmap pointer 214 */ 215 struct gmap *gmap_get(struct gmap *gmap) 216 { 217 atomic_inc(&gmap->ref_count); 218 return gmap; 219 } 220 EXPORT_SYMBOL_GPL(gmap_get); 221 222 /** 223 * gmap_put - decrease reference counter for guest address space 224 * @gmap: pointer to the guest address space structure 225 * 226 * If the reference counter reaches zero the guest address space is freed. 227 */ 228 void gmap_put(struct gmap *gmap) 229 { 230 if (atomic_dec_return(&gmap->ref_count) == 0) 231 gmap_free(gmap); 232 } 233 EXPORT_SYMBOL_GPL(gmap_put); 234 235 /** 236 * gmap_remove - remove a guest address space but do not free it yet 237 * @gmap: pointer to the guest address space structure 238 */ 239 void gmap_remove(struct gmap *gmap) 240 { 241 struct gmap *sg, *next; 242 unsigned long gmap_asce; 243 244 /* Remove all shadow gmaps linked to this gmap */ 245 if (!list_empty(&gmap->children)) { 246 spin_lock(&gmap->shadow_lock); 247 list_for_each_entry_safe(sg, next, &gmap->children, list) { 248 list_del(&sg->list); 249 gmap_put(sg); 250 } 251 spin_unlock(&gmap->shadow_lock); 252 } 253 /* Remove gmap from the pre-mm list */ 254 spin_lock(&gmap->mm->context.lock); 255 list_del_rcu(&gmap->list); 256 if (list_empty(&gmap->mm->context.gmap_list)) 257 gmap_asce = 0; 258 else if (list_is_singular(&gmap->mm->context.gmap_list)) 259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 260 struct gmap, list)->asce; 261 else 262 gmap_asce = -1UL; 263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 264 spin_unlock(&gmap->mm->context.lock); 265 synchronize_rcu(); 266 /* Put reference */ 267 gmap_put(gmap); 268 } 269 EXPORT_SYMBOL_GPL(gmap_remove); 270 271 /** 272 * gmap_enable - switch primary space to the guest address space 273 * @gmap: pointer to the guest address space structure 274 */ 275 void gmap_enable(struct gmap *gmap) 276 { 277 S390_lowcore.gmap = (unsigned long) gmap; 278 } 279 EXPORT_SYMBOL_GPL(gmap_enable); 280 281 /** 282 * gmap_disable - switch back to the standard primary address space 283 * @gmap: pointer to the guest address space structure 284 */ 285 void gmap_disable(struct gmap *gmap) 286 { 287 S390_lowcore.gmap = 0UL; 288 } 289 EXPORT_SYMBOL_GPL(gmap_disable); 290 291 /** 292 * gmap_get_enabled - get a pointer to the currently enabled gmap 293 * 294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 295 */ 296 struct gmap *gmap_get_enabled(void) 297 { 298 return (struct gmap *) S390_lowcore.gmap; 299 } 300 EXPORT_SYMBOL_GPL(gmap_get_enabled); 301 302 /* 303 * gmap_alloc_table is assumed to be called with mmap_sem held 304 */ 305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 306 unsigned long init, unsigned long gaddr) 307 { 308 struct page *page; 309 unsigned long *new; 310 311 /* since we dont free the gmap table until gmap_free we can unlock */ 312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 313 if (!page) 314 return -ENOMEM; 315 new = (unsigned long *) page_to_phys(page); 316 crst_table_init(new, init); 317 spin_lock(&gmap->guest_table_lock); 318 if (*table & _REGION_ENTRY_INVALID) { 319 list_add(&page->lru, &gmap->crst_list); 320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 321 (*table & _REGION_ENTRY_TYPE_MASK); 322 page->index = gaddr; 323 page = NULL; 324 } 325 spin_unlock(&gmap->guest_table_lock); 326 if (page) 327 __free_pages(page, CRST_ALLOC_ORDER); 328 return 0; 329 } 330 331 /** 332 * __gmap_segment_gaddr - find virtual address from segment pointer 333 * @entry: pointer to a segment table entry in the guest address space 334 * 335 * Returns the virtual address in the guest address space for the segment 336 */ 337 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 338 { 339 struct page *page; 340 unsigned long offset, mask; 341 342 offset = (unsigned long) entry / sizeof(unsigned long); 343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 345 page = virt_to_page((void *)((unsigned long) entry & mask)); 346 return page->index + offset; 347 } 348 349 /** 350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 351 * @gmap: pointer to the guest address space structure 352 * @vmaddr: address in the host process address space 353 * 354 * Returns 1 if a TLB flush is required 355 */ 356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 357 { 358 unsigned long *entry; 359 int flush = 0; 360 361 BUG_ON(gmap_is_shadow(gmap)); 362 spin_lock(&gmap->guest_table_lock); 363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 364 if (entry) { 365 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 366 *entry = _SEGMENT_ENTRY_EMPTY; 367 } 368 spin_unlock(&gmap->guest_table_lock); 369 return flush; 370 } 371 372 /** 373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 374 * @gmap: pointer to the guest address space structure 375 * @gaddr: address in the guest address space 376 * 377 * Returns 1 if a TLB flush is required 378 */ 379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 380 { 381 unsigned long vmaddr; 382 383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 384 gaddr >> PMD_SHIFT); 385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 386 } 387 388 /** 389 * gmap_unmap_segment - unmap segment from the guest address space 390 * @gmap: pointer to the guest address space structure 391 * @to: address in the guest address space 392 * @len: length of the memory area to unmap 393 * 394 * Returns 0 if the unmap succeeded, -EINVAL if not. 395 */ 396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 397 { 398 unsigned long off; 399 int flush; 400 401 BUG_ON(gmap_is_shadow(gmap)); 402 if ((to | len) & (PMD_SIZE - 1)) 403 return -EINVAL; 404 if (len == 0 || to + len < to) 405 return -EINVAL; 406 407 flush = 0; 408 down_write(&gmap->mm->mmap_sem); 409 for (off = 0; off < len; off += PMD_SIZE) 410 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 411 up_write(&gmap->mm->mmap_sem); 412 if (flush) 413 gmap_flush_tlb(gmap); 414 return 0; 415 } 416 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 417 418 /** 419 * gmap_map_segment - map a segment to the guest address space 420 * @gmap: pointer to the guest address space structure 421 * @from: source address in the parent address space 422 * @to: target address in the guest address space 423 * @len: length of the memory area to map 424 * 425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 426 */ 427 int gmap_map_segment(struct gmap *gmap, unsigned long from, 428 unsigned long to, unsigned long len) 429 { 430 unsigned long off; 431 int flush; 432 433 BUG_ON(gmap_is_shadow(gmap)); 434 if ((from | to | len) & (PMD_SIZE - 1)) 435 return -EINVAL; 436 if (len == 0 || from + len < from || to + len < to || 437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 438 return -EINVAL; 439 440 flush = 0; 441 down_write(&gmap->mm->mmap_sem); 442 for (off = 0; off < len; off += PMD_SIZE) { 443 /* Remove old translation */ 444 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 445 /* Store new translation */ 446 if (radix_tree_insert(&gmap->guest_to_host, 447 (to + off) >> PMD_SHIFT, 448 (void *) from + off)) 449 break; 450 } 451 up_write(&gmap->mm->mmap_sem); 452 if (flush) 453 gmap_flush_tlb(gmap); 454 if (off >= len) 455 return 0; 456 gmap_unmap_segment(gmap, to, len); 457 return -ENOMEM; 458 } 459 EXPORT_SYMBOL_GPL(gmap_map_segment); 460 461 /** 462 * __gmap_translate - translate a guest address to a user space address 463 * @gmap: pointer to guest mapping meta data structure 464 * @gaddr: guest address 465 * 466 * Returns user space address which corresponds to the guest address or 467 * -EFAULT if no such mapping exists. 468 * This function does not establish potentially missing page table entries. 469 * The mmap_sem of the mm that belongs to the address space must be held 470 * when this function gets called. 471 * 472 * Note: Can also be called for shadow gmaps. 473 */ 474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 475 { 476 unsigned long vmaddr; 477 478 vmaddr = (unsigned long) 479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 480 /* Note: guest_to_host is empty for a shadow gmap */ 481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 482 } 483 EXPORT_SYMBOL_GPL(__gmap_translate); 484 485 /** 486 * gmap_translate - translate a guest address to a user space address 487 * @gmap: pointer to guest mapping meta data structure 488 * @gaddr: guest address 489 * 490 * Returns user space address which corresponds to the guest address or 491 * -EFAULT if no such mapping exists. 492 * This function does not establish potentially missing page table entries. 493 */ 494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 495 { 496 unsigned long rc; 497 498 down_read(&gmap->mm->mmap_sem); 499 rc = __gmap_translate(gmap, gaddr); 500 up_read(&gmap->mm->mmap_sem); 501 return rc; 502 } 503 EXPORT_SYMBOL_GPL(gmap_translate); 504 505 /** 506 * gmap_unlink - disconnect a page table from the gmap shadow tables 507 * @gmap: pointer to guest mapping meta data structure 508 * @table: pointer to the host page table 509 * @vmaddr: vm address associated with the host page table 510 */ 511 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 512 unsigned long vmaddr) 513 { 514 struct gmap *gmap; 515 int flush; 516 517 rcu_read_lock(); 518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 520 if (flush) 521 gmap_flush_tlb(gmap); 522 } 523 rcu_read_unlock(); 524 } 525 526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 527 unsigned long gaddr); 528 529 /** 530 * gmap_link - set up shadow page tables to connect a host to a guest address 531 * @gmap: pointer to guest mapping meta data structure 532 * @gaddr: guest address 533 * @vmaddr: vm address 534 * 535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 536 * if the vm address is already mapped to a different guest segment. 537 * The mmap_sem of the mm that belongs to the address space must be held 538 * when this function gets called. 539 */ 540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 541 { 542 struct mm_struct *mm; 543 unsigned long *table; 544 spinlock_t *ptl; 545 pgd_t *pgd; 546 p4d_t *p4d; 547 pud_t *pud; 548 pmd_t *pmd; 549 u64 unprot; 550 int rc; 551 552 BUG_ON(gmap_is_shadow(gmap)); 553 /* Create higher level tables in the gmap page table */ 554 table = gmap->table; 555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 557 if ((*table & _REGION_ENTRY_INVALID) && 558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 559 gaddr & _REGION1_MASK)) 560 return -ENOMEM; 561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 562 } 563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 565 if ((*table & _REGION_ENTRY_INVALID) && 566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 567 gaddr & _REGION2_MASK)) 568 return -ENOMEM; 569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 570 } 571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 573 if ((*table & _REGION_ENTRY_INVALID) && 574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 575 gaddr & _REGION3_MASK)) 576 return -ENOMEM; 577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 578 } 579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 580 /* Walk the parent mm page table */ 581 mm = gmap->mm; 582 pgd = pgd_offset(mm, vmaddr); 583 VM_BUG_ON(pgd_none(*pgd)); 584 p4d = p4d_offset(pgd, vmaddr); 585 VM_BUG_ON(p4d_none(*p4d)); 586 pud = pud_offset(p4d, vmaddr); 587 VM_BUG_ON(pud_none(*pud)); 588 /* large puds cannot yet be handled */ 589 if (pud_large(*pud)) 590 return -EFAULT; 591 pmd = pmd_offset(pud, vmaddr); 592 VM_BUG_ON(pmd_none(*pmd)); 593 /* Are we allowed to use huge pages? */ 594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 595 return -EFAULT; 596 /* Link gmap segment table entry location to page table. */ 597 rc = radix_tree_preload(GFP_KERNEL); 598 if (rc) 599 return rc; 600 ptl = pmd_lock(mm, pmd); 601 spin_lock(&gmap->guest_table_lock); 602 if (*table == _SEGMENT_ENTRY_EMPTY) { 603 rc = radix_tree_insert(&gmap->host_to_guest, 604 vmaddr >> PMD_SHIFT, table); 605 if (!rc) { 606 if (pmd_large(*pmd)) { 607 *table = (pmd_val(*pmd) & 608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 609 | _SEGMENT_ENTRY_GMAP_UC; 610 } else 611 *table = pmd_val(*pmd) & 612 _SEGMENT_ENTRY_HARDWARE_BITS; 613 } 614 } else if (*table & _SEGMENT_ENTRY_PROTECT && 615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 616 unprot = (u64)*table; 617 unprot &= ~_SEGMENT_ENTRY_PROTECT; 618 unprot |= _SEGMENT_ENTRY_GMAP_UC; 619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 620 } 621 spin_unlock(&gmap->guest_table_lock); 622 spin_unlock(ptl); 623 radix_tree_preload_end(); 624 return rc; 625 } 626 627 /** 628 * gmap_fault - resolve a fault on a guest address 629 * @gmap: pointer to guest mapping meta data structure 630 * @gaddr: guest address 631 * @fault_flags: flags to pass down to handle_mm_fault() 632 * 633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 634 * if the vm address is already mapped to a different guest segment. 635 */ 636 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 637 unsigned int fault_flags) 638 { 639 unsigned long vmaddr; 640 int rc; 641 bool unlocked; 642 643 down_read(&gmap->mm->mmap_sem); 644 645 retry: 646 unlocked = false; 647 vmaddr = __gmap_translate(gmap, gaddr); 648 if (IS_ERR_VALUE(vmaddr)) { 649 rc = vmaddr; 650 goto out_up; 651 } 652 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags, 653 &unlocked)) { 654 rc = -EFAULT; 655 goto out_up; 656 } 657 /* 658 * In the case that fixup_user_fault unlocked the mmap_sem during 659 * faultin redo __gmap_translate to not race with a map/unmap_segment. 660 */ 661 if (unlocked) 662 goto retry; 663 664 rc = __gmap_link(gmap, gaddr, vmaddr); 665 out_up: 666 up_read(&gmap->mm->mmap_sem); 667 return rc; 668 } 669 EXPORT_SYMBOL_GPL(gmap_fault); 670 671 /* 672 * this function is assumed to be called with mmap_sem held 673 */ 674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 675 { 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 /* Get pointer to the page table entry */ 686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 687 if (likely(ptep)) 688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 689 pte_unmap_unlock(ptep, ptl); 690 } 691 } 692 EXPORT_SYMBOL_GPL(__gmap_zap); 693 694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 695 { 696 unsigned long gaddr, vmaddr, size; 697 struct vm_area_struct *vma; 698 699 down_read(&gmap->mm->mmap_sem); 700 for (gaddr = from; gaddr < to; 701 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 702 /* Find the vm address for the guest address */ 703 vmaddr = (unsigned long) 704 radix_tree_lookup(&gmap->guest_to_host, 705 gaddr >> PMD_SHIFT); 706 if (!vmaddr) 707 continue; 708 vmaddr |= gaddr & ~PMD_MASK; 709 /* Find vma in the parent mm */ 710 vma = find_vma(gmap->mm, vmaddr); 711 if (!vma) 712 continue; 713 /* 714 * We do not discard pages that are backed by 715 * hugetlbfs, so we don't have to refault them. 716 */ 717 if (is_vm_hugetlb_page(vma)) 718 continue; 719 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 720 zap_page_range(vma, vmaddr, size); 721 } 722 up_read(&gmap->mm->mmap_sem); 723 } 724 EXPORT_SYMBOL_GPL(gmap_discard); 725 726 static LIST_HEAD(gmap_notifier_list); 727 static DEFINE_SPINLOCK(gmap_notifier_lock); 728 729 /** 730 * gmap_register_pte_notifier - register a pte invalidation callback 731 * @nb: pointer to the gmap notifier block 732 */ 733 void gmap_register_pte_notifier(struct gmap_notifier *nb) 734 { 735 spin_lock(&gmap_notifier_lock); 736 list_add_rcu(&nb->list, &gmap_notifier_list); 737 spin_unlock(&gmap_notifier_lock); 738 } 739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 740 741 /** 742 * gmap_unregister_pte_notifier - remove a pte invalidation callback 743 * @nb: pointer to the gmap notifier block 744 */ 745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 746 { 747 spin_lock(&gmap_notifier_lock); 748 list_del_rcu(&nb->list); 749 spin_unlock(&gmap_notifier_lock); 750 synchronize_rcu(); 751 } 752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 753 754 /** 755 * gmap_call_notifier - call all registered invalidation callbacks 756 * @gmap: pointer to guest mapping meta data structure 757 * @start: start virtual address in the guest address space 758 * @end: end virtual address in the guest address space 759 */ 760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 761 unsigned long end) 762 { 763 struct gmap_notifier *nb; 764 765 list_for_each_entry(nb, &gmap_notifier_list, list) 766 nb->notifier_call(gmap, start, end); 767 } 768 769 /** 770 * gmap_table_walk - walk the gmap page tables 771 * @gmap: pointer to guest mapping meta data structure 772 * @gaddr: virtual address in the guest address space 773 * @level: page table level to stop at 774 * 775 * Returns a table entry pointer for the given guest address and @level 776 * @level=0 : returns a pointer to a page table table entry (or NULL) 777 * @level=1 : returns a pointer to a segment table entry (or NULL) 778 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 779 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 780 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 781 * 782 * Returns NULL if the gmap page tables could not be walked to the 783 * requested level. 784 * 785 * Note: Can also be called for shadow gmaps. 786 */ 787 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 788 unsigned long gaddr, int level) 789 { 790 unsigned long *table; 791 792 if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4)) 793 return NULL; 794 if (gmap_is_shadow(gmap) && gmap->removed) 795 return NULL; 796 if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11))) 797 return NULL; 798 table = gmap->table; 799 switch (gmap->asce & _ASCE_TYPE_MASK) { 800 case _ASCE_TYPE_REGION1: 801 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 802 if (level == 4) 803 break; 804 if (*table & _REGION_ENTRY_INVALID) 805 return NULL; 806 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 807 /* Fallthrough */ 808 case _ASCE_TYPE_REGION2: 809 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 810 if (level == 3) 811 break; 812 if (*table & _REGION_ENTRY_INVALID) 813 return NULL; 814 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 815 /* Fallthrough */ 816 case _ASCE_TYPE_REGION3: 817 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 818 if (level == 2) 819 break; 820 if (*table & _REGION_ENTRY_INVALID) 821 return NULL; 822 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 823 /* Fallthrough */ 824 case _ASCE_TYPE_SEGMENT: 825 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 826 if (level == 1) 827 break; 828 if (*table & _REGION_ENTRY_INVALID) 829 return NULL; 830 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 831 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 832 } 833 return table; 834 } 835 836 /** 837 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 838 * and return the pte pointer 839 * @gmap: pointer to guest mapping meta data structure 840 * @gaddr: virtual address in the guest address space 841 * @ptl: pointer to the spinlock pointer 842 * 843 * Returns a pointer to the locked pte for a guest address, or NULL 844 */ 845 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 846 spinlock_t **ptl) 847 { 848 unsigned long *table; 849 850 BUG_ON(gmap_is_shadow(gmap)); 851 /* Walk the gmap page table, lock and get pte pointer */ 852 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 853 if (!table || *table & _SEGMENT_ENTRY_INVALID) 854 return NULL; 855 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 856 } 857 858 /** 859 * gmap_pte_op_fixup - force a page in and connect the gmap page table 860 * @gmap: pointer to guest mapping meta data structure 861 * @gaddr: virtual address in the guest address space 862 * @vmaddr: address in the host process address space 863 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 864 * 865 * Returns 0 if the caller can retry __gmap_translate (might fail again), 866 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 867 * up or connecting the gmap page table. 868 */ 869 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 870 unsigned long vmaddr, int prot) 871 { 872 struct mm_struct *mm = gmap->mm; 873 unsigned int fault_flags; 874 bool unlocked = false; 875 876 BUG_ON(gmap_is_shadow(gmap)); 877 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 878 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked)) 879 return -EFAULT; 880 if (unlocked) 881 /* lost mmap_sem, caller has to retry __gmap_translate */ 882 return 0; 883 /* Connect the page tables */ 884 return __gmap_link(gmap, gaddr, vmaddr); 885 } 886 887 /** 888 * gmap_pte_op_end - release the page table lock 889 * @ptl: pointer to the spinlock pointer 890 */ 891 static void gmap_pte_op_end(spinlock_t *ptl) 892 { 893 if (ptl) 894 spin_unlock(ptl); 895 } 896 897 /** 898 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 899 * and return the pmd pointer 900 * @gmap: pointer to guest mapping meta data structure 901 * @gaddr: virtual address in the guest address space 902 * 903 * Returns a pointer to the pmd for a guest address, or NULL 904 */ 905 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 906 { 907 pmd_t *pmdp; 908 909 BUG_ON(gmap_is_shadow(gmap)); 910 spin_lock(&gmap->guest_table_lock); 911 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 912 913 if (!pmdp || pmd_none(*pmdp)) { 914 spin_unlock(&gmap->guest_table_lock); 915 return NULL; 916 } 917 918 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 919 if (!pmd_large(*pmdp)) 920 spin_unlock(&gmap->guest_table_lock); 921 return pmdp; 922 } 923 924 /** 925 * gmap_pmd_op_end - release the guest_table_lock if needed 926 * @gmap: pointer to the guest mapping meta data structure 927 * @pmdp: pointer to the pmd 928 */ 929 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 930 { 931 if (pmd_large(*pmdp)) 932 spin_unlock(&gmap->guest_table_lock); 933 } 934 935 /* 936 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 937 * @pmdp: pointer to the pmd to be protected 938 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 939 * @bits: notification bits to set 940 * 941 * Returns: 942 * 0 if successfully protected 943 * -EAGAIN if a fixup is needed 944 * -EINVAL if unsupported notifier bits have been specified 945 * 946 * Expected to be called with sg->mm->mmap_sem in read and 947 * guest_table_lock held. 948 */ 949 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 950 pmd_t *pmdp, int prot, unsigned long bits) 951 { 952 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 953 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 954 pmd_t new = *pmdp; 955 956 /* Fixup needed */ 957 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 958 return -EAGAIN; 959 960 if (prot == PROT_NONE && !pmd_i) { 961 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 962 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 963 } 964 965 if (prot == PROT_READ && !pmd_p) { 966 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 967 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 968 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 969 } 970 971 if (bits & GMAP_NOTIFY_MPROT) 972 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 973 974 /* Shadow GMAP protection needs split PMDs */ 975 if (bits & GMAP_NOTIFY_SHADOW) 976 return -EINVAL; 977 978 return 0; 979 } 980 981 /* 982 * gmap_protect_pte - remove access rights to memory and set pgste bits 983 * @gmap: pointer to guest mapping meta data structure 984 * @gaddr: virtual address in the guest address space 985 * @pmdp: pointer to the pmd associated with the pte 986 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 987 * @bits: notification bits to set 988 * 989 * Returns 0 if successfully protected, -ENOMEM if out of memory and 990 * -EAGAIN if a fixup is needed. 991 * 992 * Expected to be called with sg->mm->mmap_sem in read 993 */ 994 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 995 pmd_t *pmdp, int prot, unsigned long bits) 996 { 997 int rc; 998 pte_t *ptep; 999 spinlock_t *ptl = NULL; 1000 unsigned long pbits = 0; 1001 1002 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1003 return -EAGAIN; 1004 1005 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1006 if (!ptep) 1007 return -ENOMEM; 1008 1009 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1010 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1011 /* Protect and unlock. */ 1012 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1013 gmap_pte_op_end(ptl); 1014 return rc; 1015 } 1016 1017 /* 1018 * gmap_protect_range - remove access rights to memory and set pgste bits 1019 * @gmap: pointer to guest mapping meta data structure 1020 * @gaddr: virtual address in the guest address space 1021 * @len: size of area 1022 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1023 * @bits: pgste notification bits to set 1024 * 1025 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1026 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1027 * 1028 * Called with sg->mm->mmap_sem in read. 1029 */ 1030 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1031 unsigned long len, int prot, unsigned long bits) 1032 { 1033 unsigned long vmaddr, dist; 1034 pmd_t *pmdp; 1035 int rc; 1036 1037 BUG_ON(gmap_is_shadow(gmap)); 1038 while (len) { 1039 rc = -EAGAIN; 1040 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1041 if (pmdp) { 1042 if (!pmd_large(*pmdp)) { 1043 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1044 bits); 1045 if (!rc) { 1046 len -= PAGE_SIZE; 1047 gaddr += PAGE_SIZE; 1048 } 1049 } else { 1050 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1051 bits); 1052 if (!rc) { 1053 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1054 len = len < dist ? 0 : len - dist; 1055 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1056 } 1057 } 1058 gmap_pmd_op_end(gmap, pmdp); 1059 } 1060 if (rc) { 1061 if (rc == -EINVAL) 1062 return rc; 1063 1064 /* -EAGAIN, fixup of userspace mm and gmap */ 1065 vmaddr = __gmap_translate(gmap, gaddr); 1066 if (IS_ERR_VALUE(vmaddr)) 1067 return vmaddr; 1068 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1069 if (rc) 1070 return rc; 1071 } 1072 } 1073 return 0; 1074 } 1075 1076 /** 1077 * gmap_mprotect_notify - change access rights for a range of ptes and 1078 * call the notifier if any pte changes again 1079 * @gmap: pointer to guest mapping meta data structure 1080 * @gaddr: virtual address in the guest address space 1081 * @len: size of area 1082 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1083 * 1084 * Returns 0 if for each page in the given range a gmap mapping exists, 1085 * the new access rights could be set and the notifier could be armed. 1086 * If the gmap mapping is missing for one or more pages -EFAULT is 1087 * returned. If no memory could be allocated -ENOMEM is returned. 1088 * This function establishes missing page table entries. 1089 */ 1090 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1091 unsigned long len, int prot) 1092 { 1093 int rc; 1094 1095 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1096 return -EINVAL; 1097 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1098 return -EINVAL; 1099 down_read(&gmap->mm->mmap_sem); 1100 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1101 up_read(&gmap->mm->mmap_sem); 1102 return rc; 1103 } 1104 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1105 1106 /** 1107 * gmap_read_table - get an unsigned long value from a guest page table using 1108 * absolute addressing, without marking the page referenced. 1109 * @gmap: pointer to guest mapping meta data structure 1110 * @gaddr: virtual address in the guest address space 1111 * @val: pointer to the unsigned long value to return 1112 * 1113 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1114 * if reading using the virtual address failed. -EINVAL if called on a gmap 1115 * shadow. 1116 * 1117 * Called with gmap->mm->mmap_sem in read. 1118 */ 1119 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1120 { 1121 unsigned long address, vmaddr; 1122 spinlock_t *ptl; 1123 pte_t *ptep, pte; 1124 int rc; 1125 1126 if (gmap_is_shadow(gmap)) 1127 return -EINVAL; 1128 1129 while (1) { 1130 rc = -EAGAIN; 1131 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1132 if (ptep) { 1133 pte = *ptep; 1134 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1135 address = pte_val(pte) & PAGE_MASK; 1136 address += gaddr & ~PAGE_MASK; 1137 *val = *(unsigned long *) address; 1138 pte_val(*ptep) |= _PAGE_YOUNG; 1139 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1140 rc = 0; 1141 } 1142 gmap_pte_op_end(ptl); 1143 } 1144 if (!rc) 1145 break; 1146 vmaddr = __gmap_translate(gmap, gaddr); 1147 if (IS_ERR_VALUE(vmaddr)) { 1148 rc = vmaddr; 1149 break; 1150 } 1151 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1152 if (rc) 1153 break; 1154 } 1155 return rc; 1156 } 1157 EXPORT_SYMBOL_GPL(gmap_read_table); 1158 1159 /** 1160 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1161 * @sg: pointer to the shadow guest address space structure 1162 * @vmaddr: vm address associated with the rmap 1163 * @rmap: pointer to the rmap structure 1164 * 1165 * Called with the sg->guest_table_lock 1166 */ 1167 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1168 struct gmap_rmap *rmap) 1169 { 1170 void __rcu **slot; 1171 1172 BUG_ON(!gmap_is_shadow(sg)); 1173 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1174 if (slot) { 1175 rmap->next = radix_tree_deref_slot_protected(slot, 1176 &sg->guest_table_lock); 1177 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1178 } else { 1179 rmap->next = NULL; 1180 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1181 rmap); 1182 } 1183 } 1184 1185 /** 1186 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1187 * @sg: pointer to the shadow guest address space structure 1188 * @raddr: rmap address in the shadow gmap 1189 * @paddr: address in the parent guest address space 1190 * @len: length of the memory area to protect 1191 * 1192 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1193 * if out of memory and -EFAULT if paddr is invalid. 1194 */ 1195 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1196 unsigned long paddr, unsigned long len) 1197 { 1198 struct gmap *parent; 1199 struct gmap_rmap *rmap; 1200 unsigned long vmaddr; 1201 spinlock_t *ptl; 1202 pte_t *ptep; 1203 int rc; 1204 1205 BUG_ON(!gmap_is_shadow(sg)); 1206 parent = sg->parent; 1207 while (len) { 1208 vmaddr = __gmap_translate(parent, paddr); 1209 if (IS_ERR_VALUE(vmaddr)) 1210 return vmaddr; 1211 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1212 if (!rmap) 1213 return -ENOMEM; 1214 rmap->raddr = raddr; 1215 rc = radix_tree_preload(GFP_KERNEL); 1216 if (rc) { 1217 kfree(rmap); 1218 return rc; 1219 } 1220 rc = -EAGAIN; 1221 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1222 if (ptep) { 1223 spin_lock(&sg->guest_table_lock); 1224 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1225 PGSTE_VSIE_BIT); 1226 if (!rc) 1227 gmap_insert_rmap(sg, vmaddr, rmap); 1228 spin_unlock(&sg->guest_table_lock); 1229 gmap_pte_op_end(ptl); 1230 } 1231 radix_tree_preload_end(); 1232 if (rc) { 1233 kfree(rmap); 1234 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1235 if (rc) 1236 return rc; 1237 continue; 1238 } 1239 paddr += PAGE_SIZE; 1240 len -= PAGE_SIZE; 1241 } 1242 return 0; 1243 } 1244 1245 #define _SHADOW_RMAP_MASK 0x7 1246 #define _SHADOW_RMAP_REGION1 0x5 1247 #define _SHADOW_RMAP_REGION2 0x4 1248 #define _SHADOW_RMAP_REGION3 0x3 1249 #define _SHADOW_RMAP_SEGMENT 0x2 1250 #define _SHADOW_RMAP_PGTABLE 0x1 1251 1252 /** 1253 * gmap_idte_one - invalidate a single region or segment table entry 1254 * @asce: region or segment table *origin* + table-type bits 1255 * @vaddr: virtual address to identify the table entry to flush 1256 * 1257 * The invalid bit of a single region or segment table entry is set 1258 * and the associated TLB entries depending on the entry are flushed. 1259 * The table-type of the @asce identifies the portion of the @vaddr 1260 * that is used as the invalidation index. 1261 */ 1262 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1263 { 1264 asm volatile( 1265 " .insn rrf,0xb98e0000,%0,%1,0,0" 1266 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1267 } 1268 1269 /** 1270 * gmap_unshadow_page - remove a page from a shadow page table 1271 * @sg: pointer to the shadow guest address space structure 1272 * @raddr: rmap address in the shadow guest address space 1273 * 1274 * Called with the sg->guest_table_lock 1275 */ 1276 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1277 { 1278 unsigned long *table; 1279 1280 BUG_ON(!gmap_is_shadow(sg)); 1281 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1282 if (!table || *table & _PAGE_INVALID) 1283 return; 1284 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1285 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1286 } 1287 1288 /** 1289 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1290 * @sg: pointer to the shadow guest address space structure 1291 * @raddr: rmap address in the shadow guest address space 1292 * @pgt: pointer to the start of a shadow page table 1293 * 1294 * Called with the sg->guest_table_lock 1295 */ 1296 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1297 unsigned long *pgt) 1298 { 1299 int i; 1300 1301 BUG_ON(!gmap_is_shadow(sg)); 1302 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1303 pgt[i] = _PAGE_INVALID; 1304 } 1305 1306 /** 1307 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1308 * @sg: pointer to the shadow guest address space structure 1309 * @raddr: address in the shadow guest address space 1310 * 1311 * Called with the sg->guest_table_lock 1312 */ 1313 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1314 { 1315 unsigned long sto, *ste, *pgt; 1316 struct page *page; 1317 1318 BUG_ON(!gmap_is_shadow(sg)); 1319 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1320 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1321 return; 1322 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1323 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1324 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1325 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1326 *ste = _SEGMENT_ENTRY_EMPTY; 1327 __gmap_unshadow_pgt(sg, raddr, pgt); 1328 /* Free page table */ 1329 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1330 list_del(&page->lru); 1331 page_table_free_pgste(page); 1332 } 1333 1334 /** 1335 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1336 * @sg: pointer to the shadow guest address space structure 1337 * @raddr: rmap address in the shadow guest address space 1338 * @sgt: pointer to the start of a shadow segment table 1339 * 1340 * Called with the sg->guest_table_lock 1341 */ 1342 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1343 unsigned long *sgt) 1344 { 1345 unsigned long *pgt; 1346 struct page *page; 1347 int i; 1348 1349 BUG_ON(!gmap_is_shadow(sg)); 1350 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1351 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1352 continue; 1353 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1354 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1355 __gmap_unshadow_pgt(sg, raddr, pgt); 1356 /* Free page table */ 1357 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1358 list_del(&page->lru); 1359 page_table_free_pgste(page); 1360 } 1361 } 1362 1363 /** 1364 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1365 * @sg: pointer to the shadow guest address space structure 1366 * @raddr: rmap address in the shadow guest address space 1367 * 1368 * Called with the shadow->guest_table_lock 1369 */ 1370 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1371 { 1372 unsigned long r3o, *r3e, *sgt; 1373 struct page *page; 1374 1375 BUG_ON(!gmap_is_shadow(sg)); 1376 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1377 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1378 return; 1379 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1380 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1381 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1382 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1383 *r3e = _REGION3_ENTRY_EMPTY; 1384 __gmap_unshadow_sgt(sg, raddr, sgt); 1385 /* Free segment table */ 1386 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1387 list_del(&page->lru); 1388 __free_pages(page, CRST_ALLOC_ORDER); 1389 } 1390 1391 /** 1392 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1393 * @sg: pointer to the shadow guest address space structure 1394 * @raddr: address in the shadow guest address space 1395 * @r3t: pointer to the start of a shadow region-3 table 1396 * 1397 * Called with the sg->guest_table_lock 1398 */ 1399 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1400 unsigned long *r3t) 1401 { 1402 unsigned long *sgt; 1403 struct page *page; 1404 int i; 1405 1406 BUG_ON(!gmap_is_shadow(sg)); 1407 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1408 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1409 continue; 1410 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1411 r3t[i] = _REGION3_ENTRY_EMPTY; 1412 __gmap_unshadow_sgt(sg, raddr, sgt); 1413 /* Free segment table */ 1414 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1415 list_del(&page->lru); 1416 __free_pages(page, CRST_ALLOC_ORDER); 1417 } 1418 } 1419 1420 /** 1421 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1422 * @sg: pointer to the shadow guest address space structure 1423 * @raddr: rmap address in the shadow guest address space 1424 * 1425 * Called with the sg->guest_table_lock 1426 */ 1427 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1428 { 1429 unsigned long r2o, *r2e, *r3t; 1430 struct page *page; 1431 1432 BUG_ON(!gmap_is_shadow(sg)); 1433 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1434 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1435 return; 1436 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1437 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1438 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1439 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1440 *r2e = _REGION2_ENTRY_EMPTY; 1441 __gmap_unshadow_r3t(sg, raddr, r3t); 1442 /* Free region 3 table */ 1443 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1444 list_del(&page->lru); 1445 __free_pages(page, CRST_ALLOC_ORDER); 1446 } 1447 1448 /** 1449 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1450 * @sg: pointer to the shadow guest address space structure 1451 * @raddr: rmap address in the shadow guest address space 1452 * @r2t: pointer to the start of a shadow region-2 table 1453 * 1454 * Called with the sg->guest_table_lock 1455 */ 1456 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1457 unsigned long *r2t) 1458 { 1459 unsigned long *r3t; 1460 struct page *page; 1461 int i; 1462 1463 BUG_ON(!gmap_is_shadow(sg)); 1464 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1465 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1466 continue; 1467 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1468 r2t[i] = _REGION2_ENTRY_EMPTY; 1469 __gmap_unshadow_r3t(sg, raddr, r3t); 1470 /* Free region 3 table */ 1471 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1472 list_del(&page->lru); 1473 __free_pages(page, CRST_ALLOC_ORDER); 1474 } 1475 } 1476 1477 /** 1478 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1479 * @sg: pointer to the shadow guest address space structure 1480 * @raddr: rmap address in the shadow guest address space 1481 * 1482 * Called with the sg->guest_table_lock 1483 */ 1484 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1485 { 1486 unsigned long r1o, *r1e, *r2t; 1487 struct page *page; 1488 1489 BUG_ON(!gmap_is_shadow(sg)); 1490 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1491 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1492 return; 1493 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1494 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1495 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1496 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1497 *r1e = _REGION1_ENTRY_EMPTY; 1498 __gmap_unshadow_r2t(sg, raddr, r2t); 1499 /* Free region 2 table */ 1500 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1501 list_del(&page->lru); 1502 __free_pages(page, CRST_ALLOC_ORDER); 1503 } 1504 1505 /** 1506 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1507 * @sg: pointer to the shadow guest address space structure 1508 * @raddr: rmap address in the shadow guest address space 1509 * @r1t: pointer to the start of a shadow region-1 table 1510 * 1511 * Called with the shadow->guest_table_lock 1512 */ 1513 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1514 unsigned long *r1t) 1515 { 1516 unsigned long asce, *r2t; 1517 struct page *page; 1518 int i; 1519 1520 BUG_ON(!gmap_is_shadow(sg)); 1521 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1522 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1523 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1524 continue; 1525 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1526 __gmap_unshadow_r2t(sg, raddr, r2t); 1527 /* Clear entry and flush translation r1t -> r2t */ 1528 gmap_idte_one(asce, raddr); 1529 r1t[i] = _REGION1_ENTRY_EMPTY; 1530 /* Free region 2 table */ 1531 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1532 list_del(&page->lru); 1533 __free_pages(page, CRST_ALLOC_ORDER); 1534 } 1535 } 1536 1537 /** 1538 * gmap_unshadow - remove a shadow page table completely 1539 * @sg: pointer to the shadow guest address space structure 1540 * 1541 * Called with sg->guest_table_lock 1542 */ 1543 static void gmap_unshadow(struct gmap *sg) 1544 { 1545 unsigned long *table; 1546 1547 BUG_ON(!gmap_is_shadow(sg)); 1548 if (sg->removed) 1549 return; 1550 sg->removed = 1; 1551 gmap_call_notifier(sg, 0, -1UL); 1552 gmap_flush_tlb(sg); 1553 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1554 switch (sg->asce & _ASCE_TYPE_MASK) { 1555 case _ASCE_TYPE_REGION1: 1556 __gmap_unshadow_r1t(sg, 0, table); 1557 break; 1558 case _ASCE_TYPE_REGION2: 1559 __gmap_unshadow_r2t(sg, 0, table); 1560 break; 1561 case _ASCE_TYPE_REGION3: 1562 __gmap_unshadow_r3t(sg, 0, table); 1563 break; 1564 case _ASCE_TYPE_SEGMENT: 1565 __gmap_unshadow_sgt(sg, 0, table); 1566 break; 1567 } 1568 } 1569 1570 /** 1571 * gmap_find_shadow - find a specific asce in the list of shadow tables 1572 * @parent: pointer to the parent gmap 1573 * @asce: ASCE for which the shadow table is created 1574 * @edat_level: edat level to be used for the shadow translation 1575 * 1576 * Returns the pointer to a gmap if a shadow table with the given asce is 1577 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1578 * otherwise NULL 1579 */ 1580 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1581 int edat_level) 1582 { 1583 struct gmap *sg; 1584 1585 list_for_each_entry(sg, &parent->children, list) { 1586 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1587 sg->removed) 1588 continue; 1589 if (!sg->initialized) 1590 return ERR_PTR(-EAGAIN); 1591 atomic_inc(&sg->ref_count); 1592 return sg; 1593 } 1594 return NULL; 1595 } 1596 1597 /** 1598 * gmap_shadow_valid - check if a shadow guest address space matches the 1599 * given properties and is still valid 1600 * @sg: pointer to the shadow guest address space structure 1601 * @asce: ASCE for which the shadow table is requested 1602 * @edat_level: edat level to be used for the shadow translation 1603 * 1604 * Returns 1 if the gmap shadow is still valid and matches the given 1605 * properties, the caller can continue using it. Returns 0 otherwise, the 1606 * caller has to request a new shadow gmap in this case. 1607 * 1608 */ 1609 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1610 { 1611 if (sg->removed) 1612 return 0; 1613 return sg->orig_asce == asce && sg->edat_level == edat_level; 1614 } 1615 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1616 1617 /** 1618 * gmap_shadow - create/find a shadow guest address space 1619 * @parent: pointer to the parent gmap 1620 * @asce: ASCE for which the shadow table is created 1621 * @edat_level: edat level to be used for the shadow translation 1622 * 1623 * The pages of the top level page table referred by the asce parameter 1624 * will be set to read-only and marked in the PGSTEs of the kvm process. 1625 * The shadow table will be removed automatically on any change to the 1626 * PTE mapping for the source table. 1627 * 1628 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1629 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1630 * parent gmap table could not be protected. 1631 */ 1632 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1633 int edat_level) 1634 { 1635 struct gmap *sg, *new; 1636 unsigned long limit; 1637 int rc; 1638 1639 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1640 BUG_ON(gmap_is_shadow(parent)); 1641 spin_lock(&parent->shadow_lock); 1642 sg = gmap_find_shadow(parent, asce, edat_level); 1643 spin_unlock(&parent->shadow_lock); 1644 if (sg) 1645 return sg; 1646 /* Create a new shadow gmap */ 1647 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1648 if (asce & _ASCE_REAL_SPACE) 1649 limit = -1UL; 1650 new = gmap_alloc(limit); 1651 if (!new) 1652 return ERR_PTR(-ENOMEM); 1653 new->mm = parent->mm; 1654 new->parent = gmap_get(parent); 1655 new->orig_asce = asce; 1656 new->edat_level = edat_level; 1657 new->initialized = false; 1658 spin_lock(&parent->shadow_lock); 1659 /* Recheck if another CPU created the same shadow */ 1660 sg = gmap_find_shadow(parent, asce, edat_level); 1661 if (sg) { 1662 spin_unlock(&parent->shadow_lock); 1663 gmap_free(new); 1664 return sg; 1665 } 1666 if (asce & _ASCE_REAL_SPACE) { 1667 /* only allow one real-space gmap shadow */ 1668 list_for_each_entry(sg, &parent->children, list) { 1669 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1670 spin_lock(&sg->guest_table_lock); 1671 gmap_unshadow(sg); 1672 spin_unlock(&sg->guest_table_lock); 1673 list_del(&sg->list); 1674 gmap_put(sg); 1675 break; 1676 } 1677 } 1678 } 1679 atomic_set(&new->ref_count, 2); 1680 list_add(&new->list, &parent->children); 1681 if (asce & _ASCE_REAL_SPACE) { 1682 /* nothing to protect, return right away */ 1683 new->initialized = true; 1684 spin_unlock(&parent->shadow_lock); 1685 return new; 1686 } 1687 spin_unlock(&parent->shadow_lock); 1688 /* protect after insertion, so it will get properly invalidated */ 1689 down_read(&parent->mm->mmap_sem); 1690 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1691 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1692 PROT_READ, GMAP_NOTIFY_SHADOW); 1693 up_read(&parent->mm->mmap_sem); 1694 spin_lock(&parent->shadow_lock); 1695 new->initialized = true; 1696 if (rc) { 1697 list_del(&new->list); 1698 gmap_free(new); 1699 new = ERR_PTR(rc); 1700 } 1701 spin_unlock(&parent->shadow_lock); 1702 return new; 1703 } 1704 EXPORT_SYMBOL_GPL(gmap_shadow); 1705 1706 /** 1707 * gmap_shadow_r2t - create an empty shadow region 2 table 1708 * @sg: pointer to the shadow guest address space structure 1709 * @saddr: faulting address in the shadow gmap 1710 * @r2t: parent gmap address of the region 2 table to get shadowed 1711 * @fake: r2t references contiguous guest memory block, not a r2t 1712 * 1713 * The r2t parameter specifies the address of the source table. The 1714 * four pages of the source table are made read-only in the parent gmap 1715 * address space. A write to the source table area @r2t will automatically 1716 * remove the shadow r2 table and all of its decendents. 1717 * 1718 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1719 * shadow table structure is incomplete, -ENOMEM if out of memory and 1720 * -EFAULT if an address in the parent gmap could not be resolved. 1721 * 1722 * Called with sg->mm->mmap_sem in read. 1723 */ 1724 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1725 int fake) 1726 { 1727 unsigned long raddr, origin, offset, len; 1728 unsigned long *s_r2t, *table; 1729 struct page *page; 1730 int rc; 1731 1732 BUG_ON(!gmap_is_shadow(sg)); 1733 /* Allocate a shadow region second table */ 1734 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1735 if (!page) 1736 return -ENOMEM; 1737 page->index = r2t & _REGION_ENTRY_ORIGIN; 1738 if (fake) 1739 page->index |= GMAP_SHADOW_FAKE_TABLE; 1740 s_r2t = (unsigned long *) page_to_phys(page); 1741 /* Install shadow region second table */ 1742 spin_lock(&sg->guest_table_lock); 1743 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1744 if (!table) { 1745 rc = -EAGAIN; /* Race with unshadow */ 1746 goto out_free; 1747 } 1748 if (!(*table & _REGION_ENTRY_INVALID)) { 1749 rc = 0; /* Already established */ 1750 goto out_free; 1751 } else if (*table & _REGION_ENTRY_ORIGIN) { 1752 rc = -EAGAIN; /* Race with shadow */ 1753 goto out_free; 1754 } 1755 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1756 /* mark as invalid as long as the parent table is not protected */ 1757 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1758 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1759 if (sg->edat_level >= 1) 1760 *table |= (r2t & _REGION_ENTRY_PROTECT); 1761 list_add(&page->lru, &sg->crst_list); 1762 if (fake) { 1763 /* nothing to protect for fake tables */ 1764 *table &= ~_REGION_ENTRY_INVALID; 1765 spin_unlock(&sg->guest_table_lock); 1766 return 0; 1767 } 1768 spin_unlock(&sg->guest_table_lock); 1769 /* Make r2t read-only in parent gmap page table */ 1770 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1771 origin = r2t & _REGION_ENTRY_ORIGIN; 1772 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1773 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1774 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1775 spin_lock(&sg->guest_table_lock); 1776 if (!rc) { 1777 table = gmap_table_walk(sg, saddr, 4); 1778 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1779 (unsigned long) s_r2t) 1780 rc = -EAGAIN; /* Race with unshadow */ 1781 else 1782 *table &= ~_REGION_ENTRY_INVALID; 1783 } else { 1784 gmap_unshadow_r2t(sg, raddr); 1785 } 1786 spin_unlock(&sg->guest_table_lock); 1787 return rc; 1788 out_free: 1789 spin_unlock(&sg->guest_table_lock); 1790 __free_pages(page, CRST_ALLOC_ORDER); 1791 return rc; 1792 } 1793 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1794 1795 /** 1796 * gmap_shadow_r3t - create a shadow region 3 table 1797 * @sg: pointer to the shadow guest address space structure 1798 * @saddr: faulting address in the shadow gmap 1799 * @r3t: parent gmap address of the region 3 table to get shadowed 1800 * @fake: r3t references contiguous guest memory block, not a r3t 1801 * 1802 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1803 * shadow table structure is incomplete, -ENOMEM if out of memory and 1804 * -EFAULT if an address in the parent gmap could not be resolved. 1805 * 1806 * Called with sg->mm->mmap_sem in read. 1807 */ 1808 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1809 int fake) 1810 { 1811 unsigned long raddr, origin, offset, len; 1812 unsigned long *s_r3t, *table; 1813 struct page *page; 1814 int rc; 1815 1816 BUG_ON(!gmap_is_shadow(sg)); 1817 /* Allocate a shadow region second table */ 1818 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1819 if (!page) 1820 return -ENOMEM; 1821 page->index = r3t & _REGION_ENTRY_ORIGIN; 1822 if (fake) 1823 page->index |= GMAP_SHADOW_FAKE_TABLE; 1824 s_r3t = (unsigned long *) page_to_phys(page); 1825 /* Install shadow region second table */ 1826 spin_lock(&sg->guest_table_lock); 1827 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1828 if (!table) { 1829 rc = -EAGAIN; /* Race with unshadow */ 1830 goto out_free; 1831 } 1832 if (!(*table & _REGION_ENTRY_INVALID)) { 1833 rc = 0; /* Already established */ 1834 goto out_free; 1835 } else if (*table & _REGION_ENTRY_ORIGIN) { 1836 rc = -EAGAIN; /* Race with shadow */ 1837 } 1838 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1839 /* mark as invalid as long as the parent table is not protected */ 1840 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1841 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1842 if (sg->edat_level >= 1) 1843 *table |= (r3t & _REGION_ENTRY_PROTECT); 1844 list_add(&page->lru, &sg->crst_list); 1845 if (fake) { 1846 /* nothing to protect for fake tables */ 1847 *table &= ~_REGION_ENTRY_INVALID; 1848 spin_unlock(&sg->guest_table_lock); 1849 return 0; 1850 } 1851 spin_unlock(&sg->guest_table_lock); 1852 /* Make r3t read-only in parent gmap page table */ 1853 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1854 origin = r3t & _REGION_ENTRY_ORIGIN; 1855 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1856 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1857 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1858 spin_lock(&sg->guest_table_lock); 1859 if (!rc) { 1860 table = gmap_table_walk(sg, saddr, 3); 1861 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1862 (unsigned long) s_r3t) 1863 rc = -EAGAIN; /* Race with unshadow */ 1864 else 1865 *table &= ~_REGION_ENTRY_INVALID; 1866 } else { 1867 gmap_unshadow_r3t(sg, raddr); 1868 } 1869 spin_unlock(&sg->guest_table_lock); 1870 return rc; 1871 out_free: 1872 spin_unlock(&sg->guest_table_lock); 1873 __free_pages(page, CRST_ALLOC_ORDER); 1874 return rc; 1875 } 1876 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1877 1878 /** 1879 * gmap_shadow_sgt - create a shadow segment table 1880 * @sg: pointer to the shadow guest address space structure 1881 * @saddr: faulting address in the shadow gmap 1882 * @sgt: parent gmap address of the segment table to get shadowed 1883 * @fake: sgt references contiguous guest memory block, not a sgt 1884 * 1885 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1886 * shadow table structure is incomplete, -ENOMEM if out of memory and 1887 * -EFAULT if an address in the parent gmap could not be resolved. 1888 * 1889 * Called with sg->mm->mmap_sem in read. 1890 */ 1891 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1892 int fake) 1893 { 1894 unsigned long raddr, origin, offset, len; 1895 unsigned long *s_sgt, *table; 1896 struct page *page; 1897 int rc; 1898 1899 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1900 /* Allocate a shadow segment table */ 1901 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1902 if (!page) 1903 return -ENOMEM; 1904 page->index = sgt & _REGION_ENTRY_ORIGIN; 1905 if (fake) 1906 page->index |= GMAP_SHADOW_FAKE_TABLE; 1907 s_sgt = (unsigned long *) page_to_phys(page); 1908 /* Install shadow region second table */ 1909 spin_lock(&sg->guest_table_lock); 1910 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1911 if (!table) { 1912 rc = -EAGAIN; /* Race with unshadow */ 1913 goto out_free; 1914 } 1915 if (!(*table & _REGION_ENTRY_INVALID)) { 1916 rc = 0; /* Already established */ 1917 goto out_free; 1918 } else if (*table & _REGION_ENTRY_ORIGIN) { 1919 rc = -EAGAIN; /* Race with shadow */ 1920 goto out_free; 1921 } 1922 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1923 /* mark as invalid as long as the parent table is not protected */ 1924 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1925 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1926 if (sg->edat_level >= 1) 1927 *table |= sgt & _REGION_ENTRY_PROTECT; 1928 list_add(&page->lru, &sg->crst_list); 1929 if (fake) { 1930 /* nothing to protect for fake tables */ 1931 *table &= ~_REGION_ENTRY_INVALID; 1932 spin_unlock(&sg->guest_table_lock); 1933 return 0; 1934 } 1935 spin_unlock(&sg->guest_table_lock); 1936 /* Make sgt read-only in parent gmap page table */ 1937 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1938 origin = sgt & _REGION_ENTRY_ORIGIN; 1939 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1940 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1941 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1942 spin_lock(&sg->guest_table_lock); 1943 if (!rc) { 1944 table = gmap_table_walk(sg, saddr, 2); 1945 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1946 (unsigned long) s_sgt) 1947 rc = -EAGAIN; /* Race with unshadow */ 1948 else 1949 *table &= ~_REGION_ENTRY_INVALID; 1950 } else { 1951 gmap_unshadow_sgt(sg, raddr); 1952 } 1953 spin_unlock(&sg->guest_table_lock); 1954 return rc; 1955 out_free: 1956 spin_unlock(&sg->guest_table_lock); 1957 __free_pages(page, CRST_ALLOC_ORDER); 1958 return rc; 1959 } 1960 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1961 1962 /** 1963 * gmap_shadow_lookup_pgtable - find a shadow page table 1964 * @sg: pointer to the shadow guest address space structure 1965 * @saddr: the address in the shadow aguest address space 1966 * @pgt: parent gmap address of the page table to get shadowed 1967 * @dat_protection: if the pgtable is marked as protected by dat 1968 * @fake: pgt references contiguous guest memory block, not a pgtable 1969 * 1970 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1971 * table was not found. 1972 * 1973 * Called with sg->mm->mmap_sem in read. 1974 */ 1975 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1976 unsigned long *pgt, int *dat_protection, 1977 int *fake) 1978 { 1979 unsigned long *table; 1980 struct page *page; 1981 int rc; 1982 1983 BUG_ON(!gmap_is_shadow(sg)); 1984 spin_lock(&sg->guest_table_lock); 1985 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1986 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1987 /* Shadow page tables are full pages (pte+pgste) */ 1988 page = pfn_to_page(*table >> PAGE_SHIFT); 1989 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 1990 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 1991 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 1992 rc = 0; 1993 } else { 1994 rc = -EAGAIN; 1995 } 1996 spin_unlock(&sg->guest_table_lock); 1997 return rc; 1998 1999 } 2000 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2001 2002 /** 2003 * gmap_shadow_pgt - instantiate a shadow page table 2004 * @sg: pointer to the shadow guest address space structure 2005 * @saddr: faulting address in the shadow gmap 2006 * @pgt: parent gmap address of the page table to get shadowed 2007 * @fake: pgt references contiguous guest memory block, not a pgtable 2008 * 2009 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2010 * shadow table structure is incomplete, -ENOMEM if out of memory, 2011 * -EFAULT if an address in the parent gmap could not be resolved and 2012 * 2013 * Called with gmap->mm->mmap_sem in read 2014 */ 2015 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2016 int fake) 2017 { 2018 unsigned long raddr, origin; 2019 unsigned long *s_pgt, *table; 2020 struct page *page; 2021 int rc; 2022 2023 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2024 /* Allocate a shadow page table */ 2025 page = page_table_alloc_pgste(sg->mm); 2026 if (!page) 2027 return -ENOMEM; 2028 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2029 if (fake) 2030 page->index |= GMAP_SHADOW_FAKE_TABLE; 2031 s_pgt = (unsigned long *) page_to_phys(page); 2032 /* Install shadow page table */ 2033 spin_lock(&sg->guest_table_lock); 2034 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2035 if (!table) { 2036 rc = -EAGAIN; /* Race with unshadow */ 2037 goto out_free; 2038 } 2039 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2040 rc = 0; /* Already established */ 2041 goto out_free; 2042 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2043 rc = -EAGAIN; /* Race with shadow */ 2044 goto out_free; 2045 } 2046 /* mark as invalid as long as the parent table is not protected */ 2047 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2048 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2049 list_add(&page->lru, &sg->pt_list); 2050 if (fake) { 2051 /* nothing to protect for fake tables */ 2052 *table &= ~_SEGMENT_ENTRY_INVALID; 2053 spin_unlock(&sg->guest_table_lock); 2054 return 0; 2055 } 2056 spin_unlock(&sg->guest_table_lock); 2057 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2058 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2059 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2060 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2061 spin_lock(&sg->guest_table_lock); 2062 if (!rc) { 2063 table = gmap_table_walk(sg, saddr, 1); 2064 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2065 (unsigned long) s_pgt) 2066 rc = -EAGAIN; /* Race with unshadow */ 2067 else 2068 *table &= ~_SEGMENT_ENTRY_INVALID; 2069 } else { 2070 gmap_unshadow_pgt(sg, raddr); 2071 } 2072 spin_unlock(&sg->guest_table_lock); 2073 return rc; 2074 out_free: 2075 spin_unlock(&sg->guest_table_lock); 2076 page_table_free_pgste(page); 2077 return rc; 2078 2079 } 2080 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2081 2082 /** 2083 * gmap_shadow_page - create a shadow page mapping 2084 * @sg: pointer to the shadow guest address space structure 2085 * @saddr: faulting address in the shadow gmap 2086 * @pte: pte in parent gmap address space to get shadowed 2087 * 2088 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2089 * shadow table structure is incomplete, -ENOMEM if out of memory and 2090 * -EFAULT if an address in the parent gmap could not be resolved. 2091 * 2092 * Called with sg->mm->mmap_sem in read. 2093 */ 2094 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2095 { 2096 struct gmap *parent; 2097 struct gmap_rmap *rmap; 2098 unsigned long vmaddr, paddr; 2099 spinlock_t *ptl; 2100 pte_t *sptep, *tptep; 2101 int prot; 2102 int rc; 2103 2104 BUG_ON(!gmap_is_shadow(sg)); 2105 parent = sg->parent; 2106 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2107 2108 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 2109 if (!rmap) 2110 return -ENOMEM; 2111 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2112 2113 while (1) { 2114 paddr = pte_val(pte) & PAGE_MASK; 2115 vmaddr = __gmap_translate(parent, paddr); 2116 if (IS_ERR_VALUE(vmaddr)) { 2117 rc = vmaddr; 2118 break; 2119 } 2120 rc = radix_tree_preload(GFP_KERNEL); 2121 if (rc) 2122 break; 2123 rc = -EAGAIN; 2124 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2125 if (sptep) { 2126 spin_lock(&sg->guest_table_lock); 2127 /* Get page table pointer */ 2128 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2129 if (!tptep) { 2130 spin_unlock(&sg->guest_table_lock); 2131 gmap_pte_op_end(ptl); 2132 radix_tree_preload_end(); 2133 break; 2134 } 2135 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2136 if (rc > 0) { 2137 /* Success and a new mapping */ 2138 gmap_insert_rmap(sg, vmaddr, rmap); 2139 rmap = NULL; 2140 rc = 0; 2141 } 2142 gmap_pte_op_end(ptl); 2143 spin_unlock(&sg->guest_table_lock); 2144 } 2145 radix_tree_preload_end(); 2146 if (!rc) 2147 break; 2148 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2149 if (rc) 2150 break; 2151 } 2152 kfree(rmap); 2153 return rc; 2154 } 2155 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2156 2157 /** 2158 * gmap_shadow_notify - handle notifications for shadow gmap 2159 * 2160 * Called with sg->parent->shadow_lock. 2161 */ 2162 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2163 unsigned long gaddr) 2164 { 2165 struct gmap_rmap *rmap, *rnext, *head; 2166 unsigned long start, end, bits, raddr; 2167 2168 BUG_ON(!gmap_is_shadow(sg)); 2169 2170 spin_lock(&sg->guest_table_lock); 2171 if (sg->removed) { 2172 spin_unlock(&sg->guest_table_lock); 2173 return; 2174 } 2175 /* Check for top level table */ 2176 start = sg->orig_asce & _ASCE_ORIGIN; 2177 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2178 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2179 gaddr < end) { 2180 /* The complete shadow table has to go */ 2181 gmap_unshadow(sg); 2182 spin_unlock(&sg->guest_table_lock); 2183 list_del(&sg->list); 2184 gmap_put(sg); 2185 return; 2186 } 2187 /* Remove the page table tree from on specific entry */ 2188 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2189 gmap_for_each_rmap_safe(rmap, rnext, head) { 2190 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2191 raddr = rmap->raddr ^ bits; 2192 switch (bits) { 2193 case _SHADOW_RMAP_REGION1: 2194 gmap_unshadow_r2t(sg, raddr); 2195 break; 2196 case _SHADOW_RMAP_REGION2: 2197 gmap_unshadow_r3t(sg, raddr); 2198 break; 2199 case _SHADOW_RMAP_REGION3: 2200 gmap_unshadow_sgt(sg, raddr); 2201 break; 2202 case _SHADOW_RMAP_SEGMENT: 2203 gmap_unshadow_pgt(sg, raddr); 2204 break; 2205 case _SHADOW_RMAP_PGTABLE: 2206 gmap_unshadow_page(sg, raddr); 2207 break; 2208 } 2209 kfree(rmap); 2210 } 2211 spin_unlock(&sg->guest_table_lock); 2212 } 2213 2214 /** 2215 * ptep_notify - call all invalidation callbacks for a specific pte. 2216 * @mm: pointer to the process mm_struct 2217 * @addr: virtual address in the process address space 2218 * @pte: pointer to the page table entry 2219 * @bits: bits from the pgste that caused the notify call 2220 * 2221 * This function is assumed to be called with the page table lock held 2222 * for the pte to notify. 2223 */ 2224 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2225 pte_t *pte, unsigned long bits) 2226 { 2227 unsigned long offset, gaddr = 0; 2228 unsigned long *table; 2229 struct gmap *gmap, *sg, *next; 2230 2231 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2232 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2233 rcu_read_lock(); 2234 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2235 spin_lock(&gmap->guest_table_lock); 2236 table = radix_tree_lookup(&gmap->host_to_guest, 2237 vmaddr >> PMD_SHIFT); 2238 if (table) 2239 gaddr = __gmap_segment_gaddr(table) + offset; 2240 spin_unlock(&gmap->guest_table_lock); 2241 if (!table) 2242 continue; 2243 2244 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2245 spin_lock(&gmap->shadow_lock); 2246 list_for_each_entry_safe(sg, next, 2247 &gmap->children, list) 2248 gmap_shadow_notify(sg, vmaddr, gaddr); 2249 spin_unlock(&gmap->shadow_lock); 2250 } 2251 if (bits & PGSTE_IN_BIT) 2252 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2253 } 2254 rcu_read_unlock(); 2255 } 2256 EXPORT_SYMBOL_GPL(ptep_notify); 2257 2258 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2259 unsigned long gaddr) 2260 { 2261 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2262 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2263 } 2264 2265 /** 2266 * gmap_pmdp_xchg - exchange a gmap pmd with another 2267 * @gmap: pointer to the guest address space structure 2268 * @pmdp: pointer to the pmd entry 2269 * @new: replacement entry 2270 * @gaddr: the affected guest address 2271 * 2272 * This function is assumed to be called with the guest_table_lock 2273 * held. 2274 */ 2275 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2276 unsigned long gaddr) 2277 { 2278 gaddr &= HPAGE_MASK; 2279 pmdp_notify_gmap(gmap, pmdp, gaddr); 2280 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2281 if (MACHINE_HAS_TLB_GUEST) 2282 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2283 IDTE_GLOBAL); 2284 else if (MACHINE_HAS_IDTE) 2285 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2286 else 2287 __pmdp_csp(pmdp); 2288 *pmdp = new; 2289 } 2290 2291 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2292 int purge) 2293 { 2294 pmd_t *pmdp; 2295 struct gmap *gmap; 2296 unsigned long gaddr; 2297 2298 rcu_read_lock(); 2299 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2300 spin_lock(&gmap->guest_table_lock); 2301 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2302 vmaddr >> PMD_SHIFT); 2303 if (pmdp) { 2304 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2305 pmdp_notify_gmap(gmap, pmdp, gaddr); 2306 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2307 _SEGMENT_ENTRY_GMAP_UC)); 2308 if (purge) 2309 __pmdp_csp(pmdp); 2310 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2311 } 2312 spin_unlock(&gmap->guest_table_lock); 2313 } 2314 rcu_read_unlock(); 2315 } 2316 2317 /** 2318 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2319 * flushing 2320 * @mm: pointer to the process mm_struct 2321 * @vmaddr: virtual address in the process address space 2322 */ 2323 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2324 { 2325 gmap_pmdp_clear(mm, vmaddr, 0); 2326 } 2327 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2328 2329 /** 2330 * gmap_pmdp_csp - csp all affected guest pmd entries 2331 * @mm: pointer to the process mm_struct 2332 * @vmaddr: virtual address in the process address space 2333 */ 2334 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2335 { 2336 gmap_pmdp_clear(mm, vmaddr, 1); 2337 } 2338 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2339 2340 /** 2341 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2342 * @mm: pointer to the process mm_struct 2343 * @vmaddr: virtual address in the process address space 2344 */ 2345 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2346 { 2347 unsigned long *entry, gaddr; 2348 struct gmap *gmap; 2349 pmd_t *pmdp; 2350 2351 rcu_read_lock(); 2352 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2353 spin_lock(&gmap->guest_table_lock); 2354 entry = radix_tree_delete(&gmap->host_to_guest, 2355 vmaddr >> PMD_SHIFT); 2356 if (entry) { 2357 pmdp = (pmd_t *)entry; 2358 gaddr = __gmap_segment_gaddr(entry); 2359 pmdp_notify_gmap(gmap, pmdp, gaddr); 2360 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2361 _SEGMENT_ENTRY_GMAP_UC)); 2362 if (MACHINE_HAS_TLB_GUEST) 2363 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2364 gmap->asce, IDTE_LOCAL); 2365 else if (MACHINE_HAS_IDTE) 2366 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2367 *entry = _SEGMENT_ENTRY_EMPTY; 2368 } 2369 spin_unlock(&gmap->guest_table_lock); 2370 } 2371 rcu_read_unlock(); 2372 } 2373 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2374 2375 /** 2376 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2377 * @mm: pointer to the process mm_struct 2378 * @vmaddr: virtual address in the process address space 2379 */ 2380 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2381 { 2382 unsigned long *entry, gaddr; 2383 struct gmap *gmap; 2384 pmd_t *pmdp; 2385 2386 rcu_read_lock(); 2387 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2388 spin_lock(&gmap->guest_table_lock); 2389 entry = radix_tree_delete(&gmap->host_to_guest, 2390 vmaddr >> PMD_SHIFT); 2391 if (entry) { 2392 pmdp = (pmd_t *)entry; 2393 gaddr = __gmap_segment_gaddr(entry); 2394 pmdp_notify_gmap(gmap, pmdp, gaddr); 2395 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2396 _SEGMENT_ENTRY_GMAP_UC)); 2397 if (MACHINE_HAS_TLB_GUEST) 2398 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2399 gmap->asce, IDTE_GLOBAL); 2400 else if (MACHINE_HAS_IDTE) 2401 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2402 else 2403 __pmdp_csp(pmdp); 2404 *entry = _SEGMENT_ENTRY_EMPTY; 2405 } 2406 spin_unlock(&gmap->guest_table_lock); 2407 } 2408 rcu_read_unlock(); 2409 } 2410 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2411 2412 /** 2413 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2414 * @gmap: pointer to guest address space 2415 * @pmdp: pointer to the pmd to be tested 2416 * @gaddr: virtual address in the guest address space 2417 * 2418 * This function is assumed to be called with the guest_table_lock 2419 * held. 2420 */ 2421 bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2422 unsigned long gaddr) 2423 { 2424 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2425 return false; 2426 2427 /* Already protected memory, which did not change is clean */ 2428 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2429 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2430 return false; 2431 2432 /* Clear UC indication and reset protection */ 2433 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2434 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2435 return true; 2436 } 2437 2438 /** 2439 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2440 * @gmap: pointer to guest address space 2441 * @bitmap: dirty bitmap for this pmd 2442 * @gaddr: virtual address in the guest address space 2443 * @vmaddr: virtual address in the host address space 2444 * 2445 * This function is assumed to be called with the guest_table_lock 2446 * held. 2447 */ 2448 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2449 unsigned long gaddr, unsigned long vmaddr) 2450 { 2451 int i; 2452 pmd_t *pmdp; 2453 pte_t *ptep; 2454 spinlock_t *ptl; 2455 2456 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2457 if (!pmdp) 2458 return; 2459 2460 if (pmd_large(*pmdp)) { 2461 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2462 bitmap_fill(bitmap, _PAGE_ENTRIES); 2463 } else { 2464 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2465 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2466 if (!ptep) 2467 continue; 2468 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2469 set_bit(i, bitmap); 2470 spin_unlock(ptl); 2471 } 2472 } 2473 gmap_pmd_op_end(gmap, pmdp); 2474 } 2475 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2476 2477 static inline void thp_split_mm(struct mm_struct *mm) 2478 { 2479 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2480 struct vm_area_struct *vma; 2481 unsigned long addr; 2482 2483 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2484 for (addr = vma->vm_start; 2485 addr < vma->vm_end; 2486 addr += PAGE_SIZE) 2487 follow_page(vma, addr, FOLL_SPLIT); 2488 vma->vm_flags &= ~VM_HUGEPAGE; 2489 vma->vm_flags |= VM_NOHUGEPAGE; 2490 } 2491 mm->def_flags |= VM_NOHUGEPAGE; 2492 #endif 2493 } 2494 2495 /* 2496 * Remove all empty zero pages from the mapping for lazy refaulting 2497 * - This must be called after mm->context.has_pgste is set, to avoid 2498 * future creation of zero pages 2499 * - This must be called after THP was enabled 2500 */ 2501 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2502 unsigned long end, struct mm_walk *walk) 2503 { 2504 unsigned long addr; 2505 2506 for (addr = start; addr != end; addr += PAGE_SIZE) { 2507 pte_t *ptep; 2508 spinlock_t *ptl; 2509 2510 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2511 if (is_zero_pfn(pte_pfn(*ptep))) 2512 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2513 pte_unmap_unlock(ptep, ptl); 2514 } 2515 return 0; 2516 } 2517 2518 static inline void zap_zero_pages(struct mm_struct *mm) 2519 { 2520 struct mm_walk walk = { .pmd_entry = __zap_zero_pages }; 2521 2522 walk.mm = mm; 2523 walk_page_range(0, TASK_SIZE, &walk); 2524 } 2525 2526 /* 2527 * switch on pgstes for its userspace process (for kvm) 2528 */ 2529 int s390_enable_sie(void) 2530 { 2531 struct mm_struct *mm = current->mm; 2532 2533 /* Do we have pgstes? if yes, we are done */ 2534 if (mm_has_pgste(mm)) 2535 return 0; 2536 /* Fail if the page tables are 2K */ 2537 if (!mm_alloc_pgste(mm)) 2538 return -EINVAL; 2539 down_write(&mm->mmap_sem); 2540 mm->context.has_pgste = 1; 2541 /* split thp mappings and disable thp for future mappings */ 2542 thp_split_mm(mm); 2543 zap_zero_pages(mm); 2544 up_write(&mm->mmap_sem); 2545 return 0; 2546 } 2547 EXPORT_SYMBOL_GPL(s390_enable_sie); 2548 2549 /* 2550 * Enable storage key handling from now on and initialize the storage 2551 * keys with the default key. 2552 */ 2553 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2554 unsigned long next, struct mm_walk *walk) 2555 { 2556 /* Clear storage key */ 2557 ptep_zap_key(walk->mm, addr, pte); 2558 return 0; 2559 } 2560 2561 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2562 unsigned long hmask, unsigned long next, 2563 struct mm_walk *walk) 2564 { 2565 pmd_t *pmd = (pmd_t *)pte; 2566 unsigned long start, end; 2567 struct page *page = pmd_page(*pmd); 2568 2569 /* 2570 * The write check makes sure we do not set a key on shared 2571 * memory. This is needed as the walker does not differentiate 2572 * between actual guest memory and the process executable or 2573 * shared libraries. 2574 */ 2575 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2576 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2577 return 0; 2578 2579 start = pmd_val(*pmd) & HPAGE_MASK; 2580 end = start + HPAGE_SIZE - 1; 2581 __storage_key_init_range(start, end); 2582 set_bit(PG_arch_1, &page->flags); 2583 return 0; 2584 } 2585 2586 int s390_enable_skey(void) 2587 { 2588 struct mm_walk walk = { 2589 .hugetlb_entry = __s390_enable_skey_hugetlb, 2590 .pte_entry = __s390_enable_skey_pte, 2591 }; 2592 struct mm_struct *mm = current->mm; 2593 struct vm_area_struct *vma; 2594 int rc = 0; 2595 2596 down_write(&mm->mmap_sem); 2597 if (mm_uses_skeys(mm)) 2598 goto out_up; 2599 2600 mm->context.uses_skeys = 1; 2601 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2602 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 2603 MADV_UNMERGEABLE, &vma->vm_flags)) { 2604 mm->context.uses_skeys = 0; 2605 rc = -ENOMEM; 2606 goto out_up; 2607 } 2608 } 2609 mm->def_flags &= ~VM_MERGEABLE; 2610 2611 walk.mm = mm; 2612 walk_page_range(0, TASK_SIZE, &walk); 2613 2614 out_up: 2615 up_write(&mm->mmap_sem); 2616 return rc; 2617 } 2618 EXPORT_SYMBOL_GPL(s390_enable_skey); 2619 2620 /* 2621 * Reset CMMA state, make all pages stable again. 2622 */ 2623 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2624 unsigned long next, struct mm_walk *walk) 2625 { 2626 ptep_zap_unused(walk->mm, addr, pte, 1); 2627 return 0; 2628 } 2629 2630 void s390_reset_cmma(struct mm_struct *mm) 2631 { 2632 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 2633 2634 down_write(&mm->mmap_sem); 2635 walk.mm = mm; 2636 walk_page_range(0, TASK_SIZE, &walk); 2637 up_write(&mm->mmap_sem); 2638 } 2639 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2640