xref: /openbmc/linux/arch/s390/mm/gmap.c (revision 85716a80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  KVM guest address space mapping code
4  *
5  *    Copyright IBM Corp. 2007, 2020
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  *		 David Hildenbrand <david@redhat.com>
8  *		 Janosch Frank <frankja@linux.vnet.ibm.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21 
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25 
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27 
28 /**
29  * gmap_alloc - allocate and initialize a guest address space
30  * @limit: maximum address of the gmap address space
31  *
32  * Returns a guest address space structure.
33  */
34 static struct gmap *gmap_alloc(unsigned long limit)
35 {
36 	struct gmap *gmap;
37 	struct page *page;
38 	unsigned long *table;
39 	unsigned long etype, atype;
40 
41 	if (limit < _REGION3_SIZE) {
42 		limit = _REGION3_SIZE - 1;
43 		atype = _ASCE_TYPE_SEGMENT;
44 		etype = _SEGMENT_ENTRY_EMPTY;
45 	} else if (limit < _REGION2_SIZE) {
46 		limit = _REGION2_SIZE - 1;
47 		atype = _ASCE_TYPE_REGION3;
48 		etype = _REGION3_ENTRY_EMPTY;
49 	} else if (limit < _REGION1_SIZE) {
50 		limit = _REGION1_SIZE - 1;
51 		atype = _ASCE_TYPE_REGION2;
52 		etype = _REGION2_ENTRY_EMPTY;
53 	} else {
54 		limit = -1UL;
55 		atype = _ASCE_TYPE_REGION1;
56 		etype = _REGION1_ENTRY_EMPTY;
57 	}
58 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
59 	if (!gmap)
60 		goto out;
61 	INIT_LIST_HEAD(&gmap->crst_list);
62 	INIT_LIST_HEAD(&gmap->children);
63 	INIT_LIST_HEAD(&gmap->pt_list);
64 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
65 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
66 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
67 	spin_lock_init(&gmap->guest_table_lock);
68 	spin_lock_init(&gmap->shadow_lock);
69 	refcount_set(&gmap->ref_count, 1);
70 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
71 	if (!page)
72 		goto out_free;
73 	page->index = 0;
74 	list_add(&page->lru, &gmap->crst_list);
75 	table = (unsigned long *) page_to_phys(page);
76 	crst_table_init(table, etype);
77 	gmap->table = table;
78 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
79 		_ASCE_USER_BITS | __pa(table);
80 	gmap->asce_end = limit;
81 	return gmap;
82 
83 out_free:
84 	kfree(gmap);
85 out:
86 	return NULL;
87 }
88 
89 /**
90  * gmap_create - create a guest address space
91  * @mm: pointer to the parent mm_struct
92  * @limit: maximum size of the gmap address space
93  *
94  * Returns a guest address space structure.
95  */
96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
97 {
98 	struct gmap *gmap;
99 	unsigned long gmap_asce;
100 
101 	gmap = gmap_alloc(limit);
102 	if (!gmap)
103 		return NULL;
104 	gmap->mm = mm;
105 	spin_lock(&mm->context.lock);
106 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
107 	if (list_is_singular(&mm->context.gmap_list))
108 		gmap_asce = gmap->asce;
109 	else
110 		gmap_asce = -1UL;
111 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
112 	spin_unlock(&mm->context.lock);
113 	return gmap;
114 }
115 EXPORT_SYMBOL_GPL(gmap_create);
116 
117 static void gmap_flush_tlb(struct gmap *gmap)
118 {
119 	if (MACHINE_HAS_IDTE)
120 		__tlb_flush_idte(gmap->asce);
121 	else
122 		__tlb_flush_global();
123 }
124 
125 static void gmap_radix_tree_free(struct radix_tree_root *root)
126 {
127 	struct radix_tree_iter iter;
128 	unsigned long indices[16];
129 	unsigned long index;
130 	void __rcu **slot;
131 	int i, nr;
132 
133 	/* A radix tree is freed by deleting all of its entries */
134 	index = 0;
135 	do {
136 		nr = 0;
137 		radix_tree_for_each_slot(slot, root, &iter, index) {
138 			indices[nr] = iter.index;
139 			if (++nr == 16)
140 				break;
141 		}
142 		for (i = 0; i < nr; i++) {
143 			index = indices[i];
144 			radix_tree_delete(root, index);
145 		}
146 	} while (nr > 0);
147 }
148 
149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
150 {
151 	struct gmap_rmap *rmap, *rnext, *head;
152 	struct radix_tree_iter iter;
153 	unsigned long indices[16];
154 	unsigned long index;
155 	void __rcu **slot;
156 	int i, nr;
157 
158 	/* A radix tree is freed by deleting all of its entries */
159 	index = 0;
160 	do {
161 		nr = 0;
162 		radix_tree_for_each_slot(slot, root, &iter, index) {
163 			indices[nr] = iter.index;
164 			if (++nr == 16)
165 				break;
166 		}
167 		for (i = 0; i < nr; i++) {
168 			index = indices[i];
169 			head = radix_tree_delete(root, index);
170 			gmap_for_each_rmap_safe(rmap, rnext, head)
171 				kfree(rmap);
172 		}
173 	} while (nr > 0);
174 }
175 
176 /**
177  * gmap_free - free a guest address space
178  * @gmap: pointer to the guest address space structure
179  *
180  * No locks required. There are no references to this gmap anymore.
181  */
182 static void gmap_free(struct gmap *gmap)
183 {
184 	struct page *page, *next;
185 
186 	/* Flush tlb of all gmaps (if not already done for shadows) */
187 	if (!(gmap_is_shadow(gmap) && gmap->removed))
188 		gmap_flush_tlb(gmap);
189 	/* Free all segment & region tables. */
190 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
191 		__free_pages(page, CRST_ALLOC_ORDER);
192 	gmap_radix_tree_free(&gmap->guest_to_host);
193 	gmap_radix_tree_free(&gmap->host_to_guest);
194 
195 	/* Free additional data for a shadow gmap */
196 	if (gmap_is_shadow(gmap)) {
197 		/* Free all page tables. */
198 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
199 			page_table_free_pgste(page);
200 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
201 		/* Release reference to the parent */
202 		gmap_put(gmap->parent);
203 	}
204 
205 	kfree(gmap);
206 }
207 
208 /**
209  * gmap_get - increase reference counter for guest address space
210  * @gmap: pointer to the guest address space structure
211  *
212  * Returns the gmap pointer
213  */
214 struct gmap *gmap_get(struct gmap *gmap)
215 {
216 	refcount_inc(&gmap->ref_count);
217 	return gmap;
218 }
219 EXPORT_SYMBOL_GPL(gmap_get);
220 
221 /**
222  * gmap_put - decrease reference counter for guest address space
223  * @gmap: pointer to the guest address space structure
224  *
225  * If the reference counter reaches zero the guest address space is freed.
226  */
227 void gmap_put(struct gmap *gmap)
228 {
229 	if (refcount_dec_and_test(&gmap->ref_count))
230 		gmap_free(gmap);
231 }
232 EXPORT_SYMBOL_GPL(gmap_put);
233 
234 /**
235  * gmap_remove - remove a guest address space but do not free it yet
236  * @gmap: pointer to the guest address space structure
237  */
238 void gmap_remove(struct gmap *gmap)
239 {
240 	struct gmap *sg, *next;
241 	unsigned long gmap_asce;
242 
243 	/* Remove all shadow gmaps linked to this gmap */
244 	if (!list_empty(&gmap->children)) {
245 		spin_lock(&gmap->shadow_lock);
246 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
247 			list_del(&sg->list);
248 			gmap_put(sg);
249 		}
250 		spin_unlock(&gmap->shadow_lock);
251 	}
252 	/* Remove gmap from the pre-mm list */
253 	spin_lock(&gmap->mm->context.lock);
254 	list_del_rcu(&gmap->list);
255 	if (list_empty(&gmap->mm->context.gmap_list))
256 		gmap_asce = 0;
257 	else if (list_is_singular(&gmap->mm->context.gmap_list))
258 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
259 					     struct gmap, list)->asce;
260 	else
261 		gmap_asce = -1UL;
262 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
263 	spin_unlock(&gmap->mm->context.lock);
264 	synchronize_rcu();
265 	/* Put reference */
266 	gmap_put(gmap);
267 }
268 EXPORT_SYMBOL_GPL(gmap_remove);
269 
270 /**
271  * gmap_enable - switch primary space to the guest address space
272  * @gmap: pointer to the guest address space structure
273  */
274 void gmap_enable(struct gmap *gmap)
275 {
276 	S390_lowcore.gmap = (unsigned long) gmap;
277 }
278 EXPORT_SYMBOL_GPL(gmap_enable);
279 
280 /**
281  * gmap_disable - switch back to the standard primary address space
282  * @gmap: pointer to the guest address space structure
283  */
284 void gmap_disable(struct gmap *gmap)
285 {
286 	S390_lowcore.gmap = 0UL;
287 }
288 EXPORT_SYMBOL_GPL(gmap_disable);
289 
290 /**
291  * gmap_get_enabled - get a pointer to the currently enabled gmap
292  *
293  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
294  */
295 struct gmap *gmap_get_enabled(void)
296 {
297 	return (struct gmap *) S390_lowcore.gmap;
298 }
299 EXPORT_SYMBOL_GPL(gmap_get_enabled);
300 
301 /*
302  * gmap_alloc_table is assumed to be called with mmap_lock held
303  */
304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
305 			    unsigned long init, unsigned long gaddr)
306 {
307 	struct page *page;
308 	unsigned long *new;
309 
310 	/* since we dont free the gmap table until gmap_free we can unlock */
311 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
312 	if (!page)
313 		return -ENOMEM;
314 	new = (unsigned long *) page_to_phys(page);
315 	crst_table_init(new, init);
316 	spin_lock(&gmap->guest_table_lock);
317 	if (*table & _REGION_ENTRY_INVALID) {
318 		list_add(&page->lru, &gmap->crst_list);
319 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
320 			(*table & _REGION_ENTRY_TYPE_MASK);
321 		page->index = gaddr;
322 		page = NULL;
323 	}
324 	spin_unlock(&gmap->guest_table_lock);
325 	if (page)
326 		__free_pages(page, CRST_ALLOC_ORDER);
327 	return 0;
328 }
329 
330 /**
331  * __gmap_segment_gaddr - find virtual address from segment pointer
332  * @entry: pointer to a segment table entry in the guest address space
333  *
334  * Returns the virtual address in the guest address space for the segment
335  */
336 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
337 {
338 	struct page *page;
339 	unsigned long offset;
340 
341 	offset = (unsigned long) entry / sizeof(unsigned long);
342 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
343 	page = pmd_pgtable_page((pmd_t *) entry);
344 	return page->index + offset;
345 }
346 
347 /**
348  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
349  * @gmap: pointer to the guest address space structure
350  * @vmaddr: address in the host process address space
351  *
352  * Returns 1 if a TLB flush is required
353  */
354 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
355 {
356 	unsigned long *entry;
357 	int flush = 0;
358 
359 	BUG_ON(gmap_is_shadow(gmap));
360 	spin_lock(&gmap->guest_table_lock);
361 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
362 	if (entry) {
363 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
364 		*entry = _SEGMENT_ENTRY_EMPTY;
365 	}
366 	spin_unlock(&gmap->guest_table_lock);
367 	return flush;
368 }
369 
370 /**
371  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
372  * @gmap: pointer to the guest address space structure
373  * @gaddr: address in the guest address space
374  *
375  * Returns 1 if a TLB flush is required
376  */
377 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
378 {
379 	unsigned long vmaddr;
380 
381 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
382 						   gaddr >> PMD_SHIFT);
383 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
384 }
385 
386 /**
387  * gmap_unmap_segment - unmap segment from the guest address space
388  * @gmap: pointer to the guest address space structure
389  * @to: address in the guest address space
390  * @len: length of the memory area to unmap
391  *
392  * Returns 0 if the unmap succeeded, -EINVAL if not.
393  */
394 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
395 {
396 	unsigned long off;
397 	int flush;
398 
399 	BUG_ON(gmap_is_shadow(gmap));
400 	if ((to | len) & (PMD_SIZE - 1))
401 		return -EINVAL;
402 	if (len == 0 || to + len < to)
403 		return -EINVAL;
404 
405 	flush = 0;
406 	mmap_write_lock(gmap->mm);
407 	for (off = 0; off < len; off += PMD_SIZE)
408 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
409 	mmap_write_unlock(gmap->mm);
410 	if (flush)
411 		gmap_flush_tlb(gmap);
412 	return 0;
413 }
414 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
415 
416 /**
417  * gmap_map_segment - map a segment to the guest address space
418  * @gmap: pointer to the guest address space structure
419  * @from: source address in the parent address space
420  * @to: target address in the guest address space
421  * @len: length of the memory area to map
422  *
423  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
424  */
425 int gmap_map_segment(struct gmap *gmap, unsigned long from,
426 		     unsigned long to, unsigned long len)
427 {
428 	unsigned long off;
429 	int flush;
430 
431 	BUG_ON(gmap_is_shadow(gmap));
432 	if ((from | to | len) & (PMD_SIZE - 1))
433 		return -EINVAL;
434 	if (len == 0 || from + len < from || to + len < to ||
435 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
436 		return -EINVAL;
437 
438 	flush = 0;
439 	mmap_write_lock(gmap->mm);
440 	for (off = 0; off < len; off += PMD_SIZE) {
441 		/* Remove old translation */
442 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
443 		/* Store new translation */
444 		if (radix_tree_insert(&gmap->guest_to_host,
445 				      (to + off) >> PMD_SHIFT,
446 				      (void *) from + off))
447 			break;
448 	}
449 	mmap_write_unlock(gmap->mm);
450 	if (flush)
451 		gmap_flush_tlb(gmap);
452 	if (off >= len)
453 		return 0;
454 	gmap_unmap_segment(gmap, to, len);
455 	return -ENOMEM;
456 }
457 EXPORT_SYMBOL_GPL(gmap_map_segment);
458 
459 /**
460  * __gmap_translate - translate a guest address to a user space address
461  * @gmap: pointer to guest mapping meta data structure
462  * @gaddr: guest address
463  *
464  * Returns user space address which corresponds to the guest address or
465  * -EFAULT if no such mapping exists.
466  * This function does not establish potentially missing page table entries.
467  * The mmap_lock of the mm that belongs to the address space must be held
468  * when this function gets called.
469  *
470  * Note: Can also be called for shadow gmaps.
471  */
472 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 	unsigned long vmaddr;
475 
476 	vmaddr = (unsigned long)
477 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
478 	/* Note: guest_to_host is empty for a shadow gmap */
479 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
480 }
481 EXPORT_SYMBOL_GPL(__gmap_translate);
482 
483 /**
484  * gmap_translate - translate a guest address to a user space address
485  * @gmap: pointer to guest mapping meta data structure
486  * @gaddr: guest address
487  *
488  * Returns user space address which corresponds to the guest address or
489  * -EFAULT if no such mapping exists.
490  * This function does not establish potentially missing page table entries.
491  */
492 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
493 {
494 	unsigned long rc;
495 
496 	mmap_read_lock(gmap->mm);
497 	rc = __gmap_translate(gmap, gaddr);
498 	mmap_read_unlock(gmap->mm);
499 	return rc;
500 }
501 EXPORT_SYMBOL_GPL(gmap_translate);
502 
503 /**
504  * gmap_unlink - disconnect a page table from the gmap shadow tables
505  * @mm: pointer to the parent mm_struct
506  * @table: pointer to the host page table
507  * @vmaddr: vm address associated with the host page table
508  */
509 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
510 		 unsigned long vmaddr)
511 {
512 	struct gmap *gmap;
513 	int flush;
514 
515 	rcu_read_lock();
516 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
517 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
518 		if (flush)
519 			gmap_flush_tlb(gmap);
520 	}
521 	rcu_read_unlock();
522 }
523 
524 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
525 			   unsigned long gaddr);
526 
527 /**
528  * __gmap_link - set up shadow page tables to connect a host to a guest address
529  * @gmap: pointer to guest mapping meta data structure
530  * @gaddr: guest address
531  * @vmaddr: vm address
532  *
533  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
534  * if the vm address is already mapped to a different guest segment.
535  * The mmap_lock of the mm that belongs to the address space must be held
536  * when this function gets called.
537  */
538 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
539 {
540 	struct mm_struct *mm;
541 	unsigned long *table;
542 	spinlock_t *ptl;
543 	pgd_t *pgd;
544 	p4d_t *p4d;
545 	pud_t *pud;
546 	pmd_t *pmd;
547 	u64 unprot;
548 	int rc;
549 
550 	BUG_ON(gmap_is_shadow(gmap));
551 	/* Create higher level tables in the gmap page table */
552 	table = gmap->table;
553 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
554 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
555 		if ((*table & _REGION_ENTRY_INVALID) &&
556 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
557 				     gaddr & _REGION1_MASK))
558 			return -ENOMEM;
559 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
560 	}
561 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
562 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
563 		if ((*table & _REGION_ENTRY_INVALID) &&
564 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
565 				     gaddr & _REGION2_MASK))
566 			return -ENOMEM;
567 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
568 	}
569 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
570 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
571 		if ((*table & _REGION_ENTRY_INVALID) &&
572 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
573 				     gaddr & _REGION3_MASK))
574 			return -ENOMEM;
575 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
576 	}
577 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
578 	/* Walk the parent mm page table */
579 	mm = gmap->mm;
580 	pgd = pgd_offset(mm, vmaddr);
581 	VM_BUG_ON(pgd_none(*pgd));
582 	p4d = p4d_offset(pgd, vmaddr);
583 	VM_BUG_ON(p4d_none(*p4d));
584 	pud = pud_offset(p4d, vmaddr);
585 	VM_BUG_ON(pud_none(*pud));
586 	/* large puds cannot yet be handled */
587 	if (pud_large(*pud))
588 		return -EFAULT;
589 	pmd = pmd_offset(pud, vmaddr);
590 	VM_BUG_ON(pmd_none(*pmd));
591 	/* Are we allowed to use huge pages? */
592 	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
593 		return -EFAULT;
594 	/* Link gmap segment table entry location to page table. */
595 	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
596 	if (rc)
597 		return rc;
598 	ptl = pmd_lock(mm, pmd);
599 	spin_lock(&gmap->guest_table_lock);
600 	if (*table == _SEGMENT_ENTRY_EMPTY) {
601 		rc = radix_tree_insert(&gmap->host_to_guest,
602 				       vmaddr >> PMD_SHIFT, table);
603 		if (!rc) {
604 			if (pmd_large(*pmd)) {
605 				*table = (pmd_val(*pmd) &
606 					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
607 					| _SEGMENT_ENTRY_GMAP_UC;
608 			} else
609 				*table = pmd_val(*pmd) &
610 					_SEGMENT_ENTRY_HARDWARE_BITS;
611 		}
612 	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
613 		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
614 		unprot = (u64)*table;
615 		unprot &= ~_SEGMENT_ENTRY_PROTECT;
616 		unprot |= _SEGMENT_ENTRY_GMAP_UC;
617 		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
618 	}
619 	spin_unlock(&gmap->guest_table_lock);
620 	spin_unlock(ptl);
621 	radix_tree_preload_end();
622 	return rc;
623 }
624 
625 /**
626  * gmap_fault - resolve a fault on a guest address
627  * @gmap: pointer to guest mapping meta data structure
628  * @gaddr: guest address
629  * @fault_flags: flags to pass down to handle_mm_fault()
630  *
631  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
632  * if the vm address is already mapped to a different guest segment.
633  */
634 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
635 	       unsigned int fault_flags)
636 {
637 	unsigned long vmaddr;
638 	int rc;
639 	bool unlocked;
640 
641 	mmap_read_lock(gmap->mm);
642 
643 retry:
644 	unlocked = false;
645 	vmaddr = __gmap_translate(gmap, gaddr);
646 	if (IS_ERR_VALUE(vmaddr)) {
647 		rc = vmaddr;
648 		goto out_up;
649 	}
650 	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
651 			     &unlocked)) {
652 		rc = -EFAULT;
653 		goto out_up;
654 	}
655 	/*
656 	 * In the case that fixup_user_fault unlocked the mmap_lock during
657 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
658 	 */
659 	if (unlocked)
660 		goto retry;
661 
662 	rc = __gmap_link(gmap, gaddr, vmaddr);
663 out_up:
664 	mmap_read_unlock(gmap->mm);
665 	return rc;
666 }
667 EXPORT_SYMBOL_GPL(gmap_fault);
668 
669 /*
670  * this function is assumed to be called with mmap_lock held
671  */
672 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
673 {
674 	struct vm_area_struct *vma;
675 	unsigned long vmaddr;
676 	spinlock_t *ptl;
677 	pte_t *ptep;
678 
679 	/* Find the vm address for the guest address */
680 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
681 						   gaddr >> PMD_SHIFT);
682 	if (vmaddr) {
683 		vmaddr |= gaddr & ~PMD_MASK;
684 
685 		vma = vma_lookup(gmap->mm, vmaddr);
686 		if (!vma || is_vm_hugetlb_page(vma))
687 			return;
688 
689 		/* Get pointer to the page table entry */
690 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
691 		if (likely(ptep)) {
692 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
693 			pte_unmap_unlock(ptep, ptl);
694 		}
695 	}
696 }
697 EXPORT_SYMBOL_GPL(__gmap_zap);
698 
699 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
700 {
701 	unsigned long gaddr, vmaddr, size;
702 	struct vm_area_struct *vma;
703 
704 	mmap_read_lock(gmap->mm);
705 	for (gaddr = from; gaddr < to;
706 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
707 		/* Find the vm address for the guest address */
708 		vmaddr = (unsigned long)
709 			radix_tree_lookup(&gmap->guest_to_host,
710 					  gaddr >> PMD_SHIFT);
711 		if (!vmaddr)
712 			continue;
713 		vmaddr |= gaddr & ~PMD_MASK;
714 		/* Find vma in the parent mm */
715 		vma = find_vma(gmap->mm, vmaddr);
716 		if (!vma)
717 			continue;
718 		/*
719 		 * We do not discard pages that are backed by
720 		 * hugetlbfs, so we don't have to refault them.
721 		 */
722 		if (is_vm_hugetlb_page(vma))
723 			continue;
724 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
725 		zap_page_range(vma, vmaddr, size);
726 	}
727 	mmap_read_unlock(gmap->mm);
728 }
729 EXPORT_SYMBOL_GPL(gmap_discard);
730 
731 static LIST_HEAD(gmap_notifier_list);
732 static DEFINE_SPINLOCK(gmap_notifier_lock);
733 
734 /**
735  * gmap_register_pte_notifier - register a pte invalidation callback
736  * @nb: pointer to the gmap notifier block
737  */
738 void gmap_register_pte_notifier(struct gmap_notifier *nb)
739 {
740 	spin_lock(&gmap_notifier_lock);
741 	list_add_rcu(&nb->list, &gmap_notifier_list);
742 	spin_unlock(&gmap_notifier_lock);
743 }
744 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
745 
746 /**
747  * gmap_unregister_pte_notifier - remove a pte invalidation callback
748  * @nb: pointer to the gmap notifier block
749  */
750 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
751 {
752 	spin_lock(&gmap_notifier_lock);
753 	list_del_rcu(&nb->list);
754 	spin_unlock(&gmap_notifier_lock);
755 	synchronize_rcu();
756 }
757 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
758 
759 /**
760  * gmap_call_notifier - call all registered invalidation callbacks
761  * @gmap: pointer to guest mapping meta data structure
762  * @start: start virtual address in the guest address space
763  * @end: end virtual address in the guest address space
764  */
765 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
766 			       unsigned long end)
767 {
768 	struct gmap_notifier *nb;
769 
770 	list_for_each_entry(nb, &gmap_notifier_list, list)
771 		nb->notifier_call(gmap, start, end);
772 }
773 
774 /**
775  * gmap_table_walk - walk the gmap page tables
776  * @gmap: pointer to guest mapping meta data structure
777  * @gaddr: virtual address in the guest address space
778  * @level: page table level to stop at
779  *
780  * Returns a table entry pointer for the given guest address and @level
781  * @level=0 : returns a pointer to a page table table entry (or NULL)
782  * @level=1 : returns a pointer to a segment table entry (or NULL)
783  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
784  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
785  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
786  *
787  * Returns NULL if the gmap page tables could not be walked to the
788  * requested level.
789  *
790  * Note: Can also be called for shadow gmaps.
791  */
792 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
793 					     unsigned long gaddr, int level)
794 {
795 	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
796 	unsigned long *table = gmap->table;
797 
798 	if (gmap_is_shadow(gmap) && gmap->removed)
799 		return NULL;
800 
801 	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
802 		return NULL;
803 
804 	if (asce_type != _ASCE_TYPE_REGION1 &&
805 	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
806 		return NULL;
807 
808 	switch (asce_type) {
809 	case _ASCE_TYPE_REGION1:
810 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
811 		if (level == 4)
812 			break;
813 		if (*table & _REGION_ENTRY_INVALID)
814 			return NULL;
815 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
816 		fallthrough;
817 	case _ASCE_TYPE_REGION2:
818 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
819 		if (level == 3)
820 			break;
821 		if (*table & _REGION_ENTRY_INVALID)
822 			return NULL;
823 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
824 		fallthrough;
825 	case _ASCE_TYPE_REGION3:
826 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
827 		if (level == 2)
828 			break;
829 		if (*table & _REGION_ENTRY_INVALID)
830 			return NULL;
831 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
832 		fallthrough;
833 	case _ASCE_TYPE_SEGMENT:
834 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
835 		if (level == 1)
836 			break;
837 		if (*table & _REGION_ENTRY_INVALID)
838 			return NULL;
839 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
840 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
841 	}
842 	return table;
843 }
844 
845 /**
846  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
847  *		      and return the pte pointer
848  * @gmap: pointer to guest mapping meta data structure
849  * @gaddr: virtual address in the guest address space
850  * @ptl: pointer to the spinlock pointer
851  *
852  * Returns a pointer to the locked pte for a guest address, or NULL
853  */
854 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
855 			       spinlock_t **ptl)
856 {
857 	unsigned long *table;
858 
859 	BUG_ON(gmap_is_shadow(gmap));
860 	/* Walk the gmap page table, lock and get pte pointer */
861 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
862 	if (!table || *table & _SEGMENT_ENTRY_INVALID)
863 		return NULL;
864 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
865 }
866 
867 /**
868  * gmap_pte_op_fixup - force a page in and connect the gmap page table
869  * @gmap: pointer to guest mapping meta data structure
870  * @gaddr: virtual address in the guest address space
871  * @vmaddr: address in the host process address space
872  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
873  *
874  * Returns 0 if the caller can retry __gmap_translate (might fail again),
875  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
876  * up or connecting the gmap page table.
877  */
878 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
879 			     unsigned long vmaddr, int prot)
880 {
881 	struct mm_struct *mm = gmap->mm;
882 	unsigned int fault_flags;
883 	bool unlocked = false;
884 
885 	BUG_ON(gmap_is_shadow(gmap));
886 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
887 	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
888 		return -EFAULT;
889 	if (unlocked)
890 		/* lost mmap_lock, caller has to retry __gmap_translate */
891 		return 0;
892 	/* Connect the page tables */
893 	return __gmap_link(gmap, gaddr, vmaddr);
894 }
895 
896 /**
897  * gmap_pte_op_end - release the page table lock
898  * @ptl: pointer to the spinlock pointer
899  */
900 static void gmap_pte_op_end(spinlock_t *ptl)
901 {
902 	if (ptl)
903 		spin_unlock(ptl);
904 }
905 
906 /**
907  * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
908  *		      and return the pmd pointer
909  * @gmap: pointer to guest mapping meta data structure
910  * @gaddr: virtual address in the guest address space
911  *
912  * Returns a pointer to the pmd for a guest address, or NULL
913  */
914 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
915 {
916 	pmd_t *pmdp;
917 
918 	BUG_ON(gmap_is_shadow(gmap));
919 	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
920 	if (!pmdp)
921 		return NULL;
922 
923 	/* without huge pages, there is no need to take the table lock */
924 	if (!gmap->mm->context.allow_gmap_hpage_1m)
925 		return pmd_none(*pmdp) ? NULL : pmdp;
926 
927 	spin_lock(&gmap->guest_table_lock);
928 	if (pmd_none(*pmdp)) {
929 		spin_unlock(&gmap->guest_table_lock);
930 		return NULL;
931 	}
932 
933 	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
934 	if (!pmd_large(*pmdp))
935 		spin_unlock(&gmap->guest_table_lock);
936 	return pmdp;
937 }
938 
939 /**
940  * gmap_pmd_op_end - release the guest_table_lock if needed
941  * @gmap: pointer to the guest mapping meta data structure
942  * @pmdp: pointer to the pmd
943  */
944 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
945 {
946 	if (pmd_large(*pmdp))
947 		spin_unlock(&gmap->guest_table_lock);
948 }
949 
950 /*
951  * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
952  * @pmdp: pointer to the pmd to be protected
953  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
954  * @bits: notification bits to set
955  *
956  * Returns:
957  * 0 if successfully protected
958  * -EAGAIN if a fixup is needed
959  * -EINVAL if unsupported notifier bits have been specified
960  *
961  * Expected to be called with sg->mm->mmap_lock in read and
962  * guest_table_lock held.
963  */
964 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
965 			    pmd_t *pmdp, int prot, unsigned long bits)
966 {
967 	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
968 	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
969 	pmd_t new = *pmdp;
970 
971 	/* Fixup needed */
972 	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
973 		return -EAGAIN;
974 
975 	if (prot == PROT_NONE && !pmd_i) {
976 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
977 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
978 	}
979 
980 	if (prot == PROT_READ && !pmd_p) {
981 		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
982 		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
983 		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
984 	}
985 
986 	if (bits & GMAP_NOTIFY_MPROT)
987 		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
988 
989 	/* Shadow GMAP protection needs split PMDs */
990 	if (bits & GMAP_NOTIFY_SHADOW)
991 		return -EINVAL;
992 
993 	return 0;
994 }
995 
996 /*
997  * gmap_protect_pte - remove access rights to memory and set pgste bits
998  * @gmap: pointer to guest mapping meta data structure
999  * @gaddr: virtual address in the guest address space
1000  * @pmdp: pointer to the pmd associated with the pte
1001  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1002  * @bits: notification bits to set
1003  *
1004  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1005  * -EAGAIN if a fixup is needed.
1006  *
1007  * Expected to be called with sg->mm->mmap_lock in read
1008  */
1009 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1010 			    pmd_t *pmdp, int prot, unsigned long bits)
1011 {
1012 	int rc;
1013 	pte_t *ptep;
1014 	spinlock_t *ptl = NULL;
1015 	unsigned long pbits = 0;
1016 
1017 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1018 		return -EAGAIN;
1019 
1020 	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1021 	if (!ptep)
1022 		return -ENOMEM;
1023 
1024 	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1025 	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1026 	/* Protect and unlock. */
1027 	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1028 	gmap_pte_op_end(ptl);
1029 	return rc;
1030 }
1031 
1032 /*
1033  * gmap_protect_range - remove access rights to memory and set pgste bits
1034  * @gmap: pointer to guest mapping meta data structure
1035  * @gaddr: virtual address in the guest address space
1036  * @len: size of area
1037  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1038  * @bits: pgste notification bits to set
1039  *
1040  * Returns 0 if successfully protected, -ENOMEM if out of memory and
1041  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1042  *
1043  * Called with sg->mm->mmap_lock in read.
1044  */
1045 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1046 			      unsigned long len, int prot, unsigned long bits)
1047 {
1048 	unsigned long vmaddr, dist;
1049 	pmd_t *pmdp;
1050 	int rc;
1051 
1052 	BUG_ON(gmap_is_shadow(gmap));
1053 	while (len) {
1054 		rc = -EAGAIN;
1055 		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1056 		if (pmdp) {
1057 			if (!pmd_large(*pmdp)) {
1058 				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1059 						      bits);
1060 				if (!rc) {
1061 					len -= PAGE_SIZE;
1062 					gaddr += PAGE_SIZE;
1063 				}
1064 			} else {
1065 				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1066 						      bits);
1067 				if (!rc) {
1068 					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1069 					len = len < dist ? 0 : len - dist;
1070 					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1071 				}
1072 			}
1073 			gmap_pmd_op_end(gmap, pmdp);
1074 		}
1075 		if (rc) {
1076 			if (rc == -EINVAL)
1077 				return rc;
1078 
1079 			/* -EAGAIN, fixup of userspace mm and gmap */
1080 			vmaddr = __gmap_translate(gmap, gaddr);
1081 			if (IS_ERR_VALUE(vmaddr))
1082 				return vmaddr;
1083 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1084 			if (rc)
1085 				return rc;
1086 		}
1087 	}
1088 	return 0;
1089 }
1090 
1091 /**
1092  * gmap_mprotect_notify - change access rights for a range of ptes and
1093  *                        call the notifier if any pte changes again
1094  * @gmap: pointer to guest mapping meta data structure
1095  * @gaddr: virtual address in the guest address space
1096  * @len: size of area
1097  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1098  *
1099  * Returns 0 if for each page in the given range a gmap mapping exists,
1100  * the new access rights could be set and the notifier could be armed.
1101  * If the gmap mapping is missing for one or more pages -EFAULT is
1102  * returned. If no memory could be allocated -ENOMEM is returned.
1103  * This function establishes missing page table entries.
1104  */
1105 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1106 			 unsigned long len, int prot)
1107 {
1108 	int rc;
1109 
1110 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1111 		return -EINVAL;
1112 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1113 		return -EINVAL;
1114 	mmap_read_lock(gmap->mm);
1115 	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1116 	mmap_read_unlock(gmap->mm);
1117 	return rc;
1118 }
1119 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1120 
1121 /**
1122  * gmap_read_table - get an unsigned long value from a guest page table using
1123  *                   absolute addressing, without marking the page referenced.
1124  * @gmap: pointer to guest mapping meta data structure
1125  * @gaddr: virtual address in the guest address space
1126  * @val: pointer to the unsigned long value to return
1127  *
1128  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1129  * if reading using the virtual address failed. -EINVAL if called on a gmap
1130  * shadow.
1131  *
1132  * Called with gmap->mm->mmap_lock in read.
1133  */
1134 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1135 {
1136 	unsigned long address, vmaddr;
1137 	spinlock_t *ptl;
1138 	pte_t *ptep, pte;
1139 	int rc;
1140 
1141 	if (gmap_is_shadow(gmap))
1142 		return -EINVAL;
1143 
1144 	while (1) {
1145 		rc = -EAGAIN;
1146 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1147 		if (ptep) {
1148 			pte = *ptep;
1149 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1150 				address = pte_val(pte) & PAGE_MASK;
1151 				address += gaddr & ~PAGE_MASK;
1152 				*val = *(unsigned long *) address;
1153 				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1154 				/* Do *NOT* clear the _PAGE_INVALID bit! */
1155 				rc = 0;
1156 			}
1157 			gmap_pte_op_end(ptl);
1158 		}
1159 		if (!rc)
1160 			break;
1161 		vmaddr = __gmap_translate(gmap, gaddr);
1162 		if (IS_ERR_VALUE(vmaddr)) {
1163 			rc = vmaddr;
1164 			break;
1165 		}
1166 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1167 		if (rc)
1168 			break;
1169 	}
1170 	return rc;
1171 }
1172 EXPORT_SYMBOL_GPL(gmap_read_table);
1173 
1174 /**
1175  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1176  * @sg: pointer to the shadow guest address space structure
1177  * @vmaddr: vm address associated with the rmap
1178  * @rmap: pointer to the rmap structure
1179  *
1180  * Called with the sg->guest_table_lock
1181  */
1182 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1183 				    struct gmap_rmap *rmap)
1184 {
1185 	struct gmap_rmap *temp;
1186 	void __rcu **slot;
1187 
1188 	BUG_ON(!gmap_is_shadow(sg));
1189 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1190 	if (slot) {
1191 		rmap->next = radix_tree_deref_slot_protected(slot,
1192 							&sg->guest_table_lock);
1193 		for (temp = rmap->next; temp; temp = temp->next) {
1194 			if (temp->raddr == rmap->raddr) {
1195 				kfree(rmap);
1196 				return;
1197 			}
1198 		}
1199 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1200 	} else {
1201 		rmap->next = NULL;
1202 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1203 				  rmap);
1204 	}
1205 }
1206 
1207 /**
1208  * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1209  * @sg: pointer to the shadow guest address space structure
1210  * @raddr: rmap address in the shadow gmap
1211  * @paddr: address in the parent guest address space
1212  * @len: length of the memory area to protect
1213  *
1214  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1215  * if out of memory and -EFAULT if paddr is invalid.
1216  */
1217 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1218 			     unsigned long paddr, unsigned long len)
1219 {
1220 	struct gmap *parent;
1221 	struct gmap_rmap *rmap;
1222 	unsigned long vmaddr;
1223 	spinlock_t *ptl;
1224 	pte_t *ptep;
1225 	int rc;
1226 
1227 	BUG_ON(!gmap_is_shadow(sg));
1228 	parent = sg->parent;
1229 	while (len) {
1230 		vmaddr = __gmap_translate(parent, paddr);
1231 		if (IS_ERR_VALUE(vmaddr))
1232 			return vmaddr;
1233 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1234 		if (!rmap)
1235 			return -ENOMEM;
1236 		rmap->raddr = raddr;
1237 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1238 		if (rc) {
1239 			kfree(rmap);
1240 			return rc;
1241 		}
1242 		rc = -EAGAIN;
1243 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1244 		if (ptep) {
1245 			spin_lock(&sg->guest_table_lock);
1246 			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1247 					     PGSTE_VSIE_BIT);
1248 			if (!rc)
1249 				gmap_insert_rmap(sg, vmaddr, rmap);
1250 			spin_unlock(&sg->guest_table_lock);
1251 			gmap_pte_op_end(ptl);
1252 		}
1253 		radix_tree_preload_end();
1254 		if (rc) {
1255 			kfree(rmap);
1256 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1257 			if (rc)
1258 				return rc;
1259 			continue;
1260 		}
1261 		paddr += PAGE_SIZE;
1262 		len -= PAGE_SIZE;
1263 	}
1264 	return 0;
1265 }
1266 
1267 #define _SHADOW_RMAP_MASK	0x7
1268 #define _SHADOW_RMAP_REGION1	0x5
1269 #define _SHADOW_RMAP_REGION2	0x4
1270 #define _SHADOW_RMAP_REGION3	0x3
1271 #define _SHADOW_RMAP_SEGMENT	0x2
1272 #define _SHADOW_RMAP_PGTABLE	0x1
1273 
1274 /**
1275  * gmap_idte_one - invalidate a single region or segment table entry
1276  * @asce: region or segment table *origin* + table-type bits
1277  * @vaddr: virtual address to identify the table entry to flush
1278  *
1279  * The invalid bit of a single region or segment table entry is set
1280  * and the associated TLB entries depending on the entry are flushed.
1281  * The table-type of the @asce identifies the portion of the @vaddr
1282  * that is used as the invalidation index.
1283  */
1284 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1285 {
1286 	asm volatile(
1287 		"	idte	%0,0,%1"
1288 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1289 }
1290 
1291 /**
1292  * gmap_unshadow_page - remove a page from a shadow page table
1293  * @sg: pointer to the shadow guest address space structure
1294  * @raddr: rmap address in the shadow guest address space
1295  *
1296  * Called with the sg->guest_table_lock
1297  */
1298 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1299 {
1300 	unsigned long *table;
1301 
1302 	BUG_ON(!gmap_is_shadow(sg));
1303 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1304 	if (!table || *table & _PAGE_INVALID)
1305 		return;
1306 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1307 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1308 }
1309 
1310 /**
1311  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1312  * @sg: pointer to the shadow guest address space structure
1313  * @raddr: rmap address in the shadow guest address space
1314  * @pgt: pointer to the start of a shadow page table
1315  *
1316  * Called with the sg->guest_table_lock
1317  */
1318 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1319 				unsigned long *pgt)
1320 {
1321 	int i;
1322 
1323 	BUG_ON(!gmap_is_shadow(sg));
1324 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1325 		pgt[i] = _PAGE_INVALID;
1326 }
1327 
1328 /**
1329  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1330  * @sg: pointer to the shadow guest address space structure
1331  * @raddr: address in the shadow guest address space
1332  *
1333  * Called with the sg->guest_table_lock
1334  */
1335 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1336 {
1337 	unsigned long sto, *ste, *pgt;
1338 	struct page *page;
1339 
1340 	BUG_ON(!gmap_is_shadow(sg));
1341 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1342 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1343 		return;
1344 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1345 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1346 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1347 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1348 	*ste = _SEGMENT_ENTRY_EMPTY;
1349 	__gmap_unshadow_pgt(sg, raddr, pgt);
1350 	/* Free page table */
1351 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1352 	list_del(&page->lru);
1353 	page_table_free_pgste(page);
1354 }
1355 
1356 /**
1357  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1358  * @sg: pointer to the shadow guest address space structure
1359  * @raddr: rmap address in the shadow guest address space
1360  * @sgt: pointer to the start of a shadow segment table
1361  *
1362  * Called with the sg->guest_table_lock
1363  */
1364 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1365 				unsigned long *sgt)
1366 {
1367 	unsigned long *pgt;
1368 	struct page *page;
1369 	int i;
1370 
1371 	BUG_ON(!gmap_is_shadow(sg));
1372 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1373 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1374 			continue;
1375 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1376 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1377 		__gmap_unshadow_pgt(sg, raddr, pgt);
1378 		/* Free page table */
1379 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1380 		list_del(&page->lru);
1381 		page_table_free_pgste(page);
1382 	}
1383 }
1384 
1385 /**
1386  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1387  * @sg: pointer to the shadow guest address space structure
1388  * @raddr: rmap address in the shadow guest address space
1389  *
1390  * Called with the shadow->guest_table_lock
1391  */
1392 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1393 {
1394 	unsigned long r3o, *r3e, *sgt;
1395 	struct page *page;
1396 
1397 	BUG_ON(!gmap_is_shadow(sg));
1398 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1399 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1400 		return;
1401 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1402 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1403 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1404 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1405 	*r3e = _REGION3_ENTRY_EMPTY;
1406 	__gmap_unshadow_sgt(sg, raddr, sgt);
1407 	/* Free segment table */
1408 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1409 	list_del(&page->lru);
1410 	__free_pages(page, CRST_ALLOC_ORDER);
1411 }
1412 
1413 /**
1414  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1415  * @sg: pointer to the shadow guest address space structure
1416  * @raddr: address in the shadow guest address space
1417  * @r3t: pointer to the start of a shadow region-3 table
1418  *
1419  * Called with the sg->guest_table_lock
1420  */
1421 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1422 				unsigned long *r3t)
1423 {
1424 	unsigned long *sgt;
1425 	struct page *page;
1426 	int i;
1427 
1428 	BUG_ON(!gmap_is_shadow(sg));
1429 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1430 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1431 			continue;
1432 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1433 		r3t[i] = _REGION3_ENTRY_EMPTY;
1434 		__gmap_unshadow_sgt(sg, raddr, sgt);
1435 		/* Free segment table */
1436 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1437 		list_del(&page->lru);
1438 		__free_pages(page, CRST_ALLOC_ORDER);
1439 	}
1440 }
1441 
1442 /**
1443  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1444  * @sg: pointer to the shadow guest address space structure
1445  * @raddr: rmap address in the shadow guest address space
1446  *
1447  * Called with the sg->guest_table_lock
1448  */
1449 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1450 {
1451 	unsigned long r2o, *r2e, *r3t;
1452 	struct page *page;
1453 
1454 	BUG_ON(!gmap_is_shadow(sg));
1455 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1456 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1457 		return;
1458 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1459 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1460 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1461 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1462 	*r2e = _REGION2_ENTRY_EMPTY;
1463 	__gmap_unshadow_r3t(sg, raddr, r3t);
1464 	/* Free region 3 table */
1465 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1466 	list_del(&page->lru);
1467 	__free_pages(page, CRST_ALLOC_ORDER);
1468 }
1469 
1470 /**
1471  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1472  * @sg: pointer to the shadow guest address space structure
1473  * @raddr: rmap address in the shadow guest address space
1474  * @r2t: pointer to the start of a shadow region-2 table
1475  *
1476  * Called with the sg->guest_table_lock
1477  */
1478 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1479 				unsigned long *r2t)
1480 {
1481 	unsigned long *r3t;
1482 	struct page *page;
1483 	int i;
1484 
1485 	BUG_ON(!gmap_is_shadow(sg));
1486 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1487 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1488 			continue;
1489 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1490 		r2t[i] = _REGION2_ENTRY_EMPTY;
1491 		__gmap_unshadow_r3t(sg, raddr, r3t);
1492 		/* Free region 3 table */
1493 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1494 		list_del(&page->lru);
1495 		__free_pages(page, CRST_ALLOC_ORDER);
1496 	}
1497 }
1498 
1499 /**
1500  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1501  * @sg: pointer to the shadow guest address space structure
1502  * @raddr: rmap address in the shadow guest address space
1503  *
1504  * Called with the sg->guest_table_lock
1505  */
1506 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1507 {
1508 	unsigned long r1o, *r1e, *r2t;
1509 	struct page *page;
1510 
1511 	BUG_ON(!gmap_is_shadow(sg));
1512 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1513 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1514 		return;
1515 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1516 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1517 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1518 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1519 	*r1e = _REGION1_ENTRY_EMPTY;
1520 	__gmap_unshadow_r2t(sg, raddr, r2t);
1521 	/* Free region 2 table */
1522 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1523 	list_del(&page->lru);
1524 	__free_pages(page, CRST_ALLOC_ORDER);
1525 }
1526 
1527 /**
1528  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1529  * @sg: pointer to the shadow guest address space structure
1530  * @raddr: rmap address in the shadow guest address space
1531  * @r1t: pointer to the start of a shadow region-1 table
1532  *
1533  * Called with the shadow->guest_table_lock
1534  */
1535 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1536 				unsigned long *r1t)
1537 {
1538 	unsigned long asce, *r2t;
1539 	struct page *page;
1540 	int i;
1541 
1542 	BUG_ON(!gmap_is_shadow(sg));
1543 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1544 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1545 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1546 			continue;
1547 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1548 		__gmap_unshadow_r2t(sg, raddr, r2t);
1549 		/* Clear entry and flush translation r1t -> r2t */
1550 		gmap_idte_one(asce, raddr);
1551 		r1t[i] = _REGION1_ENTRY_EMPTY;
1552 		/* Free region 2 table */
1553 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1554 		list_del(&page->lru);
1555 		__free_pages(page, CRST_ALLOC_ORDER);
1556 	}
1557 }
1558 
1559 /**
1560  * gmap_unshadow - remove a shadow page table completely
1561  * @sg: pointer to the shadow guest address space structure
1562  *
1563  * Called with sg->guest_table_lock
1564  */
1565 static void gmap_unshadow(struct gmap *sg)
1566 {
1567 	unsigned long *table;
1568 
1569 	BUG_ON(!gmap_is_shadow(sg));
1570 	if (sg->removed)
1571 		return;
1572 	sg->removed = 1;
1573 	gmap_call_notifier(sg, 0, -1UL);
1574 	gmap_flush_tlb(sg);
1575 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1576 	switch (sg->asce & _ASCE_TYPE_MASK) {
1577 	case _ASCE_TYPE_REGION1:
1578 		__gmap_unshadow_r1t(sg, 0, table);
1579 		break;
1580 	case _ASCE_TYPE_REGION2:
1581 		__gmap_unshadow_r2t(sg, 0, table);
1582 		break;
1583 	case _ASCE_TYPE_REGION3:
1584 		__gmap_unshadow_r3t(sg, 0, table);
1585 		break;
1586 	case _ASCE_TYPE_SEGMENT:
1587 		__gmap_unshadow_sgt(sg, 0, table);
1588 		break;
1589 	}
1590 }
1591 
1592 /**
1593  * gmap_find_shadow - find a specific asce in the list of shadow tables
1594  * @parent: pointer to the parent gmap
1595  * @asce: ASCE for which the shadow table is created
1596  * @edat_level: edat level to be used for the shadow translation
1597  *
1598  * Returns the pointer to a gmap if a shadow table with the given asce is
1599  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1600  * otherwise NULL
1601  */
1602 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1603 				     int edat_level)
1604 {
1605 	struct gmap *sg;
1606 
1607 	list_for_each_entry(sg, &parent->children, list) {
1608 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1609 		    sg->removed)
1610 			continue;
1611 		if (!sg->initialized)
1612 			return ERR_PTR(-EAGAIN);
1613 		refcount_inc(&sg->ref_count);
1614 		return sg;
1615 	}
1616 	return NULL;
1617 }
1618 
1619 /**
1620  * gmap_shadow_valid - check if a shadow guest address space matches the
1621  *                     given properties and is still valid
1622  * @sg: pointer to the shadow guest address space structure
1623  * @asce: ASCE for which the shadow table is requested
1624  * @edat_level: edat level to be used for the shadow translation
1625  *
1626  * Returns 1 if the gmap shadow is still valid and matches the given
1627  * properties, the caller can continue using it. Returns 0 otherwise, the
1628  * caller has to request a new shadow gmap in this case.
1629  *
1630  */
1631 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1632 {
1633 	if (sg->removed)
1634 		return 0;
1635 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1636 }
1637 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1638 
1639 /**
1640  * gmap_shadow - create/find a shadow guest address space
1641  * @parent: pointer to the parent gmap
1642  * @asce: ASCE for which the shadow table is created
1643  * @edat_level: edat level to be used for the shadow translation
1644  *
1645  * The pages of the top level page table referred by the asce parameter
1646  * will be set to read-only and marked in the PGSTEs of the kvm process.
1647  * The shadow table will be removed automatically on any change to the
1648  * PTE mapping for the source table.
1649  *
1650  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1651  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1652  * parent gmap table could not be protected.
1653  */
1654 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1655 			 int edat_level)
1656 {
1657 	struct gmap *sg, *new;
1658 	unsigned long limit;
1659 	int rc;
1660 
1661 	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1662 	BUG_ON(gmap_is_shadow(parent));
1663 	spin_lock(&parent->shadow_lock);
1664 	sg = gmap_find_shadow(parent, asce, edat_level);
1665 	spin_unlock(&parent->shadow_lock);
1666 	if (sg)
1667 		return sg;
1668 	/* Create a new shadow gmap */
1669 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1670 	if (asce & _ASCE_REAL_SPACE)
1671 		limit = -1UL;
1672 	new = gmap_alloc(limit);
1673 	if (!new)
1674 		return ERR_PTR(-ENOMEM);
1675 	new->mm = parent->mm;
1676 	new->parent = gmap_get(parent);
1677 	new->orig_asce = asce;
1678 	new->edat_level = edat_level;
1679 	new->initialized = false;
1680 	spin_lock(&parent->shadow_lock);
1681 	/* Recheck if another CPU created the same shadow */
1682 	sg = gmap_find_shadow(parent, asce, edat_level);
1683 	if (sg) {
1684 		spin_unlock(&parent->shadow_lock);
1685 		gmap_free(new);
1686 		return sg;
1687 	}
1688 	if (asce & _ASCE_REAL_SPACE) {
1689 		/* only allow one real-space gmap shadow */
1690 		list_for_each_entry(sg, &parent->children, list) {
1691 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1692 				spin_lock(&sg->guest_table_lock);
1693 				gmap_unshadow(sg);
1694 				spin_unlock(&sg->guest_table_lock);
1695 				list_del(&sg->list);
1696 				gmap_put(sg);
1697 				break;
1698 			}
1699 		}
1700 	}
1701 	refcount_set(&new->ref_count, 2);
1702 	list_add(&new->list, &parent->children);
1703 	if (asce & _ASCE_REAL_SPACE) {
1704 		/* nothing to protect, return right away */
1705 		new->initialized = true;
1706 		spin_unlock(&parent->shadow_lock);
1707 		return new;
1708 	}
1709 	spin_unlock(&parent->shadow_lock);
1710 	/* protect after insertion, so it will get properly invalidated */
1711 	mmap_read_lock(parent->mm);
1712 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1713 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1714 				PROT_READ, GMAP_NOTIFY_SHADOW);
1715 	mmap_read_unlock(parent->mm);
1716 	spin_lock(&parent->shadow_lock);
1717 	new->initialized = true;
1718 	if (rc) {
1719 		list_del(&new->list);
1720 		gmap_free(new);
1721 		new = ERR_PTR(rc);
1722 	}
1723 	spin_unlock(&parent->shadow_lock);
1724 	return new;
1725 }
1726 EXPORT_SYMBOL_GPL(gmap_shadow);
1727 
1728 /**
1729  * gmap_shadow_r2t - create an empty shadow region 2 table
1730  * @sg: pointer to the shadow guest address space structure
1731  * @saddr: faulting address in the shadow gmap
1732  * @r2t: parent gmap address of the region 2 table to get shadowed
1733  * @fake: r2t references contiguous guest memory block, not a r2t
1734  *
1735  * The r2t parameter specifies the address of the source table. The
1736  * four pages of the source table are made read-only in the parent gmap
1737  * address space. A write to the source table area @r2t will automatically
1738  * remove the shadow r2 table and all of its decendents.
1739  *
1740  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1741  * shadow table structure is incomplete, -ENOMEM if out of memory and
1742  * -EFAULT if an address in the parent gmap could not be resolved.
1743  *
1744  * Called with sg->mm->mmap_lock in read.
1745  */
1746 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1747 		    int fake)
1748 {
1749 	unsigned long raddr, origin, offset, len;
1750 	unsigned long *s_r2t, *table;
1751 	struct page *page;
1752 	int rc;
1753 
1754 	BUG_ON(!gmap_is_shadow(sg));
1755 	/* Allocate a shadow region second table */
1756 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1757 	if (!page)
1758 		return -ENOMEM;
1759 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1760 	if (fake)
1761 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1762 	s_r2t = (unsigned long *) page_to_phys(page);
1763 	/* Install shadow region second table */
1764 	spin_lock(&sg->guest_table_lock);
1765 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1766 	if (!table) {
1767 		rc = -EAGAIN;		/* Race with unshadow */
1768 		goto out_free;
1769 	}
1770 	if (!(*table & _REGION_ENTRY_INVALID)) {
1771 		rc = 0;			/* Already established */
1772 		goto out_free;
1773 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1774 		rc = -EAGAIN;		/* Race with shadow */
1775 		goto out_free;
1776 	}
1777 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1778 	/* mark as invalid as long as the parent table is not protected */
1779 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1780 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1781 	if (sg->edat_level >= 1)
1782 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1783 	list_add(&page->lru, &sg->crst_list);
1784 	if (fake) {
1785 		/* nothing to protect for fake tables */
1786 		*table &= ~_REGION_ENTRY_INVALID;
1787 		spin_unlock(&sg->guest_table_lock);
1788 		return 0;
1789 	}
1790 	spin_unlock(&sg->guest_table_lock);
1791 	/* Make r2t read-only in parent gmap page table */
1792 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1793 	origin = r2t & _REGION_ENTRY_ORIGIN;
1794 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1795 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1796 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1797 	spin_lock(&sg->guest_table_lock);
1798 	if (!rc) {
1799 		table = gmap_table_walk(sg, saddr, 4);
1800 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1801 			      (unsigned long) s_r2t)
1802 			rc = -EAGAIN;		/* Race with unshadow */
1803 		else
1804 			*table &= ~_REGION_ENTRY_INVALID;
1805 	} else {
1806 		gmap_unshadow_r2t(sg, raddr);
1807 	}
1808 	spin_unlock(&sg->guest_table_lock);
1809 	return rc;
1810 out_free:
1811 	spin_unlock(&sg->guest_table_lock);
1812 	__free_pages(page, CRST_ALLOC_ORDER);
1813 	return rc;
1814 }
1815 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1816 
1817 /**
1818  * gmap_shadow_r3t - create a shadow region 3 table
1819  * @sg: pointer to the shadow guest address space structure
1820  * @saddr: faulting address in the shadow gmap
1821  * @r3t: parent gmap address of the region 3 table to get shadowed
1822  * @fake: r3t references contiguous guest memory block, not a r3t
1823  *
1824  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1825  * shadow table structure is incomplete, -ENOMEM if out of memory and
1826  * -EFAULT if an address in the parent gmap could not be resolved.
1827  *
1828  * Called with sg->mm->mmap_lock in read.
1829  */
1830 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1831 		    int fake)
1832 {
1833 	unsigned long raddr, origin, offset, len;
1834 	unsigned long *s_r3t, *table;
1835 	struct page *page;
1836 	int rc;
1837 
1838 	BUG_ON(!gmap_is_shadow(sg));
1839 	/* Allocate a shadow region second table */
1840 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1841 	if (!page)
1842 		return -ENOMEM;
1843 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1844 	if (fake)
1845 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1846 	s_r3t = (unsigned long *) page_to_phys(page);
1847 	/* Install shadow region second table */
1848 	spin_lock(&sg->guest_table_lock);
1849 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1850 	if (!table) {
1851 		rc = -EAGAIN;		/* Race with unshadow */
1852 		goto out_free;
1853 	}
1854 	if (!(*table & _REGION_ENTRY_INVALID)) {
1855 		rc = 0;			/* Already established */
1856 		goto out_free;
1857 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1858 		rc = -EAGAIN;		/* Race with shadow */
1859 		goto out_free;
1860 	}
1861 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1862 	/* mark as invalid as long as the parent table is not protected */
1863 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1864 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1865 	if (sg->edat_level >= 1)
1866 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1867 	list_add(&page->lru, &sg->crst_list);
1868 	if (fake) {
1869 		/* nothing to protect for fake tables */
1870 		*table &= ~_REGION_ENTRY_INVALID;
1871 		spin_unlock(&sg->guest_table_lock);
1872 		return 0;
1873 	}
1874 	spin_unlock(&sg->guest_table_lock);
1875 	/* Make r3t read-only in parent gmap page table */
1876 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1877 	origin = r3t & _REGION_ENTRY_ORIGIN;
1878 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1879 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1880 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1881 	spin_lock(&sg->guest_table_lock);
1882 	if (!rc) {
1883 		table = gmap_table_walk(sg, saddr, 3);
1884 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1885 			      (unsigned long) s_r3t)
1886 			rc = -EAGAIN;		/* Race with unshadow */
1887 		else
1888 			*table &= ~_REGION_ENTRY_INVALID;
1889 	} else {
1890 		gmap_unshadow_r3t(sg, raddr);
1891 	}
1892 	spin_unlock(&sg->guest_table_lock);
1893 	return rc;
1894 out_free:
1895 	spin_unlock(&sg->guest_table_lock);
1896 	__free_pages(page, CRST_ALLOC_ORDER);
1897 	return rc;
1898 }
1899 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1900 
1901 /**
1902  * gmap_shadow_sgt - create a shadow segment table
1903  * @sg: pointer to the shadow guest address space structure
1904  * @saddr: faulting address in the shadow gmap
1905  * @sgt: parent gmap address of the segment table to get shadowed
1906  * @fake: sgt references contiguous guest memory block, not a sgt
1907  *
1908  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1909  * shadow table structure is incomplete, -ENOMEM if out of memory and
1910  * -EFAULT if an address in the parent gmap could not be resolved.
1911  *
1912  * Called with sg->mm->mmap_lock in read.
1913  */
1914 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1915 		    int fake)
1916 {
1917 	unsigned long raddr, origin, offset, len;
1918 	unsigned long *s_sgt, *table;
1919 	struct page *page;
1920 	int rc;
1921 
1922 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1923 	/* Allocate a shadow segment table */
1924 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
1925 	if (!page)
1926 		return -ENOMEM;
1927 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1928 	if (fake)
1929 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1930 	s_sgt = (unsigned long *) page_to_phys(page);
1931 	/* Install shadow region second table */
1932 	spin_lock(&sg->guest_table_lock);
1933 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1934 	if (!table) {
1935 		rc = -EAGAIN;		/* Race with unshadow */
1936 		goto out_free;
1937 	}
1938 	if (!(*table & _REGION_ENTRY_INVALID)) {
1939 		rc = 0;			/* Already established */
1940 		goto out_free;
1941 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1942 		rc = -EAGAIN;		/* Race with shadow */
1943 		goto out_free;
1944 	}
1945 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1946 	/* mark as invalid as long as the parent table is not protected */
1947 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1948 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1949 	if (sg->edat_level >= 1)
1950 		*table |= sgt & _REGION_ENTRY_PROTECT;
1951 	list_add(&page->lru, &sg->crst_list);
1952 	if (fake) {
1953 		/* nothing to protect for fake tables */
1954 		*table &= ~_REGION_ENTRY_INVALID;
1955 		spin_unlock(&sg->guest_table_lock);
1956 		return 0;
1957 	}
1958 	spin_unlock(&sg->guest_table_lock);
1959 	/* Make sgt read-only in parent gmap page table */
1960 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1961 	origin = sgt & _REGION_ENTRY_ORIGIN;
1962 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1963 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1964 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1965 	spin_lock(&sg->guest_table_lock);
1966 	if (!rc) {
1967 		table = gmap_table_walk(sg, saddr, 2);
1968 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1969 			      (unsigned long) s_sgt)
1970 			rc = -EAGAIN;		/* Race with unshadow */
1971 		else
1972 			*table &= ~_REGION_ENTRY_INVALID;
1973 	} else {
1974 		gmap_unshadow_sgt(sg, raddr);
1975 	}
1976 	spin_unlock(&sg->guest_table_lock);
1977 	return rc;
1978 out_free:
1979 	spin_unlock(&sg->guest_table_lock);
1980 	__free_pages(page, CRST_ALLOC_ORDER);
1981 	return rc;
1982 }
1983 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1984 
1985 /**
1986  * gmap_shadow_pgt_lookup - find a shadow page table
1987  * @sg: pointer to the shadow guest address space structure
1988  * @saddr: the address in the shadow aguest address space
1989  * @pgt: parent gmap address of the page table to get shadowed
1990  * @dat_protection: if the pgtable is marked as protected by dat
1991  * @fake: pgt references contiguous guest memory block, not a pgtable
1992  *
1993  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1994  * table was not found.
1995  *
1996  * Called with sg->mm->mmap_lock in read.
1997  */
1998 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1999 			   unsigned long *pgt, int *dat_protection,
2000 			   int *fake)
2001 {
2002 	unsigned long *table;
2003 	struct page *page;
2004 	int rc;
2005 
2006 	BUG_ON(!gmap_is_shadow(sg));
2007 	spin_lock(&sg->guest_table_lock);
2008 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2009 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2010 		/* Shadow page tables are full pages (pte+pgste) */
2011 		page = pfn_to_page(*table >> PAGE_SHIFT);
2012 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2013 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2014 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2015 		rc = 0;
2016 	} else  {
2017 		rc = -EAGAIN;
2018 	}
2019 	spin_unlock(&sg->guest_table_lock);
2020 	return rc;
2021 
2022 }
2023 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2024 
2025 /**
2026  * gmap_shadow_pgt - instantiate a shadow page table
2027  * @sg: pointer to the shadow guest address space structure
2028  * @saddr: faulting address in the shadow gmap
2029  * @pgt: parent gmap address of the page table to get shadowed
2030  * @fake: pgt references contiguous guest memory block, not a pgtable
2031  *
2032  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2033  * shadow table structure is incomplete, -ENOMEM if out of memory,
2034  * -EFAULT if an address in the parent gmap could not be resolved and
2035  *
2036  * Called with gmap->mm->mmap_lock in read
2037  */
2038 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2039 		    int fake)
2040 {
2041 	unsigned long raddr, origin;
2042 	unsigned long *s_pgt, *table;
2043 	struct page *page;
2044 	int rc;
2045 
2046 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2047 	/* Allocate a shadow page table */
2048 	page = page_table_alloc_pgste(sg->mm);
2049 	if (!page)
2050 		return -ENOMEM;
2051 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2052 	if (fake)
2053 		page->index |= GMAP_SHADOW_FAKE_TABLE;
2054 	s_pgt = (unsigned long *) page_to_phys(page);
2055 	/* Install shadow page table */
2056 	spin_lock(&sg->guest_table_lock);
2057 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2058 	if (!table) {
2059 		rc = -EAGAIN;		/* Race with unshadow */
2060 		goto out_free;
2061 	}
2062 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2063 		rc = 0;			/* Already established */
2064 		goto out_free;
2065 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2066 		rc = -EAGAIN;		/* Race with shadow */
2067 		goto out_free;
2068 	}
2069 	/* mark as invalid as long as the parent table is not protected */
2070 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2071 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2072 	list_add(&page->lru, &sg->pt_list);
2073 	if (fake) {
2074 		/* nothing to protect for fake tables */
2075 		*table &= ~_SEGMENT_ENTRY_INVALID;
2076 		spin_unlock(&sg->guest_table_lock);
2077 		return 0;
2078 	}
2079 	spin_unlock(&sg->guest_table_lock);
2080 	/* Make pgt read-only in parent gmap page table (not the pgste) */
2081 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2082 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2083 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2084 	spin_lock(&sg->guest_table_lock);
2085 	if (!rc) {
2086 		table = gmap_table_walk(sg, saddr, 1);
2087 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2088 			      (unsigned long) s_pgt)
2089 			rc = -EAGAIN;		/* Race with unshadow */
2090 		else
2091 			*table &= ~_SEGMENT_ENTRY_INVALID;
2092 	} else {
2093 		gmap_unshadow_pgt(sg, raddr);
2094 	}
2095 	spin_unlock(&sg->guest_table_lock);
2096 	return rc;
2097 out_free:
2098 	spin_unlock(&sg->guest_table_lock);
2099 	page_table_free_pgste(page);
2100 	return rc;
2101 
2102 }
2103 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2104 
2105 /**
2106  * gmap_shadow_page - create a shadow page mapping
2107  * @sg: pointer to the shadow guest address space structure
2108  * @saddr: faulting address in the shadow gmap
2109  * @pte: pte in parent gmap address space to get shadowed
2110  *
2111  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2112  * shadow table structure is incomplete, -ENOMEM if out of memory and
2113  * -EFAULT if an address in the parent gmap could not be resolved.
2114  *
2115  * Called with sg->mm->mmap_lock in read.
2116  */
2117 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2118 {
2119 	struct gmap *parent;
2120 	struct gmap_rmap *rmap;
2121 	unsigned long vmaddr, paddr;
2122 	spinlock_t *ptl;
2123 	pte_t *sptep, *tptep;
2124 	int prot;
2125 	int rc;
2126 
2127 	BUG_ON(!gmap_is_shadow(sg));
2128 	parent = sg->parent;
2129 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2130 
2131 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2132 	if (!rmap)
2133 		return -ENOMEM;
2134 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2135 
2136 	while (1) {
2137 		paddr = pte_val(pte) & PAGE_MASK;
2138 		vmaddr = __gmap_translate(parent, paddr);
2139 		if (IS_ERR_VALUE(vmaddr)) {
2140 			rc = vmaddr;
2141 			break;
2142 		}
2143 		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2144 		if (rc)
2145 			break;
2146 		rc = -EAGAIN;
2147 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2148 		if (sptep) {
2149 			spin_lock(&sg->guest_table_lock);
2150 			/* Get page table pointer */
2151 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2152 			if (!tptep) {
2153 				spin_unlock(&sg->guest_table_lock);
2154 				gmap_pte_op_end(ptl);
2155 				radix_tree_preload_end();
2156 				break;
2157 			}
2158 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2159 			if (rc > 0) {
2160 				/* Success and a new mapping */
2161 				gmap_insert_rmap(sg, vmaddr, rmap);
2162 				rmap = NULL;
2163 				rc = 0;
2164 			}
2165 			gmap_pte_op_end(ptl);
2166 			spin_unlock(&sg->guest_table_lock);
2167 		}
2168 		radix_tree_preload_end();
2169 		if (!rc)
2170 			break;
2171 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2172 		if (rc)
2173 			break;
2174 	}
2175 	kfree(rmap);
2176 	return rc;
2177 }
2178 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2179 
2180 /*
2181  * gmap_shadow_notify - handle notifications for shadow gmap
2182  *
2183  * Called with sg->parent->shadow_lock.
2184  */
2185 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2186 			       unsigned long gaddr)
2187 {
2188 	struct gmap_rmap *rmap, *rnext, *head;
2189 	unsigned long start, end, bits, raddr;
2190 
2191 	BUG_ON(!gmap_is_shadow(sg));
2192 
2193 	spin_lock(&sg->guest_table_lock);
2194 	if (sg->removed) {
2195 		spin_unlock(&sg->guest_table_lock);
2196 		return;
2197 	}
2198 	/* Check for top level table */
2199 	start = sg->orig_asce & _ASCE_ORIGIN;
2200 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2201 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2202 	    gaddr < end) {
2203 		/* The complete shadow table has to go */
2204 		gmap_unshadow(sg);
2205 		spin_unlock(&sg->guest_table_lock);
2206 		list_del(&sg->list);
2207 		gmap_put(sg);
2208 		return;
2209 	}
2210 	/* Remove the page table tree from on specific entry */
2211 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2212 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2213 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2214 		raddr = rmap->raddr ^ bits;
2215 		switch (bits) {
2216 		case _SHADOW_RMAP_REGION1:
2217 			gmap_unshadow_r2t(sg, raddr);
2218 			break;
2219 		case _SHADOW_RMAP_REGION2:
2220 			gmap_unshadow_r3t(sg, raddr);
2221 			break;
2222 		case _SHADOW_RMAP_REGION3:
2223 			gmap_unshadow_sgt(sg, raddr);
2224 			break;
2225 		case _SHADOW_RMAP_SEGMENT:
2226 			gmap_unshadow_pgt(sg, raddr);
2227 			break;
2228 		case _SHADOW_RMAP_PGTABLE:
2229 			gmap_unshadow_page(sg, raddr);
2230 			break;
2231 		}
2232 		kfree(rmap);
2233 	}
2234 	spin_unlock(&sg->guest_table_lock);
2235 }
2236 
2237 /**
2238  * ptep_notify - call all invalidation callbacks for a specific pte.
2239  * @mm: pointer to the process mm_struct
2240  * @vmaddr: virtual address in the process address space
2241  * @pte: pointer to the page table entry
2242  * @bits: bits from the pgste that caused the notify call
2243  *
2244  * This function is assumed to be called with the page table lock held
2245  * for the pte to notify.
2246  */
2247 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2248 		 pte_t *pte, unsigned long bits)
2249 {
2250 	unsigned long offset, gaddr = 0;
2251 	unsigned long *table;
2252 	struct gmap *gmap, *sg, *next;
2253 
2254 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2255 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2256 	rcu_read_lock();
2257 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2258 		spin_lock(&gmap->guest_table_lock);
2259 		table = radix_tree_lookup(&gmap->host_to_guest,
2260 					  vmaddr >> PMD_SHIFT);
2261 		if (table)
2262 			gaddr = __gmap_segment_gaddr(table) + offset;
2263 		spin_unlock(&gmap->guest_table_lock);
2264 		if (!table)
2265 			continue;
2266 
2267 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2268 			spin_lock(&gmap->shadow_lock);
2269 			list_for_each_entry_safe(sg, next,
2270 						 &gmap->children, list)
2271 				gmap_shadow_notify(sg, vmaddr, gaddr);
2272 			spin_unlock(&gmap->shadow_lock);
2273 		}
2274 		if (bits & PGSTE_IN_BIT)
2275 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2276 	}
2277 	rcu_read_unlock();
2278 }
2279 EXPORT_SYMBOL_GPL(ptep_notify);
2280 
2281 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2282 			     unsigned long gaddr)
2283 {
2284 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2285 	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2286 }
2287 
2288 /**
2289  * gmap_pmdp_xchg - exchange a gmap pmd with another
2290  * @gmap: pointer to the guest address space structure
2291  * @pmdp: pointer to the pmd entry
2292  * @new: replacement entry
2293  * @gaddr: the affected guest address
2294  *
2295  * This function is assumed to be called with the guest_table_lock
2296  * held.
2297  */
2298 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2299 			   unsigned long gaddr)
2300 {
2301 	gaddr &= HPAGE_MASK;
2302 	pmdp_notify_gmap(gmap, pmdp, gaddr);
2303 	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2304 	if (MACHINE_HAS_TLB_GUEST)
2305 		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2306 			    IDTE_GLOBAL);
2307 	else if (MACHINE_HAS_IDTE)
2308 		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2309 	else
2310 		__pmdp_csp(pmdp);
2311 	set_pmd(pmdp, new);
2312 }
2313 
2314 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2315 			    int purge)
2316 {
2317 	pmd_t *pmdp;
2318 	struct gmap *gmap;
2319 	unsigned long gaddr;
2320 
2321 	rcu_read_lock();
2322 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2323 		spin_lock(&gmap->guest_table_lock);
2324 		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2325 						  vmaddr >> PMD_SHIFT);
2326 		if (pmdp) {
2327 			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2328 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2329 			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2330 						   _SEGMENT_ENTRY_GMAP_UC));
2331 			if (purge)
2332 				__pmdp_csp(pmdp);
2333 			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2334 		}
2335 		spin_unlock(&gmap->guest_table_lock);
2336 	}
2337 	rcu_read_unlock();
2338 }
2339 
2340 /**
2341  * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2342  *                        flushing
2343  * @mm: pointer to the process mm_struct
2344  * @vmaddr: virtual address in the process address space
2345  */
2346 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2347 {
2348 	gmap_pmdp_clear(mm, vmaddr, 0);
2349 }
2350 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2351 
2352 /**
2353  * gmap_pmdp_csp - csp all affected guest pmd entries
2354  * @mm: pointer to the process mm_struct
2355  * @vmaddr: virtual address in the process address space
2356  */
2357 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2358 {
2359 	gmap_pmdp_clear(mm, vmaddr, 1);
2360 }
2361 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2362 
2363 /**
2364  * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2365  * @mm: pointer to the process mm_struct
2366  * @vmaddr: virtual address in the process address space
2367  */
2368 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2369 {
2370 	unsigned long *entry, gaddr;
2371 	struct gmap *gmap;
2372 	pmd_t *pmdp;
2373 
2374 	rcu_read_lock();
2375 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2376 		spin_lock(&gmap->guest_table_lock);
2377 		entry = radix_tree_delete(&gmap->host_to_guest,
2378 					  vmaddr >> PMD_SHIFT);
2379 		if (entry) {
2380 			pmdp = (pmd_t *)entry;
2381 			gaddr = __gmap_segment_gaddr(entry);
2382 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2383 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2384 					   _SEGMENT_ENTRY_GMAP_UC));
2385 			if (MACHINE_HAS_TLB_GUEST)
2386 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2387 					    gmap->asce, IDTE_LOCAL);
2388 			else if (MACHINE_HAS_IDTE)
2389 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2390 			*entry = _SEGMENT_ENTRY_EMPTY;
2391 		}
2392 		spin_unlock(&gmap->guest_table_lock);
2393 	}
2394 	rcu_read_unlock();
2395 }
2396 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2397 
2398 /**
2399  * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2400  * @mm: pointer to the process mm_struct
2401  * @vmaddr: virtual address in the process address space
2402  */
2403 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2404 {
2405 	unsigned long *entry, gaddr;
2406 	struct gmap *gmap;
2407 	pmd_t *pmdp;
2408 
2409 	rcu_read_lock();
2410 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2411 		spin_lock(&gmap->guest_table_lock);
2412 		entry = radix_tree_delete(&gmap->host_to_guest,
2413 					  vmaddr >> PMD_SHIFT);
2414 		if (entry) {
2415 			pmdp = (pmd_t *)entry;
2416 			gaddr = __gmap_segment_gaddr(entry);
2417 			pmdp_notify_gmap(gmap, pmdp, gaddr);
2418 			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2419 					   _SEGMENT_ENTRY_GMAP_UC));
2420 			if (MACHINE_HAS_TLB_GUEST)
2421 				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2422 					    gmap->asce, IDTE_GLOBAL);
2423 			else if (MACHINE_HAS_IDTE)
2424 				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2425 			else
2426 				__pmdp_csp(pmdp);
2427 			*entry = _SEGMENT_ENTRY_EMPTY;
2428 		}
2429 		spin_unlock(&gmap->guest_table_lock);
2430 	}
2431 	rcu_read_unlock();
2432 }
2433 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2434 
2435 /**
2436  * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2437  * @gmap: pointer to guest address space
2438  * @pmdp: pointer to the pmd to be tested
2439  * @gaddr: virtual address in the guest address space
2440  *
2441  * This function is assumed to be called with the guest_table_lock
2442  * held.
2443  */
2444 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2445 					  unsigned long gaddr)
2446 {
2447 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2448 		return false;
2449 
2450 	/* Already protected memory, which did not change is clean */
2451 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2452 	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2453 		return false;
2454 
2455 	/* Clear UC indication and reset protection */
2456 	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2457 	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2458 	return true;
2459 }
2460 
2461 /**
2462  * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2463  * @gmap: pointer to guest address space
2464  * @bitmap: dirty bitmap for this pmd
2465  * @gaddr: virtual address in the guest address space
2466  * @vmaddr: virtual address in the host address space
2467  *
2468  * This function is assumed to be called with the guest_table_lock
2469  * held.
2470  */
2471 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2472 			     unsigned long gaddr, unsigned long vmaddr)
2473 {
2474 	int i;
2475 	pmd_t *pmdp;
2476 	pte_t *ptep;
2477 	spinlock_t *ptl;
2478 
2479 	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2480 	if (!pmdp)
2481 		return;
2482 
2483 	if (pmd_large(*pmdp)) {
2484 		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2485 			bitmap_fill(bitmap, _PAGE_ENTRIES);
2486 	} else {
2487 		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2488 			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2489 			if (!ptep)
2490 				continue;
2491 			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2492 				set_bit(i, bitmap);
2493 			spin_unlock(ptl);
2494 		}
2495 	}
2496 	gmap_pmd_op_end(gmap, pmdp);
2497 }
2498 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2499 
2500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2501 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2502 				    unsigned long end, struct mm_walk *walk)
2503 {
2504 	struct vm_area_struct *vma = walk->vma;
2505 
2506 	split_huge_pmd(vma, pmd, addr);
2507 	return 0;
2508 }
2509 
2510 static const struct mm_walk_ops thp_split_walk_ops = {
2511 	.pmd_entry	= thp_split_walk_pmd_entry,
2512 };
2513 
2514 static inline void thp_split_mm(struct mm_struct *mm)
2515 {
2516 	struct vm_area_struct *vma;
2517 	VMA_ITERATOR(vmi, mm, 0);
2518 
2519 	for_each_vma(vmi, vma) {
2520 		vma->vm_flags &= ~VM_HUGEPAGE;
2521 		vma->vm_flags |= VM_NOHUGEPAGE;
2522 		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2523 	}
2524 	mm->def_flags |= VM_NOHUGEPAGE;
2525 }
2526 #else
2527 static inline void thp_split_mm(struct mm_struct *mm)
2528 {
2529 }
2530 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2531 
2532 /*
2533  * Remove all empty zero pages from the mapping for lazy refaulting
2534  * - This must be called after mm->context.has_pgste is set, to avoid
2535  *   future creation of zero pages
2536  * - This must be called after THP was enabled
2537  */
2538 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2539 			   unsigned long end, struct mm_walk *walk)
2540 {
2541 	unsigned long addr;
2542 
2543 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2544 		pte_t *ptep;
2545 		spinlock_t *ptl;
2546 
2547 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2548 		if (is_zero_pfn(pte_pfn(*ptep)))
2549 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2550 		pte_unmap_unlock(ptep, ptl);
2551 	}
2552 	return 0;
2553 }
2554 
2555 static const struct mm_walk_ops zap_zero_walk_ops = {
2556 	.pmd_entry	= __zap_zero_pages,
2557 };
2558 
2559 /*
2560  * switch on pgstes for its userspace process (for kvm)
2561  */
2562 int s390_enable_sie(void)
2563 {
2564 	struct mm_struct *mm = current->mm;
2565 
2566 	/* Do we have pgstes? if yes, we are done */
2567 	if (mm_has_pgste(mm))
2568 		return 0;
2569 	/* Fail if the page tables are 2K */
2570 	if (!mm_alloc_pgste(mm))
2571 		return -EINVAL;
2572 	mmap_write_lock(mm);
2573 	mm->context.has_pgste = 1;
2574 	/* split thp mappings and disable thp for future mappings */
2575 	thp_split_mm(mm);
2576 	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2577 	mmap_write_unlock(mm);
2578 	return 0;
2579 }
2580 EXPORT_SYMBOL_GPL(s390_enable_sie);
2581 
2582 int gmap_mark_unmergeable(void)
2583 {
2584 	struct mm_struct *mm = current->mm;
2585 	struct vm_area_struct *vma;
2586 	int ret;
2587 	VMA_ITERATOR(vmi, mm, 0);
2588 
2589 	for_each_vma(vmi, vma) {
2590 		ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2591 				  MADV_UNMERGEABLE, &vma->vm_flags);
2592 		if (ret)
2593 			return ret;
2594 	}
2595 	mm->def_flags &= ~VM_MERGEABLE;
2596 	return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2599 
2600 /*
2601  * Enable storage key handling from now on and initialize the storage
2602  * keys with the default key.
2603  */
2604 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2605 				  unsigned long next, struct mm_walk *walk)
2606 {
2607 	/* Clear storage key */
2608 	ptep_zap_key(walk->mm, addr, pte);
2609 	return 0;
2610 }
2611 
2612 /*
2613  * Give a chance to schedule after setting a key to 256 pages.
2614  * We only hold the mm lock, which is a rwsem and the kvm srcu.
2615  * Both can sleep.
2616  */
2617 static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2618 				  unsigned long next, struct mm_walk *walk)
2619 {
2620 	cond_resched();
2621 	return 0;
2622 }
2623 
2624 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2625 				      unsigned long hmask, unsigned long next,
2626 				      struct mm_walk *walk)
2627 {
2628 	pmd_t *pmd = (pmd_t *)pte;
2629 	unsigned long start, end;
2630 	struct page *page = pmd_page(*pmd);
2631 
2632 	/*
2633 	 * The write check makes sure we do not set a key on shared
2634 	 * memory. This is needed as the walker does not differentiate
2635 	 * between actual guest memory and the process executable or
2636 	 * shared libraries.
2637 	 */
2638 	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2639 	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2640 		return 0;
2641 
2642 	start = pmd_val(*pmd) & HPAGE_MASK;
2643 	end = start + HPAGE_SIZE - 1;
2644 	__storage_key_init_range(start, end);
2645 	set_bit(PG_arch_1, &page->flags);
2646 	cond_resched();
2647 	return 0;
2648 }
2649 
2650 static const struct mm_walk_ops enable_skey_walk_ops = {
2651 	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2652 	.pte_entry		= __s390_enable_skey_pte,
2653 	.pmd_entry		= __s390_enable_skey_pmd,
2654 };
2655 
2656 int s390_enable_skey(void)
2657 {
2658 	struct mm_struct *mm = current->mm;
2659 	int rc = 0;
2660 
2661 	mmap_write_lock(mm);
2662 	if (mm_uses_skeys(mm))
2663 		goto out_up;
2664 
2665 	mm->context.uses_skeys = 1;
2666 	rc = gmap_mark_unmergeable();
2667 	if (rc) {
2668 		mm->context.uses_skeys = 0;
2669 		goto out_up;
2670 	}
2671 	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2672 
2673 out_up:
2674 	mmap_write_unlock(mm);
2675 	return rc;
2676 }
2677 EXPORT_SYMBOL_GPL(s390_enable_skey);
2678 
2679 /*
2680  * Reset CMMA state, make all pages stable again.
2681  */
2682 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2683 			     unsigned long next, struct mm_walk *walk)
2684 {
2685 	ptep_zap_unused(walk->mm, addr, pte, 1);
2686 	return 0;
2687 }
2688 
2689 static const struct mm_walk_ops reset_cmma_walk_ops = {
2690 	.pte_entry		= __s390_reset_cmma,
2691 };
2692 
2693 void s390_reset_cmma(struct mm_struct *mm)
2694 {
2695 	mmap_write_lock(mm);
2696 	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2697 	mmap_write_unlock(mm);
2698 }
2699 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2700 
2701 #define GATHER_GET_PAGES 32
2702 
2703 struct reset_walk_state {
2704 	unsigned long next;
2705 	unsigned long count;
2706 	unsigned long pfns[GATHER_GET_PAGES];
2707 };
2708 
2709 static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2710 			     unsigned long next, struct mm_walk *walk)
2711 {
2712 	struct reset_walk_state *p = walk->private;
2713 	pte_t pte = READ_ONCE(*ptep);
2714 
2715 	if (pte_present(pte)) {
2716 		/* we have a reference from the mapping, take an extra one */
2717 		get_page(phys_to_page(pte_val(pte)));
2718 		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2719 		p->next = next;
2720 		p->count++;
2721 	}
2722 	return p->count >= GATHER_GET_PAGES;
2723 }
2724 
2725 static const struct mm_walk_ops gather_pages_ops = {
2726 	.pte_entry = s390_gather_pages,
2727 };
2728 
2729 /*
2730  * Call the Destroy secure page UVC on each page in the given array of PFNs.
2731  * Each page needs to have an extra reference, which will be released here.
2732  */
2733 void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2734 {
2735 	unsigned long i;
2736 
2737 	for (i = 0; i < count; i++) {
2738 		/* we always have an extra reference */
2739 		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2740 		/* get rid of the extra reference */
2741 		put_page(pfn_to_page(pfns[i]));
2742 		cond_resched();
2743 	}
2744 }
2745 EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2746 
2747 /**
2748  * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2749  * in the given range of the given address space.
2750  * @mm: the mm to operate on
2751  * @start: the start of the range
2752  * @end: the end of the range
2753  * @interruptible: if not 0, stop when a fatal signal is received
2754  *
2755  * Walk the given range of the given address space and call the destroy
2756  * secure page UVC on each page. Optionally exit early if a fatal signal is
2757  * pending.
2758  *
2759  * Return: 0 on success, -EINTR if the function stopped before completing
2760  */
2761 int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2762 			    unsigned long end, bool interruptible)
2763 {
2764 	struct reset_walk_state state = { .next = start };
2765 	int r = 1;
2766 
2767 	while (r > 0) {
2768 		state.count = 0;
2769 		mmap_read_lock(mm);
2770 		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2771 		mmap_read_unlock(mm);
2772 		cond_resched();
2773 		s390_uv_destroy_pfns(state.count, state.pfns);
2774 		if (interruptible && fatal_signal_pending(current))
2775 			return -EINTR;
2776 	}
2777 	return 0;
2778 }
2779 EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2780 
2781 /**
2782  * s390_unlist_old_asce - Remove the topmost level of page tables from the
2783  * list of page tables of the gmap.
2784  * @gmap: the gmap whose table is to be removed
2785  *
2786  * On s390x, KVM keeps a list of all pages containing the page tables of the
2787  * gmap (the CRST list). This list is used at tear down time to free all
2788  * pages that are now not needed anymore.
2789  *
2790  * This function removes the topmost page of the tree (the one pointed to by
2791  * the ASCE) from the CRST list.
2792  *
2793  * This means that it will not be freed when the VM is torn down, and needs
2794  * to be handled separately by the caller, unless a leak is actually
2795  * intended. Notice that this function will only remove the page from the
2796  * list, the page will still be used as a top level page table (and ASCE).
2797  */
2798 void s390_unlist_old_asce(struct gmap *gmap)
2799 {
2800 	struct page *old;
2801 
2802 	old = virt_to_page(gmap->table);
2803 	spin_lock(&gmap->guest_table_lock);
2804 	list_del(&old->lru);
2805 	/*
2806 	 * Sometimes the topmost page might need to be "removed" multiple
2807 	 * times, for example if the VM is rebooted into secure mode several
2808 	 * times concurrently, or if s390_replace_asce fails after calling
2809 	 * s390_remove_old_asce and is attempted again later. In that case
2810 	 * the old asce has been removed from the list, and therefore it
2811 	 * will not be freed when the VM terminates, but the ASCE is still
2812 	 * in use and still pointed to.
2813 	 * A subsequent call to replace_asce will follow the pointer and try
2814 	 * to remove the same page from the list again.
2815 	 * Therefore it's necessary that the page of the ASCE has valid
2816 	 * pointers, so list_del can work (and do nothing) without
2817 	 * dereferencing stale or invalid pointers.
2818 	 */
2819 	INIT_LIST_HEAD(&old->lru);
2820 	spin_unlock(&gmap->guest_table_lock);
2821 }
2822 EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2823 
2824 /**
2825  * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2826  * @gmap: the gmap whose ASCE needs to be replaced
2827  *
2828  * If the allocation of the new top level page table fails, the ASCE is not
2829  * replaced.
2830  * In any case, the old ASCE is always removed from the gmap CRST list.
2831  * Therefore the caller has to make sure to save a pointer to it
2832  * beforehand, unless a leak is actually intended.
2833  */
2834 int s390_replace_asce(struct gmap *gmap)
2835 {
2836 	unsigned long asce;
2837 	struct page *page;
2838 	void *table;
2839 
2840 	s390_unlist_old_asce(gmap);
2841 
2842 	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
2843 	if (!page)
2844 		return -ENOMEM;
2845 	table = page_to_virt(page);
2846 	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2847 
2848 	/*
2849 	 * The caller has to deal with the old ASCE, but here we make sure
2850 	 * the new one is properly added to the CRST list, so that
2851 	 * it will be freed when the VM is torn down.
2852 	 */
2853 	spin_lock(&gmap->guest_table_lock);
2854 	list_add(&page->lru, &gmap->crst_list);
2855 	spin_unlock(&gmap->guest_table_lock);
2856 
2857 	/* Set new table origin while preserving existing ASCE control bits */
2858 	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2859 	WRITE_ONCE(gmap->asce, asce);
2860 	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2861 	WRITE_ONCE(gmap->table, table);
2862 
2863 	return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(s390_replace_asce);
2866