1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2020 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/pagewalk.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 #include <linux/pgtable.h> 21 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @limit: maximum address of the gmap address space 31 * 32 * Returns a guest address space structure. 33 */ 34 static struct gmap *gmap_alloc(unsigned long limit) 35 { 36 struct gmap *gmap; 37 struct page *page; 38 unsigned long *table; 39 unsigned long etype, atype; 40 41 if (limit < _REGION3_SIZE) { 42 limit = _REGION3_SIZE - 1; 43 atype = _ASCE_TYPE_SEGMENT; 44 etype = _SEGMENT_ENTRY_EMPTY; 45 } else if (limit < _REGION2_SIZE) { 46 limit = _REGION2_SIZE - 1; 47 atype = _ASCE_TYPE_REGION3; 48 etype = _REGION3_ENTRY_EMPTY; 49 } else if (limit < _REGION1_SIZE) { 50 limit = _REGION1_SIZE - 1; 51 atype = _ASCE_TYPE_REGION2; 52 etype = _REGION2_ENTRY_EMPTY; 53 } else { 54 limit = -1UL; 55 atype = _ASCE_TYPE_REGION1; 56 etype = _REGION1_ENTRY_EMPTY; 57 } 58 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT); 59 if (!gmap) 60 goto out; 61 INIT_LIST_HEAD(&gmap->crst_list); 62 INIT_LIST_HEAD(&gmap->children); 63 INIT_LIST_HEAD(&gmap->pt_list); 64 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT); 65 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT); 66 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT); 67 spin_lock_init(&gmap->guest_table_lock); 68 spin_lock_init(&gmap->shadow_lock); 69 refcount_set(&gmap->ref_count, 1); 70 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 71 if (!page) 72 goto out_free; 73 page->index = 0; 74 list_add(&page->lru, &gmap->crst_list); 75 table = (unsigned long *) page_to_phys(page); 76 crst_table_init(table, etype); 77 gmap->table = table; 78 gmap->asce = atype | _ASCE_TABLE_LENGTH | 79 _ASCE_USER_BITS | __pa(table); 80 gmap->asce_end = limit; 81 return gmap; 82 83 out_free: 84 kfree(gmap); 85 out: 86 return NULL; 87 } 88 89 /** 90 * gmap_create - create a guest address space 91 * @mm: pointer to the parent mm_struct 92 * @limit: maximum size of the gmap address space 93 * 94 * Returns a guest address space structure. 95 */ 96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 97 { 98 struct gmap *gmap; 99 unsigned long gmap_asce; 100 101 gmap = gmap_alloc(limit); 102 if (!gmap) 103 return NULL; 104 gmap->mm = mm; 105 spin_lock(&mm->context.lock); 106 list_add_rcu(&gmap->list, &mm->context.gmap_list); 107 if (list_is_singular(&mm->context.gmap_list)) 108 gmap_asce = gmap->asce; 109 else 110 gmap_asce = -1UL; 111 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 112 spin_unlock(&mm->context.lock); 113 return gmap; 114 } 115 EXPORT_SYMBOL_GPL(gmap_create); 116 117 static void gmap_flush_tlb(struct gmap *gmap) 118 { 119 if (MACHINE_HAS_IDTE) 120 __tlb_flush_idte(gmap->asce); 121 else 122 __tlb_flush_global(); 123 } 124 125 static void gmap_radix_tree_free(struct radix_tree_root *root) 126 { 127 struct radix_tree_iter iter; 128 unsigned long indices[16]; 129 unsigned long index; 130 void __rcu **slot; 131 int i, nr; 132 133 /* A radix tree is freed by deleting all of its entries */ 134 index = 0; 135 do { 136 nr = 0; 137 radix_tree_for_each_slot(slot, root, &iter, index) { 138 indices[nr] = iter.index; 139 if (++nr == 16) 140 break; 141 } 142 for (i = 0; i < nr; i++) { 143 index = indices[i]; 144 radix_tree_delete(root, index); 145 } 146 } while (nr > 0); 147 } 148 149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 150 { 151 struct gmap_rmap *rmap, *rnext, *head; 152 struct radix_tree_iter iter; 153 unsigned long indices[16]; 154 unsigned long index; 155 void __rcu **slot; 156 int i, nr; 157 158 /* A radix tree is freed by deleting all of its entries */ 159 index = 0; 160 do { 161 nr = 0; 162 radix_tree_for_each_slot(slot, root, &iter, index) { 163 indices[nr] = iter.index; 164 if (++nr == 16) 165 break; 166 } 167 for (i = 0; i < nr; i++) { 168 index = indices[i]; 169 head = radix_tree_delete(root, index); 170 gmap_for_each_rmap_safe(rmap, rnext, head) 171 kfree(rmap); 172 } 173 } while (nr > 0); 174 } 175 176 /** 177 * gmap_free - free a guest address space 178 * @gmap: pointer to the guest address space structure 179 * 180 * No locks required. There are no references to this gmap anymore. 181 */ 182 static void gmap_free(struct gmap *gmap) 183 { 184 struct page *page, *next; 185 186 /* Flush tlb of all gmaps (if not already done for shadows) */ 187 if (!(gmap_is_shadow(gmap) && gmap->removed)) 188 gmap_flush_tlb(gmap); 189 /* Free all segment & region tables. */ 190 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 191 __free_pages(page, CRST_ALLOC_ORDER); 192 gmap_radix_tree_free(&gmap->guest_to_host); 193 gmap_radix_tree_free(&gmap->host_to_guest); 194 195 /* Free additional data for a shadow gmap */ 196 if (gmap_is_shadow(gmap)) { 197 /* Free all page tables. */ 198 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 199 page_table_free_pgste(page); 200 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 201 /* Release reference to the parent */ 202 gmap_put(gmap->parent); 203 } 204 205 kfree(gmap); 206 } 207 208 /** 209 * gmap_get - increase reference counter for guest address space 210 * @gmap: pointer to the guest address space structure 211 * 212 * Returns the gmap pointer 213 */ 214 struct gmap *gmap_get(struct gmap *gmap) 215 { 216 refcount_inc(&gmap->ref_count); 217 return gmap; 218 } 219 EXPORT_SYMBOL_GPL(gmap_get); 220 221 /** 222 * gmap_put - decrease reference counter for guest address space 223 * @gmap: pointer to the guest address space structure 224 * 225 * If the reference counter reaches zero the guest address space is freed. 226 */ 227 void gmap_put(struct gmap *gmap) 228 { 229 if (refcount_dec_and_test(&gmap->ref_count)) 230 gmap_free(gmap); 231 } 232 EXPORT_SYMBOL_GPL(gmap_put); 233 234 /** 235 * gmap_remove - remove a guest address space but do not free it yet 236 * @gmap: pointer to the guest address space structure 237 */ 238 void gmap_remove(struct gmap *gmap) 239 { 240 struct gmap *sg, *next; 241 unsigned long gmap_asce; 242 243 /* Remove all shadow gmaps linked to this gmap */ 244 if (!list_empty(&gmap->children)) { 245 spin_lock(&gmap->shadow_lock); 246 list_for_each_entry_safe(sg, next, &gmap->children, list) { 247 list_del(&sg->list); 248 gmap_put(sg); 249 } 250 spin_unlock(&gmap->shadow_lock); 251 } 252 /* Remove gmap from the pre-mm list */ 253 spin_lock(&gmap->mm->context.lock); 254 list_del_rcu(&gmap->list); 255 if (list_empty(&gmap->mm->context.gmap_list)) 256 gmap_asce = 0; 257 else if (list_is_singular(&gmap->mm->context.gmap_list)) 258 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 259 struct gmap, list)->asce; 260 else 261 gmap_asce = -1UL; 262 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 263 spin_unlock(&gmap->mm->context.lock); 264 synchronize_rcu(); 265 /* Put reference */ 266 gmap_put(gmap); 267 } 268 EXPORT_SYMBOL_GPL(gmap_remove); 269 270 /** 271 * gmap_enable - switch primary space to the guest address space 272 * @gmap: pointer to the guest address space structure 273 */ 274 void gmap_enable(struct gmap *gmap) 275 { 276 S390_lowcore.gmap = (unsigned long) gmap; 277 } 278 EXPORT_SYMBOL_GPL(gmap_enable); 279 280 /** 281 * gmap_disable - switch back to the standard primary address space 282 * @gmap: pointer to the guest address space structure 283 */ 284 void gmap_disable(struct gmap *gmap) 285 { 286 S390_lowcore.gmap = 0UL; 287 } 288 EXPORT_SYMBOL_GPL(gmap_disable); 289 290 /** 291 * gmap_get_enabled - get a pointer to the currently enabled gmap 292 * 293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 294 */ 295 struct gmap *gmap_get_enabled(void) 296 { 297 return (struct gmap *) S390_lowcore.gmap; 298 } 299 EXPORT_SYMBOL_GPL(gmap_get_enabled); 300 301 /* 302 * gmap_alloc_table is assumed to be called with mmap_lock held 303 */ 304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 305 unsigned long init, unsigned long gaddr) 306 { 307 struct page *page; 308 unsigned long *new; 309 310 /* since we dont free the gmap table until gmap_free we can unlock */ 311 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 312 if (!page) 313 return -ENOMEM; 314 new = (unsigned long *) page_to_phys(page); 315 crst_table_init(new, init); 316 spin_lock(&gmap->guest_table_lock); 317 if (*table & _REGION_ENTRY_INVALID) { 318 list_add(&page->lru, &gmap->crst_list); 319 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 320 (*table & _REGION_ENTRY_TYPE_MASK); 321 page->index = gaddr; 322 page = NULL; 323 } 324 spin_unlock(&gmap->guest_table_lock); 325 if (page) 326 __free_pages(page, CRST_ALLOC_ORDER); 327 return 0; 328 } 329 330 /** 331 * __gmap_segment_gaddr - find virtual address from segment pointer 332 * @entry: pointer to a segment table entry in the guest address space 333 * 334 * Returns the virtual address in the guest address space for the segment 335 */ 336 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 337 { 338 struct page *page; 339 unsigned long offset, mask; 340 341 offset = (unsigned long) entry / sizeof(unsigned long); 342 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 343 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 344 page = virt_to_page((void *)((unsigned long) entry & mask)); 345 return page->index + offset; 346 } 347 348 /** 349 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 350 * @gmap: pointer to the guest address space structure 351 * @vmaddr: address in the host process address space 352 * 353 * Returns 1 if a TLB flush is required 354 */ 355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 356 { 357 unsigned long *entry; 358 int flush = 0; 359 360 BUG_ON(gmap_is_shadow(gmap)); 361 spin_lock(&gmap->guest_table_lock); 362 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 363 if (entry) { 364 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 365 *entry = _SEGMENT_ENTRY_EMPTY; 366 } 367 spin_unlock(&gmap->guest_table_lock); 368 return flush; 369 } 370 371 /** 372 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 373 * @gmap: pointer to the guest address space structure 374 * @gaddr: address in the guest address space 375 * 376 * Returns 1 if a TLB flush is required 377 */ 378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 379 { 380 unsigned long vmaddr; 381 382 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 383 gaddr >> PMD_SHIFT); 384 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 385 } 386 387 /** 388 * gmap_unmap_segment - unmap segment from the guest address space 389 * @gmap: pointer to the guest address space structure 390 * @to: address in the guest address space 391 * @len: length of the memory area to unmap 392 * 393 * Returns 0 if the unmap succeeded, -EINVAL if not. 394 */ 395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 396 { 397 unsigned long off; 398 int flush; 399 400 BUG_ON(gmap_is_shadow(gmap)); 401 if ((to | len) & (PMD_SIZE - 1)) 402 return -EINVAL; 403 if (len == 0 || to + len < to) 404 return -EINVAL; 405 406 flush = 0; 407 mmap_write_lock(gmap->mm); 408 for (off = 0; off < len; off += PMD_SIZE) 409 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 410 mmap_write_unlock(gmap->mm); 411 if (flush) 412 gmap_flush_tlb(gmap); 413 return 0; 414 } 415 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 416 417 /** 418 * gmap_map_segment - map a segment to the guest address space 419 * @gmap: pointer to the guest address space structure 420 * @from: source address in the parent address space 421 * @to: target address in the guest address space 422 * @len: length of the memory area to map 423 * 424 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 425 */ 426 int gmap_map_segment(struct gmap *gmap, unsigned long from, 427 unsigned long to, unsigned long len) 428 { 429 unsigned long off; 430 int flush; 431 432 BUG_ON(gmap_is_shadow(gmap)); 433 if ((from | to | len) & (PMD_SIZE - 1)) 434 return -EINVAL; 435 if (len == 0 || from + len < from || to + len < to || 436 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 437 return -EINVAL; 438 439 flush = 0; 440 mmap_write_lock(gmap->mm); 441 for (off = 0; off < len; off += PMD_SIZE) { 442 /* Remove old translation */ 443 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 444 /* Store new translation */ 445 if (radix_tree_insert(&gmap->guest_to_host, 446 (to + off) >> PMD_SHIFT, 447 (void *) from + off)) 448 break; 449 } 450 mmap_write_unlock(gmap->mm); 451 if (flush) 452 gmap_flush_tlb(gmap); 453 if (off >= len) 454 return 0; 455 gmap_unmap_segment(gmap, to, len); 456 return -ENOMEM; 457 } 458 EXPORT_SYMBOL_GPL(gmap_map_segment); 459 460 /** 461 * __gmap_translate - translate a guest address to a user space address 462 * @gmap: pointer to guest mapping meta data structure 463 * @gaddr: guest address 464 * 465 * Returns user space address which corresponds to the guest address or 466 * -EFAULT if no such mapping exists. 467 * This function does not establish potentially missing page table entries. 468 * The mmap_lock of the mm that belongs to the address space must be held 469 * when this function gets called. 470 * 471 * Note: Can also be called for shadow gmaps. 472 */ 473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 474 { 475 unsigned long vmaddr; 476 477 vmaddr = (unsigned long) 478 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 479 /* Note: guest_to_host is empty for a shadow gmap */ 480 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 481 } 482 EXPORT_SYMBOL_GPL(__gmap_translate); 483 484 /** 485 * gmap_translate - translate a guest address to a user space address 486 * @gmap: pointer to guest mapping meta data structure 487 * @gaddr: guest address 488 * 489 * Returns user space address which corresponds to the guest address or 490 * -EFAULT if no such mapping exists. 491 * This function does not establish potentially missing page table entries. 492 */ 493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 494 { 495 unsigned long rc; 496 497 mmap_read_lock(gmap->mm); 498 rc = __gmap_translate(gmap, gaddr); 499 mmap_read_unlock(gmap->mm); 500 return rc; 501 } 502 EXPORT_SYMBOL_GPL(gmap_translate); 503 504 /** 505 * gmap_unlink - disconnect a page table from the gmap shadow tables 506 * @mm: pointer to the parent mm_struct 507 * @table: pointer to the host page table 508 * @vmaddr: vm address associated with the host page table 509 */ 510 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 511 unsigned long vmaddr) 512 { 513 struct gmap *gmap; 514 int flush; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 518 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 519 if (flush) 520 gmap_flush_tlb(gmap); 521 } 522 rcu_read_unlock(); 523 } 524 525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 526 unsigned long gaddr); 527 528 /** 529 * __gmap_link - set up shadow page tables to connect a host to a guest address 530 * @gmap: pointer to guest mapping meta data structure 531 * @gaddr: guest address 532 * @vmaddr: vm address 533 * 534 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 535 * if the vm address is already mapped to a different guest segment. 536 * The mmap_lock of the mm that belongs to the address space must be held 537 * when this function gets called. 538 */ 539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 540 { 541 struct mm_struct *mm; 542 unsigned long *table; 543 spinlock_t *ptl; 544 pgd_t *pgd; 545 p4d_t *p4d; 546 pud_t *pud; 547 pmd_t *pmd; 548 u64 unprot; 549 int rc; 550 551 BUG_ON(gmap_is_shadow(gmap)); 552 /* Create higher level tables in the gmap page table */ 553 table = gmap->table; 554 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 555 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 556 if ((*table & _REGION_ENTRY_INVALID) && 557 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 558 gaddr & _REGION1_MASK)) 559 return -ENOMEM; 560 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 561 } 562 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 563 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 564 if ((*table & _REGION_ENTRY_INVALID) && 565 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 566 gaddr & _REGION2_MASK)) 567 return -ENOMEM; 568 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 569 } 570 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 571 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 572 if ((*table & _REGION_ENTRY_INVALID) && 573 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 574 gaddr & _REGION3_MASK)) 575 return -ENOMEM; 576 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 577 } 578 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 579 /* Walk the parent mm page table */ 580 mm = gmap->mm; 581 pgd = pgd_offset(mm, vmaddr); 582 VM_BUG_ON(pgd_none(*pgd)); 583 p4d = p4d_offset(pgd, vmaddr); 584 VM_BUG_ON(p4d_none(*p4d)); 585 pud = pud_offset(p4d, vmaddr); 586 VM_BUG_ON(pud_none(*pud)); 587 /* large puds cannot yet be handled */ 588 if (pud_large(*pud)) 589 return -EFAULT; 590 pmd = pmd_offset(pud, vmaddr); 591 VM_BUG_ON(pmd_none(*pmd)); 592 /* Are we allowed to use huge pages? */ 593 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 594 return -EFAULT; 595 /* Link gmap segment table entry location to page table. */ 596 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 597 if (rc) 598 return rc; 599 ptl = pmd_lock(mm, pmd); 600 spin_lock(&gmap->guest_table_lock); 601 if (*table == _SEGMENT_ENTRY_EMPTY) { 602 rc = radix_tree_insert(&gmap->host_to_guest, 603 vmaddr >> PMD_SHIFT, table); 604 if (!rc) { 605 if (pmd_large(*pmd)) { 606 *table = (pmd_val(*pmd) & 607 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 608 | _SEGMENT_ENTRY_GMAP_UC; 609 } else 610 *table = pmd_val(*pmd) & 611 _SEGMENT_ENTRY_HARDWARE_BITS; 612 } 613 } else if (*table & _SEGMENT_ENTRY_PROTECT && 614 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 615 unprot = (u64)*table; 616 unprot &= ~_SEGMENT_ENTRY_PROTECT; 617 unprot |= _SEGMENT_ENTRY_GMAP_UC; 618 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 619 } 620 spin_unlock(&gmap->guest_table_lock); 621 spin_unlock(ptl); 622 radix_tree_preload_end(); 623 return rc; 624 } 625 626 /** 627 * gmap_fault - resolve a fault on a guest address 628 * @gmap: pointer to guest mapping meta data structure 629 * @gaddr: guest address 630 * @fault_flags: flags to pass down to handle_mm_fault() 631 * 632 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 633 * if the vm address is already mapped to a different guest segment. 634 */ 635 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 636 unsigned int fault_flags) 637 { 638 unsigned long vmaddr; 639 int rc; 640 bool unlocked; 641 642 mmap_read_lock(gmap->mm); 643 644 retry: 645 unlocked = false; 646 vmaddr = __gmap_translate(gmap, gaddr); 647 if (IS_ERR_VALUE(vmaddr)) { 648 rc = vmaddr; 649 goto out_up; 650 } 651 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags, 652 &unlocked)) { 653 rc = -EFAULT; 654 goto out_up; 655 } 656 /* 657 * In the case that fixup_user_fault unlocked the mmap_lock during 658 * faultin redo __gmap_translate to not race with a map/unmap_segment. 659 */ 660 if (unlocked) 661 goto retry; 662 663 rc = __gmap_link(gmap, gaddr, vmaddr); 664 out_up: 665 mmap_read_unlock(gmap->mm); 666 return rc; 667 } 668 EXPORT_SYMBOL_GPL(gmap_fault); 669 670 /* 671 * this function is assumed to be called with mmap_lock held 672 */ 673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 674 { 675 unsigned long vmaddr; 676 spinlock_t *ptl; 677 pte_t *ptep; 678 679 /* Find the vm address for the guest address */ 680 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 681 gaddr >> PMD_SHIFT); 682 if (vmaddr) { 683 vmaddr |= gaddr & ~PMD_MASK; 684 /* Get pointer to the page table entry */ 685 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 686 if (likely(ptep)) 687 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 688 pte_unmap_unlock(ptep, ptl); 689 } 690 } 691 EXPORT_SYMBOL_GPL(__gmap_zap); 692 693 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 694 { 695 unsigned long gaddr, vmaddr, size; 696 struct vm_area_struct *vma; 697 698 mmap_read_lock(gmap->mm); 699 for (gaddr = from; gaddr < to; 700 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 701 /* Find the vm address for the guest address */ 702 vmaddr = (unsigned long) 703 radix_tree_lookup(&gmap->guest_to_host, 704 gaddr >> PMD_SHIFT); 705 if (!vmaddr) 706 continue; 707 vmaddr |= gaddr & ~PMD_MASK; 708 /* Find vma in the parent mm */ 709 vma = find_vma(gmap->mm, vmaddr); 710 if (!vma) 711 continue; 712 /* 713 * We do not discard pages that are backed by 714 * hugetlbfs, so we don't have to refault them. 715 */ 716 if (is_vm_hugetlb_page(vma)) 717 continue; 718 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 719 zap_page_range(vma, vmaddr, size); 720 } 721 mmap_read_unlock(gmap->mm); 722 } 723 EXPORT_SYMBOL_GPL(gmap_discard); 724 725 static LIST_HEAD(gmap_notifier_list); 726 static DEFINE_SPINLOCK(gmap_notifier_lock); 727 728 /** 729 * gmap_register_pte_notifier - register a pte invalidation callback 730 * @nb: pointer to the gmap notifier block 731 */ 732 void gmap_register_pte_notifier(struct gmap_notifier *nb) 733 { 734 spin_lock(&gmap_notifier_lock); 735 list_add_rcu(&nb->list, &gmap_notifier_list); 736 spin_unlock(&gmap_notifier_lock); 737 } 738 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 739 740 /** 741 * gmap_unregister_pte_notifier - remove a pte invalidation callback 742 * @nb: pointer to the gmap notifier block 743 */ 744 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 745 { 746 spin_lock(&gmap_notifier_lock); 747 list_del_rcu(&nb->list); 748 spin_unlock(&gmap_notifier_lock); 749 synchronize_rcu(); 750 } 751 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 752 753 /** 754 * gmap_call_notifier - call all registered invalidation callbacks 755 * @gmap: pointer to guest mapping meta data structure 756 * @start: start virtual address in the guest address space 757 * @end: end virtual address in the guest address space 758 */ 759 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 760 unsigned long end) 761 { 762 struct gmap_notifier *nb; 763 764 list_for_each_entry(nb, &gmap_notifier_list, list) 765 nb->notifier_call(gmap, start, end); 766 } 767 768 /** 769 * gmap_table_walk - walk the gmap page tables 770 * @gmap: pointer to guest mapping meta data structure 771 * @gaddr: virtual address in the guest address space 772 * @level: page table level to stop at 773 * 774 * Returns a table entry pointer for the given guest address and @level 775 * @level=0 : returns a pointer to a page table table entry (or NULL) 776 * @level=1 : returns a pointer to a segment table entry (or NULL) 777 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 778 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 779 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 780 * 781 * Returns NULL if the gmap page tables could not be walked to the 782 * requested level. 783 * 784 * Note: Can also be called for shadow gmaps. 785 */ 786 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 787 unsigned long gaddr, int level) 788 { 789 const int asce_type = gmap->asce & _ASCE_TYPE_MASK; 790 unsigned long *table = gmap->table; 791 792 if (gmap_is_shadow(gmap) && gmap->removed) 793 return NULL; 794 795 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1)) 796 return NULL; 797 798 if (asce_type != _ASCE_TYPE_REGION1 && 799 gaddr & (-1UL << (31 + (asce_type >> 2) * 11))) 800 return NULL; 801 802 switch (asce_type) { 803 case _ASCE_TYPE_REGION1: 804 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 805 if (level == 4) 806 break; 807 if (*table & _REGION_ENTRY_INVALID) 808 return NULL; 809 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 810 fallthrough; 811 case _ASCE_TYPE_REGION2: 812 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 813 if (level == 3) 814 break; 815 if (*table & _REGION_ENTRY_INVALID) 816 return NULL; 817 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 818 fallthrough; 819 case _ASCE_TYPE_REGION3: 820 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 821 if (level == 2) 822 break; 823 if (*table & _REGION_ENTRY_INVALID) 824 return NULL; 825 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 826 fallthrough; 827 case _ASCE_TYPE_SEGMENT: 828 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 829 if (level == 1) 830 break; 831 if (*table & _REGION_ENTRY_INVALID) 832 return NULL; 833 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 834 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 835 } 836 return table; 837 } 838 839 /** 840 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 841 * and return the pte pointer 842 * @gmap: pointer to guest mapping meta data structure 843 * @gaddr: virtual address in the guest address space 844 * @ptl: pointer to the spinlock pointer 845 * 846 * Returns a pointer to the locked pte for a guest address, or NULL 847 */ 848 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 849 spinlock_t **ptl) 850 { 851 unsigned long *table; 852 853 BUG_ON(gmap_is_shadow(gmap)); 854 /* Walk the gmap page table, lock and get pte pointer */ 855 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 856 if (!table || *table & _SEGMENT_ENTRY_INVALID) 857 return NULL; 858 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 859 } 860 861 /** 862 * gmap_pte_op_fixup - force a page in and connect the gmap page table 863 * @gmap: pointer to guest mapping meta data structure 864 * @gaddr: virtual address in the guest address space 865 * @vmaddr: address in the host process address space 866 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 867 * 868 * Returns 0 if the caller can retry __gmap_translate (might fail again), 869 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 870 * up or connecting the gmap page table. 871 */ 872 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 873 unsigned long vmaddr, int prot) 874 { 875 struct mm_struct *mm = gmap->mm; 876 unsigned int fault_flags; 877 bool unlocked = false; 878 879 BUG_ON(gmap_is_shadow(gmap)); 880 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 881 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked)) 882 return -EFAULT; 883 if (unlocked) 884 /* lost mmap_lock, caller has to retry __gmap_translate */ 885 return 0; 886 /* Connect the page tables */ 887 return __gmap_link(gmap, gaddr, vmaddr); 888 } 889 890 /** 891 * gmap_pte_op_end - release the page table lock 892 * @ptl: pointer to the spinlock pointer 893 */ 894 static void gmap_pte_op_end(spinlock_t *ptl) 895 { 896 if (ptl) 897 spin_unlock(ptl); 898 } 899 900 /** 901 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 902 * and return the pmd pointer 903 * @gmap: pointer to guest mapping meta data structure 904 * @gaddr: virtual address in the guest address space 905 * 906 * Returns a pointer to the pmd for a guest address, or NULL 907 */ 908 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 909 { 910 pmd_t *pmdp; 911 912 BUG_ON(gmap_is_shadow(gmap)); 913 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 914 if (!pmdp) 915 return NULL; 916 917 /* without huge pages, there is no need to take the table lock */ 918 if (!gmap->mm->context.allow_gmap_hpage_1m) 919 return pmd_none(*pmdp) ? NULL : pmdp; 920 921 spin_lock(&gmap->guest_table_lock); 922 if (pmd_none(*pmdp)) { 923 spin_unlock(&gmap->guest_table_lock); 924 return NULL; 925 } 926 927 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 928 if (!pmd_large(*pmdp)) 929 spin_unlock(&gmap->guest_table_lock); 930 return pmdp; 931 } 932 933 /** 934 * gmap_pmd_op_end - release the guest_table_lock if needed 935 * @gmap: pointer to the guest mapping meta data structure 936 * @pmdp: pointer to the pmd 937 */ 938 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 939 { 940 if (pmd_large(*pmdp)) 941 spin_unlock(&gmap->guest_table_lock); 942 } 943 944 /* 945 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 946 * @pmdp: pointer to the pmd to be protected 947 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 948 * @bits: notification bits to set 949 * 950 * Returns: 951 * 0 if successfully protected 952 * -EAGAIN if a fixup is needed 953 * -EINVAL if unsupported notifier bits have been specified 954 * 955 * Expected to be called with sg->mm->mmap_lock in read and 956 * guest_table_lock held. 957 */ 958 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 959 pmd_t *pmdp, int prot, unsigned long bits) 960 { 961 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 962 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 963 pmd_t new = *pmdp; 964 965 /* Fixup needed */ 966 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 967 return -EAGAIN; 968 969 if (prot == PROT_NONE && !pmd_i) { 970 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 971 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 972 } 973 974 if (prot == PROT_READ && !pmd_p) { 975 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 976 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 977 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 978 } 979 980 if (bits & GMAP_NOTIFY_MPROT) 981 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 982 983 /* Shadow GMAP protection needs split PMDs */ 984 if (bits & GMAP_NOTIFY_SHADOW) 985 return -EINVAL; 986 987 return 0; 988 } 989 990 /* 991 * gmap_protect_pte - remove access rights to memory and set pgste bits 992 * @gmap: pointer to guest mapping meta data structure 993 * @gaddr: virtual address in the guest address space 994 * @pmdp: pointer to the pmd associated with the pte 995 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 996 * @bits: notification bits to set 997 * 998 * Returns 0 if successfully protected, -ENOMEM if out of memory and 999 * -EAGAIN if a fixup is needed. 1000 * 1001 * Expected to be called with sg->mm->mmap_lock in read 1002 */ 1003 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1004 pmd_t *pmdp, int prot, unsigned long bits) 1005 { 1006 int rc; 1007 pte_t *ptep; 1008 spinlock_t *ptl = NULL; 1009 unsigned long pbits = 0; 1010 1011 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1012 return -EAGAIN; 1013 1014 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1015 if (!ptep) 1016 return -ENOMEM; 1017 1018 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1019 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1020 /* Protect and unlock. */ 1021 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1022 gmap_pte_op_end(ptl); 1023 return rc; 1024 } 1025 1026 /* 1027 * gmap_protect_range - remove access rights to memory and set pgste bits 1028 * @gmap: pointer to guest mapping meta data structure 1029 * @gaddr: virtual address in the guest address space 1030 * @len: size of area 1031 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1032 * @bits: pgste notification bits to set 1033 * 1034 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1035 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1036 * 1037 * Called with sg->mm->mmap_lock in read. 1038 */ 1039 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1040 unsigned long len, int prot, unsigned long bits) 1041 { 1042 unsigned long vmaddr, dist; 1043 pmd_t *pmdp; 1044 int rc; 1045 1046 BUG_ON(gmap_is_shadow(gmap)); 1047 while (len) { 1048 rc = -EAGAIN; 1049 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1050 if (pmdp) { 1051 if (!pmd_large(*pmdp)) { 1052 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1053 bits); 1054 if (!rc) { 1055 len -= PAGE_SIZE; 1056 gaddr += PAGE_SIZE; 1057 } 1058 } else { 1059 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1060 bits); 1061 if (!rc) { 1062 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1063 len = len < dist ? 0 : len - dist; 1064 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1065 } 1066 } 1067 gmap_pmd_op_end(gmap, pmdp); 1068 } 1069 if (rc) { 1070 if (rc == -EINVAL) 1071 return rc; 1072 1073 /* -EAGAIN, fixup of userspace mm and gmap */ 1074 vmaddr = __gmap_translate(gmap, gaddr); 1075 if (IS_ERR_VALUE(vmaddr)) 1076 return vmaddr; 1077 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1078 if (rc) 1079 return rc; 1080 } 1081 } 1082 return 0; 1083 } 1084 1085 /** 1086 * gmap_mprotect_notify - change access rights for a range of ptes and 1087 * call the notifier if any pte changes again 1088 * @gmap: pointer to guest mapping meta data structure 1089 * @gaddr: virtual address in the guest address space 1090 * @len: size of area 1091 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1092 * 1093 * Returns 0 if for each page in the given range a gmap mapping exists, 1094 * the new access rights could be set and the notifier could be armed. 1095 * If the gmap mapping is missing for one or more pages -EFAULT is 1096 * returned. If no memory could be allocated -ENOMEM is returned. 1097 * This function establishes missing page table entries. 1098 */ 1099 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1100 unsigned long len, int prot) 1101 { 1102 int rc; 1103 1104 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1105 return -EINVAL; 1106 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1107 return -EINVAL; 1108 mmap_read_lock(gmap->mm); 1109 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1110 mmap_read_unlock(gmap->mm); 1111 return rc; 1112 } 1113 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1114 1115 /** 1116 * gmap_read_table - get an unsigned long value from a guest page table using 1117 * absolute addressing, without marking the page referenced. 1118 * @gmap: pointer to guest mapping meta data structure 1119 * @gaddr: virtual address in the guest address space 1120 * @val: pointer to the unsigned long value to return 1121 * 1122 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1123 * if reading using the virtual address failed. -EINVAL if called on a gmap 1124 * shadow. 1125 * 1126 * Called with gmap->mm->mmap_lock in read. 1127 */ 1128 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1129 { 1130 unsigned long address, vmaddr; 1131 spinlock_t *ptl; 1132 pte_t *ptep, pte; 1133 int rc; 1134 1135 if (gmap_is_shadow(gmap)) 1136 return -EINVAL; 1137 1138 while (1) { 1139 rc = -EAGAIN; 1140 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1141 if (ptep) { 1142 pte = *ptep; 1143 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1144 address = pte_val(pte) & PAGE_MASK; 1145 address += gaddr & ~PAGE_MASK; 1146 *val = *(unsigned long *) address; 1147 pte_val(*ptep) |= _PAGE_YOUNG; 1148 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1149 rc = 0; 1150 } 1151 gmap_pte_op_end(ptl); 1152 } 1153 if (!rc) 1154 break; 1155 vmaddr = __gmap_translate(gmap, gaddr); 1156 if (IS_ERR_VALUE(vmaddr)) { 1157 rc = vmaddr; 1158 break; 1159 } 1160 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1161 if (rc) 1162 break; 1163 } 1164 return rc; 1165 } 1166 EXPORT_SYMBOL_GPL(gmap_read_table); 1167 1168 /** 1169 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1170 * @sg: pointer to the shadow guest address space structure 1171 * @vmaddr: vm address associated with the rmap 1172 * @rmap: pointer to the rmap structure 1173 * 1174 * Called with the sg->guest_table_lock 1175 */ 1176 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1177 struct gmap_rmap *rmap) 1178 { 1179 void __rcu **slot; 1180 1181 BUG_ON(!gmap_is_shadow(sg)); 1182 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1183 if (slot) { 1184 rmap->next = radix_tree_deref_slot_protected(slot, 1185 &sg->guest_table_lock); 1186 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1187 } else { 1188 rmap->next = NULL; 1189 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1190 rmap); 1191 } 1192 } 1193 1194 /** 1195 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1196 * @sg: pointer to the shadow guest address space structure 1197 * @raddr: rmap address in the shadow gmap 1198 * @paddr: address in the parent guest address space 1199 * @len: length of the memory area to protect 1200 * 1201 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1202 * if out of memory and -EFAULT if paddr is invalid. 1203 */ 1204 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1205 unsigned long paddr, unsigned long len) 1206 { 1207 struct gmap *parent; 1208 struct gmap_rmap *rmap; 1209 unsigned long vmaddr; 1210 spinlock_t *ptl; 1211 pte_t *ptep; 1212 int rc; 1213 1214 BUG_ON(!gmap_is_shadow(sg)); 1215 parent = sg->parent; 1216 while (len) { 1217 vmaddr = __gmap_translate(parent, paddr); 1218 if (IS_ERR_VALUE(vmaddr)) 1219 return vmaddr; 1220 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 1221 if (!rmap) 1222 return -ENOMEM; 1223 rmap->raddr = raddr; 1224 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 1225 if (rc) { 1226 kfree(rmap); 1227 return rc; 1228 } 1229 rc = -EAGAIN; 1230 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1231 if (ptep) { 1232 spin_lock(&sg->guest_table_lock); 1233 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1234 PGSTE_VSIE_BIT); 1235 if (!rc) 1236 gmap_insert_rmap(sg, vmaddr, rmap); 1237 spin_unlock(&sg->guest_table_lock); 1238 gmap_pte_op_end(ptl); 1239 } 1240 radix_tree_preload_end(); 1241 if (rc) { 1242 kfree(rmap); 1243 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1244 if (rc) 1245 return rc; 1246 continue; 1247 } 1248 paddr += PAGE_SIZE; 1249 len -= PAGE_SIZE; 1250 } 1251 return 0; 1252 } 1253 1254 #define _SHADOW_RMAP_MASK 0x7 1255 #define _SHADOW_RMAP_REGION1 0x5 1256 #define _SHADOW_RMAP_REGION2 0x4 1257 #define _SHADOW_RMAP_REGION3 0x3 1258 #define _SHADOW_RMAP_SEGMENT 0x2 1259 #define _SHADOW_RMAP_PGTABLE 0x1 1260 1261 /** 1262 * gmap_idte_one - invalidate a single region or segment table entry 1263 * @asce: region or segment table *origin* + table-type bits 1264 * @vaddr: virtual address to identify the table entry to flush 1265 * 1266 * The invalid bit of a single region or segment table entry is set 1267 * and the associated TLB entries depending on the entry are flushed. 1268 * The table-type of the @asce identifies the portion of the @vaddr 1269 * that is used as the invalidation index. 1270 */ 1271 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1272 { 1273 asm volatile( 1274 " .insn rrf,0xb98e0000,%0,%1,0,0" 1275 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1276 } 1277 1278 /** 1279 * gmap_unshadow_page - remove a page from a shadow page table 1280 * @sg: pointer to the shadow guest address space structure 1281 * @raddr: rmap address in the shadow guest address space 1282 * 1283 * Called with the sg->guest_table_lock 1284 */ 1285 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1286 { 1287 unsigned long *table; 1288 1289 BUG_ON(!gmap_is_shadow(sg)); 1290 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1291 if (!table || *table & _PAGE_INVALID) 1292 return; 1293 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1294 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1295 } 1296 1297 /** 1298 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1299 * @sg: pointer to the shadow guest address space structure 1300 * @raddr: rmap address in the shadow guest address space 1301 * @pgt: pointer to the start of a shadow page table 1302 * 1303 * Called with the sg->guest_table_lock 1304 */ 1305 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1306 unsigned long *pgt) 1307 { 1308 int i; 1309 1310 BUG_ON(!gmap_is_shadow(sg)); 1311 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1312 pgt[i] = _PAGE_INVALID; 1313 } 1314 1315 /** 1316 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1317 * @sg: pointer to the shadow guest address space structure 1318 * @raddr: address in the shadow guest address space 1319 * 1320 * Called with the sg->guest_table_lock 1321 */ 1322 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1323 { 1324 unsigned long sto, *ste, *pgt; 1325 struct page *page; 1326 1327 BUG_ON(!gmap_is_shadow(sg)); 1328 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1329 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1330 return; 1331 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1332 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1333 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1334 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1335 *ste = _SEGMENT_ENTRY_EMPTY; 1336 __gmap_unshadow_pgt(sg, raddr, pgt); 1337 /* Free page table */ 1338 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1339 list_del(&page->lru); 1340 page_table_free_pgste(page); 1341 } 1342 1343 /** 1344 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1345 * @sg: pointer to the shadow guest address space structure 1346 * @raddr: rmap address in the shadow guest address space 1347 * @sgt: pointer to the start of a shadow segment table 1348 * 1349 * Called with the sg->guest_table_lock 1350 */ 1351 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1352 unsigned long *sgt) 1353 { 1354 unsigned long *pgt; 1355 struct page *page; 1356 int i; 1357 1358 BUG_ON(!gmap_is_shadow(sg)); 1359 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1360 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1361 continue; 1362 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1363 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1364 __gmap_unshadow_pgt(sg, raddr, pgt); 1365 /* Free page table */ 1366 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1367 list_del(&page->lru); 1368 page_table_free_pgste(page); 1369 } 1370 } 1371 1372 /** 1373 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1374 * @sg: pointer to the shadow guest address space structure 1375 * @raddr: rmap address in the shadow guest address space 1376 * 1377 * Called with the shadow->guest_table_lock 1378 */ 1379 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1380 { 1381 unsigned long r3o, *r3e, *sgt; 1382 struct page *page; 1383 1384 BUG_ON(!gmap_is_shadow(sg)); 1385 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1386 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1387 return; 1388 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1389 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1390 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1391 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1392 *r3e = _REGION3_ENTRY_EMPTY; 1393 __gmap_unshadow_sgt(sg, raddr, sgt); 1394 /* Free segment table */ 1395 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1396 list_del(&page->lru); 1397 __free_pages(page, CRST_ALLOC_ORDER); 1398 } 1399 1400 /** 1401 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1402 * @sg: pointer to the shadow guest address space structure 1403 * @raddr: address in the shadow guest address space 1404 * @r3t: pointer to the start of a shadow region-3 table 1405 * 1406 * Called with the sg->guest_table_lock 1407 */ 1408 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1409 unsigned long *r3t) 1410 { 1411 unsigned long *sgt; 1412 struct page *page; 1413 int i; 1414 1415 BUG_ON(!gmap_is_shadow(sg)); 1416 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1417 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1418 continue; 1419 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1420 r3t[i] = _REGION3_ENTRY_EMPTY; 1421 __gmap_unshadow_sgt(sg, raddr, sgt); 1422 /* Free segment table */ 1423 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1424 list_del(&page->lru); 1425 __free_pages(page, CRST_ALLOC_ORDER); 1426 } 1427 } 1428 1429 /** 1430 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1431 * @sg: pointer to the shadow guest address space structure 1432 * @raddr: rmap address in the shadow guest address space 1433 * 1434 * Called with the sg->guest_table_lock 1435 */ 1436 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1437 { 1438 unsigned long r2o, *r2e, *r3t; 1439 struct page *page; 1440 1441 BUG_ON(!gmap_is_shadow(sg)); 1442 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1443 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1444 return; 1445 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1446 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1447 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1448 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1449 *r2e = _REGION2_ENTRY_EMPTY; 1450 __gmap_unshadow_r3t(sg, raddr, r3t); 1451 /* Free region 3 table */ 1452 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1453 list_del(&page->lru); 1454 __free_pages(page, CRST_ALLOC_ORDER); 1455 } 1456 1457 /** 1458 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1459 * @sg: pointer to the shadow guest address space structure 1460 * @raddr: rmap address in the shadow guest address space 1461 * @r2t: pointer to the start of a shadow region-2 table 1462 * 1463 * Called with the sg->guest_table_lock 1464 */ 1465 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1466 unsigned long *r2t) 1467 { 1468 unsigned long *r3t; 1469 struct page *page; 1470 int i; 1471 1472 BUG_ON(!gmap_is_shadow(sg)); 1473 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1474 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1475 continue; 1476 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1477 r2t[i] = _REGION2_ENTRY_EMPTY; 1478 __gmap_unshadow_r3t(sg, raddr, r3t); 1479 /* Free region 3 table */ 1480 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1481 list_del(&page->lru); 1482 __free_pages(page, CRST_ALLOC_ORDER); 1483 } 1484 } 1485 1486 /** 1487 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1488 * @sg: pointer to the shadow guest address space structure 1489 * @raddr: rmap address in the shadow guest address space 1490 * 1491 * Called with the sg->guest_table_lock 1492 */ 1493 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1494 { 1495 unsigned long r1o, *r1e, *r2t; 1496 struct page *page; 1497 1498 BUG_ON(!gmap_is_shadow(sg)); 1499 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1500 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1501 return; 1502 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1503 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1504 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1505 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1506 *r1e = _REGION1_ENTRY_EMPTY; 1507 __gmap_unshadow_r2t(sg, raddr, r2t); 1508 /* Free region 2 table */ 1509 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1510 list_del(&page->lru); 1511 __free_pages(page, CRST_ALLOC_ORDER); 1512 } 1513 1514 /** 1515 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1516 * @sg: pointer to the shadow guest address space structure 1517 * @raddr: rmap address in the shadow guest address space 1518 * @r1t: pointer to the start of a shadow region-1 table 1519 * 1520 * Called with the shadow->guest_table_lock 1521 */ 1522 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1523 unsigned long *r1t) 1524 { 1525 unsigned long asce, *r2t; 1526 struct page *page; 1527 int i; 1528 1529 BUG_ON(!gmap_is_shadow(sg)); 1530 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1531 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1532 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1533 continue; 1534 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1535 __gmap_unshadow_r2t(sg, raddr, r2t); 1536 /* Clear entry and flush translation r1t -> r2t */ 1537 gmap_idte_one(asce, raddr); 1538 r1t[i] = _REGION1_ENTRY_EMPTY; 1539 /* Free region 2 table */ 1540 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1541 list_del(&page->lru); 1542 __free_pages(page, CRST_ALLOC_ORDER); 1543 } 1544 } 1545 1546 /** 1547 * gmap_unshadow - remove a shadow page table completely 1548 * @sg: pointer to the shadow guest address space structure 1549 * 1550 * Called with sg->guest_table_lock 1551 */ 1552 static void gmap_unshadow(struct gmap *sg) 1553 { 1554 unsigned long *table; 1555 1556 BUG_ON(!gmap_is_shadow(sg)); 1557 if (sg->removed) 1558 return; 1559 sg->removed = 1; 1560 gmap_call_notifier(sg, 0, -1UL); 1561 gmap_flush_tlb(sg); 1562 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1563 switch (sg->asce & _ASCE_TYPE_MASK) { 1564 case _ASCE_TYPE_REGION1: 1565 __gmap_unshadow_r1t(sg, 0, table); 1566 break; 1567 case _ASCE_TYPE_REGION2: 1568 __gmap_unshadow_r2t(sg, 0, table); 1569 break; 1570 case _ASCE_TYPE_REGION3: 1571 __gmap_unshadow_r3t(sg, 0, table); 1572 break; 1573 case _ASCE_TYPE_SEGMENT: 1574 __gmap_unshadow_sgt(sg, 0, table); 1575 break; 1576 } 1577 } 1578 1579 /** 1580 * gmap_find_shadow - find a specific asce in the list of shadow tables 1581 * @parent: pointer to the parent gmap 1582 * @asce: ASCE for which the shadow table is created 1583 * @edat_level: edat level to be used for the shadow translation 1584 * 1585 * Returns the pointer to a gmap if a shadow table with the given asce is 1586 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1587 * otherwise NULL 1588 */ 1589 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1590 int edat_level) 1591 { 1592 struct gmap *sg; 1593 1594 list_for_each_entry(sg, &parent->children, list) { 1595 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1596 sg->removed) 1597 continue; 1598 if (!sg->initialized) 1599 return ERR_PTR(-EAGAIN); 1600 refcount_inc(&sg->ref_count); 1601 return sg; 1602 } 1603 return NULL; 1604 } 1605 1606 /** 1607 * gmap_shadow_valid - check if a shadow guest address space matches the 1608 * given properties and is still valid 1609 * @sg: pointer to the shadow guest address space structure 1610 * @asce: ASCE for which the shadow table is requested 1611 * @edat_level: edat level to be used for the shadow translation 1612 * 1613 * Returns 1 if the gmap shadow is still valid and matches the given 1614 * properties, the caller can continue using it. Returns 0 otherwise, the 1615 * caller has to request a new shadow gmap in this case. 1616 * 1617 */ 1618 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1619 { 1620 if (sg->removed) 1621 return 0; 1622 return sg->orig_asce == asce && sg->edat_level == edat_level; 1623 } 1624 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1625 1626 /** 1627 * gmap_shadow - create/find a shadow guest address space 1628 * @parent: pointer to the parent gmap 1629 * @asce: ASCE for which the shadow table is created 1630 * @edat_level: edat level to be used for the shadow translation 1631 * 1632 * The pages of the top level page table referred by the asce parameter 1633 * will be set to read-only and marked in the PGSTEs of the kvm process. 1634 * The shadow table will be removed automatically on any change to the 1635 * PTE mapping for the source table. 1636 * 1637 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1638 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1639 * parent gmap table could not be protected. 1640 */ 1641 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1642 int edat_level) 1643 { 1644 struct gmap *sg, *new; 1645 unsigned long limit; 1646 int rc; 1647 1648 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1649 BUG_ON(gmap_is_shadow(parent)); 1650 spin_lock(&parent->shadow_lock); 1651 sg = gmap_find_shadow(parent, asce, edat_level); 1652 spin_unlock(&parent->shadow_lock); 1653 if (sg) 1654 return sg; 1655 /* Create a new shadow gmap */ 1656 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1657 if (asce & _ASCE_REAL_SPACE) 1658 limit = -1UL; 1659 new = gmap_alloc(limit); 1660 if (!new) 1661 return ERR_PTR(-ENOMEM); 1662 new->mm = parent->mm; 1663 new->parent = gmap_get(parent); 1664 new->orig_asce = asce; 1665 new->edat_level = edat_level; 1666 new->initialized = false; 1667 spin_lock(&parent->shadow_lock); 1668 /* Recheck if another CPU created the same shadow */ 1669 sg = gmap_find_shadow(parent, asce, edat_level); 1670 if (sg) { 1671 spin_unlock(&parent->shadow_lock); 1672 gmap_free(new); 1673 return sg; 1674 } 1675 if (asce & _ASCE_REAL_SPACE) { 1676 /* only allow one real-space gmap shadow */ 1677 list_for_each_entry(sg, &parent->children, list) { 1678 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1679 spin_lock(&sg->guest_table_lock); 1680 gmap_unshadow(sg); 1681 spin_unlock(&sg->guest_table_lock); 1682 list_del(&sg->list); 1683 gmap_put(sg); 1684 break; 1685 } 1686 } 1687 } 1688 refcount_set(&new->ref_count, 2); 1689 list_add(&new->list, &parent->children); 1690 if (asce & _ASCE_REAL_SPACE) { 1691 /* nothing to protect, return right away */ 1692 new->initialized = true; 1693 spin_unlock(&parent->shadow_lock); 1694 return new; 1695 } 1696 spin_unlock(&parent->shadow_lock); 1697 /* protect after insertion, so it will get properly invalidated */ 1698 mmap_read_lock(parent->mm); 1699 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1700 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1701 PROT_READ, GMAP_NOTIFY_SHADOW); 1702 mmap_read_unlock(parent->mm); 1703 spin_lock(&parent->shadow_lock); 1704 new->initialized = true; 1705 if (rc) { 1706 list_del(&new->list); 1707 gmap_free(new); 1708 new = ERR_PTR(rc); 1709 } 1710 spin_unlock(&parent->shadow_lock); 1711 return new; 1712 } 1713 EXPORT_SYMBOL_GPL(gmap_shadow); 1714 1715 /** 1716 * gmap_shadow_r2t - create an empty shadow region 2 table 1717 * @sg: pointer to the shadow guest address space structure 1718 * @saddr: faulting address in the shadow gmap 1719 * @r2t: parent gmap address of the region 2 table to get shadowed 1720 * @fake: r2t references contiguous guest memory block, not a r2t 1721 * 1722 * The r2t parameter specifies the address of the source table. The 1723 * four pages of the source table are made read-only in the parent gmap 1724 * address space. A write to the source table area @r2t will automatically 1725 * remove the shadow r2 table and all of its decendents. 1726 * 1727 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1728 * shadow table structure is incomplete, -ENOMEM if out of memory and 1729 * -EFAULT if an address in the parent gmap could not be resolved. 1730 * 1731 * Called with sg->mm->mmap_lock in read. 1732 */ 1733 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1734 int fake) 1735 { 1736 unsigned long raddr, origin, offset, len; 1737 unsigned long *s_r2t, *table; 1738 struct page *page; 1739 int rc; 1740 1741 BUG_ON(!gmap_is_shadow(sg)); 1742 /* Allocate a shadow region second table */ 1743 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1744 if (!page) 1745 return -ENOMEM; 1746 page->index = r2t & _REGION_ENTRY_ORIGIN; 1747 if (fake) 1748 page->index |= GMAP_SHADOW_FAKE_TABLE; 1749 s_r2t = (unsigned long *) page_to_phys(page); 1750 /* Install shadow region second table */ 1751 spin_lock(&sg->guest_table_lock); 1752 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1753 if (!table) { 1754 rc = -EAGAIN; /* Race with unshadow */ 1755 goto out_free; 1756 } 1757 if (!(*table & _REGION_ENTRY_INVALID)) { 1758 rc = 0; /* Already established */ 1759 goto out_free; 1760 } else if (*table & _REGION_ENTRY_ORIGIN) { 1761 rc = -EAGAIN; /* Race with shadow */ 1762 goto out_free; 1763 } 1764 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1765 /* mark as invalid as long as the parent table is not protected */ 1766 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1767 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1768 if (sg->edat_level >= 1) 1769 *table |= (r2t & _REGION_ENTRY_PROTECT); 1770 list_add(&page->lru, &sg->crst_list); 1771 if (fake) { 1772 /* nothing to protect for fake tables */ 1773 *table &= ~_REGION_ENTRY_INVALID; 1774 spin_unlock(&sg->guest_table_lock); 1775 return 0; 1776 } 1777 spin_unlock(&sg->guest_table_lock); 1778 /* Make r2t read-only in parent gmap page table */ 1779 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1780 origin = r2t & _REGION_ENTRY_ORIGIN; 1781 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1782 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1783 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1784 spin_lock(&sg->guest_table_lock); 1785 if (!rc) { 1786 table = gmap_table_walk(sg, saddr, 4); 1787 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1788 (unsigned long) s_r2t) 1789 rc = -EAGAIN; /* Race with unshadow */ 1790 else 1791 *table &= ~_REGION_ENTRY_INVALID; 1792 } else { 1793 gmap_unshadow_r2t(sg, raddr); 1794 } 1795 spin_unlock(&sg->guest_table_lock); 1796 return rc; 1797 out_free: 1798 spin_unlock(&sg->guest_table_lock); 1799 __free_pages(page, CRST_ALLOC_ORDER); 1800 return rc; 1801 } 1802 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1803 1804 /** 1805 * gmap_shadow_r3t - create a shadow region 3 table 1806 * @sg: pointer to the shadow guest address space structure 1807 * @saddr: faulting address in the shadow gmap 1808 * @r3t: parent gmap address of the region 3 table to get shadowed 1809 * @fake: r3t references contiguous guest memory block, not a r3t 1810 * 1811 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1812 * shadow table structure is incomplete, -ENOMEM if out of memory and 1813 * -EFAULT if an address in the parent gmap could not be resolved. 1814 * 1815 * Called with sg->mm->mmap_lock in read. 1816 */ 1817 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1818 int fake) 1819 { 1820 unsigned long raddr, origin, offset, len; 1821 unsigned long *s_r3t, *table; 1822 struct page *page; 1823 int rc; 1824 1825 BUG_ON(!gmap_is_shadow(sg)); 1826 /* Allocate a shadow region second table */ 1827 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1828 if (!page) 1829 return -ENOMEM; 1830 page->index = r3t & _REGION_ENTRY_ORIGIN; 1831 if (fake) 1832 page->index |= GMAP_SHADOW_FAKE_TABLE; 1833 s_r3t = (unsigned long *) page_to_phys(page); 1834 /* Install shadow region second table */ 1835 spin_lock(&sg->guest_table_lock); 1836 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1837 if (!table) { 1838 rc = -EAGAIN; /* Race with unshadow */ 1839 goto out_free; 1840 } 1841 if (!(*table & _REGION_ENTRY_INVALID)) { 1842 rc = 0; /* Already established */ 1843 goto out_free; 1844 } else if (*table & _REGION_ENTRY_ORIGIN) { 1845 rc = -EAGAIN; /* Race with shadow */ 1846 goto out_free; 1847 } 1848 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1849 /* mark as invalid as long as the parent table is not protected */ 1850 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1851 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1852 if (sg->edat_level >= 1) 1853 *table |= (r3t & _REGION_ENTRY_PROTECT); 1854 list_add(&page->lru, &sg->crst_list); 1855 if (fake) { 1856 /* nothing to protect for fake tables */ 1857 *table &= ~_REGION_ENTRY_INVALID; 1858 spin_unlock(&sg->guest_table_lock); 1859 return 0; 1860 } 1861 spin_unlock(&sg->guest_table_lock); 1862 /* Make r3t read-only in parent gmap page table */ 1863 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1864 origin = r3t & _REGION_ENTRY_ORIGIN; 1865 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1866 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1867 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1868 spin_lock(&sg->guest_table_lock); 1869 if (!rc) { 1870 table = gmap_table_walk(sg, saddr, 3); 1871 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1872 (unsigned long) s_r3t) 1873 rc = -EAGAIN; /* Race with unshadow */ 1874 else 1875 *table &= ~_REGION_ENTRY_INVALID; 1876 } else { 1877 gmap_unshadow_r3t(sg, raddr); 1878 } 1879 spin_unlock(&sg->guest_table_lock); 1880 return rc; 1881 out_free: 1882 spin_unlock(&sg->guest_table_lock); 1883 __free_pages(page, CRST_ALLOC_ORDER); 1884 return rc; 1885 } 1886 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1887 1888 /** 1889 * gmap_shadow_sgt - create a shadow segment table 1890 * @sg: pointer to the shadow guest address space structure 1891 * @saddr: faulting address in the shadow gmap 1892 * @sgt: parent gmap address of the segment table to get shadowed 1893 * @fake: sgt references contiguous guest memory block, not a sgt 1894 * 1895 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1896 * shadow table structure is incomplete, -ENOMEM if out of memory and 1897 * -EFAULT if an address in the parent gmap could not be resolved. 1898 * 1899 * Called with sg->mm->mmap_lock in read. 1900 */ 1901 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1902 int fake) 1903 { 1904 unsigned long raddr, origin, offset, len; 1905 unsigned long *s_sgt, *table; 1906 struct page *page; 1907 int rc; 1908 1909 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1910 /* Allocate a shadow segment table */ 1911 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1912 if (!page) 1913 return -ENOMEM; 1914 page->index = sgt & _REGION_ENTRY_ORIGIN; 1915 if (fake) 1916 page->index |= GMAP_SHADOW_FAKE_TABLE; 1917 s_sgt = (unsigned long *) page_to_phys(page); 1918 /* Install shadow region second table */ 1919 spin_lock(&sg->guest_table_lock); 1920 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1921 if (!table) { 1922 rc = -EAGAIN; /* Race with unshadow */ 1923 goto out_free; 1924 } 1925 if (!(*table & _REGION_ENTRY_INVALID)) { 1926 rc = 0; /* Already established */ 1927 goto out_free; 1928 } else if (*table & _REGION_ENTRY_ORIGIN) { 1929 rc = -EAGAIN; /* Race with shadow */ 1930 goto out_free; 1931 } 1932 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1933 /* mark as invalid as long as the parent table is not protected */ 1934 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1935 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1936 if (sg->edat_level >= 1) 1937 *table |= sgt & _REGION_ENTRY_PROTECT; 1938 list_add(&page->lru, &sg->crst_list); 1939 if (fake) { 1940 /* nothing to protect for fake tables */ 1941 *table &= ~_REGION_ENTRY_INVALID; 1942 spin_unlock(&sg->guest_table_lock); 1943 return 0; 1944 } 1945 spin_unlock(&sg->guest_table_lock); 1946 /* Make sgt read-only in parent gmap page table */ 1947 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1948 origin = sgt & _REGION_ENTRY_ORIGIN; 1949 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1950 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1951 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1952 spin_lock(&sg->guest_table_lock); 1953 if (!rc) { 1954 table = gmap_table_walk(sg, saddr, 2); 1955 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1956 (unsigned long) s_sgt) 1957 rc = -EAGAIN; /* Race with unshadow */ 1958 else 1959 *table &= ~_REGION_ENTRY_INVALID; 1960 } else { 1961 gmap_unshadow_sgt(sg, raddr); 1962 } 1963 spin_unlock(&sg->guest_table_lock); 1964 return rc; 1965 out_free: 1966 spin_unlock(&sg->guest_table_lock); 1967 __free_pages(page, CRST_ALLOC_ORDER); 1968 return rc; 1969 } 1970 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1971 1972 /** 1973 * gmap_shadow_pgt_lookup - find a shadow page table 1974 * @sg: pointer to the shadow guest address space structure 1975 * @saddr: the address in the shadow aguest address space 1976 * @pgt: parent gmap address of the page table to get shadowed 1977 * @dat_protection: if the pgtable is marked as protected by dat 1978 * @fake: pgt references contiguous guest memory block, not a pgtable 1979 * 1980 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1981 * table was not found. 1982 * 1983 * Called with sg->mm->mmap_lock in read. 1984 */ 1985 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1986 unsigned long *pgt, int *dat_protection, 1987 int *fake) 1988 { 1989 unsigned long *table; 1990 struct page *page; 1991 int rc; 1992 1993 BUG_ON(!gmap_is_shadow(sg)); 1994 spin_lock(&sg->guest_table_lock); 1995 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1996 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1997 /* Shadow page tables are full pages (pte+pgste) */ 1998 page = pfn_to_page(*table >> PAGE_SHIFT); 1999 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 2000 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 2001 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 2002 rc = 0; 2003 } else { 2004 rc = -EAGAIN; 2005 } 2006 spin_unlock(&sg->guest_table_lock); 2007 return rc; 2008 2009 } 2010 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2011 2012 /** 2013 * gmap_shadow_pgt - instantiate a shadow page table 2014 * @sg: pointer to the shadow guest address space structure 2015 * @saddr: faulting address in the shadow gmap 2016 * @pgt: parent gmap address of the page table to get shadowed 2017 * @fake: pgt references contiguous guest memory block, not a pgtable 2018 * 2019 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2020 * shadow table structure is incomplete, -ENOMEM if out of memory, 2021 * -EFAULT if an address in the parent gmap could not be resolved and 2022 * 2023 * Called with gmap->mm->mmap_lock in read 2024 */ 2025 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2026 int fake) 2027 { 2028 unsigned long raddr, origin; 2029 unsigned long *s_pgt, *table; 2030 struct page *page; 2031 int rc; 2032 2033 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2034 /* Allocate a shadow page table */ 2035 page = page_table_alloc_pgste(sg->mm); 2036 if (!page) 2037 return -ENOMEM; 2038 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2039 if (fake) 2040 page->index |= GMAP_SHADOW_FAKE_TABLE; 2041 s_pgt = (unsigned long *) page_to_phys(page); 2042 /* Install shadow page table */ 2043 spin_lock(&sg->guest_table_lock); 2044 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2045 if (!table) { 2046 rc = -EAGAIN; /* Race with unshadow */ 2047 goto out_free; 2048 } 2049 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2050 rc = 0; /* Already established */ 2051 goto out_free; 2052 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2053 rc = -EAGAIN; /* Race with shadow */ 2054 goto out_free; 2055 } 2056 /* mark as invalid as long as the parent table is not protected */ 2057 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2058 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2059 list_add(&page->lru, &sg->pt_list); 2060 if (fake) { 2061 /* nothing to protect for fake tables */ 2062 *table &= ~_SEGMENT_ENTRY_INVALID; 2063 spin_unlock(&sg->guest_table_lock); 2064 return 0; 2065 } 2066 spin_unlock(&sg->guest_table_lock); 2067 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2068 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2069 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2070 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2071 spin_lock(&sg->guest_table_lock); 2072 if (!rc) { 2073 table = gmap_table_walk(sg, saddr, 1); 2074 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2075 (unsigned long) s_pgt) 2076 rc = -EAGAIN; /* Race with unshadow */ 2077 else 2078 *table &= ~_SEGMENT_ENTRY_INVALID; 2079 } else { 2080 gmap_unshadow_pgt(sg, raddr); 2081 } 2082 spin_unlock(&sg->guest_table_lock); 2083 return rc; 2084 out_free: 2085 spin_unlock(&sg->guest_table_lock); 2086 page_table_free_pgste(page); 2087 return rc; 2088 2089 } 2090 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2091 2092 /** 2093 * gmap_shadow_page - create a shadow page mapping 2094 * @sg: pointer to the shadow guest address space structure 2095 * @saddr: faulting address in the shadow gmap 2096 * @pte: pte in parent gmap address space to get shadowed 2097 * 2098 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2099 * shadow table structure is incomplete, -ENOMEM if out of memory and 2100 * -EFAULT if an address in the parent gmap could not be resolved. 2101 * 2102 * Called with sg->mm->mmap_lock in read. 2103 */ 2104 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2105 { 2106 struct gmap *parent; 2107 struct gmap_rmap *rmap; 2108 unsigned long vmaddr, paddr; 2109 spinlock_t *ptl; 2110 pte_t *sptep, *tptep; 2111 int prot; 2112 int rc; 2113 2114 BUG_ON(!gmap_is_shadow(sg)); 2115 parent = sg->parent; 2116 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2117 2118 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 2119 if (!rmap) 2120 return -ENOMEM; 2121 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2122 2123 while (1) { 2124 paddr = pte_val(pte) & PAGE_MASK; 2125 vmaddr = __gmap_translate(parent, paddr); 2126 if (IS_ERR_VALUE(vmaddr)) { 2127 rc = vmaddr; 2128 break; 2129 } 2130 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 2131 if (rc) 2132 break; 2133 rc = -EAGAIN; 2134 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2135 if (sptep) { 2136 spin_lock(&sg->guest_table_lock); 2137 /* Get page table pointer */ 2138 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2139 if (!tptep) { 2140 spin_unlock(&sg->guest_table_lock); 2141 gmap_pte_op_end(ptl); 2142 radix_tree_preload_end(); 2143 break; 2144 } 2145 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2146 if (rc > 0) { 2147 /* Success and a new mapping */ 2148 gmap_insert_rmap(sg, vmaddr, rmap); 2149 rmap = NULL; 2150 rc = 0; 2151 } 2152 gmap_pte_op_end(ptl); 2153 spin_unlock(&sg->guest_table_lock); 2154 } 2155 radix_tree_preload_end(); 2156 if (!rc) 2157 break; 2158 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2159 if (rc) 2160 break; 2161 } 2162 kfree(rmap); 2163 return rc; 2164 } 2165 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2166 2167 /* 2168 * gmap_shadow_notify - handle notifications for shadow gmap 2169 * 2170 * Called with sg->parent->shadow_lock. 2171 */ 2172 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2173 unsigned long gaddr) 2174 { 2175 struct gmap_rmap *rmap, *rnext, *head; 2176 unsigned long start, end, bits, raddr; 2177 2178 BUG_ON(!gmap_is_shadow(sg)); 2179 2180 spin_lock(&sg->guest_table_lock); 2181 if (sg->removed) { 2182 spin_unlock(&sg->guest_table_lock); 2183 return; 2184 } 2185 /* Check for top level table */ 2186 start = sg->orig_asce & _ASCE_ORIGIN; 2187 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2188 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2189 gaddr < end) { 2190 /* The complete shadow table has to go */ 2191 gmap_unshadow(sg); 2192 spin_unlock(&sg->guest_table_lock); 2193 list_del(&sg->list); 2194 gmap_put(sg); 2195 return; 2196 } 2197 /* Remove the page table tree from on specific entry */ 2198 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2199 gmap_for_each_rmap_safe(rmap, rnext, head) { 2200 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2201 raddr = rmap->raddr ^ bits; 2202 switch (bits) { 2203 case _SHADOW_RMAP_REGION1: 2204 gmap_unshadow_r2t(sg, raddr); 2205 break; 2206 case _SHADOW_RMAP_REGION2: 2207 gmap_unshadow_r3t(sg, raddr); 2208 break; 2209 case _SHADOW_RMAP_REGION3: 2210 gmap_unshadow_sgt(sg, raddr); 2211 break; 2212 case _SHADOW_RMAP_SEGMENT: 2213 gmap_unshadow_pgt(sg, raddr); 2214 break; 2215 case _SHADOW_RMAP_PGTABLE: 2216 gmap_unshadow_page(sg, raddr); 2217 break; 2218 } 2219 kfree(rmap); 2220 } 2221 spin_unlock(&sg->guest_table_lock); 2222 } 2223 2224 /** 2225 * ptep_notify - call all invalidation callbacks for a specific pte. 2226 * @mm: pointer to the process mm_struct 2227 * @vmaddr: virtual address in the process address space 2228 * @pte: pointer to the page table entry 2229 * @bits: bits from the pgste that caused the notify call 2230 * 2231 * This function is assumed to be called with the page table lock held 2232 * for the pte to notify. 2233 */ 2234 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2235 pte_t *pte, unsigned long bits) 2236 { 2237 unsigned long offset, gaddr = 0; 2238 unsigned long *table; 2239 struct gmap *gmap, *sg, *next; 2240 2241 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2242 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2243 rcu_read_lock(); 2244 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2245 spin_lock(&gmap->guest_table_lock); 2246 table = radix_tree_lookup(&gmap->host_to_guest, 2247 vmaddr >> PMD_SHIFT); 2248 if (table) 2249 gaddr = __gmap_segment_gaddr(table) + offset; 2250 spin_unlock(&gmap->guest_table_lock); 2251 if (!table) 2252 continue; 2253 2254 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2255 spin_lock(&gmap->shadow_lock); 2256 list_for_each_entry_safe(sg, next, 2257 &gmap->children, list) 2258 gmap_shadow_notify(sg, vmaddr, gaddr); 2259 spin_unlock(&gmap->shadow_lock); 2260 } 2261 if (bits & PGSTE_IN_BIT) 2262 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2263 } 2264 rcu_read_unlock(); 2265 } 2266 EXPORT_SYMBOL_GPL(ptep_notify); 2267 2268 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2269 unsigned long gaddr) 2270 { 2271 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2272 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2273 } 2274 2275 /** 2276 * gmap_pmdp_xchg - exchange a gmap pmd with another 2277 * @gmap: pointer to the guest address space structure 2278 * @pmdp: pointer to the pmd entry 2279 * @new: replacement entry 2280 * @gaddr: the affected guest address 2281 * 2282 * This function is assumed to be called with the guest_table_lock 2283 * held. 2284 */ 2285 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2286 unsigned long gaddr) 2287 { 2288 gaddr &= HPAGE_MASK; 2289 pmdp_notify_gmap(gmap, pmdp, gaddr); 2290 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2291 if (MACHINE_HAS_TLB_GUEST) 2292 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2293 IDTE_GLOBAL); 2294 else if (MACHINE_HAS_IDTE) 2295 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2296 else 2297 __pmdp_csp(pmdp); 2298 *pmdp = new; 2299 } 2300 2301 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2302 int purge) 2303 { 2304 pmd_t *pmdp; 2305 struct gmap *gmap; 2306 unsigned long gaddr; 2307 2308 rcu_read_lock(); 2309 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2310 spin_lock(&gmap->guest_table_lock); 2311 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2312 vmaddr >> PMD_SHIFT); 2313 if (pmdp) { 2314 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2315 pmdp_notify_gmap(gmap, pmdp, gaddr); 2316 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2317 _SEGMENT_ENTRY_GMAP_UC)); 2318 if (purge) 2319 __pmdp_csp(pmdp); 2320 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2321 } 2322 spin_unlock(&gmap->guest_table_lock); 2323 } 2324 rcu_read_unlock(); 2325 } 2326 2327 /** 2328 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2329 * flushing 2330 * @mm: pointer to the process mm_struct 2331 * @vmaddr: virtual address in the process address space 2332 */ 2333 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2334 { 2335 gmap_pmdp_clear(mm, vmaddr, 0); 2336 } 2337 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2338 2339 /** 2340 * gmap_pmdp_csp - csp all affected guest pmd entries 2341 * @mm: pointer to the process mm_struct 2342 * @vmaddr: virtual address in the process address space 2343 */ 2344 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2345 { 2346 gmap_pmdp_clear(mm, vmaddr, 1); 2347 } 2348 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2349 2350 /** 2351 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2352 * @mm: pointer to the process mm_struct 2353 * @vmaddr: virtual address in the process address space 2354 */ 2355 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2356 { 2357 unsigned long *entry, gaddr; 2358 struct gmap *gmap; 2359 pmd_t *pmdp; 2360 2361 rcu_read_lock(); 2362 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2363 spin_lock(&gmap->guest_table_lock); 2364 entry = radix_tree_delete(&gmap->host_to_guest, 2365 vmaddr >> PMD_SHIFT); 2366 if (entry) { 2367 pmdp = (pmd_t *)entry; 2368 gaddr = __gmap_segment_gaddr(entry); 2369 pmdp_notify_gmap(gmap, pmdp, gaddr); 2370 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2371 _SEGMENT_ENTRY_GMAP_UC)); 2372 if (MACHINE_HAS_TLB_GUEST) 2373 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2374 gmap->asce, IDTE_LOCAL); 2375 else if (MACHINE_HAS_IDTE) 2376 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2377 *entry = _SEGMENT_ENTRY_EMPTY; 2378 } 2379 spin_unlock(&gmap->guest_table_lock); 2380 } 2381 rcu_read_unlock(); 2382 } 2383 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2384 2385 /** 2386 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2387 * @mm: pointer to the process mm_struct 2388 * @vmaddr: virtual address in the process address space 2389 */ 2390 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2391 { 2392 unsigned long *entry, gaddr; 2393 struct gmap *gmap; 2394 pmd_t *pmdp; 2395 2396 rcu_read_lock(); 2397 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2398 spin_lock(&gmap->guest_table_lock); 2399 entry = radix_tree_delete(&gmap->host_to_guest, 2400 vmaddr >> PMD_SHIFT); 2401 if (entry) { 2402 pmdp = (pmd_t *)entry; 2403 gaddr = __gmap_segment_gaddr(entry); 2404 pmdp_notify_gmap(gmap, pmdp, gaddr); 2405 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2406 _SEGMENT_ENTRY_GMAP_UC)); 2407 if (MACHINE_HAS_TLB_GUEST) 2408 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2409 gmap->asce, IDTE_GLOBAL); 2410 else if (MACHINE_HAS_IDTE) 2411 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2412 else 2413 __pmdp_csp(pmdp); 2414 *entry = _SEGMENT_ENTRY_EMPTY; 2415 } 2416 spin_unlock(&gmap->guest_table_lock); 2417 } 2418 rcu_read_unlock(); 2419 } 2420 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2421 2422 /** 2423 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2424 * @gmap: pointer to guest address space 2425 * @pmdp: pointer to the pmd to be tested 2426 * @gaddr: virtual address in the guest address space 2427 * 2428 * This function is assumed to be called with the guest_table_lock 2429 * held. 2430 */ 2431 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2432 unsigned long gaddr) 2433 { 2434 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2435 return false; 2436 2437 /* Already protected memory, which did not change is clean */ 2438 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2439 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2440 return false; 2441 2442 /* Clear UC indication and reset protection */ 2443 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2444 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2445 return true; 2446 } 2447 2448 /** 2449 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2450 * @gmap: pointer to guest address space 2451 * @bitmap: dirty bitmap for this pmd 2452 * @gaddr: virtual address in the guest address space 2453 * @vmaddr: virtual address in the host address space 2454 * 2455 * This function is assumed to be called with the guest_table_lock 2456 * held. 2457 */ 2458 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2459 unsigned long gaddr, unsigned long vmaddr) 2460 { 2461 int i; 2462 pmd_t *pmdp; 2463 pte_t *ptep; 2464 spinlock_t *ptl; 2465 2466 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2467 if (!pmdp) 2468 return; 2469 2470 if (pmd_large(*pmdp)) { 2471 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2472 bitmap_fill(bitmap, _PAGE_ENTRIES); 2473 } else { 2474 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2475 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2476 if (!ptep) 2477 continue; 2478 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2479 set_bit(i, bitmap); 2480 spin_unlock(ptl); 2481 } 2482 } 2483 gmap_pmd_op_end(gmap, pmdp); 2484 } 2485 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2486 2487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2488 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr, 2489 unsigned long end, struct mm_walk *walk) 2490 { 2491 struct vm_area_struct *vma = walk->vma; 2492 2493 split_huge_pmd(vma, pmd, addr); 2494 return 0; 2495 } 2496 2497 static const struct mm_walk_ops thp_split_walk_ops = { 2498 .pmd_entry = thp_split_walk_pmd_entry, 2499 }; 2500 2501 static inline void thp_split_mm(struct mm_struct *mm) 2502 { 2503 struct vm_area_struct *vma; 2504 2505 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2506 vma->vm_flags &= ~VM_HUGEPAGE; 2507 vma->vm_flags |= VM_NOHUGEPAGE; 2508 walk_page_vma(vma, &thp_split_walk_ops, NULL); 2509 } 2510 mm->def_flags |= VM_NOHUGEPAGE; 2511 } 2512 #else 2513 static inline void thp_split_mm(struct mm_struct *mm) 2514 { 2515 } 2516 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2517 2518 /* 2519 * Remove all empty zero pages from the mapping for lazy refaulting 2520 * - This must be called after mm->context.has_pgste is set, to avoid 2521 * future creation of zero pages 2522 * - This must be called after THP was enabled 2523 */ 2524 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2525 unsigned long end, struct mm_walk *walk) 2526 { 2527 unsigned long addr; 2528 2529 for (addr = start; addr != end; addr += PAGE_SIZE) { 2530 pte_t *ptep; 2531 spinlock_t *ptl; 2532 2533 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2534 if (is_zero_pfn(pte_pfn(*ptep))) 2535 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2536 pte_unmap_unlock(ptep, ptl); 2537 } 2538 return 0; 2539 } 2540 2541 static const struct mm_walk_ops zap_zero_walk_ops = { 2542 .pmd_entry = __zap_zero_pages, 2543 }; 2544 2545 /* 2546 * switch on pgstes for its userspace process (for kvm) 2547 */ 2548 int s390_enable_sie(void) 2549 { 2550 struct mm_struct *mm = current->mm; 2551 2552 /* Do we have pgstes? if yes, we are done */ 2553 if (mm_has_pgste(mm)) 2554 return 0; 2555 /* Fail if the page tables are 2K */ 2556 if (!mm_alloc_pgste(mm)) 2557 return -EINVAL; 2558 mmap_write_lock(mm); 2559 mm->context.has_pgste = 1; 2560 /* split thp mappings and disable thp for future mappings */ 2561 thp_split_mm(mm); 2562 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL); 2563 mmap_write_unlock(mm); 2564 return 0; 2565 } 2566 EXPORT_SYMBOL_GPL(s390_enable_sie); 2567 2568 int gmap_mark_unmergeable(void) 2569 { 2570 struct mm_struct *mm = current->mm; 2571 struct vm_area_struct *vma; 2572 int ret; 2573 2574 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2575 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 2576 MADV_UNMERGEABLE, &vma->vm_flags); 2577 if (ret) 2578 return ret; 2579 } 2580 mm->def_flags &= ~VM_MERGEABLE; 2581 return 0; 2582 } 2583 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable); 2584 2585 /* 2586 * Enable storage key handling from now on and initialize the storage 2587 * keys with the default key. 2588 */ 2589 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2590 unsigned long next, struct mm_walk *walk) 2591 { 2592 /* Clear storage key */ 2593 ptep_zap_key(walk->mm, addr, pte); 2594 return 0; 2595 } 2596 2597 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2598 unsigned long hmask, unsigned long next, 2599 struct mm_walk *walk) 2600 { 2601 pmd_t *pmd = (pmd_t *)pte; 2602 unsigned long start, end; 2603 struct page *page = pmd_page(*pmd); 2604 2605 /* 2606 * The write check makes sure we do not set a key on shared 2607 * memory. This is needed as the walker does not differentiate 2608 * between actual guest memory and the process executable or 2609 * shared libraries. 2610 */ 2611 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2612 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2613 return 0; 2614 2615 start = pmd_val(*pmd) & HPAGE_MASK; 2616 end = start + HPAGE_SIZE - 1; 2617 __storage_key_init_range(start, end); 2618 set_bit(PG_arch_1, &page->flags); 2619 return 0; 2620 } 2621 2622 static const struct mm_walk_ops enable_skey_walk_ops = { 2623 .hugetlb_entry = __s390_enable_skey_hugetlb, 2624 .pte_entry = __s390_enable_skey_pte, 2625 }; 2626 2627 int s390_enable_skey(void) 2628 { 2629 struct mm_struct *mm = current->mm; 2630 int rc = 0; 2631 2632 mmap_write_lock(mm); 2633 if (mm_uses_skeys(mm)) 2634 goto out_up; 2635 2636 mm->context.uses_skeys = 1; 2637 rc = gmap_mark_unmergeable(); 2638 if (rc) { 2639 mm->context.uses_skeys = 0; 2640 goto out_up; 2641 } 2642 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL); 2643 2644 out_up: 2645 mmap_write_unlock(mm); 2646 return rc; 2647 } 2648 EXPORT_SYMBOL_GPL(s390_enable_skey); 2649 2650 /* 2651 * Reset CMMA state, make all pages stable again. 2652 */ 2653 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2654 unsigned long next, struct mm_walk *walk) 2655 { 2656 ptep_zap_unused(walk->mm, addr, pte, 1); 2657 return 0; 2658 } 2659 2660 static const struct mm_walk_ops reset_cmma_walk_ops = { 2661 .pte_entry = __s390_reset_cmma, 2662 }; 2663 2664 void s390_reset_cmma(struct mm_struct *mm) 2665 { 2666 mmap_write_lock(mm); 2667 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL); 2668 mmap_write_unlock(mm); 2669 } 2670 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2671 2672 /* 2673 * make inaccessible pages accessible again 2674 */ 2675 static int __s390_reset_acc(pte_t *ptep, unsigned long addr, 2676 unsigned long next, struct mm_walk *walk) 2677 { 2678 pte_t pte = READ_ONCE(*ptep); 2679 2680 if (pte_present(pte)) 2681 WARN_ON_ONCE(uv_destroy_page(pte_val(pte) & PAGE_MASK)); 2682 return 0; 2683 } 2684 2685 static const struct mm_walk_ops reset_acc_walk_ops = { 2686 .pte_entry = __s390_reset_acc, 2687 }; 2688 2689 #include <linux/sched/mm.h> 2690 void s390_reset_acc(struct mm_struct *mm) 2691 { 2692 if (!mm_is_protected(mm)) 2693 return; 2694 /* 2695 * we might be called during 2696 * reset: we walk the pages and clear 2697 * close of all kvm file descriptors: we walk the pages and clear 2698 * exit of process on fd closure: vma already gone, do nothing 2699 */ 2700 if (!mmget_not_zero(mm)) 2701 return; 2702 mmap_read_lock(mm); 2703 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL); 2704 mmap_read_unlock(mm); 2705 mmput(mm); 2706 } 2707 EXPORT_SYMBOL_GPL(s390_reset_acc); 2708