1 /* 2 * KVM guest address space mapping code 3 * 4 * Copyright IBM Corp. 2007, 2016 5 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/mm.h> 10 #include <linux/swap.h> 11 #include <linux/smp.h> 12 #include <linux/spinlock.h> 13 #include <linux/slab.h> 14 #include <linux/swapops.h> 15 #include <linux/ksm.h> 16 #include <linux/mman.h> 17 18 #include <asm/pgtable.h> 19 #include <asm/pgalloc.h> 20 #include <asm/gmap.h> 21 #include <asm/tlb.h> 22 23 #define GMAP_SHADOW_FAKE_TABLE 1ULL 24 25 /** 26 * gmap_alloc - allocate and initialize a guest address space 27 * @mm: pointer to the parent mm_struct 28 * @limit: maximum address of the gmap address space 29 * 30 * Returns a guest address space structure. 31 */ 32 static struct gmap *gmap_alloc(unsigned long limit) 33 { 34 struct gmap *gmap; 35 struct page *page; 36 unsigned long *table; 37 unsigned long etype, atype; 38 39 if (limit < _REGION3_SIZE) { 40 limit = _REGION3_SIZE - 1; 41 atype = _ASCE_TYPE_SEGMENT; 42 etype = _SEGMENT_ENTRY_EMPTY; 43 } else if (limit < _REGION2_SIZE) { 44 limit = _REGION2_SIZE - 1; 45 atype = _ASCE_TYPE_REGION3; 46 etype = _REGION3_ENTRY_EMPTY; 47 } else if (limit < _REGION1_SIZE) { 48 limit = _REGION1_SIZE - 1; 49 atype = _ASCE_TYPE_REGION2; 50 etype = _REGION2_ENTRY_EMPTY; 51 } else { 52 limit = -1UL; 53 atype = _ASCE_TYPE_REGION1; 54 etype = _REGION1_ENTRY_EMPTY; 55 } 56 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL); 57 if (!gmap) 58 goto out; 59 INIT_LIST_HEAD(&gmap->crst_list); 60 INIT_LIST_HEAD(&gmap->children); 61 INIT_LIST_HEAD(&gmap->pt_list); 62 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); 63 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); 64 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC); 65 spin_lock_init(&gmap->guest_table_lock); 66 spin_lock_init(&gmap->shadow_lock); 67 atomic_set(&gmap->ref_count, 1); 68 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 69 if (!page) 70 goto out_free; 71 page->index = 0; 72 list_add(&page->lru, &gmap->crst_list); 73 table = (unsigned long *) page_to_phys(page); 74 crst_table_init(table, etype); 75 gmap->table = table; 76 gmap->asce = atype | _ASCE_TABLE_LENGTH | 77 _ASCE_USER_BITS | __pa(table); 78 gmap->asce_end = limit; 79 return gmap; 80 81 out_free: 82 kfree(gmap); 83 out: 84 return NULL; 85 } 86 87 /** 88 * gmap_create - create a guest address space 89 * @mm: pointer to the parent mm_struct 90 * @limit: maximum size of the gmap address space 91 * 92 * Returns a guest address space structure. 93 */ 94 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 95 { 96 struct gmap *gmap; 97 unsigned long gmap_asce; 98 99 gmap = gmap_alloc(limit); 100 if (!gmap) 101 return NULL; 102 gmap->mm = mm; 103 spin_lock(&mm->context.lock); 104 list_add_rcu(&gmap->list, &mm->context.gmap_list); 105 if (list_is_singular(&mm->context.gmap_list)) 106 gmap_asce = gmap->asce; 107 else 108 gmap_asce = -1UL; 109 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 110 spin_unlock(&mm->context.lock); 111 return gmap; 112 } 113 EXPORT_SYMBOL_GPL(gmap_create); 114 115 static void gmap_flush_tlb(struct gmap *gmap) 116 { 117 if (MACHINE_HAS_IDTE) 118 __tlb_flush_idte(gmap->asce); 119 else 120 __tlb_flush_global(); 121 } 122 123 static void gmap_radix_tree_free(struct radix_tree_root *root) 124 { 125 struct radix_tree_iter iter; 126 unsigned long indices[16]; 127 unsigned long index; 128 void __rcu **slot; 129 int i, nr; 130 131 /* A radix tree is freed by deleting all of its entries */ 132 index = 0; 133 do { 134 nr = 0; 135 radix_tree_for_each_slot(slot, root, &iter, index) { 136 indices[nr] = iter.index; 137 if (++nr == 16) 138 break; 139 } 140 for (i = 0; i < nr; i++) { 141 index = indices[i]; 142 radix_tree_delete(root, index); 143 } 144 } while (nr > 0); 145 } 146 147 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 148 { 149 struct gmap_rmap *rmap, *rnext, *head; 150 struct radix_tree_iter iter; 151 unsigned long indices[16]; 152 unsigned long index; 153 void __rcu **slot; 154 int i, nr; 155 156 /* A radix tree is freed by deleting all of its entries */ 157 index = 0; 158 do { 159 nr = 0; 160 radix_tree_for_each_slot(slot, root, &iter, index) { 161 indices[nr] = iter.index; 162 if (++nr == 16) 163 break; 164 } 165 for (i = 0; i < nr; i++) { 166 index = indices[i]; 167 head = radix_tree_delete(root, index); 168 gmap_for_each_rmap_safe(rmap, rnext, head) 169 kfree(rmap); 170 } 171 } while (nr > 0); 172 } 173 174 /** 175 * gmap_free - free a guest address space 176 * @gmap: pointer to the guest address space structure 177 * 178 * No locks required. There are no references to this gmap anymore. 179 */ 180 static void gmap_free(struct gmap *gmap) 181 { 182 struct page *page, *next; 183 184 /* Flush tlb of all gmaps (if not already done for shadows) */ 185 if (!(gmap_is_shadow(gmap) && gmap->removed)) 186 gmap_flush_tlb(gmap); 187 /* Free all segment & region tables. */ 188 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 189 __free_pages(page, CRST_ALLOC_ORDER); 190 gmap_radix_tree_free(&gmap->guest_to_host); 191 gmap_radix_tree_free(&gmap->host_to_guest); 192 193 /* Free additional data for a shadow gmap */ 194 if (gmap_is_shadow(gmap)) { 195 /* Free all page tables. */ 196 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 197 page_table_free_pgste(page); 198 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 199 /* Release reference to the parent */ 200 gmap_put(gmap->parent); 201 } 202 203 kfree(gmap); 204 } 205 206 /** 207 * gmap_get - increase reference counter for guest address space 208 * @gmap: pointer to the guest address space structure 209 * 210 * Returns the gmap pointer 211 */ 212 struct gmap *gmap_get(struct gmap *gmap) 213 { 214 atomic_inc(&gmap->ref_count); 215 return gmap; 216 } 217 EXPORT_SYMBOL_GPL(gmap_get); 218 219 /** 220 * gmap_put - decrease reference counter for guest address space 221 * @gmap: pointer to the guest address space structure 222 * 223 * If the reference counter reaches zero the guest address space is freed. 224 */ 225 void gmap_put(struct gmap *gmap) 226 { 227 if (atomic_dec_return(&gmap->ref_count) == 0) 228 gmap_free(gmap); 229 } 230 EXPORT_SYMBOL_GPL(gmap_put); 231 232 /** 233 * gmap_remove - remove a guest address space but do not free it yet 234 * @gmap: pointer to the guest address space structure 235 */ 236 void gmap_remove(struct gmap *gmap) 237 { 238 struct gmap *sg, *next; 239 unsigned long gmap_asce; 240 241 /* Remove all shadow gmaps linked to this gmap */ 242 if (!list_empty(&gmap->children)) { 243 spin_lock(&gmap->shadow_lock); 244 list_for_each_entry_safe(sg, next, &gmap->children, list) { 245 list_del(&sg->list); 246 gmap_put(sg); 247 } 248 spin_unlock(&gmap->shadow_lock); 249 } 250 /* Remove gmap from the pre-mm list */ 251 spin_lock(&gmap->mm->context.lock); 252 list_del_rcu(&gmap->list); 253 if (list_empty(&gmap->mm->context.gmap_list)) 254 gmap_asce = 0; 255 else if (list_is_singular(&gmap->mm->context.gmap_list)) 256 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 257 struct gmap, list)->asce; 258 else 259 gmap_asce = -1UL; 260 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 261 spin_unlock(&gmap->mm->context.lock); 262 synchronize_rcu(); 263 /* Put reference */ 264 gmap_put(gmap); 265 } 266 EXPORT_SYMBOL_GPL(gmap_remove); 267 268 /** 269 * gmap_enable - switch primary space to the guest address space 270 * @gmap: pointer to the guest address space structure 271 */ 272 void gmap_enable(struct gmap *gmap) 273 { 274 S390_lowcore.gmap = (unsigned long) gmap; 275 } 276 EXPORT_SYMBOL_GPL(gmap_enable); 277 278 /** 279 * gmap_disable - switch back to the standard primary address space 280 * @gmap: pointer to the guest address space structure 281 */ 282 void gmap_disable(struct gmap *gmap) 283 { 284 S390_lowcore.gmap = 0UL; 285 } 286 EXPORT_SYMBOL_GPL(gmap_disable); 287 288 /** 289 * gmap_get_enabled - get a pointer to the currently enabled gmap 290 * 291 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 292 */ 293 struct gmap *gmap_get_enabled(void) 294 { 295 return (struct gmap *) S390_lowcore.gmap; 296 } 297 EXPORT_SYMBOL_GPL(gmap_get_enabled); 298 299 /* 300 * gmap_alloc_table is assumed to be called with mmap_sem held 301 */ 302 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 303 unsigned long init, unsigned long gaddr) 304 { 305 struct page *page; 306 unsigned long *new; 307 308 /* since we dont free the gmap table until gmap_free we can unlock */ 309 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 310 if (!page) 311 return -ENOMEM; 312 new = (unsigned long *) page_to_phys(page); 313 crst_table_init(new, init); 314 spin_lock(&gmap->guest_table_lock); 315 if (*table & _REGION_ENTRY_INVALID) { 316 list_add(&page->lru, &gmap->crst_list); 317 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 318 (*table & _REGION_ENTRY_TYPE_MASK); 319 page->index = gaddr; 320 page = NULL; 321 } 322 spin_unlock(&gmap->guest_table_lock); 323 if (page) 324 __free_pages(page, CRST_ALLOC_ORDER); 325 return 0; 326 } 327 328 /** 329 * __gmap_segment_gaddr - find virtual address from segment pointer 330 * @entry: pointer to a segment table entry in the guest address space 331 * 332 * Returns the virtual address in the guest address space for the segment 333 */ 334 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 335 { 336 struct page *page; 337 unsigned long offset, mask; 338 339 offset = (unsigned long) entry / sizeof(unsigned long); 340 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 341 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 342 page = virt_to_page((void *)((unsigned long) entry & mask)); 343 return page->index + offset; 344 } 345 346 /** 347 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 348 * @gmap: pointer to the guest address space structure 349 * @vmaddr: address in the host process address space 350 * 351 * Returns 1 if a TLB flush is required 352 */ 353 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 354 { 355 unsigned long *entry; 356 int flush = 0; 357 358 BUG_ON(gmap_is_shadow(gmap)); 359 spin_lock(&gmap->guest_table_lock); 360 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 361 if (entry) { 362 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 363 *entry = _SEGMENT_ENTRY_EMPTY; 364 } 365 spin_unlock(&gmap->guest_table_lock); 366 return flush; 367 } 368 369 /** 370 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 371 * @gmap: pointer to the guest address space structure 372 * @gaddr: address in the guest address space 373 * 374 * Returns 1 if a TLB flush is required 375 */ 376 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 377 { 378 unsigned long vmaddr; 379 380 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 381 gaddr >> PMD_SHIFT); 382 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 383 } 384 385 /** 386 * gmap_unmap_segment - unmap segment from the guest address space 387 * @gmap: pointer to the guest address space structure 388 * @to: address in the guest address space 389 * @len: length of the memory area to unmap 390 * 391 * Returns 0 if the unmap succeeded, -EINVAL if not. 392 */ 393 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 394 { 395 unsigned long off; 396 int flush; 397 398 BUG_ON(gmap_is_shadow(gmap)); 399 if ((to | len) & (PMD_SIZE - 1)) 400 return -EINVAL; 401 if (len == 0 || to + len < to) 402 return -EINVAL; 403 404 flush = 0; 405 down_write(&gmap->mm->mmap_sem); 406 for (off = 0; off < len; off += PMD_SIZE) 407 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 408 up_write(&gmap->mm->mmap_sem); 409 if (flush) 410 gmap_flush_tlb(gmap); 411 return 0; 412 } 413 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 414 415 /** 416 * gmap_map_segment - map a segment to the guest address space 417 * @gmap: pointer to the guest address space structure 418 * @from: source address in the parent address space 419 * @to: target address in the guest address space 420 * @len: length of the memory area to map 421 * 422 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 423 */ 424 int gmap_map_segment(struct gmap *gmap, unsigned long from, 425 unsigned long to, unsigned long len) 426 { 427 unsigned long off; 428 int flush; 429 430 BUG_ON(gmap_is_shadow(gmap)); 431 if ((from | to | len) & (PMD_SIZE - 1)) 432 return -EINVAL; 433 if (len == 0 || from + len < from || to + len < to || 434 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 435 return -EINVAL; 436 437 flush = 0; 438 down_write(&gmap->mm->mmap_sem); 439 for (off = 0; off < len; off += PMD_SIZE) { 440 /* Remove old translation */ 441 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 442 /* Store new translation */ 443 if (radix_tree_insert(&gmap->guest_to_host, 444 (to + off) >> PMD_SHIFT, 445 (void *) from + off)) 446 break; 447 } 448 up_write(&gmap->mm->mmap_sem); 449 if (flush) 450 gmap_flush_tlb(gmap); 451 if (off >= len) 452 return 0; 453 gmap_unmap_segment(gmap, to, len); 454 return -ENOMEM; 455 } 456 EXPORT_SYMBOL_GPL(gmap_map_segment); 457 458 /** 459 * __gmap_translate - translate a guest address to a user space address 460 * @gmap: pointer to guest mapping meta data structure 461 * @gaddr: guest address 462 * 463 * Returns user space address which corresponds to the guest address or 464 * -EFAULT if no such mapping exists. 465 * This function does not establish potentially missing page table entries. 466 * The mmap_sem of the mm that belongs to the address space must be held 467 * when this function gets called. 468 * 469 * Note: Can also be called for shadow gmaps. 470 */ 471 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 472 { 473 unsigned long vmaddr; 474 475 vmaddr = (unsigned long) 476 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 477 /* Note: guest_to_host is empty for a shadow gmap */ 478 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 479 } 480 EXPORT_SYMBOL_GPL(__gmap_translate); 481 482 /** 483 * gmap_translate - translate a guest address to a user space address 484 * @gmap: pointer to guest mapping meta data structure 485 * @gaddr: guest address 486 * 487 * Returns user space address which corresponds to the guest address or 488 * -EFAULT if no such mapping exists. 489 * This function does not establish potentially missing page table entries. 490 */ 491 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 492 { 493 unsigned long rc; 494 495 down_read(&gmap->mm->mmap_sem); 496 rc = __gmap_translate(gmap, gaddr); 497 up_read(&gmap->mm->mmap_sem); 498 return rc; 499 } 500 EXPORT_SYMBOL_GPL(gmap_translate); 501 502 /** 503 * gmap_unlink - disconnect a page table from the gmap shadow tables 504 * @gmap: pointer to guest mapping meta data structure 505 * @table: pointer to the host page table 506 * @vmaddr: vm address associated with the host page table 507 */ 508 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 509 unsigned long vmaddr) 510 { 511 struct gmap *gmap; 512 int flush; 513 514 rcu_read_lock(); 515 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 516 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 517 if (flush) 518 gmap_flush_tlb(gmap); 519 } 520 rcu_read_unlock(); 521 } 522 523 /** 524 * gmap_link - set up shadow page tables to connect a host to a guest address 525 * @gmap: pointer to guest mapping meta data structure 526 * @gaddr: guest address 527 * @vmaddr: vm address 528 * 529 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 530 * if the vm address is already mapped to a different guest segment. 531 * The mmap_sem of the mm that belongs to the address space must be held 532 * when this function gets called. 533 */ 534 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 535 { 536 struct mm_struct *mm; 537 unsigned long *table; 538 spinlock_t *ptl; 539 pgd_t *pgd; 540 p4d_t *p4d; 541 pud_t *pud; 542 pmd_t *pmd; 543 int rc; 544 545 BUG_ON(gmap_is_shadow(gmap)); 546 /* Create higher level tables in the gmap page table */ 547 table = gmap->table; 548 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 549 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 550 if ((*table & _REGION_ENTRY_INVALID) && 551 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 552 gaddr & _REGION1_MASK)) 553 return -ENOMEM; 554 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 555 } 556 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 557 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 558 if ((*table & _REGION_ENTRY_INVALID) && 559 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 560 gaddr & _REGION2_MASK)) 561 return -ENOMEM; 562 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 563 } 564 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 565 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 566 if ((*table & _REGION_ENTRY_INVALID) && 567 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 568 gaddr & _REGION3_MASK)) 569 return -ENOMEM; 570 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 571 } 572 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 573 /* Walk the parent mm page table */ 574 mm = gmap->mm; 575 pgd = pgd_offset(mm, vmaddr); 576 VM_BUG_ON(pgd_none(*pgd)); 577 p4d = p4d_offset(pgd, vmaddr); 578 VM_BUG_ON(p4d_none(*p4d)); 579 pud = pud_offset(p4d, vmaddr); 580 VM_BUG_ON(pud_none(*pud)); 581 /* large puds cannot yet be handled */ 582 if (pud_large(*pud)) 583 return -EFAULT; 584 pmd = pmd_offset(pud, vmaddr); 585 VM_BUG_ON(pmd_none(*pmd)); 586 /* large pmds cannot yet be handled */ 587 if (pmd_large(*pmd)) 588 return -EFAULT; 589 /* Link gmap segment table entry location to page table. */ 590 rc = radix_tree_preload(GFP_KERNEL); 591 if (rc) 592 return rc; 593 ptl = pmd_lock(mm, pmd); 594 spin_lock(&gmap->guest_table_lock); 595 if (*table == _SEGMENT_ENTRY_EMPTY) { 596 rc = radix_tree_insert(&gmap->host_to_guest, 597 vmaddr >> PMD_SHIFT, table); 598 if (!rc) 599 *table = pmd_val(*pmd); 600 } else 601 rc = 0; 602 spin_unlock(&gmap->guest_table_lock); 603 spin_unlock(ptl); 604 radix_tree_preload_end(); 605 return rc; 606 } 607 608 /** 609 * gmap_fault - resolve a fault on a guest address 610 * @gmap: pointer to guest mapping meta data structure 611 * @gaddr: guest address 612 * @fault_flags: flags to pass down to handle_mm_fault() 613 * 614 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 615 * if the vm address is already mapped to a different guest segment. 616 */ 617 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 618 unsigned int fault_flags) 619 { 620 unsigned long vmaddr; 621 int rc; 622 bool unlocked; 623 624 down_read(&gmap->mm->mmap_sem); 625 626 retry: 627 unlocked = false; 628 vmaddr = __gmap_translate(gmap, gaddr); 629 if (IS_ERR_VALUE(vmaddr)) { 630 rc = vmaddr; 631 goto out_up; 632 } 633 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags, 634 &unlocked)) { 635 rc = -EFAULT; 636 goto out_up; 637 } 638 /* 639 * In the case that fixup_user_fault unlocked the mmap_sem during 640 * faultin redo __gmap_translate to not race with a map/unmap_segment. 641 */ 642 if (unlocked) 643 goto retry; 644 645 rc = __gmap_link(gmap, gaddr, vmaddr); 646 out_up: 647 up_read(&gmap->mm->mmap_sem); 648 return rc; 649 } 650 EXPORT_SYMBOL_GPL(gmap_fault); 651 652 /* 653 * this function is assumed to be called with mmap_sem held 654 */ 655 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 656 { 657 unsigned long vmaddr; 658 spinlock_t *ptl; 659 pte_t *ptep; 660 661 /* Find the vm address for the guest address */ 662 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 663 gaddr >> PMD_SHIFT); 664 if (vmaddr) { 665 vmaddr |= gaddr & ~PMD_MASK; 666 /* Get pointer to the page table entry */ 667 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 668 if (likely(ptep)) 669 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 670 pte_unmap_unlock(ptep, ptl); 671 } 672 } 673 EXPORT_SYMBOL_GPL(__gmap_zap); 674 675 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 676 { 677 unsigned long gaddr, vmaddr, size; 678 struct vm_area_struct *vma; 679 680 down_read(&gmap->mm->mmap_sem); 681 for (gaddr = from; gaddr < to; 682 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 683 /* Find the vm address for the guest address */ 684 vmaddr = (unsigned long) 685 radix_tree_lookup(&gmap->guest_to_host, 686 gaddr >> PMD_SHIFT); 687 if (!vmaddr) 688 continue; 689 vmaddr |= gaddr & ~PMD_MASK; 690 /* Find vma in the parent mm */ 691 vma = find_vma(gmap->mm, vmaddr); 692 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 693 zap_page_range(vma, vmaddr, size); 694 } 695 up_read(&gmap->mm->mmap_sem); 696 } 697 EXPORT_SYMBOL_GPL(gmap_discard); 698 699 static LIST_HEAD(gmap_notifier_list); 700 static DEFINE_SPINLOCK(gmap_notifier_lock); 701 702 /** 703 * gmap_register_pte_notifier - register a pte invalidation callback 704 * @nb: pointer to the gmap notifier block 705 */ 706 void gmap_register_pte_notifier(struct gmap_notifier *nb) 707 { 708 spin_lock(&gmap_notifier_lock); 709 list_add_rcu(&nb->list, &gmap_notifier_list); 710 spin_unlock(&gmap_notifier_lock); 711 } 712 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 713 714 /** 715 * gmap_unregister_pte_notifier - remove a pte invalidation callback 716 * @nb: pointer to the gmap notifier block 717 */ 718 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 719 { 720 spin_lock(&gmap_notifier_lock); 721 list_del_rcu(&nb->list); 722 spin_unlock(&gmap_notifier_lock); 723 synchronize_rcu(); 724 } 725 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 726 727 /** 728 * gmap_call_notifier - call all registered invalidation callbacks 729 * @gmap: pointer to guest mapping meta data structure 730 * @start: start virtual address in the guest address space 731 * @end: end virtual address in the guest address space 732 */ 733 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 734 unsigned long end) 735 { 736 struct gmap_notifier *nb; 737 738 list_for_each_entry(nb, &gmap_notifier_list, list) 739 nb->notifier_call(gmap, start, end); 740 } 741 742 /** 743 * gmap_table_walk - walk the gmap page tables 744 * @gmap: pointer to guest mapping meta data structure 745 * @gaddr: virtual address in the guest address space 746 * @level: page table level to stop at 747 * 748 * Returns a table entry pointer for the given guest address and @level 749 * @level=0 : returns a pointer to a page table table entry (or NULL) 750 * @level=1 : returns a pointer to a segment table entry (or NULL) 751 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 752 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 753 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 754 * 755 * Returns NULL if the gmap page tables could not be walked to the 756 * requested level. 757 * 758 * Note: Can also be called for shadow gmaps. 759 */ 760 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 761 unsigned long gaddr, int level) 762 { 763 unsigned long *table; 764 765 if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4)) 766 return NULL; 767 if (gmap_is_shadow(gmap) && gmap->removed) 768 return NULL; 769 if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11))) 770 return NULL; 771 table = gmap->table; 772 switch (gmap->asce & _ASCE_TYPE_MASK) { 773 case _ASCE_TYPE_REGION1: 774 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 775 if (level == 4) 776 break; 777 if (*table & _REGION_ENTRY_INVALID) 778 return NULL; 779 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 780 /* Fallthrough */ 781 case _ASCE_TYPE_REGION2: 782 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 783 if (level == 3) 784 break; 785 if (*table & _REGION_ENTRY_INVALID) 786 return NULL; 787 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 788 /* Fallthrough */ 789 case _ASCE_TYPE_REGION3: 790 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 791 if (level == 2) 792 break; 793 if (*table & _REGION_ENTRY_INVALID) 794 return NULL; 795 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 796 /* Fallthrough */ 797 case _ASCE_TYPE_SEGMENT: 798 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 799 if (level == 1) 800 break; 801 if (*table & _REGION_ENTRY_INVALID) 802 return NULL; 803 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 804 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 805 } 806 return table; 807 } 808 809 /** 810 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 811 * and return the pte pointer 812 * @gmap: pointer to guest mapping meta data structure 813 * @gaddr: virtual address in the guest address space 814 * @ptl: pointer to the spinlock pointer 815 * 816 * Returns a pointer to the locked pte for a guest address, or NULL 817 * 818 * Note: Can also be called for shadow gmaps. 819 */ 820 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 821 spinlock_t **ptl) 822 { 823 unsigned long *table; 824 825 if (gmap_is_shadow(gmap)) 826 spin_lock(&gmap->guest_table_lock); 827 /* Walk the gmap page table, lock and get pte pointer */ 828 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 829 if (!table || *table & _SEGMENT_ENTRY_INVALID) { 830 if (gmap_is_shadow(gmap)) 831 spin_unlock(&gmap->guest_table_lock); 832 return NULL; 833 } 834 if (gmap_is_shadow(gmap)) { 835 *ptl = &gmap->guest_table_lock; 836 return pte_offset_map((pmd_t *) table, gaddr); 837 } 838 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 839 } 840 841 /** 842 * gmap_pte_op_fixup - force a page in and connect the gmap page table 843 * @gmap: pointer to guest mapping meta data structure 844 * @gaddr: virtual address in the guest address space 845 * @vmaddr: address in the host process address space 846 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 847 * 848 * Returns 0 if the caller can retry __gmap_translate (might fail again), 849 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 850 * up or connecting the gmap page table. 851 */ 852 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 853 unsigned long vmaddr, int prot) 854 { 855 struct mm_struct *mm = gmap->mm; 856 unsigned int fault_flags; 857 bool unlocked = false; 858 859 BUG_ON(gmap_is_shadow(gmap)); 860 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 861 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked)) 862 return -EFAULT; 863 if (unlocked) 864 /* lost mmap_sem, caller has to retry __gmap_translate */ 865 return 0; 866 /* Connect the page tables */ 867 return __gmap_link(gmap, gaddr, vmaddr); 868 } 869 870 /** 871 * gmap_pte_op_end - release the page table lock 872 * @ptl: pointer to the spinlock pointer 873 */ 874 static void gmap_pte_op_end(spinlock_t *ptl) 875 { 876 spin_unlock(ptl); 877 } 878 879 /* 880 * gmap_protect_range - remove access rights to memory and set pgste bits 881 * @gmap: pointer to guest mapping meta data structure 882 * @gaddr: virtual address in the guest address space 883 * @len: size of area 884 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 885 * @bits: pgste notification bits to set 886 * 887 * Returns 0 if successfully protected, -ENOMEM if out of memory and 888 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 889 * 890 * Called with sg->mm->mmap_sem in read. 891 * 892 * Note: Can also be called for shadow gmaps. 893 */ 894 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 895 unsigned long len, int prot, unsigned long bits) 896 { 897 unsigned long vmaddr; 898 spinlock_t *ptl; 899 pte_t *ptep; 900 int rc; 901 902 while (len) { 903 rc = -EAGAIN; 904 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 905 if (ptep) { 906 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits); 907 gmap_pte_op_end(ptl); 908 } 909 if (rc) { 910 vmaddr = __gmap_translate(gmap, gaddr); 911 if (IS_ERR_VALUE(vmaddr)) 912 return vmaddr; 913 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 914 if (rc) 915 return rc; 916 continue; 917 } 918 gaddr += PAGE_SIZE; 919 len -= PAGE_SIZE; 920 } 921 return 0; 922 } 923 924 /** 925 * gmap_mprotect_notify - change access rights for a range of ptes and 926 * call the notifier if any pte changes again 927 * @gmap: pointer to guest mapping meta data structure 928 * @gaddr: virtual address in the guest address space 929 * @len: size of area 930 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 931 * 932 * Returns 0 if for each page in the given range a gmap mapping exists, 933 * the new access rights could be set and the notifier could be armed. 934 * If the gmap mapping is missing for one or more pages -EFAULT is 935 * returned. If no memory could be allocated -ENOMEM is returned. 936 * This function establishes missing page table entries. 937 */ 938 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 939 unsigned long len, int prot) 940 { 941 int rc; 942 943 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 944 return -EINVAL; 945 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 946 return -EINVAL; 947 down_read(&gmap->mm->mmap_sem); 948 rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT); 949 up_read(&gmap->mm->mmap_sem); 950 return rc; 951 } 952 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 953 954 /** 955 * gmap_read_table - get an unsigned long value from a guest page table using 956 * absolute addressing, without marking the page referenced. 957 * @gmap: pointer to guest mapping meta data structure 958 * @gaddr: virtual address in the guest address space 959 * @val: pointer to the unsigned long value to return 960 * 961 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 962 * if reading using the virtual address failed. 963 * 964 * Called with gmap->mm->mmap_sem in read. 965 */ 966 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 967 { 968 unsigned long address, vmaddr; 969 spinlock_t *ptl; 970 pte_t *ptep, pte; 971 int rc; 972 973 while (1) { 974 rc = -EAGAIN; 975 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 976 if (ptep) { 977 pte = *ptep; 978 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 979 address = pte_val(pte) & PAGE_MASK; 980 address += gaddr & ~PAGE_MASK; 981 *val = *(unsigned long *) address; 982 pte_val(*ptep) |= _PAGE_YOUNG; 983 /* Do *NOT* clear the _PAGE_INVALID bit! */ 984 rc = 0; 985 } 986 gmap_pte_op_end(ptl); 987 } 988 if (!rc) 989 break; 990 vmaddr = __gmap_translate(gmap, gaddr); 991 if (IS_ERR_VALUE(vmaddr)) { 992 rc = vmaddr; 993 break; 994 } 995 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 996 if (rc) 997 break; 998 } 999 return rc; 1000 } 1001 EXPORT_SYMBOL_GPL(gmap_read_table); 1002 1003 /** 1004 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1005 * @sg: pointer to the shadow guest address space structure 1006 * @vmaddr: vm address associated with the rmap 1007 * @rmap: pointer to the rmap structure 1008 * 1009 * Called with the sg->guest_table_lock 1010 */ 1011 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1012 struct gmap_rmap *rmap) 1013 { 1014 void __rcu **slot; 1015 1016 BUG_ON(!gmap_is_shadow(sg)); 1017 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1018 if (slot) { 1019 rmap->next = radix_tree_deref_slot_protected(slot, 1020 &sg->guest_table_lock); 1021 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1022 } else { 1023 rmap->next = NULL; 1024 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1025 rmap); 1026 } 1027 } 1028 1029 /** 1030 * gmap_protect_rmap - modify access rights to memory and create an rmap 1031 * @sg: pointer to the shadow guest address space structure 1032 * @raddr: rmap address in the shadow gmap 1033 * @paddr: address in the parent guest address space 1034 * @len: length of the memory area to protect 1035 * @prot: indicates access rights: none, read-only or read-write 1036 * 1037 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1038 * if out of memory and -EFAULT if paddr is invalid. 1039 */ 1040 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1041 unsigned long paddr, unsigned long len, int prot) 1042 { 1043 struct gmap *parent; 1044 struct gmap_rmap *rmap; 1045 unsigned long vmaddr; 1046 spinlock_t *ptl; 1047 pte_t *ptep; 1048 int rc; 1049 1050 BUG_ON(!gmap_is_shadow(sg)); 1051 parent = sg->parent; 1052 while (len) { 1053 vmaddr = __gmap_translate(parent, paddr); 1054 if (IS_ERR_VALUE(vmaddr)) 1055 return vmaddr; 1056 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1057 if (!rmap) 1058 return -ENOMEM; 1059 rmap->raddr = raddr; 1060 rc = radix_tree_preload(GFP_KERNEL); 1061 if (rc) { 1062 kfree(rmap); 1063 return rc; 1064 } 1065 rc = -EAGAIN; 1066 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1067 if (ptep) { 1068 spin_lock(&sg->guest_table_lock); 1069 rc = ptep_force_prot(parent->mm, paddr, ptep, prot, 1070 PGSTE_VSIE_BIT); 1071 if (!rc) 1072 gmap_insert_rmap(sg, vmaddr, rmap); 1073 spin_unlock(&sg->guest_table_lock); 1074 gmap_pte_op_end(ptl); 1075 } 1076 radix_tree_preload_end(); 1077 if (rc) { 1078 kfree(rmap); 1079 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 1080 if (rc) 1081 return rc; 1082 continue; 1083 } 1084 paddr += PAGE_SIZE; 1085 len -= PAGE_SIZE; 1086 } 1087 return 0; 1088 } 1089 1090 #define _SHADOW_RMAP_MASK 0x7 1091 #define _SHADOW_RMAP_REGION1 0x5 1092 #define _SHADOW_RMAP_REGION2 0x4 1093 #define _SHADOW_RMAP_REGION3 0x3 1094 #define _SHADOW_RMAP_SEGMENT 0x2 1095 #define _SHADOW_RMAP_PGTABLE 0x1 1096 1097 /** 1098 * gmap_idte_one - invalidate a single region or segment table entry 1099 * @asce: region or segment table *origin* + table-type bits 1100 * @vaddr: virtual address to identify the table entry to flush 1101 * 1102 * The invalid bit of a single region or segment table entry is set 1103 * and the associated TLB entries depending on the entry are flushed. 1104 * The table-type of the @asce identifies the portion of the @vaddr 1105 * that is used as the invalidation index. 1106 */ 1107 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1108 { 1109 asm volatile( 1110 " .insn rrf,0xb98e0000,%0,%1,0,0" 1111 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1112 } 1113 1114 /** 1115 * gmap_unshadow_page - remove a page from a shadow page table 1116 * @sg: pointer to the shadow guest address space structure 1117 * @raddr: rmap address in the shadow guest address space 1118 * 1119 * Called with the sg->guest_table_lock 1120 */ 1121 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1122 { 1123 unsigned long *table; 1124 1125 BUG_ON(!gmap_is_shadow(sg)); 1126 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1127 if (!table || *table & _PAGE_INVALID) 1128 return; 1129 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1130 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1131 } 1132 1133 /** 1134 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1135 * @sg: pointer to the shadow guest address space structure 1136 * @raddr: rmap address in the shadow guest address space 1137 * @pgt: pointer to the start of a shadow page table 1138 * 1139 * Called with the sg->guest_table_lock 1140 */ 1141 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1142 unsigned long *pgt) 1143 { 1144 int i; 1145 1146 BUG_ON(!gmap_is_shadow(sg)); 1147 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1148 pgt[i] = _PAGE_INVALID; 1149 } 1150 1151 /** 1152 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1153 * @sg: pointer to the shadow guest address space structure 1154 * @raddr: address in the shadow guest address space 1155 * 1156 * Called with the sg->guest_table_lock 1157 */ 1158 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1159 { 1160 unsigned long sto, *ste, *pgt; 1161 struct page *page; 1162 1163 BUG_ON(!gmap_is_shadow(sg)); 1164 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1165 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1166 return; 1167 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1168 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1169 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1170 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1171 *ste = _SEGMENT_ENTRY_EMPTY; 1172 __gmap_unshadow_pgt(sg, raddr, pgt); 1173 /* Free page table */ 1174 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1175 list_del(&page->lru); 1176 page_table_free_pgste(page); 1177 } 1178 1179 /** 1180 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1181 * @sg: pointer to the shadow guest address space structure 1182 * @raddr: rmap address in the shadow guest address space 1183 * @sgt: pointer to the start of a shadow segment table 1184 * 1185 * Called with the sg->guest_table_lock 1186 */ 1187 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1188 unsigned long *sgt) 1189 { 1190 unsigned long *pgt; 1191 struct page *page; 1192 int i; 1193 1194 BUG_ON(!gmap_is_shadow(sg)); 1195 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1196 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1197 continue; 1198 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1199 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1200 __gmap_unshadow_pgt(sg, raddr, pgt); 1201 /* Free page table */ 1202 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1203 list_del(&page->lru); 1204 page_table_free_pgste(page); 1205 } 1206 } 1207 1208 /** 1209 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1210 * @sg: pointer to the shadow guest address space structure 1211 * @raddr: rmap address in the shadow guest address space 1212 * 1213 * Called with the shadow->guest_table_lock 1214 */ 1215 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1216 { 1217 unsigned long r3o, *r3e, *sgt; 1218 struct page *page; 1219 1220 BUG_ON(!gmap_is_shadow(sg)); 1221 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1222 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1223 return; 1224 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1225 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1226 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1227 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1228 *r3e = _REGION3_ENTRY_EMPTY; 1229 __gmap_unshadow_sgt(sg, raddr, sgt); 1230 /* Free segment table */ 1231 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1232 list_del(&page->lru); 1233 __free_pages(page, CRST_ALLOC_ORDER); 1234 } 1235 1236 /** 1237 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1238 * @sg: pointer to the shadow guest address space structure 1239 * @raddr: address in the shadow guest address space 1240 * @r3t: pointer to the start of a shadow region-3 table 1241 * 1242 * Called with the sg->guest_table_lock 1243 */ 1244 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1245 unsigned long *r3t) 1246 { 1247 unsigned long *sgt; 1248 struct page *page; 1249 int i; 1250 1251 BUG_ON(!gmap_is_shadow(sg)); 1252 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1253 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1254 continue; 1255 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1256 r3t[i] = _REGION3_ENTRY_EMPTY; 1257 __gmap_unshadow_sgt(sg, raddr, sgt); 1258 /* Free segment table */ 1259 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1260 list_del(&page->lru); 1261 __free_pages(page, CRST_ALLOC_ORDER); 1262 } 1263 } 1264 1265 /** 1266 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1267 * @sg: pointer to the shadow guest address space structure 1268 * @raddr: rmap address in the shadow guest address space 1269 * 1270 * Called with the sg->guest_table_lock 1271 */ 1272 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1273 { 1274 unsigned long r2o, *r2e, *r3t; 1275 struct page *page; 1276 1277 BUG_ON(!gmap_is_shadow(sg)); 1278 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1279 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1280 return; 1281 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1282 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1283 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1284 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1285 *r2e = _REGION2_ENTRY_EMPTY; 1286 __gmap_unshadow_r3t(sg, raddr, r3t); 1287 /* Free region 3 table */ 1288 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1289 list_del(&page->lru); 1290 __free_pages(page, CRST_ALLOC_ORDER); 1291 } 1292 1293 /** 1294 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1295 * @sg: pointer to the shadow guest address space structure 1296 * @raddr: rmap address in the shadow guest address space 1297 * @r2t: pointer to the start of a shadow region-2 table 1298 * 1299 * Called with the sg->guest_table_lock 1300 */ 1301 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1302 unsigned long *r2t) 1303 { 1304 unsigned long *r3t; 1305 struct page *page; 1306 int i; 1307 1308 BUG_ON(!gmap_is_shadow(sg)); 1309 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1310 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1311 continue; 1312 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1313 r2t[i] = _REGION2_ENTRY_EMPTY; 1314 __gmap_unshadow_r3t(sg, raddr, r3t); 1315 /* Free region 3 table */ 1316 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1317 list_del(&page->lru); 1318 __free_pages(page, CRST_ALLOC_ORDER); 1319 } 1320 } 1321 1322 /** 1323 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1324 * @sg: pointer to the shadow guest address space structure 1325 * @raddr: rmap address in the shadow guest address space 1326 * 1327 * Called with the sg->guest_table_lock 1328 */ 1329 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1330 { 1331 unsigned long r1o, *r1e, *r2t; 1332 struct page *page; 1333 1334 BUG_ON(!gmap_is_shadow(sg)); 1335 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1336 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1337 return; 1338 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1339 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1340 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1341 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1342 *r1e = _REGION1_ENTRY_EMPTY; 1343 __gmap_unshadow_r2t(sg, raddr, r2t); 1344 /* Free region 2 table */ 1345 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1346 list_del(&page->lru); 1347 __free_pages(page, CRST_ALLOC_ORDER); 1348 } 1349 1350 /** 1351 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1352 * @sg: pointer to the shadow guest address space structure 1353 * @raddr: rmap address in the shadow guest address space 1354 * @r1t: pointer to the start of a shadow region-1 table 1355 * 1356 * Called with the shadow->guest_table_lock 1357 */ 1358 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1359 unsigned long *r1t) 1360 { 1361 unsigned long asce, *r2t; 1362 struct page *page; 1363 int i; 1364 1365 BUG_ON(!gmap_is_shadow(sg)); 1366 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1367 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1368 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1369 continue; 1370 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1371 __gmap_unshadow_r2t(sg, raddr, r2t); 1372 /* Clear entry and flush translation r1t -> r2t */ 1373 gmap_idte_one(asce, raddr); 1374 r1t[i] = _REGION1_ENTRY_EMPTY; 1375 /* Free region 2 table */ 1376 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1377 list_del(&page->lru); 1378 __free_pages(page, CRST_ALLOC_ORDER); 1379 } 1380 } 1381 1382 /** 1383 * gmap_unshadow - remove a shadow page table completely 1384 * @sg: pointer to the shadow guest address space structure 1385 * 1386 * Called with sg->guest_table_lock 1387 */ 1388 static void gmap_unshadow(struct gmap *sg) 1389 { 1390 unsigned long *table; 1391 1392 BUG_ON(!gmap_is_shadow(sg)); 1393 if (sg->removed) 1394 return; 1395 sg->removed = 1; 1396 gmap_call_notifier(sg, 0, -1UL); 1397 gmap_flush_tlb(sg); 1398 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1399 switch (sg->asce & _ASCE_TYPE_MASK) { 1400 case _ASCE_TYPE_REGION1: 1401 __gmap_unshadow_r1t(sg, 0, table); 1402 break; 1403 case _ASCE_TYPE_REGION2: 1404 __gmap_unshadow_r2t(sg, 0, table); 1405 break; 1406 case _ASCE_TYPE_REGION3: 1407 __gmap_unshadow_r3t(sg, 0, table); 1408 break; 1409 case _ASCE_TYPE_SEGMENT: 1410 __gmap_unshadow_sgt(sg, 0, table); 1411 break; 1412 } 1413 } 1414 1415 /** 1416 * gmap_find_shadow - find a specific asce in the list of shadow tables 1417 * @parent: pointer to the parent gmap 1418 * @asce: ASCE for which the shadow table is created 1419 * @edat_level: edat level to be used for the shadow translation 1420 * 1421 * Returns the pointer to a gmap if a shadow table with the given asce is 1422 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1423 * otherwise NULL 1424 */ 1425 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1426 int edat_level) 1427 { 1428 struct gmap *sg; 1429 1430 list_for_each_entry(sg, &parent->children, list) { 1431 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1432 sg->removed) 1433 continue; 1434 if (!sg->initialized) 1435 return ERR_PTR(-EAGAIN); 1436 atomic_inc(&sg->ref_count); 1437 return sg; 1438 } 1439 return NULL; 1440 } 1441 1442 /** 1443 * gmap_shadow_valid - check if a shadow guest address space matches the 1444 * given properties and is still valid 1445 * @sg: pointer to the shadow guest address space structure 1446 * @asce: ASCE for which the shadow table is requested 1447 * @edat_level: edat level to be used for the shadow translation 1448 * 1449 * Returns 1 if the gmap shadow is still valid and matches the given 1450 * properties, the caller can continue using it. Returns 0 otherwise, the 1451 * caller has to request a new shadow gmap in this case. 1452 * 1453 */ 1454 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1455 { 1456 if (sg->removed) 1457 return 0; 1458 return sg->orig_asce == asce && sg->edat_level == edat_level; 1459 } 1460 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1461 1462 /** 1463 * gmap_shadow - create/find a shadow guest address space 1464 * @parent: pointer to the parent gmap 1465 * @asce: ASCE for which the shadow table is created 1466 * @edat_level: edat level to be used for the shadow translation 1467 * 1468 * The pages of the top level page table referred by the asce parameter 1469 * will be set to read-only and marked in the PGSTEs of the kvm process. 1470 * The shadow table will be removed automatically on any change to the 1471 * PTE mapping for the source table. 1472 * 1473 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1474 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1475 * parent gmap table could not be protected. 1476 */ 1477 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1478 int edat_level) 1479 { 1480 struct gmap *sg, *new; 1481 unsigned long limit; 1482 int rc; 1483 1484 BUG_ON(gmap_is_shadow(parent)); 1485 spin_lock(&parent->shadow_lock); 1486 sg = gmap_find_shadow(parent, asce, edat_level); 1487 spin_unlock(&parent->shadow_lock); 1488 if (sg) 1489 return sg; 1490 /* Create a new shadow gmap */ 1491 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1492 if (asce & _ASCE_REAL_SPACE) 1493 limit = -1UL; 1494 new = gmap_alloc(limit); 1495 if (!new) 1496 return ERR_PTR(-ENOMEM); 1497 new->mm = parent->mm; 1498 new->parent = gmap_get(parent); 1499 new->orig_asce = asce; 1500 new->edat_level = edat_level; 1501 new->initialized = false; 1502 spin_lock(&parent->shadow_lock); 1503 /* Recheck if another CPU created the same shadow */ 1504 sg = gmap_find_shadow(parent, asce, edat_level); 1505 if (sg) { 1506 spin_unlock(&parent->shadow_lock); 1507 gmap_free(new); 1508 return sg; 1509 } 1510 if (asce & _ASCE_REAL_SPACE) { 1511 /* only allow one real-space gmap shadow */ 1512 list_for_each_entry(sg, &parent->children, list) { 1513 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1514 spin_lock(&sg->guest_table_lock); 1515 gmap_unshadow(sg); 1516 spin_unlock(&sg->guest_table_lock); 1517 list_del(&sg->list); 1518 gmap_put(sg); 1519 break; 1520 } 1521 } 1522 } 1523 atomic_set(&new->ref_count, 2); 1524 list_add(&new->list, &parent->children); 1525 if (asce & _ASCE_REAL_SPACE) { 1526 /* nothing to protect, return right away */ 1527 new->initialized = true; 1528 spin_unlock(&parent->shadow_lock); 1529 return new; 1530 } 1531 spin_unlock(&parent->shadow_lock); 1532 /* protect after insertion, so it will get properly invalidated */ 1533 down_read(&parent->mm->mmap_sem); 1534 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1535 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1536 PROT_READ, PGSTE_VSIE_BIT); 1537 up_read(&parent->mm->mmap_sem); 1538 spin_lock(&parent->shadow_lock); 1539 new->initialized = true; 1540 if (rc) { 1541 list_del(&new->list); 1542 gmap_free(new); 1543 new = ERR_PTR(rc); 1544 } 1545 spin_unlock(&parent->shadow_lock); 1546 return new; 1547 } 1548 EXPORT_SYMBOL_GPL(gmap_shadow); 1549 1550 /** 1551 * gmap_shadow_r2t - create an empty shadow region 2 table 1552 * @sg: pointer to the shadow guest address space structure 1553 * @saddr: faulting address in the shadow gmap 1554 * @r2t: parent gmap address of the region 2 table to get shadowed 1555 * @fake: r2t references contiguous guest memory block, not a r2t 1556 * 1557 * The r2t parameter specifies the address of the source table. The 1558 * four pages of the source table are made read-only in the parent gmap 1559 * address space. A write to the source table area @r2t will automatically 1560 * remove the shadow r2 table and all of its decendents. 1561 * 1562 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1563 * shadow table structure is incomplete, -ENOMEM if out of memory and 1564 * -EFAULT if an address in the parent gmap could not be resolved. 1565 * 1566 * Called with sg->mm->mmap_sem in read. 1567 */ 1568 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1569 int fake) 1570 { 1571 unsigned long raddr, origin, offset, len; 1572 unsigned long *s_r2t, *table; 1573 struct page *page; 1574 int rc; 1575 1576 BUG_ON(!gmap_is_shadow(sg)); 1577 /* Allocate a shadow region second table */ 1578 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1579 if (!page) 1580 return -ENOMEM; 1581 page->index = r2t & _REGION_ENTRY_ORIGIN; 1582 if (fake) 1583 page->index |= GMAP_SHADOW_FAKE_TABLE; 1584 s_r2t = (unsigned long *) page_to_phys(page); 1585 /* Install shadow region second table */ 1586 spin_lock(&sg->guest_table_lock); 1587 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1588 if (!table) { 1589 rc = -EAGAIN; /* Race with unshadow */ 1590 goto out_free; 1591 } 1592 if (!(*table & _REGION_ENTRY_INVALID)) { 1593 rc = 0; /* Already established */ 1594 goto out_free; 1595 } else if (*table & _REGION_ENTRY_ORIGIN) { 1596 rc = -EAGAIN; /* Race with shadow */ 1597 goto out_free; 1598 } 1599 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1600 /* mark as invalid as long as the parent table is not protected */ 1601 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1602 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1603 if (sg->edat_level >= 1) 1604 *table |= (r2t & _REGION_ENTRY_PROTECT); 1605 list_add(&page->lru, &sg->crst_list); 1606 if (fake) { 1607 /* nothing to protect for fake tables */ 1608 *table &= ~_REGION_ENTRY_INVALID; 1609 spin_unlock(&sg->guest_table_lock); 1610 return 0; 1611 } 1612 spin_unlock(&sg->guest_table_lock); 1613 /* Make r2t read-only in parent gmap page table */ 1614 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1615 origin = r2t & _REGION_ENTRY_ORIGIN; 1616 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1617 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1618 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1619 spin_lock(&sg->guest_table_lock); 1620 if (!rc) { 1621 table = gmap_table_walk(sg, saddr, 4); 1622 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1623 (unsigned long) s_r2t) 1624 rc = -EAGAIN; /* Race with unshadow */ 1625 else 1626 *table &= ~_REGION_ENTRY_INVALID; 1627 } else { 1628 gmap_unshadow_r2t(sg, raddr); 1629 } 1630 spin_unlock(&sg->guest_table_lock); 1631 return rc; 1632 out_free: 1633 spin_unlock(&sg->guest_table_lock); 1634 __free_pages(page, CRST_ALLOC_ORDER); 1635 return rc; 1636 } 1637 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1638 1639 /** 1640 * gmap_shadow_r3t - create a shadow region 3 table 1641 * @sg: pointer to the shadow guest address space structure 1642 * @saddr: faulting address in the shadow gmap 1643 * @r3t: parent gmap address of the region 3 table to get shadowed 1644 * @fake: r3t references contiguous guest memory block, not a r3t 1645 * 1646 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1647 * shadow table structure is incomplete, -ENOMEM if out of memory and 1648 * -EFAULT if an address in the parent gmap could not be resolved. 1649 * 1650 * Called with sg->mm->mmap_sem in read. 1651 */ 1652 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1653 int fake) 1654 { 1655 unsigned long raddr, origin, offset, len; 1656 unsigned long *s_r3t, *table; 1657 struct page *page; 1658 int rc; 1659 1660 BUG_ON(!gmap_is_shadow(sg)); 1661 /* Allocate a shadow region second table */ 1662 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1663 if (!page) 1664 return -ENOMEM; 1665 page->index = r3t & _REGION_ENTRY_ORIGIN; 1666 if (fake) 1667 page->index |= GMAP_SHADOW_FAKE_TABLE; 1668 s_r3t = (unsigned long *) page_to_phys(page); 1669 /* Install shadow region second table */ 1670 spin_lock(&sg->guest_table_lock); 1671 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1672 if (!table) { 1673 rc = -EAGAIN; /* Race with unshadow */ 1674 goto out_free; 1675 } 1676 if (!(*table & _REGION_ENTRY_INVALID)) { 1677 rc = 0; /* Already established */ 1678 goto out_free; 1679 } else if (*table & _REGION_ENTRY_ORIGIN) { 1680 rc = -EAGAIN; /* Race with shadow */ 1681 } 1682 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1683 /* mark as invalid as long as the parent table is not protected */ 1684 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1685 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1686 if (sg->edat_level >= 1) 1687 *table |= (r3t & _REGION_ENTRY_PROTECT); 1688 list_add(&page->lru, &sg->crst_list); 1689 if (fake) { 1690 /* nothing to protect for fake tables */ 1691 *table &= ~_REGION_ENTRY_INVALID; 1692 spin_unlock(&sg->guest_table_lock); 1693 return 0; 1694 } 1695 spin_unlock(&sg->guest_table_lock); 1696 /* Make r3t read-only in parent gmap page table */ 1697 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1698 origin = r3t & _REGION_ENTRY_ORIGIN; 1699 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1700 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1701 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1702 spin_lock(&sg->guest_table_lock); 1703 if (!rc) { 1704 table = gmap_table_walk(sg, saddr, 3); 1705 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1706 (unsigned long) s_r3t) 1707 rc = -EAGAIN; /* Race with unshadow */ 1708 else 1709 *table &= ~_REGION_ENTRY_INVALID; 1710 } else { 1711 gmap_unshadow_r3t(sg, raddr); 1712 } 1713 spin_unlock(&sg->guest_table_lock); 1714 return rc; 1715 out_free: 1716 spin_unlock(&sg->guest_table_lock); 1717 __free_pages(page, CRST_ALLOC_ORDER); 1718 return rc; 1719 } 1720 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1721 1722 /** 1723 * gmap_shadow_sgt - create a shadow segment table 1724 * @sg: pointer to the shadow guest address space structure 1725 * @saddr: faulting address in the shadow gmap 1726 * @sgt: parent gmap address of the segment table to get shadowed 1727 * @fake: sgt references contiguous guest memory block, not a sgt 1728 * 1729 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1730 * shadow table structure is incomplete, -ENOMEM if out of memory and 1731 * -EFAULT if an address in the parent gmap could not be resolved. 1732 * 1733 * Called with sg->mm->mmap_sem in read. 1734 */ 1735 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1736 int fake) 1737 { 1738 unsigned long raddr, origin, offset, len; 1739 unsigned long *s_sgt, *table; 1740 struct page *page; 1741 int rc; 1742 1743 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1744 /* Allocate a shadow segment table */ 1745 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER); 1746 if (!page) 1747 return -ENOMEM; 1748 page->index = sgt & _REGION_ENTRY_ORIGIN; 1749 if (fake) 1750 page->index |= GMAP_SHADOW_FAKE_TABLE; 1751 s_sgt = (unsigned long *) page_to_phys(page); 1752 /* Install shadow region second table */ 1753 spin_lock(&sg->guest_table_lock); 1754 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1755 if (!table) { 1756 rc = -EAGAIN; /* Race with unshadow */ 1757 goto out_free; 1758 } 1759 if (!(*table & _REGION_ENTRY_INVALID)) { 1760 rc = 0; /* Already established */ 1761 goto out_free; 1762 } else if (*table & _REGION_ENTRY_ORIGIN) { 1763 rc = -EAGAIN; /* Race with shadow */ 1764 goto out_free; 1765 } 1766 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1767 /* mark as invalid as long as the parent table is not protected */ 1768 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1769 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1770 if (sg->edat_level >= 1) 1771 *table |= sgt & _REGION_ENTRY_PROTECT; 1772 list_add(&page->lru, &sg->crst_list); 1773 if (fake) { 1774 /* nothing to protect for fake tables */ 1775 *table &= ~_REGION_ENTRY_INVALID; 1776 spin_unlock(&sg->guest_table_lock); 1777 return 0; 1778 } 1779 spin_unlock(&sg->guest_table_lock); 1780 /* Make sgt read-only in parent gmap page table */ 1781 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1782 origin = sgt & _REGION_ENTRY_ORIGIN; 1783 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1784 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1785 rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ); 1786 spin_lock(&sg->guest_table_lock); 1787 if (!rc) { 1788 table = gmap_table_walk(sg, saddr, 2); 1789 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1790 (unsigned long) s_sgt) 1791 rc = -EAGAIN; /* Race with unshadow */ 1792 else 1793 *table &= ~_REGION_ENTRY_INVALID; 1794 } else { 1795 gmap_unshadow_sgt(sg, raddr); 1796 } 1797 spin_unlock(&sg->guest_table_lock); 1798 return rc; 1799 out_free: 1800 spin_unlock(&sg->guest_table_lock); 1801 __free_pages(page, CRST_ALLOC_ORDER); 1802 return rc; 1803 } 1804 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1805 1806 /** 1807 * gmap_shadow_lookup_pgtable - find a shadow page table 1808 * @sg: pointer to the shadow guest address space structure 1809 * @saddr: the address in the shadow aguest address space 1810 * @pgt: parent gmap address of the page table to get shadowed 1811 * @dat_protection: if the pgtable is marked as protected by dat 1812 * @fake: pgt references contiguous guest memory block, not a pgtable 1813 * 1814 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1815 * table was not found. 1816 * 1817 * Called with sg->mm->mmap_sem in read. 1818 */ 1819 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1820 unsigned long *pgt, int *dat_protection, 1821 int *fake) 1822 { 1823 unsigned long *table; 1824 struct page *page; 1825 int rc; 1826 1827 BUG_ON(!gmap_is_shadow(sg)); 1828 spin_lock(&sg->guest_table_lock); 1829 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1830 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 1831 /* Shadow page tables are full pages (pte+pgste) */ 1832 page = pfn_to_page(*table >> PAGE_SHIFT); 1833 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 1834 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 1835 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 1836 rc = 0; 1837 } else { 1838 rc = -EAGAIN; 1839 } 1840 spin_unlock(&sg->guest_table_lock); 1841 return rc; 1842 1843 } 1844 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 1845 1846 /** 1847 * gmap_shadow_pgt - instantiate a shadow page table 1848 * @sg: pointer to the shadow guest address space structure 1849 * @saddr: faulting address in the shadow gmap 1850 * @pgt: parent gmap address of the page table to get shadowed 1851 * @fake: pgt references contiguous guest memory block, not a pgtable 1852 * 1853 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1854 * shadow table structure is incomplete, -ENOMEM if out of memory, 1855 * -EFAULT if an address in the parent gmap could not be resolved and 1856 * 1857 * Called with gmap->mm->mmap_sem in read 1858 */ 1859 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 1860 int fake) 1861 { 1862 unsigned long raddr, origin; 1863 unsigned long *s_pgt, *table; 1864 struct page *page; 1865 int rc; 1866 1867 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 1868 /* Allocate a shadow page table */ 1869 page = page_table_alloc_pgste(sg->mm); 1870 if (!page) 1871 return -ENOMEM; 1872 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 1873 if (fake) 1874 page->index |= GMAP_SHADOW_FAKE_TABLE; 1875 s_pgt = (unsigned long *) page_to_phys(page); 1876 /* Install shadow page table */ 1877 spin_lock(&sg->guest_table_lock); 1878 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 1879 if (!table) { 1880 rc = -EAGAIN; /* Race with unshadow */ 1881 goto out_free; 1882 } 1883 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 1884 rc = 0; /* Already established */ 1885 goto out_free; 1886 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 1887 rc = -EAGAIN; /* Race with shadow */ 1888 goto out_free; 1889 } 1890 /* mark as invalid as long as the parent table is not protected */ 1891 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 1892 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 1893 list_add(&page->lru, &sg->pt_list); 1894 if (fake) { 1895 /* nothing to protect for fake tables */ 1896 *table &= ~_SEGMENT_ENTRY_INVALID; 1897 spin_unlock(&sg->guest_table_lock); 1898 return 0; 1899 } 1900 spin_unlock(&sg->guest_table_lock); 1901 /* Make pgt read-only in parent gmap page table (not the pgste) */ 1902 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 1903 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 1904 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE, PROT_READ); 1905 spin_lock(&sg->guest_table_lock); 1906 if (!rc) { 1907 table = gmap_table_walk(sg, saddr, 1); 1908 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 1909 (unsigned long) s_pgt) 1910 rc = -EAGAIN; /* Race with unshadow */ 1911 else 1912 *table &= ~_SEGMENT_ENTRY_INVALID; 1913 } else { 1914 gmap_unshadow_pgt(sg, raddr); 1915 } 1916 spin_unlock(&sg->guest_table_lock); 1917 return rc; 1918 out_free: 1919 spin_unlock(&sg->guest_table_lock); 1920 page_table_free_pgste(page); 1921 return rc; 1922 1923 } 1924 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 1925 1926 /** 1927 * gmap_shadow_page - create a shadow page mapping 1928 * @sg: pointer to the shadow guest address space structure 1929 * @saddr: faulting address in the shadow gmap 1930 * @pte: pte in parent gmap address space to get shadowed 1931 * 1932 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1933 * shadow table structure is incomplete, -ENOMEM if out of memory and 1934 * -EFAULT if an address in the parent gmap could not be resolved. 1935 * 1936 * Called with sg->mm->mmap_sem in read. 1937 */ 1938 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 1939 { 1940 struct gmap *parent; 1941 struct gmap_rmap *rmap; 1942 unsigned long vmaddr, paddr; 1943 spinlock_t *ptl; 1944 pte_t *sptep, *tptep; 1945 int prot; 1946 int rc; 1947 1948 BUG_ON(!gmap_is_shadow(sg)); 1949 parent = sg->parent; 1950 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 1951 1952 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL); 1953 if (!rmap) 1954 return -ENOMEM; 1955 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 1956 1957 while (1) { 1958 paddr = pte_val(pte) & PAGE_MASK; 1959 vmaddr = __gmap_translate(parent, paddr); 1960 if (IS_ERR_VALUE(vmaddr)) { 1961 rc = vmaddr; 1962 break; 1963 } 1964 rc = radix_tree_preload(GFP_KERNEL); 1965 if (rc) 1966 break; 1967 rc = -EAGAIN; 1968 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 1969 if (sptep) { 1970 spin_lock(&sg->guest_table_lock); 1971 /* Get page table pointer */ 1972 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 1973 if (!tptep) { 1974 spin_unlock(&sg->guest_table_lock); 1975 gmap_pte_op_end(ptl); 1976 radix_tree_preload_end(); 1977 break; 1978 } 1979 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 1980 if (rc > 0) { 1981 /* Success and a new mapping */ 1982 gmap_insert_rmap(sg, vmaddr, rmap); 1983 rmap = NULL; 1984 rc = 0; 1985 } 1986 gmap_pte_op_end(ptl); 1987 spin_unlock(&sg->guest_table_lock); 1988 } 1989 radix_tree_preload_end(); 1990 if (!rc) 1991 break; 1992 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 1993 if (rc) 1994 break; 1995 } 1996 kfree(rmap); 1997 return rc; 1998 } 1999 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2000 2001 /** 2002 * gmap_shadow_notify - handle notifications for shadow gmap 2003 * 2004 * Called with sg->parent->shadow_lock. 2005 */ 2006 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2007 unsigned long gaddr, pte_t *pte) 2008 { 2009 struct gmap_rmap *rmap, *rnext, *head; 2010 unsigned long start, end, bits, raddr; 2011 2012 BUG_ON(!gmap_is_shadow(sg)); 2013 2014 spin_lock(&sg->guest_table_lock); 2015 if (sg->removed) { 2016 spin_unlock(&sg->guest_table_lock); 2017 return; 2018 } 2019 /* Check for top level table */ 2020 start = sg->orig_asce & _ASCE_ORIGIN; 2021 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2022 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2023 gaddr < end) { 2024 /* The complete shadow table has to go */ 2025 gmap_unshadow(sg); 2026 spin_unlock(&sg->guest_table_lock); 2027 list_del(&sg->list); 2028 gmap_put(sg); 2029 return; 2030 } 2031 /* Remove the page table tree from on specific entry */ 2032 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2033 gmap_for_each_rmap_safe(rmap, rnext, head) { 2034 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2035 raddr = rmap->raddr ^ bits; 2036 switch (bits) { 2037 case _SHADOW_RMAP_REGION1: 2038 gmap_unshadow_r2t(sg, raddr); 2039 break; 2040 case _SHADOW_RMAP_REGION2: 2041 gmap_unshadow_r3t(sg, raddr); 2042 break; 2043 case _SHADOW_RMAP_REGION3: 2044 gmap_unshadow_sgt(sg, raddr); 2045 break; 2046 case _SHADOW_RMAP_SEGMENT: 2047 gmap_unshadow_pgt(sg, raddr); 2048 break; 2049 case _SHADOW_RMAP_PGTABLE: 2050 gmap_unshadow_page(sg, raddr); 2051 break; 2052 } 2053 kfree(rmap); 2054 } 2055 spin_unlock(&sg->guest_table_lock); 2056 } 2057 2058 /** 2059 * ptep_notify - call all invalidation callbacks for a specific pte. 2060 * @mm: pointer to the process mm_struct 2061 * @addr: virtual address in the process address space 2062 * @pte: pointer to the page table entry 2063 * @bits: bits from the pgste that caused the notify call 2064 * 2065 * This function is assumed to be called with the page table lock held 2066 * for the pte to notify. 2067 */ 2068 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2069 pte_t *pte, unsigned long bits) 2070 { 2071 unsigned long offset, gaddr = 0; 2072 unsigned long *table; 2073 struct gmap *gmap, *sg, *next; 2074 2075 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2076 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2077 rcu_read_lock(); 2078 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2079 spin_lock(&gmap->guest_table_lock); 2080 table = radix_tree_lookup(&gmap->host_to_guest, 2081 vmaddr >> PMD_SHIFT); 2082 if (table) 2083 gaddr = __gmap_segment_gaddr(table) + offset; 2084 spin_unlock(&gmap->guest_table_lock); 2085 if (!table) 2086 continue; 2087 2088 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2089 spin_lock(&gmap->shadow_lock); 2090 list_for_each_entry_safe(sg, next, 2091 &gmap->children, list) 2092 gmap_shadow_notify(sg, vmaddr, gaddr, pte); 2093 spin_unlock(&gmap->shadow_lock); 2094 } 2095 if (bits & PGSTE_IN_BIT) 2096 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2097 } 2098 rcu_read_unlock(); 2099 } 2100 EXPORT_SYMBOL_GPL(ptep_notify); 2101 2102 static inline void thp_split_mm(struct mm_struct *mm) 2103 { 2104 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2105 struct vm_area_struct *vma; 2106 unsigned long addr; 2107 2108 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2109 for (addr = vma->vm_start; 2110 addr < vma->vm_end; 2111 addr += PAGE_SIZE) 2112 follow_page(vma, addr, FOLL_SPLIT); 2113 vma->vm_flags &= ~VM_HUGEPAGE; 2114 vma->vm_flags |= VM_NOHUGEPAGE; 2115 } 2116 mm->def_flags |= VM_NOHUGEPAGE; 2117 #endif 2118 } 2119 2120 /* 2121 * Remove all empty zero pages from the mapping for lazy refaulting 2122 * - This must be called after mm->context.has_pgste is set, to avoid 2123 * future creation of zero pages 2124 * - This must be called after THP was enabled 2125 */ 2126 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2127 unsigned long end, struct mm_walk *walk) 2128 { 2129 unsigned long addr; 2130 2131 for (addr = start; addr != end; addr += PAGE_SIZE) { 2132 pte_t *ptep; 2133 spinlock_t *ptl; 2134 2135 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2136 if (is_zero_pfn(pte_pfn(*ptep))) 2137 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2138 pte_unmap_unlock(ptep, ptl); 2139 } 2140 return 0; 2141 } 2142 2143 static inline void zap_zero_pages(struct mm_struct *mm) 2144 { 2145 struct mm_walk walk = { .pmd_entry = __zap_zero_pages }; 2146 2147 walk.mm = mm; 2148 walk_page_range(0, TASK_SIZE, &walk); 2149 } 2150 2151 /* 2152 * switch on pgstes for its userspace process (for kvm) 2153 */ 2154 int s390_enable_sie(void) 2155 { 2156 struct mm_struct *mm = current->mm; 2157 2158 /* Do we have pgstes? if yes, we are done */ 2159 if (mm_has_pgste(mm)) 2160 return 0; 2161 /* Fail if the page tables are 2K */ 2162 if (!mm_alloc_pgste(mm)) 2163 return -EINVAL; 2164 down_write(&mm->mmap_sem); 2165 mm->context.has_pgste = 1; 2166 /* split thp mappings and disable thp for future mappings */ 2167 thp_split_mm(mm); 2168 zap_zero_pages(mm); 2169 up_write(&mm->mmap_sem); 2170 return 0; 2171 } 2172 EXPORT_SYMBOL_GPL(s390_enable_sie); 2173 2174 /* 2175 * Enable storage key handling from now on and initialize the storage 2176 * keys with the default key. 2177 */ 2178 static int __s390_enable_skey(pte_t *pte, unsigned long addr, 2179 unsigned long next, struct mm_walk *walk) 2180 { 2181 /* Clear storage key */ 2182 ptep_zap_key(walk->mm, addr, pte); 2183 return 0; 2184 } 2185 2186 int s390_enable_skey(void) 2187 { 2188 struct mm_walk walk = { .pte_entry = __s390_enable_skey }; 2189 struct mm_struct *mm = current->mm; 2190 struct vm_area_struct *vma; 2191 int rc = 0; 2192 2193 down_write(&mm->mmap_sem); 2194 if (mm_use_skey(mm)) 2195 goto out_up; 2196 2197 mm->context.use_skey = 1; 2198 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2199 if (ksm_madvise(vma, vma->vm_start, vma->vm_end, 2200 MADV_UNMERGEABLE, &vma->vm_flags)) { 2201 mm->context.use_skey = 0; 2202 rc = -ENOMEM; 2203 goto out_up; 2204 } 2205 } 2206 mm->def_flags &= ~VM_MERGEABLE; 2207 2208 walk.mm = mm; 2209 walk_page_range(0, TASK_SIZE, &walk); 2210 2211 out_up: 2212 up_write(&mm->mmap_sem); 2213 return rc; 2214 } 2215 EXPORT_SYMBOL_GPL(s390_enable_skey); 2216 2217 /* 2218 * Reset CMMA state, make all pages stable again. 2219 */ 2220 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2221 unsigned long next, struct mm_walk *walk) 2222 { 2223 ptep_zap_unused(walk->mm, addr, pte, 1); 2224 return 0; 2225 } 2226 2227 void s390_reset_cmma(struct mm_struct *mm) 2228 { 2229 struct mm_walk walk = { .pte_entry = __s390_reset_cmma }; 2230 2231 down_write(&mm->mmap_sem); 2232 walk.mm = mm; 2233 walk_page_range(0, TASK_SIZE, &walk); 2234 up_write(&mm->mmap_sem); 2235 } 2236 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2237