xref: /openbmc/linux/arch/s390/mm/gmap.c (revision 612a462a)
1 /*
2  *  KVM guest address space mapping code
3  *
4  *    Copyright IBM Corp. 2007, 2016
5  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/swap.h>
11 #include <linux/smp.h>
12 #include <linux/spinlock.h>
13 #include <linux/slab.h>
14 #include <linux/swapops.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 
18 #include <asm/pgtable.h>
19 #include <asm/pgalloc.h>
20 #include <asm/gmap.h>
21 #include <asm/tlb.h>
22 
23 #define GMAP_SHADOW_FAKE_TABLE 1ULL
24 
25 /**
26  * gmap_alloc - allocate and initialize a guest address space
27  * @mm: pointer to the parent mm_struct
28  * @limit: maximum address of the gmap address space
29  *
30  * Returns a guest address space structure.
31  */
32 static struct gmap *gmap_alloc(unsigned long limit)
33 {
34 	struct gmap *gmap;
35 	struct page *page;
36 	unsigned long *table;
37 	unsigned long etype, atype;
38 
39 	if (limit < _REGION3_SIZE) {
40 		limit = _REGION3_SIZE - 1;
41 		atype = _ASCE_TYPE_SEGMENT;
42 		etype = _SEGMENT_ENTRY_EMPTY;
43 	} else if (limit < _REGION2_SIZE) {
44 		limit = _REGION2_SIZE - 1;
45 		atype = _ASCE_TYPE_REGION3;
46 		etype = _REGION3_ENTRY_EMPTY;
47 	} else if (limit < _REGION1_SIZE) {
48 		limit = _REGION1_SIZE - 1;
49 		atype = _ASCE_TYPE_REGION2;
50 		etype = _REGION2_ENTRY_EMPTY;
51 	} else {
52 		limit = -1UL;
53 		atype = _ASCE_TYPE_REGION1;
54 		etype = _REGION1_ENTRY_EMPTY;
55 	}
56 	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
57 	if (!gmap)
58 		goto out;
59 	INIT_LIST_HEAD(&gmap->crst_list);
60 	INIT_LIST_HEAD(&gmap->children);
61 	INIT_LIST_HEAD(&gmap->pt_list);
62 	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
63 	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
64 	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
65 	spin_lock_init(&gmap->guest_table_lock);
66 	spin_lock_init(&gmap->shadow_lock);
67 	atomic_set(&gmap->ref_count, 1);
68 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
69 	if (!page)
70 		goto out_free;
71 	page->index = 0;
72 	list_add(&page->lru, &gmap->crst_list);
73 	table = (unsigned long *) page_to_phys(page);
74 	crst_table_init(table, etype);
75 	gmap->table = table;
76 	gmap->asce = atype | _ASCE_TABLE_LENGTH |
77 		_ASCE_USER_BITS | __pa(table);
78 	gmap->asce_end = limit;
79 	return gmap;
80 
81 out_free:
82 	kfree(gmap);
83 out:
84 	return NULL;
85 }
86 
87 /**
88  * gmap_create - create a guest address space
89  * @mm: pointer to the parent mm_struct
90  * @limit: maximum size of the gmap address space
91  *
92  * Returns a guest address space structure.
93  */
94 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
95 {
96 	struct gmap *gmap;
97 	unsigned long gmap_asce;
98 
99 	gmap = gmap_alloc(limit);
100 	if (!gmap)
101 		return NULL;
102 	gmap->mm = mm;
103 	spin_lock(&mm->context.lock);
104 	list_add_rcu(&gmap->list, &mm->context.gmap_list);
105 	if (list_is_singular(&mm->context.gmap_list))
106 		gmap_asce = gmap->asce;
107 	else
108 		gmap_asce = -1UL;
109 	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
110 	spin_unlock(&mm->context.lock);
111 	return gmap;
112 }
113 EXPORT_SYMBOL_GPL(gmap_create);
114 
115 static void gmap_flush_tlb(struct gmap *gmap)
116 {
117 	if (MACHINE_HAS_IDTE)
118 		__tlb_flush_idte(gmap->asce);
119 	else
120 		__tlb_flush_global();
121 }
122 
123 static void gmap_radix_tree_free(struct radix_tree_root *root)
124 {
125 	struct radix_tree_iter iter;
126 	unsigned long indices[16];
127 	unsigned long index;
128 	void __rcu **slot;
129 	int i, nr;
130 
131 	/* A radix tree is freed by deleting all of its entries */
132 	index = 0;
133 	do {
134 		nr = 0;
135 		radix_tree_for_each_slot(slot, root, &iter, index) {
136 			indices[nr] = iter.index;
137 			if (++nr == 16)
138 				break;
139 		}
140 		for (i = 0; i < nr; i++) {
141 			index = indices[i];
142 			radix_tree_delete(root, index);
143 		}
144 	} while (nr > 0);
145 }
146 
147 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
148 {
149 	struct gmap_rmap *rmap, *rnext, *head;
150 	struct radix_tree_iter iter;
151 	unsigned long indices[16];
152 	unsigned long index;
153 	void __rcu **slot;
154 	int i, nr;
155 
156 	/* A radix tree is freed by deleting all of its entries */
157 	index = 0;
158 	do {
159 		nr = 0;
160 		radix_tree_for_each_slot(slot, root, &iter, index) {
161 			indices[nr] = iter.index;
162 			if (++nr == 16)
163 				break;
164 		}
165 		for (i = 0; i < nr; i++) {
166 			index = indices[i];
167 			head = radix_tree_delete(root, index);
168 			gmap_for_each_rmap_safe(rmap, rnext, head)
169 				kfree(rmap);
170 		}
171 	} while (nr > 0);
172 }
173 
174 /**
175  * gmap_free - free a guest address space
176  * @gmap: pointer to the guest address space structure
177  *
178  * No locks required. There are no references to this gmap anymore.
179  */
180 static void gmap_free(struct gmap *gmap)
181 {
182 	struct page *page, *next;
183 
184 	/* Flush tlb of all gmaps (if not already done for shadows) */
185 	if (!(gmap_is_shadow(gmap) && gmap->removed))
186 		gmap_flush_tlb(gmap);
187 	/* Free all segment & region tables. */
188 	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
189 		__free_pages(page, CRST_ALLOC_ORDER);
190 	gmap_radix_tree_free(&gmap->guest_to_host);
191 	gmap_radix_tree_free(&gmap->host_to_guest);
192 
193 	/* Free additional data for a shadow gmap */
194 	if (gmap_is_shadow(gmap)) {
195 		/* Free all page tables. */
196 		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
197 			page_table_free_pgste(page);
198 		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
199 		/* Release reference to the parent */
200 		gmap_put(gmap->parent);
201 	}
202 
203 	kfree(gmap);
204 }
205 
206 /**
207  * gmap_get - increase reference counter for guest address space
208  * @gmap: pointer to the guest address space structure
209  *
210  * Returns the gmap pointer
211  */
212 struct gmap *gmap_get(struct gmap *gmap)
213 {
214 	atomic_inc(&gmap->ref_count);
215 	return gmap;
216 }
217 EXPORT_SYMBOL_GPL(gmap_get);
218 
219 /**
220  * gmap_put - decrease reference counter for guest address space
221  * @gmap: pointer to the guest address space structure
222  *
223  * If the reference counter reaches zero the guest address space is freed.
224  */
225 void gmap_put(struct gmap *gmap)
226 {
227 	if (atomic_dec_return(&gmap->ref_count) == 0)
228 		gmap_free(gmap);
229 }
230 EXPORT_SYMBOL_GPL(gmap_put);
231 
232 /**
233  * gmap_remove - remove a guest address space but do not free it yet
234  * @gmap: pointer to the guest address space structure
235  */
236 void gmap_remove(struct gmap *gmap)
237 {
238 	struct gmap *sg, *next;
239 	unsigned long gmap_asce;
240 
241 	/* Remove all shadow gmaps linked to this gmap */
242 	if (!list_empty(&gmap->children)) {
243 		spin_lock(&gmap->shadow_lock);
244 		list_for_each_entry_safe(sg, next, &gmap->children, list) {
245 			list_del(&sg->list);
246 			gmap_put(sg);
247 		}
248 		spin_unlock(&gmap->shadow_lock);
249 	}
250 	/* Remove gmap from the pre-mm list */
251 	spin_lock(&gmap->mm->context.lock);
252 	list_del_rcu(&gmap->list);
253 	if (list_empty(&gmap->mm->context.gmap_list))
254 		gmap_asce = 0;
255 	else if (list_is_singular(&gmap->mm->context.gmap_list))
256 		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
257 					     struct gmap, list)->asce;
258 	else
259 		gmap_asce = -1UL;
260 	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
261 	spin_unlock(&gmap->mm->context.lock);
262 	synchronize_rcu();
263 	/* Put reference */
264 	gmap_put(gmap);
265 }
266 EXPORT_SYMBOL_GPL(gmap_remove);
267 
268 /**
269  * gmap_enable - switch primary space to the guest address space
270  * @gmap: pointer to the guest address space structure
271  */
272 void gmap_enable(struct gmap *gmap)
273 {
274 	S390_lowcore.gmap = (unsigned long) gmap;
275 }
276 EXPORT_SYMBOL_GPL(gmap_enable);
277 
278 /**
279  * gmap_disable - switch back to the standard primary address space
280  * @gmap: pointer to the guest address space structure
281  */
282 void gmap_disable(struct gmap *gmap)
283 {
284 	S390_lowcore.gmap = 0UL;
285 }
286 EXPORT_SYMBOL_GPL(gmap_disable);
287 
288 /**
289  * gmap_get_enabled - get a pointer to the currently enabled gmap
290  *
291  * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
292  */
293 struct gmap *gmap_get_enabled(void)
294 {
295 	return (struct gmap *) S390_lowcore.gmap;
296 }
297 EXPORT_SYMBOL_GPL(gmap_get_enabled);
298 
299 /*
300  * gmap_alloc_table is assumed to be called with mmap_sem held
301  */
302 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
303 			    unsigned long init, unsigned long gaddr)
304 {
305 	struct page *page;
306 	unsigned long *new;
307 
308 	/* since we dont free the gmap table until gmap_free we can unlock */
309 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
310 	if (!page)
311 		return -ENOMEM;
312 	new = (unsigned long *) page_to_phys(page);
313 	crst_table_init(new, init);
314 	spin_lock(&gmap->guest_table_lock);
315 	if (*table & _REGION_ENTRY_INVALID) {
316 		list_add(&page->lru, &gmap->crst_list);
317 		*table = (unsigned long) new | _REGION_ENTRY_LENGTH |
318 			(*table & _REGION_ENTRY_TYPE_MASK);
319 		page->index = gaddr;
320 		page = NULL;
321 	}
322 	spin_unlock(&gmap->guest_table_lock);
323 	if (page)
324 		__free_pages(page, CRST_ALLOC_ORDER);
325 	return 0;
326 }
327 
328 /**
329  * __gmap_segment_gaddr - find virtual address from segment pointer
330  * @entry: pointer to a segment table entry in the guest address space
331  *
332  * Returns the virtual address in the guest address space for the segment
333  */
334 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
335 {
336 	struct page *page;
337 	unsigned long offset, mask;
338 
339 	offset = (unsigned long) entry / sizeof(unsigned long);
340 	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
341 	mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
342 	page = virt_to_page((void *)((unsigned long) entry & mask));
343 	return page->index + offset;
344 }
345 
346 /**
347  * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
348  * @gmap: pointer to the guest address space structure
349  * @vmaddr: address in the host process address space
350  *
351  * Returns 1 if a TLB flush is required
352  */
353 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
354 {
355 	unsigned long *entry;
356 	int flush = 0;
357 
358 	BUG_ON(gmap_is_shadow(gmap));
359 	spin_lock(&gmap->guest_table_lock);
360 	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
361 	if (entry) {
362 		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
363 		*entry = _SEGMENT_ENTRY_EMPTY;
364 	}
365 	spin_unlock(&gmap->guest_table_lock);
366 	return flush;
367 }
368 
369 /**
370  * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
371  * @gmap: pointer to the guest address space structure
372  * @gaddr: address in the guest address space
373  *
374  * Returns 1 if a TLB flush is required
375  */
376 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
377 {
378 	unsigned long vmaddr;
379 
380 	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
381 						   gaddr >> PMD_SHIFT);
382 	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
383 }
384 
385 /**
386  * gmap_unmap_segment - unmap segment from the guest address space
387  * @gmap: pointer to the guest address space structure
388  * @to: address in the guest address space
389  * @len: length of the memory area to unmap
390  *
391  * Returns 0 if the unmap succeeded, -EINVAL if not.
392  */
393 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
394 {
395 	unsigned long off;
396 	int flush;
397 
398 	BUG_ON(gmap_is_shadow(gmap));
399 	if ((to | len) & (PMD_SIZE - 1))
400 		return -EINVAL;
401 	if (len == 0 || to + len < to)
402 		return -EINVAL;
403 
404 	flush = 0;
405 	down_write(&gmap->mm->mmap_sem);
406 	for (off = 0; off < len; off += PMD_SIZE)
407 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
408 	up_write(&gmap->mm->mmap_sem);
409 	if (flush)
410 		gmap_flush_tlb(gmap);
411 	return 0;
412 }
413 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
414 
415 /**
416  * gmap_map_segment - map a segment to the guest address space
417  * @gmap: pointer to the guest address space structure
418  * @from: source address in the parent address space
419  * @to: target address in the guest address space
420  * @len: length of the memory area to map
421  *
422  * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
423  */
424 int gmap_map_segment(struct gmap *gmap, unsigned long from,
425 		     unsigned long to, unsigned long len)
426 {
427 	unsigned long off;
428 	int flush;
429 
430 	BUG_ON(gmap_is_shadow(gmap));
431 	if ((from | to | len) & (PMD_SIZE - 1))
432 		return -EINVAL;
433 	if (len == 0 || from + len < from || to + len < to ||
434 	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
435 		return -EINVAL;
436 
437 	flush = 0;
438 	down_write(&gmap->mm->mmap_sem);
439 	for (off = 0; off < len; off += PMD_SIZE) {
440 		/* Remove old translation */
441 		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
442 		/* Store new translation */
443 		if (radix_tree_insert(&gmap->guest_to_host,
444 				      (to + off) >> PMD_SHIFT,
445 				      (void *) from + off))
446 			break;
447 	}
448 	up_write(&gmap->mm->mmap_sem);
449 	if (flush)
450 		gmap_flush_tlb(gmap);
451 	if (off >= len)
452 		return 0;
453 	gmap_unmap_segment(gmap, to, len);
454 	return -ENOMEM;
455 }
456 EXPORT_SYMBOL_GPL(gmap_map_segment);
457 
458 /**
459  * __gmap_translate - translate a guest address to a user space address
460  * @gmap: pointer to guest mapping meta data structure
461  * @gaddr: guest address
462  *
463  * Returns user space address which corresponds to the guest address or
464  * -EFAULT if no such mapping exists.
465  * This function does not establish potentially missing page table entries.
466  * The mmap_sem of the mm that belongs to the address space must be held
467  * when this function gets called.
468  *
469  * Note: Can also be called for shadow gmaps.
470  */
471 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
472 {
473 	unsigned long vmaddr;
474 
475 	vmaddr = (unsigned long)
476 		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
477 	/* Note: guest_to_host is empty for a shadow gmap */
478 	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
479 }
480 EXPORT_SYMBOL_GPL(__gmap_translate);
481 
482 /**
483  * gmap_translate - translate a guest address to a user space address
484  * @gmap: pointer to guest mapping meta data structure
485  * @gaddr: guest address
486  *
487  * Returns user space address which corresponds to the guest address or
488  * -EFAULT if no such mapping exists.
489  * This function does not establish potentially missing page table entries.
490  */
491 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
492 {
493 	unsigned long rc;
494 
495 	down_read(&gmap->mm->mmap_sem);
496 	rc = __gmap_translate(gmap, gaddr);
497 	up_read(&gmap->mm->mmap_sem);
498 	return rc;
499 }
500 EXPORT_SYMBOL_GPL(gmap_translate);
501 
502 /**
503  * gmap_unlink - disconnect a page table from the gmap shadow tables
504  * @gmap: pointer to guest mapping meta data structure
505  * @table: pointer to the host page table
506  * @vmaddr: vm address associated with the host page table
507  */
508 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
509 		 unsigned long vmaddr)
510 {
511 	struct gmap *gmap;
512 	int flush;
513 
514 	rcu_read_lock();
515 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
516 		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
517 		if (flush)
518 			gmap_flush_tlb(gmap);
519 	}
520 	rcu_read_unlock();
521 }
522 
523 /**
524  * gmap_link - set up shadow page tables to connect a host to a guest address
525  * @gmap: pointer to guest mapping meta data structure
526  * @gaddr: guest address
527  * @vmaddr: vm address
528  *
529  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
530  * if the vm address is already mapped to a different guest segment.
531  * The mmap_sem of the mm that belongs to the address space must be held
532  * when this function gets called.
533  */
534 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
535 {
536 	struct mm_struct *mm;
537 	unsigned long *table;
538 	spinlock_t *ptl;
539 	pgd_t *pgd;
540 	p4d_t *p4d;
541 	pud_t *pud;
542 	pmd_t *pmd;
543 	int rc;
544 
545 	BUG_ON(gmap_is_shadow(gmap));
546 	/* Create higher level tables in the gmap page table */
547 	table = gmap->table;
548 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
549 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
550 		if ((*table & _REGION_ENTRY_INVALID) &&
551 		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
552 				     gaddr & _REGION1_MASK))
553 			return -ENOMEM;
554 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
555 	}
556 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
557 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
558 		if ((*table & _REGION_ENTRY_INVALID) &&
559 		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
560 				     gaddr & _REGION2_MASK))
561 			return -ENOMEM;
562 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
563 	}
564 	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
565 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
566 		if ((*table & _REGION_ENTRY_INVALID) &&
567 		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
568 				     gaddr & _REGION3_MASK))
569 			return -ENOMEM;
570 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
571 	}
572 	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
573 	/* Walk the parent mm page table */
574 	mm = gmap->mm;
575 	pgd = pgd_offset(mm, vmaddr);
576 	VM_BUG_ON(pgd_none(*pgd));
577 	p4d = p4d_offset(pgd, vmaddr);
578 	VM_BUG_ON(p4d_none(*p4d));
579 	pud = pud_offset(p4d, vmaddr);
580 	VM_BUG_ON(pud_none(*pud));
581 	/* large puds cannot yet be handled */
582 	if (pud_large(*pud))
583 		return -EFAULT;
584 	pmd = pmd_offset(pud, vmaddr);
585 	VM_BUG_ON(pmd_none(*pmd));
586 	/* large pmds cannot yet be handled */
587 	if (pmd_large(*pmd))
588 		return -EFAULT;
589 	/* Link gmap segment table entry location to page table. */
590 	rc = radix_tree_preload(GFP_KERNEL);
591 	if (rc)
592 		return rc;
593 	ptl = pmd_lock(mm, pmd);
594 	spin_lock(&gmap->guest_table_lock);
595 	if (*table == _SEGMENT_ENTRY_EMPTY) {
596 		rc = radix_tree_insert(&gmap->host_to_guest,
597 				       vmaddr >> PMD_SHIFT, table);
598 		if (!rc)
599 			*table = pmd_val(*pmd);
600 	} else
601 		rc = 0;
602 	spin_unlock(&gmap->guest_table_lock);
603 	spin_unlock(ptl);
604 	radix_tree_preload_end();
605 	return rc;
606 }
607 
608 /**
609  * gmap_fault - resolve a fault on a guest address
610  * @gmap: pointer to guest mapping meta data structure
611  * @gaddr: guest address
612  * @fault_flags: flags to pass down to handle_mm_fault()
613  *
614  * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
615  * if the vm address is already mapped to a different guest segment.
616  */
617 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
618 	       unsigned int fault_flags)
619 {
620 	unsigned long vmaddr;
621 	int rc;
622 	bool unlocked;
623 
624 	down_read(&gmap->mm->mmap_sem);
625 
626 retry:
627 	unlocked = false;
628 	vmaddr = __gmap_translate(gmap, gaddr);
629 	if (IS_ERR_VALUE(vmaddr)) {
630 		rc = vmaddr;
631 		goto out_up;
632 	}
633 	if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
634 			     &unlocked)) {
635 		rc = -EFAULT;
636 		goto out_up;
637 	}
638 	/*
639 	 * In the case that fixup_user_fault unlocked the mmap_sem during
640 	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
641 	 */
642 	if (unlocked)
643 		goto retry;
644 
645 	rc = __gmap_link(gmap, gaddr, vmaddr);
646 out_up:
647 	up_read(&gmap->mm->mmap_sem);
648 	return rc;
649 }
650 EXPORT_SYMBOL_GPL(gmap_fault);
651 
652 /*
653  * this function is assumed to be called with mmap_sem held
654  */
655 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
656 {
657 	unsigned long vmaddr;
658 	spinlock_t *ptl;
659 	pte_t *ptep;
660 
661 	/* Find the vm address for the guest address */
662 	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
663 						   gaddr >> PMD_SHIFT);
664 	if (vmaddr) {
665 		vmaddr |= gaddr & ~PMD_MASK;
666 		/* Get pointer to the page table entry */
667 		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
668 		if (likely(ptep))
669 			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
670 		pte_unmap_unlock(ptep, ptl);
671 	}
672 }
673 EXPORT_SYMBOL_GPL(__gmap_zap);
674 
675 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
676 {
677 	unsigned long gaddr, vmaddr, size;
678 	struct vm_area_struct *vma;
679 
680 	down_read(&gmap->mm->mmap_sem);
681 	for (gaddr = from; gaddr < to;
682 	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
683 		/* Find the vm address for the guest address */
684 		vmaddr = (unsigned long)
685 			radix_tree_lookup(&gmap->guest_to_host,
686 					  gaddr >> PMD_SHIFT);
687 		if (!vmaddr)
688 			continue;
689 		vmaddr |= gaddr & ~PMD_MASK;
690 		/* Find vma in the parent mm */
691 		vma = find_vma(gmap->mm, vmaddr);
692 		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
693 		zap_page_range(vma, vmaddr, size);
694 	}
695 	up_read(&gmap->mm->mmap_sem);
696 }
697 EXPORT_SYMBOL_GPL(gmap_discard);
698 
699 static LIST_HEAD(gmap_notifier_list);
700 static DEFINE_SPINLOCK(gmap_notifier_lock);
701 
702 /**
703  * gmap_register_pte_notifier - register a pte invalidation callback
704  * @nb: pointer to the gmap notifier block
705  */
706 void gmap_register_pte_notifier(struct gmap_notifier *nb)
707 {
708 	spin_lock(&gmap_notifier_lock);
709 	list_add_rcu(&nb->list, &gmap_notifier_list);
710 	spin_unlock(&gmap_notifier_lock);
711 }
712 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
713 
714 /**
715  * gmap_unregister_pte_notifier - remove a pte invalidation callback
716  * @nb: pointer to the gmap notifier block
717  */
718 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
719 {
720 	spin_lock(&gmap_notifier_lock);
721 	list_del_rcu(&nb->list);
722 	spin_unlock(&gmap_notifier_lock);
723 	synchronize_rcu();
724 }
725 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
726 
727 /**
728  * gmap_call_notifier - call all registered invalidation callbacks
729  * @gmap: pointer to guest mapping meta data structure
730  * @start: start virtual address in the guest address space
731  * @end: end virtual address in the guest address space
732  */
733 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
734 			       unsigned long end)
735 {
736 	struct gmap_notifier *nb;
737 
738 	list_for_each_entry(nb, &gmap_notifier_list, list)
739 		nb->notifier_call(gmap, start, end);
740 }
741 
742 /**
743  * gmap_table_walk - walk the gmap page tables
744  * @gmap: pointer to guest mapping meta data structure
745  * @gaddr: virtual address in the guest address space
746  * @level: page table level to stop at
747  *
748  * Returns a table entry pointer for the given guest address and @level
749  * @level=0 : returns a pointer to a page table table entry (or NULL)
750  * @level=1 : returns a pointer to a segment table entry (or NULL)
751  * @level=2 : returns a pointer to a region-3 table entry (or NULL)
752  * @level=3 : returns a pointer to a region-2 table entry (or NULL)
753  * @level=4 : returns a pointer to a region-1 table entry (or NULL)
754  *
755  * Returns NULL if the gmap page tables could not be walked to the
756  * requested level.
757  *
758  * Note: Can also be called for shadow gmaps.
759  */
760 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
761 					     unsigned long gaddr, int level)
762 {
763 	unsigned long *table;
764 
765 	if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
766 		return NULL;
767 	if (gmap_is_shadow(gmap) && gmap->removed)
768 		return NULL;
769 	if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
770 		return NULL;
771 	table = gmap->table;
772 	switch (gmap->asce & _ASCE_TYPE_MASK) {
773 	case _ASCE_TYPE_REGION1:
774 		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
775 		if (level == 4)
776 			break;
777 		if (*table & _REGION_ENTRY_INVALID)
778 			return NULL;
779 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
780 		/* Fallthrough */
781 	case _ASCE_TYPE_REGION2:
782 		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
783 		if (level == 3)
784 			break;
785 		if (*table & _REGION_ENTRY_INVALID)
786 			return NULL;
787 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
788 		/* Fallthrough */
789 	case _ASCE_TYPE_REGION3:
790 		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
791 		if (level == 2)
792 			break;
793 		if (*table & _REGION_ENTRY_INVALID)
794 			return NULL;
795 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
796 		/* Fallthrough */
797 	case _ASCE_TYPE_SEGMENT:
798 		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
799 		if (level == 1)
800 			break;
801 		if (*table & _REGION_ENTRY_INVALID)
802 			return NULL;
803 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
804 		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
805 	}
806 	return table;
807 }
808 
809 /**
810  * gmap_pte_op_walk - walk the gmap page table, get the page table lock
811  *		      and return the pte pointer
812  * @gmap: pointer to guest mapping meta data structure
813  * @gaddr: virtual address in the guest address space
814  * @ptl: pointer to the spinlock pointer
815  *
816  * Returns a pointer to the locked pte for a guest address, or NULL
817  *
818  * Note: Can also be called for shadow gmaps.
819  */
820 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
821 			       spinlock_t **ptl)
822 {
823 	unsigned long *table;
824 
825 	if (gmap_is_shadow(gmap))
826 		spin_lock(&gmap->guest_table_lock);
827 	/* Walk the gmap page table, lock and get pte pointer */
828 	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
829 	if (!table || *table & _SEGMENT_ENTRY_INVALID) {
830 		if (gmap_is_shadow(gmap))
831 			spin_unlock(&gmap->guest_table_lock);
832 		return NULL;
833 	}
834 	if (gmap_is_shadow(gmap)) {
835 		*ptl = &gmap->guest_table_lock;
836 		return pte_offset_map((pmd_t *) table, gaddr);
837 	}
838 	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
839 }
840 
841 /**
842  * gmap_pte_op_fixup - force a page in and connect the gmap page table
843  * @gmap: pointer to guest mapping meta data structure
844  * @gaddr: virtual address in the guest address space
845  * @vmaddr: address in the host process address space
846  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
847  *
848  * Returns 0 if the caller can retry __gmap_translate (might fail again),
849  * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
850  * up or connecting the gmap page table.
851  */
852 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
853 			     unsigned long vmaddr, int prot)
854 {
855 	struct mm_struct *mm = gmap->mm;
856 	unsigned int fault_flags;
857 	bool unlocked = false;
858 
859 	BUG_ON(gmap_is_shadow(gmap));
860 	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
861 	if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
862 		return -EFAULT;
863 	if (unlocked)
864 		/* lost mmap_sem, caller has to retry __gmap_translate */
865 		return 0;
866 	/* Connect the page tables */
867 	return __gmap_link(gmap, gaddr, vmaddr);
868 }
869 
870 /**
871  * gmap_pte_op_end - release the page table lock
872  * @ptl: pointer to the spinlock pointer
873  */
874 static void gmap_pte_op_end(spinlock_t *ptl)
875 {
876 	spin_unlock(ptl);
877 }
878 
879 /*
880  * gmap_protect_range - remove access rights to memory and set pgste bits
881  * @gmap: pointer to guest mapping meta data structure
882  * @gaddr: virtual address in the guest address space
883  * @len: size of area
884  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
885  * @bits: pgste notification bits to set
886  *
887  * Returns 0 if successfully protected, -ENOMEM if out of memory and
888  * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
889  *
890  * Called with sg->mm->mmap_sem in read.
891  *
892  * Note: Can also be called for shadow gmaps.
893  */
894 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
895 			      unsigned long len, int prot, unsigned long bits)
896 {
897 	unsigned long vmaddr;
898 	spinlock_t *ptl;
899 	pte_t *ptep;
900 	int rc;
901 
902 	while (len) {
903 		rc = -EAGAIN;
904 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
905 		if (ptep) {
906 			rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits);
907 			gmap_pte_op_end(ptl);
908 		}
909 		if (rc) {
910 			vmaddr = __gmap_translate(gmap, gaddr);
911 			if (IS_ERR_VALUE(vmaddr))
912 				return vmaddr;
913 			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
914 			if (rc)
915 				return rc;
916 			continue;
917 		}
918 		gaddr += PAGE_SIZE;
919 		len -= PAGE_SIZE;
920 	}
921 	return 0;
922 }
923 
924 /**
925  * gmap_mprotect_notify - change access rights for a range of ptes and
926  *                        call the notifier if any pte changes again
927  * @gmap: pointer to guest mapping meta data structure
928  * @gaddr: virtual address in the guest address space
929  * @len: size of area
930  * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
931  *
932  * Returns 0 if for each page in the given range a gmap mapping exists,
933  * the new access rights could be set and the notifier could be armed.
934  * If the gmap mapping is missing for one or more pages -EFAULT is
935  * returned. If no memory could be allocated -ENOMEM is returned.
936  * This function establishes missing page table entries.
937  */
938 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
939 			 unsigned long len, int prot)
940 {
941 	int rc;
942 
943 	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
944 		return -EINVAL;
945 	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
946 		return -EINVAL;
947 	down_read(&gmap->mm->mmap_sem);
948 	rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT);
949 	up_read(&gmap->mm->mmap_sem);
950 	return rc;
951 }
952 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
953 
954 /**
955  * gmap_read_table - get an unsigned long value from a guest page table using
956  *                   absolute addressing, without marking the page referenced.
957  * @gmap: pointer to guest mapping meta data structure
958  * @gaddr: virtual address in the guest address space
959  * @val: pointer to the unsigned long value to return
960  *
961  * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
962  * if reading using the virtual address failed.
963  *
964  * Called with gmap->mm->mmap_sem in read.
965  */
966 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
967 {
968 	unsigned long address, vmaddr;
969 	spinlock_t *ptl;
970 	pte_t *ptep, pte;
971 	int rc;
972 
973 	while (1) {
974 		rc = -EAGAIN;
975 		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
976 		if (ptep) {
977 			pte = *ptep;
978 			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
979 				address = pte_val(pte) & PAGE_MASK;
980 				address += gaddr & ~PAGE_MASK;
981 				*val = *(unsigned long *) address;
982 				pte_val(*ptep) |= _PAGE_YOUNG;
983 				/* Do *NOT* clear the _PAGE_INVALID bit! */
984 				rc = 0;
985 			}
986 			gmap_pte_op_end(ptl);
987 		}
988 		if (!rc)
989 			break;
990 		vmaddr = __gmap_translate(gmap, gaddr);
991 		if (IS_ERR_VALUE(vmaddr)) {
992 			rc = vmaddr;
993 			break;
994 		}
995 		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
996 		if (rc)
997 			break;
998 	}
999 	return rc;
1000 }
1001 EXPORT_SYMBOL_GPL(gmap_read_table);
1002 
1003 /**
1004  * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1005  * @sg: pointer to the shadow guest address space structure
1006  * @vmaddr: vm address associated with the rmap
1007  * @rmap: pointer to the rmap structure
1008  *
1009  * Called with the sg->guest_table_lock
1010  */
1011 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1012 				    struct gmap_rmap *rmap)
1013 {
1014 	void __rcu **slot;
1015 
1016 	BUG_ON(!gmap_is_shadow(sg));
1017 	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1018 	if (slot) {
1019 		rmap->next = radix_tree_deref_slot_protected(slot,
1020 							&sg->guest_table_lock);
1021 		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1022 	} else {
1023 		rmap->next = NULL;
1024 		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1025 				  rmap);
1026 	}
1027 }
1028 
1029 /**
1030  * gmap_protect_rmap - modify access rights to memory and create an rmap
1031  * @sg: pointer to the shadow guest address space structure
1032  * @raddr: rmap address in the shadow gmap
1033  * @paddr: address in the parent guest address space
1034  * @len: length of the memory area to protect
1035  * @prot: indicates access rights: none, read-only or read-write
1036  *
1037  * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1038  * if out of memory and -EFAULT if paddr is invalid.
1039  */
1040 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1041 			     unsigned long paddr, unsigned long len, int prot)
1042 {
1043 	struct gmap *parent;
1044 	struct gmap_rmap *rmap;
1045 	unsigned long vmaddr;
1046 	spinlock_t *ptl;
1047 	pte_t *ptep;
1048 	int rc;
1049 
1050 	BUG_ON(!gmap_is_shadow(sg));
1051 	parent = sg->parent;
1052 	while (len) {
1053 		vmaddr = __gmap_translate(parent, paddr);
1054 		if (IS_ERR_VALUE(vmaddr))
1055 			return vmaddr;
1056 		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1057 		if (!rmap)
1058 			return -ENOMEM;
1059 		rmap->raddr = raddr;
1060 		rc = radix_tree_preload(GFP_KERNEL);
1061 		if (rc) {
1062 			kfree(rmap);
1063 			return rc;
1064 		}
1065 		rc = -EAGAIN;
1066 		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1067 		if (ptep) {
1068 			spin_lock(&sg->guest_table_lock);
1069 			rc = ptep_force_prot(parent->mm, paddr, ptep, prot,
1070 					     PGSTE_VSIE_BIT);
1071 			if (!rc)
1072 				gmap_insert_rmap(sg, vmaddr, rmap);
1073 			spin_unlock(&sg->guest_table_lock);
1074 			gmap_pte_op_end(ptl);
1075 		}
1076 		radix_tree_preload_end();
1077 		if (rc) {
1078 			kfree(rmap);
1079 			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1080 			if (rc)
1081 				return rc;
1082 			continue;
1083 		}
1084 		paddr += PAGE_SIZE;
1085 		len -= PAGE_SIZE;
1086 	}
1087 	return 0;
1088 }
1089 
1090 #define _SHADOW_RMAP_MASK	0x7
1091 #define _SHADOW_RMAP_REGION1	0x5
1092 #define _SHADOW_RMAP_REGION2	0x4
1093 #define _SHADOW_RMAP_REGION3	0x3
1094 #define _SHADOW_RMAP_SEGMENT	0x2
1095 #define _SHADOW_RMAP_PGTABLE	0x1
1096 
1097 /**
1098  * gmap_idte_one - invalidate a single region or segment table entry
1099  * @asce: region or segment table *origin* + table-type bits
1100  * @vaddr: virtual address to identify the table entry to flush
1101  *
1102  * The invalid bit of a single region or segment table entry is set
1103  * and the associated TLB entries depending on the entry are flushed.
1104  * The table-type of the @asce identifies the portion of the @vaddr
1105  * that is used as the invalidation index.
1106  */
1107 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1108 {
1109 	asm volatile(
1110 		"	.insn	rrf,0xb98e0000,%0,%1,0,0"
1111 		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1112 }
1113 
1114 /**
1115  * gmap_unshadow_page - remove a page from a shadow page table
1116  * @sg: pointer to the shadow guest address space structure
1117  * @raddr: rmap address in the shadow guest address space
1118  *
1119  * Called with the sg->guest_table_lock
1120  */
1121 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1122 {
1123 	unsigned long *table;
1124 
1125 	BUG_ON(!gmap_is_shadow(sg));
1126 	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1127 	if (!table || *table & _PAGE_INVALID)
1128 		return;
1129 	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1130 	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1131 }
1132 
1133 /**
1134  * __gmap_unshadow_pgt - remove all entries from a shadow page table
1135  * @sg: pointer to the shadow guest address space structure
1136  * @raddr: rmap address in the shadow guest address space
1137  * @pgt: pointer to the start of a shadow page table
1138  *
1139  * Called with the sg->guest_table_lock
1140  */
1141 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1142 				unsigned long *pgt)
1143 {
1144 	int i;
1145 
1146 	BUG_ON(!gmap_is_shadow(sg));
1147 	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1148 		pgt[i] = _PAGE_INVALID;
1149 }
1150 
1151 /**
1152  * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1153  * @sg: pointer to the shadow guest address space structure
1154  * @raddr: address in the shadow guest address space
1155  *
1156  * Called with the sg->guest_table_lock
1157  */
1158 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1159 {
1160 	unsigned long sto, *ste, *pgt;
1161 	struct page *page;
1162 
1163 	BUG_ON(!gmap_is_shadow(sg));
1164 	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1165 	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1166 		return;
1167 	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1168 	sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1169 	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1170 	pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1171 	*ste = _SEGMENT_ENTRY_EMPTY;
1172 	__gmap_unshadow_pgt(sg, raddr, pgt);
1173 	/* Free page table */
1174 	page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1175 	list_del(&page->lru);
1176 	page_table_free_pgste(page);
1177 }
1178 
1179 /**
1180  * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1181  * @sg: pointer to the shadow guest address space structure
1182  * @raddr: rmap address in the shadow guest address space
1183  * @sgt: pointer to the start of a shadow segment table
1184  *
1185  * Called with the sg->guest_table_lock
1186  */
1187 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1188 				unsigned long *sgt)
1189 {
1190 	unsigned long asce, *pgt;
1191 	struct page *page;
1192 	int i;
1193 
1194 	BUG_ON(!gmap_is_shadow(sg));
1195 	asce = (unsigned long) sgt | _ASCE_TYPE_SEGMENT;
1196 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1197 		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1198 			continue;
1199 		pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1200 		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1201 		__gmap_unshadow_pgt(sg, raddr, pgt);
1202 		/* Free page table */
1203 		page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1204 		list_del(&page->lru);
1205 		page_table_free_pgste(page);
1206 	}
1207 }
1208 
1209 /**
1210  * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1211  * @sg: pointer to the shadow guest address space structure
1212  * @raddr: rmap address in the shadow guest address space
1213  *
1214  * Called with the shadow->guest_table_lock
1215  */
1216 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1217 {
1218 	unsigned long r3o, *r3e, *sgt;
1219 	struct page *page;
1220 
1221 	BUG_ON(!gmap_is_shadow(sg));
1222 	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1223 	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1224 		return;
1225 	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1226 	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1227 	gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1228 	sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1229 	*r3e = _REGION3_ENTRY_EMPTY;
1230 	__gmap_unshadow_sgt(sg, raddr, sgt);
1231 	/* Free segment table */
1232 	page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1233 	list_del(&page->lru);
1234 	__free_pages(page, CRST_ALLOC_ORDER);
1235 }
1236 
1237 /**
1238  * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1239  * @sg: pointer to the shadow guest address space structure
1240  * @raddr: address in the shadow guest address space
1241  * @r3t: pointer to the start of a shadow region-3 table
1242  *
1243  * Called with the sg->guest_table_lock
1244  */
1245 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1246 				unsigned long *r3t)
1247 {
1248 	unsigned long asce, *sgt;
1249 	struct page *page;
1250 	int i;
1251 
1252 	BUG_ON(!gmap_is_shadow(sg));
1253 	asce = (unsigned long) r3t | _ASCE_TYPE_REGION3;
1254 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1255 		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1256 			continue;
1257 		sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1258 		r3t[i] = _REGION3_ENTRY_EMPTY;
1259 		__gmap_unshadow_sgt(sg, raddr, sgt);
1260 		/* Free segment table */
1261 		page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1262 		list_del(&page->lru);
1263 		__free_pages(page, CRST_ALLOC_ORDER);
1264 	}
1265 }
1266 
1267 /**
1268  * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1269  * @sg: pointer to the shadow guest address space structure
1270  * @raddr: rmap address in the shadow guest address space
1271  *
1272  * Called with the sg->guest_table_lock
1273  */
1274 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1275 {
1276 	unsigned long r2o, *r2e, *r3t;
1277 	struct page *page;
1278 
1279 	BUG_ON(!gmap_is_shadow(sg));
1280 	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1281 	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1282 		return;
1283 	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1284 	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1285 	gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1286 	r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1287 	*r2e = _REGION2_ENTRY_EMPTY;
1288 	__gmap_unshadow_r3t(sg, raddr, r3t);
1289 	/* Free region 3 table */
1290 	page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1291 	list_del(&page->lru);
1292 	__free_pages(page, CRST_ALLOC_ORDER);
1293 }
1294 
1295 /**
1296  * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1297  * @sg: pointer to the shadow guest address space structure
1298  * @raddr: rmap address in the shadow guest address space
1299  * @r2t: pointer to the start of a shadow region-2 table
1300  *
1301  * Called with the sg->guest_table_lock
1302  */
1303 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1304 				unsigned long *r2t)
1305 {
1306 	unsigned long asce, *r3t;
1307 	struct page *page;
1308 	int i;
1309 
1310 	BUG_ON(!gmap_is_shadow(sg));
1311 	asce = (unsigned long) r2t | _ASCE_TYPE_REGION2;
1312 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1313 		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1314 			continue;
1315 		r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1316 		r2t[i] = _REGION2_ENTRY_EMPTY;
1317 		__gmap_unshadow_r3t(sg, raddr, r3t);
1318 		/* Free region 3 table */
1319 		page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1320 		list_del(&page->lru);
1321 		__free_pages(page, CRST_ALLOC_ORDER);
1322 	}
1323 }
1324 
1325 /**
1326  * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1327  * @sg: pointer to the shadow guest address space structure
1328  * @raddr: rmap address in the shadow guest address space
1329  *
1330  * Called with the sg->guest_table_lock
1331  */
1332 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1333 {
1334 	unsigned long r1o, *r1e, *r2t;
1335 	struct page *page;
1336 
1337 	BUG_ON(!gmap_is_shadow(sg));
1338 	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1339 	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1340 		return;
1341 	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1342 	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1343 	gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1344 	r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1345 	*r1e = _REGION1_ENTRY_EMPTY;
1346 	__gmap_unshadow_r2t(sg, raddr, r2t);
1347 	/* Free region 2 table */
1348 	page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1349 	list_del(&page->lru);
1350 	__free_pages(page, CRST_ALLOC_ORDER);
1351 }
1352 
1353 /**
1354  * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1355  * @sg: pointer to the shadow guest address space structure
1356  * @raddr: rmap address in the shadow guest address space
1357  * @r1t: pointer to the start of a shadow region-1 table
1358  *
1359  * Called with the shadow->guest_table_lock
1360  */
1361 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1362 				unsigned long *r1t)
1363 {
1364 	unsigned long asce, *r2t;
1365 	struct page *page;
1366 	int i;
1367 
1368 	BUG_ON(!gmap_is_shadow(sg));
1369 	asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1370 	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1371 		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1372 			continue;
1373 		r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1374 		__gmap_unshadow_r2t(sg, raddr, r2t);
1375 		/* Clear entry and flush translation r1t -> r2t */
1376 		gmap_idte_one(asce, raddr);
1377 		r1t[i] = _REGION1_ENTRY_EMPTY;
1378 		/* Free region 2 table */
1379 		page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1380 		list_del(&page->lru);
1381 		__free_pages(page, CRST_ALLOC_ORDER);
1382 	}
1383 }
1384 
1385 /**
1386  * gmap_unshadow - remove a shadow page table completely
1387  * @sg: pointer to the shadow guest address space structure
1388  *
1389  * Called with sg->guest_table_lock
1390  */
1391 static void gmap_unshadow(struct gmap *sg)
1392 {
1393 	unsigned long *table;
1394 
1395 	BUG_ON(!gmap_is_shadow(sg));
1396 	if (sg->removed)
1397 		return;
1398 	sg->removed = 1;
1399 	gmap_call_notifier(sg, 0, -1UL);
1400 	gmap_flush_tlb(sg);
1401 	table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1402 	switch (sg->asce & _ASCE_TYPE_MASK) {
1403 	case _ASCE_TYPE_REGION1:
1404 		__gmap_unshadow_r1t(sg, 0, table);
1405 		break;
1406 	case _ASCE_TYPE_REGION2:
1407 		__gmap_unshadow_r2t(sg, 0, table);
1408 		break;
1409 	case _ASCE_TYPE_REGION3:
1410 		__gmap_unshadow_r3t(sg, 0, table);
1411 		break;
1412 	case _ASCE_TYPE_SEGMENT:
1413 		__gmap_unshadow_sgt(sg, 0, table);
1414 		break;
1415 	}
1416 }
1417 
1418 /**
1419  * gmap_find_shadow - find a specific asce in the list of shadow tables
1420  * @parent: pointer to the parent gmap
1421  * @asce: ASCE for which the shadow table is created
1422  * @edat_level: edat level to be used for the shadow translation
1423  *
1424  * Returns the pointer to a gmap if a shadow table with the given asce is
1425  * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1426  * otherwise NULL
1427  */
1428 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1429 				     int edat_level)
1430 {
1431 	struct gmap *sg;
1432 
1433 	list_for_each_entry(sg, &parent->children, list) {
1434 		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1435 		    sg->removed)
1436 			continue;
1437 		if (!sg->initialized)
1438 			return ERR_PTR(-EAGAIN);
1439 		atomic_inc(&sg->ref_count);
1440 		return sg;
1441 	}
1442 	return NULL;
1443 }
1444 
1445 /**
1446  * gmap_shadow_valid - check if a shadow guest address space matches the
1447  *                     given properties and is still valid
1448  * @sg: pointer to the shadow guest address space structure
1449  * @asce: ASCE for which the shadow table is requested
1450  * @edat_level: edat level to be used for the shadow translation
1451  *
1452  * Returns 1 if the gmap shadow is still valid and matches the given
1453  * properties, the caller can continue using it. Returns 0 otherwise, the
1454  * caller has to request a new shadow gmap in this case.
1455  *
1456  */
1457 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1458 {
1459 	if (sg->removed)
1460 		return 0;
1461 	return sg->orig_asce == asce && sg->edat_level == edat_level;
1462 }
1463 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1464 
1465 /**
1466  * gmap_shadow - create/find a shadow guest address space
1467  * @parent: pointer to the parent gmap
1468  * @asce: ASCE for which the shadow table is created
1469  * @edat_level: edat level to be used for the shadow translation
1470  *
1471  * The pages of the top level page table referred by the asce parameter
1472  * will be set to read-only and marked in the PGSTEs of the kvm process.
1473  * The shadow table will be removed automatically on any change to the
1474  * PTE mapping for the source table.
1475  *
1476  * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1477  * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1478  * parent gmap table could not be protected.
1479  */
1480 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1481 			 int edat_level)
1482 {
1483 	struct gmap *sg, *new;
1484 	unsigned long limit;
1485 	int rc;
1486 
1487 	BUG_ON(gmap_is_shadow(parent));
1488 	spin_lock(&parent->shadow_lock);
1489 	sg = gmap_find_shadow(parent, asce, edat_level);
1490 	spin_unlock(&parent->shadow_lock);
1491 	if (sg)
1492 		return sg;
1493 	/* Create a new shadow gmap */
1494 	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1495 	if (asce & _ASCE_REAL_SPACE)
1496 		limit = -1UL;
1497 	new = gmap_alloc(limit);
1498 	if (!new)
1499 		return ERR_PTR(-ENOMEM);
1500 	new->mm = parent->mm;
1501 	new->parent = gmap_get(parent);
1502 	new->orig_asce = asce;
1503 	new->edat_level = edat_level;
1504 	new->initialized = false;
1505 	spin_lock(&parent->shadow_lock);
1506 	/* Recheck if another CPU created the same shadow */
1507 	sg = gmap_find_shadow(parent, asce, edat_level);
1508 	if (sg) {
1509 		spin_unlock(&parent->shadow_lock);
1510 		gmap_free(new);
1511 		return sg;
1512 	}
1513 	if (asce & _ASCE_REAL_SPACE) {
1514 		/* only allow one real-space gmap shadow */
1515 		list_for_each_entry(sg, &parent->children, list) {
1516 			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1517 				spin_lock(&sg->guest_table_lock);
1518 				gmap_unshadow(sg);
1519 				spin_unlock(&sg->guest_table_lock);
1520 				list_del(&sg->list);
1521 				gmap_put(sg);
1522 				break;
1523 			}
1524 		}
1525 	}
1526 	atomic_set(&new->ref_count, 2);
1527 	list_add(&new->list, &parent->children);
1528 	if (asce & _ASCE_REAL_SPACE) {
1529 		/* nothing to protect, return right away */
1530 		new->initialized = true;
1531 		spin_unlock(&parent->shadow_lock);
1532 		return new;
1533 	}
1534 	spin_unlock(&parent->shadow_lock);
1535 	/* protect after insertion, so it will get properly invalidated */
1536 	down_read(&parent->mm->mmap_sem);
1537 	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1538 				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1539 				PROT_READ, PGSTE_VSIE_BIT);
1540 	up_read(&parent->mm->mmap_sem);
1541 	spin_lock(&parent->shadow_lock);
1542 	new->initialized = true;
1543 	if (rc) {
1544 		list_del(&new->list);
1545 		gmap_free(new);
1546 		new = ERR_PTR(rc);
1547 	}
1548 	spin_unlock(&parent->shadow_lock);
1549 	return new;
1550 }
1551 EXPORT_SYMBOL_GPL(gmap_shadow);
1552 
1553 /**
1554  * gmap_shadow_r2t - create an empty shadow region 2 table
1555  * @sg: pointer to the shadow guest address space structure
1556  * @saddr: faulting address in the shadow gmap
1557  * @r2t: parent gmap address of the region 2 table to get shadowed
1558  * @fake: r2t references contiguous guest memory block, not a r2t
1559  *
1560  * The r2t parameter specifies the address of the source table. The
1561  * four pages of the source table are made read-only in the parent gmap
1562  * address space. A write to the source table area @r2t will automatically
1563  * remove the shadow r2 table and all of its decendents.
1564  *
1565  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1566  * shadow table structure is incomplete, -ENOMEM if out of memory and
1567  * -EFAULT if an address in the parent gmap could not be resolved.
1568  *
1569  * Called with sg->mm->mmap_sem in read.
1570  */
1571 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1572 		    int fake)
1573 {
1574 	unsigned long raddr, origin, offset, len;
1575 	unsigned long *s_r2t, *table;
1576 	struct page *page;
1577 	int rc;
1578 
1579 	BUG_ON(!gmap_is_shadow(sg));
1580 	/* Allocate a shadow region second table */
1581 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1582 	if (!page)
1583 		return -ENOMEM;
1584 	page->index = r2t & _REGION_ENTRY_ORIGIN;
1585 	if (fake)
1586 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1587 	s_r2t = (unsigned long *) page_to_phys(page);
1588 	/* Install shadow region second table */
1589 	spin_lock(&sg->guest_table_lock);
1590 	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1591 	if (!table) {
1592 		rc = -EAGAIN;		/* Race with unshadow */
1593 		goto out_free;
1594 	}
1595 	if (!(*table & _REGION_ENTRY_INVALID)) {
1596 		rc = 0;			/* Already established */
1597 		goto out_free;
1598 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1599 		rc = -EAGAIN;		/* Race with shadow */
1600 		goto out_free;
1601 	}
1602 	crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1603 	/* mark as invalid as long as the parent table is not protected */
1604 	*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1605 		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1606 	if (sg->edat_level >= 1)
1607 		*table |= (r2t & _REGION_ENTRY_PROTECT);
1608 	list_add(&page->lru, &sg->crst_list);
1609 	if (fake) {
1610 		/* nothing to protect for fake tables */
1611 		*table &= ~_REGION_ENTRY_INVALID;
1612 		spin_unlock(&sg->guest_table_lock);
1613 		return 0;
1614 	}
1615 	spin_unlock(&sg->guest_table_lock);
1616 	/* Make r2t read-only in parent gmap page table */
1617 	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1618 	origin = r2t & _REGION_ENTRY_ORIGIN;
1619 	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1620 	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1621 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1622 	spin_lock(&sg->guest_table_lock);
1623 	if (!rc) {
1624 		table = gmap_table_walk(sg, saddr, 4);
1625 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1626 			      (unsigned long) s_r2t)
1627 			rc = -EAGAIN;		/* Race with unshadow */
1628 		else
1629 			*table &= ~_REGION_ENTRY_INVALID;
1630 	} else {
1631 		gmap_unshadow_r2t(sg, raddr);
1632 	}
1633 	spin_unlock(&sg->guest_table_lock);
1634 	return rc;
1635 out_free:
1636 	spin_unlock(&sg->guest_table_lock);
1637 	__free_pages(page, CRST_ALLOC_ORDER);
1638 	return rc;
1639 }
1640 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1641 
1642 /**
1643  * gmap_shadow_r3t - create a shadow region 3 table
1644  * @sg: pointer to the shadow guest address space structure
1645  * @saddr: faulting address in the shadow gmap
1646  * @r3t: parent gmap address of the region 3 table to get shadowed
1647  * @fake: r3t references contiguous guest memory block, not a r3t
1648  *
1649  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1650  * shadow table structure is incomplete, -ENOMEM if out of memory and
1651  * -EFAULT if an address in the parent gmap could not be resolved.
1652  *
1653  * Called with sg->mm->mmap_sem in read.
1654  */
1655 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1656 		    int fake)
1657 {
1658 	unsigned long raddr, origin, offset, len;
1659 	unsigned long *s_r3t, *table;
1660 	struct page *page;
1661 	int rc;
1662 
1663 	BUG_ON(!gmap_is_shadow(sg));
1664 	/* Allocate a shadow region second table */
1665 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1666 	if (!page)
1667 		return -ENOMEM;
1668 	page->index = r3t & _REGION_ENTRY_ORIGIN;
1669 	if (fake)
1670 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1671 	s_r3t = (unsigned long *) page_to_phys(page);
1672 	/* Install shadow region second table */
1673 	spin_lock(&sg->guest_table_lock);
1674 	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1675 	if (!table) {
1676 		rc = -EAGAIN;		/* Race with unshadow */
1677 		goto out_free;
1678 	}
1679 	if (!(*table & _REGION_ENTRY_INVALID)) {
1680 		rc = 0;			/* Already established */
1681 		goto out_free;
1682 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1683 		rc = -EAGAIN;		/* Race with shadow */
1684 	}
1685 	crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1686 	/* mark as invalid as long as the parent table is not protected */
1687 	*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1688 		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1689 	if (sg->edat_level >= 1)
1690 		*table |= (r3t & _REGION_ENTRY_PROTECT);
1691 	list_add(&page->lru, &sg->crst_list);
1692 	if (fake) {
1693 		/* nothing to protect for fake tables */
1694 		*table &= ~_REGION_ENTRY_INVALID;
1695 		spin_unlock(&sg->guest_table_lock);
1696 		return 0;
1697 	}
1698 	spin_unlock(&sg->guest_table_lock);
1699 	/* Make r3t read-only in parent gmap page table */
1700 	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1701 	origin = r3t & _REGION_ENTRY_ORIGIN;
1702 	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1703 	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1704 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1705 	spin_lock(&sg->guest_table_lock);
1706 	if (!rc) {
1707 		table = gmap_table_walk(sg, saddr, 3);
1708 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1709 			      (unsigned long) s_r3t)
1710 			rc = -EAGAIN;		/* Race with unshadow */
1711 		else
1712 			*table &= ~_REGION_ENTRY_INVALID;
1713 	} else {
1714 		gmap_unshadow_r3t(sg, raddr);
1715 	}
1716 	spin_unlock(&sg->guest_table_lock);
1717 	return rc;
1718 out_free:
1719 	spin_unlock(&sg->guest_table_lock);
1720 	__free_pages(page, CRST_ALLOC_ORDER);
1721 	return rc;
1722 }
1723 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1724 
1725 /**
1726  * gmap_shadow_sgt - create a shadow segment table
1727  * @sg: pointer to the shadow guest address space structure
1728  * @saddr: faulting address in the shadow gmap
1729  * @sgt: parent gmap address of the segment table to get shadowed
1730  * @fake: sgt references contiguous guest memory block, not a sgt
1731  *
1732  * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1733  * shadow table structure is incomplete, -ENOMEM if out of memory and
1734  * -EFAULT if an address in the parent gmap could not be resolved.
1735  *
1736  * Called with sg->mm->mmap_sem in read.
1737  */
1738 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1739 		    int fake)
1740 {
1741 	unsigned long raddr, origin, offset, len;
1742 	unsigned long *s_sgt, *table;
1743 	struct page *page;
1744 	int rc;
1745 
1746 	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1747 	/* Allocate a shadow segment table */
1748 	page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1749 	if (!page)
1750 		return -ENOMEM;
1751 	page->index = sgt & _REGION_ENTRY_ORIGIN;
1752 	if (fake)
1753 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1754 	s_sgt = (unsigned long *) page_to_phys(page);
1755 	/* Install shadow region second table */
1756 	spin_lock(&sg->guest_table_lock);
1757 	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1758 	if (!table) {
1759 		rc = -EAGAIN;		/* Race with unshadow */
1760 		goto out_free;
1761 	}
1762 	if (!(*table & _REGION_ENTRY_INVALID)) {
1763 		rc = 0;			/* Already established */
1764 		goto out_free;
1765 	} else if (*table & _REGION_ENTRY_ORIGIN) {
1766 		rc = -EAGAIN;		/* Race with shadow */
1767 		goto out_free;
1768 	}
1769 	crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1770 	/* mark as invalid as long as the parent table is not protected */
1771 	*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1772 		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1773 	if (sg->edat_level >= 1)
1774 		*table |= sgt & _REGION_ENTRY_PROTECT;
1775 	list_add(&page->lru, &sg->crst_list);
1776 	if (fake) {
1777 		/* nothing to protect for fake tables */
1778 		*table &= ~_REGION_ENTRY_INVALID;
1779 		spin_unlock(&sg->guest_table_lock);
1780 		return 0;
1781 	}
1782 	spin_unlock(&sg->guest_table_lock);
1783 	/* Make sgt read-only in parent gmap page table */
1784 	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1785 	origin = sgt & _REGION_ENTRY_ORIGIN;
1786 	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1787 	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1788 	rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
1789 	spin_lock(&sg->guest_table_lock);
1790 	if (!rc) {
1791 		table = gmap_table_walk(sg, saddr, 2);
1792 		if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1793 			      (unsigned long) s_sgt)
1794 			rc = -EAGAIN;		/* Race with unshadow */
1795 		else
1796 			*table &= ~_REGION_ENTRY_INVALID;
1797 	} else {
1798 		gmap_unshadow_sgt(sg, raddr);
1799 	}
1800 	spin_unlock(&sg->guest_table_lock);
1801 	return rc;
1802 out_free:
1803 	spin_unlock(&sg->guest_table_lock);
1804 	__free_pages(page, CRST_ALLOC_ORDER);
1805 	return rc;
1806 }
1807 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1808 
1809 /**
1810  * gmap_shadow_lookup_pgtable - find a shadow page table
1811  * @sg: pointer to the shadow guest address space structure
1812  * @saddr: the address in the shadow aguest address space
1813  * @pgt: parent gmap address of the page table to get shadowed
1814  * @dat_protection: if the pgtable is marked as protected by dat
1815  * @fake: pgt references contiguous guest memory block, not a pgtable
1816  *
1817  * Returns 0 if the shadow page table was found and -EAGAIN if the page
1818  * table was not found.
1819  *
1820  * Called with sg->mm->mmap_sem in read.
1821  */
1822 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1823 			   unsigned long *pgt, int *dat_protection,
1824 			   int *fake)
1825 {
1826 	unsigned long *table;
1827 	struct page *page;
1828 	int rc;
1829 
1830 	BUG_ON(!gmap_is_shadow(sg));
1831 	spin_lock(&sg->guest_table_lock);
1832 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1833 	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1834 		/* Shadow page tables are full pages (pte+pgste) */
1835 		page = pfn_to_page(*table >> PAGE_SHIFT);
1836 		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
1837 		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
1838 		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
1839 		rc = 0;
1840 	} else  {
1841 		rc = -EAGAIN;
1842 	}
1843 	spin_unlock(&sg->guest_table_lock);
1844 	return rc;
1845 
1846 }
1847 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
1848 
1849 /**
1850  * gmap_shadow_pgt - instantiate a shadow page table
1851  * @sg: pointer to the shadow guest address space structure
1852  * @saddr: faulting address in the shadow gmap
1853  * @pgt: parent gmap address of the page table to get shadowed
1854  * @fake: pgt references contiguous guest memory block, not a pgtable
1855  *
1856  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1857  * shadow table structure is incomplete, -ENOMEM if out of memory,
1858  * -EFAULT if an address in the parent gmap could not be resolved and
1859  *
1860  * Called with gmap->mm->mmap_sem in read
1861  */
1862 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
1863 		    int fake)
1864 {
1865 	unsigned long raddr, origin;
1866 	unsigned long *s_pgt, *table;
1867 	struct page *page;
1868 	int rc;
1869 
1870 	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
1871 	/* Allocate a shadow page table */
1872 	page = page_table_alloc_pgste(sg->mm);
1873 	if (!page)
1874 		return -ENOMEM;
1875 	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
1876 	if (fake)
1877 		page->index |= GMAP_SHADOW_FAKE_TABLE;
1878 	s_pgt = (unsigned long *) page_to_phys(page);
1879 	/* Install shadow page table */
1880 	spin_lock(&sg->guest_table_lock);
1881 	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1882 	if (!table) {
1883 		rc = -EAGAIN;		/* Race with unshadow */
1884 		goto out_free;
1885 	}
1886 	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
1887 		rc = 0;			/* Already established */
1888 		goto out_free;
1889 	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
1890 		rc = -EAGAIN;		/* Race with shadow */
1891 		goto out_free;
1892 	}
1893 	/* mark as invalid as long as the parent table is not protected */
1894 	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
1895 		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
1896 	list_add(&page->lru, &sg->pt_list);
1897 	if (fake) {
1898 		/* nothing to protect for fake tables */
1899 		*table &= ~_SEGMENT_ENTRY_INVALID;
1900 		spin_unlock(&sg->guest_table_lock);
1901 		return 0;
1902 	}
1903 	spin_unlock(&sg->guest_table_lock);
1904 	/* Make pgt read-only in parent gmap page table (not the pgste) */
1905 	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
1906 	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
1907 	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE, PROT_READ);
1908 	spin_lock(&sg->guest_table_lock);
1909 	if (!rc) {
1910 		table = gmap_table_walk(sg, saddr, 1);
1911 		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
1912 			      (unsigned long) s_pgt)
1913 			rc = -EAGAIN;		/* Race with unshadow */
1914 		else
1915 			*table &= ~_SEGMENT_ENTRY_INVALID;
1916 	} else {
1917 		gmap_unshadow_pgt(sg, raddr);
1918 	}
1919 	spin_unlock(&sg->guest_table_lock);
1920 	return rc;
1921 out_free:
1922 	spin_unlock(&sg->guest_table_lock);
1923 	page_table_free_pgste(page);
1924 	return rc;
1925 
1926 }
1927 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
1928 
1929 /**
1930  * gmap_shadow_page - create a shadow page mapping
1931  * @sg: pointer to the shadow guest address space structure
1932  * @saddr: faulting address in the shadow gmap
1933  * @pte: pte in parent gmap address space to get shadowed
1934  *
1935  * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1936  * shadow table structure is incomplete, -ENOMEM if out of memory and
1937  * -EFAULT if an address in the parent gmap could not be resolved.
1938  *
1939  * Called with sg->mm->mmap_sem in read.
1940  */
1941 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
1942 {
1943 	struct gmap *parent;
1944 	struct gmap_rmap *rmap;
1945 	unsigned long vmaddr, paddr;
1946 	spinlock_t *ptl;
1947 	pte_t *sptep, *tptep;
1948 	int prot;
1949 	int rc;
1950 
1951 	BUG_ON(!gmap_is_shadow(sg));
1952 	parent = sg->parent;
1953 	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
1954 
1955 	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1956 	if (!rmap)
1957 		return -ENOMEM;
1958 	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
1959 
1960 	while (1) {
1961 		paddr = pte_val(pte) & PAGE_MASK;
1962 		vmaddr = __gmap_translate(parent, paddr);
1963 		if (IS_ERR_VALUE(vmaddr)) {
1964 			rc = vmaddr;
1965 			break;
1966 		}
1967 		rc = radix_tree_preload(GFP_KERNEL);
1968 		if (rc)
1969 			break;
1970 		rc = -EAGAIN;
1971 		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
1972 		if (sptep) {
1973 			spin_lock(&sg->guest_table_lock);
1974 			/* Get page table pointer */
1975 			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
1976 			if (!tptep) {
1977 				spin_unlock(&sg->guest_table_lock);
1978 				gmap_pte_op_end(ptl);
1979 				radix_tree_preload_end();
1980 				break;
1981 			}
1982 			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
1983 			if (rc > 0) {
1984 				/* Success and a new mapping */
1985 				gmap_insert_rmap(sg, vmaddr, rmap);
1986 				rmap = NULL;
1987 				rc = 0;
1988 			}
1989 			gmap_pte_op_end(ptl);
1990 			spin_unlock(&sg->guest_table_lock);
1991 		}
1992 		radix_tree_preload_end();
1993 		if (!rc)
1994 			break;
1995 		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
1996 		if (rc)
1997 			break;
1998 	}
1999 	kfree(rmap);
2000 	return rc;
2001 }
2002 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2003 
2004 /**
2005  * gmap_shadow_notify - handle notifications for shadow gmap
2006  *
2007  * Called with sg->parent->shadow_lock.
2008  */
2009 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2010 			       unsigned long gaddr, pte_t *pte)
2011 {
2012 	struct gmap_rmap *rmap, *rnext, *head;
2013 	unsigned long start, end, bits, raddr;
2014 
2015 	BUG_ON(!gmap_is_shadow(sg));
2016 
2017 	spin_lock(&sg->guest_table_lock);
2018 	if (sg->removed) {
2019 		spin_unlock(&sg->guest_table_lock);
2020 		return;
2021 	}
2022 	/* Check for top level table */
2023 	start = sg->orig_asce & _ASCE_ORIGIN;
2024 	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2025 	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2026 	    gaddr < end) {
2027 		/* The complete shadow table has to go */
2028 		gmap_unshadow(sg);
2029 		spin_unlock(&sg->guest_table_lock);
2030 		list_del(&sg->list);
2031 		gmap_put(sg);
2032 		return;
2033 	}
2034 	/* Remove the page table tree from on specific entry */
2035 	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2036 	gmap_for_each_rmap_safe(rmap, rnext, head) {
2037 		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2038 		raddr = rmap->raddr ^ bits;
2039 		switch (bits) {
2040 		case _SHADOW_RMAP_REGION1:
2041 			gmap_unshadow_r2t(sg, raddr);
2042 			break;
2043 		case _SHADOW_RMAP_REGION2:
2044 			gmap_unshadow_r3t(sg, raddr);
2045 			break;
2046 		case _SHADOW_RMAP_REGION3:
2047 			gmap_unshadow_sgt(sg, raddr);
2048 			break;
2049 		case _SHADOW_RMAP_SEGMENT:
2050 			gmap_unshadow_pgt(sg, raddr);
2051 			break;
2052 		case _SHADOW_RMAP_PGTABLE:
2053 			gmap_unshadow_page(sg, raddr);
2054 			break;
2055 		}
2056 		kfree(rmap);
2057 	}
2058 	spin_unlock(&sg->guest_table_lock);
2059 }
2060 
2061 /**
2062  * ptep_notify - call all invalidation callbacks for a specific pte.
2063  * @mm: pointer to the process mm_struct
2064  * @addr: virtual address in the process address space
2065  * @pte: pointer to the page table entry
2066  * @bits: bits from the pgste that caused the notify call
2067  *
2068  * This function is assumed to be called with the page table lock held
2069  * for the pte to notify.
2070  */
2071 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2072 		 pte_t *pte, unsigned long bits)
2073 {
2074 	unsigned long offset, gaddr = 0;
2075 	unsigned long *table;
2076 	struct gmap *gmap, *sg, *next;
2077 
2078 	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2079 	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2080 	rcu_read_lock();
2081 	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2082 		spin_lock(&gmap->guest_table_lock);
2083 		table = radix_tree_lookup(&gmap->host_to_guest,
2084 					  vmaddr >> PMD_SHIFT);
2085 		if (table)
2086 			gaddr = __gmap_segment_gaddr(table) + offset;
2087 		spin_unlock(&gmap->guest_table_lock);
2088 		if (!table)
2089 			continue;
2090 
2091 		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2092 			spin_lock(&gmap->shadow_lock);
2093 			list_for_each_entry_safe(sg, next,
2094 						 &gmap->children, list)
2095 				gmap_shadow_notify(sg, vmaddr, gaddr, pte);
2096 			spin_unlock(&gmap->shadow_lock);
2097 		}
2098 		if (bits & PGSTE_IN_BIT)
2099 			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2100 	}
2101 	rcu_read_unlock();
2102 }
2103 EXPORT_SYMBOL_GPL(ptep_notify);
2104 
2105 static inline void thp_split_mm(struct mm_struct *mm)
2106 {
2107 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2108 	struct vm_area_struct *vma;
2109 	unsigned long addr;
2110 
2111 	for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2112 		for (addr = vma->vm_start;
2113 		     addr < vma->vm_end;
2114 		     addr += PAGE_SIZE)
2115 			follow_page(vma, addr, FOLL_SPLIT);
2116 		vma->vm_flags &= ~VM_HUGEPAGE;
2117 		vma->vm_flags |= VM_NOHUGEPAGE;
2118 	}
2119 	mm->def_flags |= VM_NOHUGEPAGE;
2120 #endif
2121 }
2122 
2123 /*
2124  * Remove all empty zero pages from the mapping for lazy refaulting
2125  * - This must be called after mm->context.has_pgste is set, to avoid
2126  *   future creation of zero pages
2127  * - This must be called after THP was enabled
2128  */
2129 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2130 			   unsigned long end, struct mm_walk *walk)
2131 {
2132 	unsigned long addr;
2133 
2134 	for (addr = start; addr != end; addr += PAGE_SIZE) {
2135 		pte_t *ptep;
2136 		spinlock_t *ptl;
2137 
2138 		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2139 		if (is_zero_pfn(pte_pfn(*ptep)))
2140 			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2141 		pte_unmap_unlock(ptep, ptl);
2142 	}
2143 	return 0;
2144 }
2145 
2146 static inline void zap_zero_pages(struct mm_struct *mm)
2147 {
2148 	struct mm_walk walk = { .pmd_entry = __zap_zero_pages };
2149 
2150 	walk.mm = mm;
2151 	walk_page_range(0, TASK_SIZE, &walk);
2152 }
2153 
2154 /*
2155  * switch on pgstes for its userspace process (for kvm)
2156  */
2157 int s390_enable_sie(void)
2158 {
2159 	struct mm_struct *mm = current->mm;
2160 
2161 	/* Do we have pgstes? if yes, we are done */
2162 	if (mm_has_pgste(mm))
2163 		return 0;
2164 	/* Fail if the page tables are 2K */
2165 	if (!mm_alloc_pgste(mm))
2166 		return -EINVAL;
2167 	down_write(&mm->mmap_sem);
2168 	mm->context.has_pgste = 1;
2169 	/* split thp mappings and disable thp for future mappings */
2170 	thp_split_mm(mm);
2171 	zap_zero_pages(mm);
2172 	up_write(&mm->mmap_sem);
2173 	return 0;
2174 }
2175 EXPORT_SYMBOL_GPL(s390_enable_sie);
2176 
2177 /*
2178  * Enable storage key handling from now on and initialize the storage
2179  * keys with the default key.
2180  */
2181 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
2182 			      unsigned long next, struct mm_walk *walk)
2183 {
2184 	/* Clear storage key */
2185 	ptep_zap_key(walk->mm, addr, pte);
2186 	return 0;
2187 }
2188 
2189 int s390_enable_skey(void)
2190 {
2191 	struct mm_walk walk = { .pte_entry = __s390_enable_skey };
2192 	struct mm_struct *mm = current->mm;
2193 	struct vm_area_struct *vma;
2194 	int rc = 0;
2195 
2196 	down_write(&mm->mmap_sem);
2197 	if (mm_use_skey(mm))
2198 		goto out_up;
2199 
2200 	mm->context.use_skey = 1;
2201 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2202 		if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
2203 				MADV_UNMERGEABLE, &vma->vm_flags)) {
2204 			mm->context.use_skey = 0;
2205 			rc = -ENOMEM;
2206 			goto out_up;
2207 		}
2208 	}
2209 	mm->def_flags &= ~VM_MERGEABLE;
2210 
2211 	walk.mm = mm;
2212 	walk_page_range(0, TASK_SIZE, &walk);
2213 
2214 out_up:
2215 	up_write(&mm->mmap_sem);
2216 	return rc;
2217 }
2218 EXPORT_SYMBOL_GPL(s390_enable_skey);
2219 
2220 /*
2221  * Reset CMMA state, make all pages stable again.
2222  */
2223 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2224 			     unsigned long next, struct mm_walk *walk)
2225 {
2226 	ptep_zap_unused(walk->mm, addr, pte, 1);
2227 	return 0;
2228 }
2229 
2230 void s390_reset_cmma(struct mm_struct *mm)
2231 {
2232 	struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
2233 
2234 	down_write(&mm->mmap_sem);
2235 	walk.mm = mm;
2236 	walk_page_range(0, TASK_SIZE, &walk);
2237 	up_write(&mm->mmap_sem);
2238 }
2239 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2240