1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KVM guest address space mapping code 4 * 5 * Copyright IBM Corp. 2007, 2020 6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> 7 * David Hildenbrand <david@redhat.com> 8 * Janosch Frank <frankja@linux.vnet.ibm.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/pagewalk.h> 13 #include <linux/swap.h> 14 #include <linux/smp.h> 15 #include <linux/spinlock.h> 16 #include <linux/slab.h> 17 #include <linux/swapops.h> 18 #include <linux/ksm.h> 19 #include <linux/mman.h> 20 #include <linux/pgtable.h> 21 22 #include <asm/pgalloc.h> 23 #include <asm/gmap.h> 24 #include <asm/tlb.h> 25 26 #define GMAP_SHADOW_FAKE_TABLE 1ULL 27 28 /** 29 * gmap_alloc - allocate and initialize a guest address space 30 * @limit: maximum address of the gmap address space 31 * 32 * Returns a guest address space structure. 33 */ 34 static struct gmap *gmap_alloc(unsigned long limit) 35 { 36 struct gmap *gmap; 37 struct page *page; 38 unsigned long *table; 39 unsigned long etype, atype; 40 41 if (limit < _REGION3_SIZE) { 42 limit = _REGION3_SIZE - 1; 43 atype = _ASCE_TYPE_SEGMENT; 44 etype = _SEGMENT_ENTRY_EMPTY; 45 } else if (limit < _REGION2_SIZE) { 46 limit = _REGION2_SIZE - 1; 47 atype = _ASCE_TYPE_REGION3; 48 etype = _REGION3_ENTRY_EMPTY; 49 } else if (limit < _REGION1_SIZE) { 50 limit = _REGION1_SIZE - 1; 51 atype = _ASCE_TYPE_REGION2; 52 etype = _REGION2_ENTRY_EMPTY; 53 } else { 54 limit = -1UL; 55 atype = _ASCE_TYPE_REGION1; 56 etype = _REGION1_ENTRY_EMPTY; 57 } 58 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT); 59 if (!gmap) 60 goto out; 61 INIT_LIST_HEAD(&gmap->crst_list); 62 INIT_LIST_HEAD(&gmap->children); 63 INIT_LIST_HEAD(&gmap->pt_list); 64 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT); 65 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT); 66 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT); 67 spin_lock_init(&gmap->guest_table_lock); 68 spin_lock_init(&gmap->shadow_lock); 69 refcount_set(&gmap->ref_count, 1); 70 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 71 if (!page) 72 goto out_free; 73 page->index = 0; 74 list_add(&page->lru, &gmap->crst_list); 75 table = (unsigned long *) page_to_phys(page); 76 crst_table_init(table, etype); 77 gmap->table = table; 78 gmap->asce = atype | _ASCE_TABLE_LENGTH | 79 _ASCE_USER_BITS | __pa(table); 80 gmap->asce_end = limit; 81 return gmap; 82 83 out_free: 84 kfree(gmap); 85 out: 86 return NULL; 87 } 88 89 /** 90 * gmap_create - create a guest address space 91 * @mm: pointer to the parent mm_struct 92 * @limit: maximum size of the gmap address space 93 * 94 * Returns a guest address space structure. 95 */ 96 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit) 97 { 98 struct gmap *gmap; 99 unsigned long gmap_asce; 100 101 gmap = gmap_alloc(limit); 102 if (!gmap) 103 return NULL; 104 gmap->mm = mm; 105 spin_lock(&mm->context.lock); 106 list_add_rcu(&gmap->list, &mm->context.gmap_list); 107 if (list_is_singular(&mm->context.gmap_list)) 108 gmap_asce = gmap->asce; 109 else 110 gmap_asce = -1UL; 111 WRITE_ONCE(mm->context.gmap_asce, gmap_asce); 112 spin_unlock(&mm->context.lock); 113 return gmap; 114 } 115 EXPORT_SYMBOL_GPL(gmap_create); 116 117 static void gmap_flush_tlb(struct gmap *gmap) 118 { 119 if (MACHINE_HAS_IDTE) 120 __tlb_flush_idte(gmap->asce); 121 else 122 __tlb_flush_global(); 123 } 124 125 static void gmap_radix_tree_free(struct radix_tree_root *root) 126 { 127 struct radix_tree_iter iter; 128 unsigned long indices[16]; 129 unsigned long index; 130 void __rcu **slot; 131 int i, nr; 132 133 /* A radix tree is freed by deleting all of its entries */ 134 index = 0; 135 do { 136 nr = 0; 137 radix_tree_for_each_slot(slot, root, &iter, index) { 138 indices[nr] = iter.index; 139 if (++nr == 16) 140 break; 141 } 142 for (i = 0; i < nr; i++) { 143 index = indices[i]; 144 radix_tree_delete(root, index); 145 } 146 } while (nr > 0); 147 } 148 149 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root) 150 { 151 struct gmap_rmap *rmap, *rnext, *head; 152 struct radix_tree_iter iter; 153 unsigned long indices[16]; 154 unsigned long index; 155 void __rcu **slot; 156 int i, nr; 157 158 /* A radix tree is freed by deleting all of its entries */ 159 index = 0; 160 do { 161 nr = 0; 162 radix_tree_for_each_slot(slot, root, &iter, index) { 163 indices[nr] = iter.index; 164 if (++nr == 16) 165 break; 166 } 167 for (i = 0; i < nr; i++) { 168 index = indices[i]; 169 head = radix_tree_delete(root, index); 170 gmap_for_each_rmap_safe(rmap, rnext, head) 171 kfree(rmap); 172 } 173 } while (nr > 0); 174 } 175 176 /** 177 * gmap_free - free a guest address space 178 * @gmap: pointer to the guest address space structure 179 * 180 * No locks required. There are no references to this gmap anymore. 181 */ 182 static void gmap_free(struct gmap *gmap) 183 { 184 struct page *page, *next; 185 186 /* Flush tlb of all gmaps (if not already done for shadows) */ 187 if (!(gmap_is_shadow(gmap) && gmap->removed)) 188 gmap_flush_tlb(gmap); 189 /* Free all segment & region tables. */ 190 list_for_each_entry_safe(page, next, &gmap->crst_list, lru) 191 __free_pages(page, CRST_ALLOC_ORDER); 192 gmap_radix_tree_free(&gmap->guest_to_host); 193 gmap_radix_tree_free(&gmap->host_to_guest); 194 195 /* Free additional data for a shadow gmap */ 196 if (gmap_is_shadow(gmap)) { 197 /* Free all page tables. */ 198 list_for_each_entry_safe(page, next, &gmap->pt_list, lru) 199 page_table_free_pgste(page); 200 gmap_rmap_radix_tree_free(&gmap->host_to_rmap); 201 /* Release reference to the parent */ 202 gmap_put(gmap->parent); 203 } 204 205 kfree(gmap); 206 } 207 208 /** 209 * gmap_get - increase reference counter for guest address space 210 * @gmap: pointer to the guest address space structure 211 * 212 * Returns the gmap pointer 213 */ 214 struct gmap *gmap_get(struct gmap *gmap) 215 { 216 refcount_inc(&gmap->ref_count); 217 return gmap; 218 } 219 EXPORT_SYMBOL_GPL(gmap_get); 220 221 /** 222 * gmap_put - decrease reference counter for guest address space 223 * @gmap: pointer to the guest address space structure 224 * 225 * If the reference counter reaches zero the guest address space is freed. 226 */ 227 void gmap_put(struct gmap *gmap) 228 { 229 if (refcount_dec_and_test(&gmap->ref_count)) 230 gmap_free(gmap); 231 } 232 EXPORT_SYMBOL_GPL(gmap_put); 233 234 /** 235 * gmap_remove - remove a guest address space but do not free it yet 236 * @gmap: pointer to the guest address space structure 237 */ 238 void gmap_remove(struct gmap *gmap) 239 { 240 struct gmap *sg, *next; 241 unsigned long gmap_asce; 242 243 /* Remove all shadow gmaps linked to this gmap */ 244 if (!list_empty(&gmap->children)) { 245 spin_lock(&gmap->shadow_lock); 246 list_for_each_entry_safe(sg, next, &gmap->children, list) { 247 list_del(&sg->list); 248 gmap_put(sg); 249 } 250 spin_unlock(&gmap->shadow_lock); 251 } 252 /* Remove gmap from the pre-mm list */ 253 spin_lock(&gmap->mm->context.lock); 254 list_del_rcu(&gmap->list); 255 if (list_empty(&gmap->mm->context.gmap_list)) 256 gmap_asce = 0; 257 else if (list_is_singular(&gmap->mm->context.gmap_list)) 258 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list, 259 struct gmap, list)->asce; 260 else 261 gmap_asce = -1UL; 262 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce); 263 spin_unlock(&gmap->mm->context.lock); 264 synchronize_rcu(); 265 /* Put reference */ 266 gmap_put(gmap); 267 } 268 EXPORT_SYMBOL_GPL(gmap_remove); 269 270 /** 271 * gmap_enable - switch primary space to the guest address space 272 * @gmap: pointer to the guest address space structure 273 */ 274 void gmap_enable(struct gmap *gmap) 275 { 276 S390_lowcore.gmap = (unsigned long) gmap; 277 } 278 EXPORT_SYMBOL_GPL(gmap_enable); 279 280 /** 281 * gmap_disable - switch back to the standard primary address space 282 * @gmap: pointer to the guest address space structure 283 */ 284 void gmap_disable(struct gmap *gmap) 285 { 286 S390_lowcore.gmap = 0UL; 287 } 288 EXPORT_SYMBOL_GPL(gmap_disable); 289 290 /** 291 * gmap_get_enabled - get a pointer to the currently enabled gmap 292 * 293 * Returns a pointer to the currently enabled gmap. 0 if none is enabled. 294 */ 295 struct gmap *gmap_get_enabled(void) 296 { 297 return (struct gmap *) S390_lowcore.gmap; 298 } 299 EXPORT_SYMBOL_GPL(gmap_get_enabled); 300 301 /* 302 * gmap_alloc_table is assumed to be called with mmap_lock held 303 */ 304 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, 305 unsigned long init, unsigned long gaddr) 306 { 307 struct page *page; 308 unsigned long *new; 309 310 /* since we dont free the gmap table until gmap_free we can unlock */ 311 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 312 if (!page) 313 return -ENOMEM; 314 new = (unsigned long *) page_to_phys(page); 315 crst_table_init(new, init); 316 spin_lock(&gmap->guest_table_lock); 317 if (*table & _REGION_ENTRY_INVALID) { 318 list_add(&page->lru, &gmap->crst_list); 319 *table = (unsigned long) new | _REGION_ENTRY_LENGTH | 320 (*table & _REGION_ENTRY_TYPE_MASK); 321 page->index = gaddr; 322 page = NULL; 323 } 324 spin_unlock(&gmap->guest_table_lock); 325 if (page) 326 __free_pages(page, CRST_ALLOC_ORDER); 327 return 0; 328 } 329 330 /** 331 * __gmap_segment_gaddr - find virtual address from segment pointer 332 * @entry: pointer to a segment table entry in the guest address space 333 * 334 * Returns the virtual address in the guest address space for the segment 335 */ 336 static unsigned long __gmap_segment_gaddr(unsigned long *entry) 337 { 338 struct page *page; 339 unsigned long offset, mask; 340 341 offset = (unsigned long) entry / sizeof(unsigned long); 342 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE; 343 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 344 page = virt_to_page((void *)((unsigned long) entry & mask)); 345 return page->index + offset; 346 } 347 348 /** 349 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address 350 * @gmap: pointer to the guest address space structure 351 * @vmaddr: address in the host process address space 352 * 353 * Returns 1 if a TLB flush is required 354 */ 355 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) 356 { 357 unsigned long *entry; 358 int flush = 0; 359 360 BUG_ON(gmap_is_shadow(gmap)); 361 spin_lock(&gmap->guest_table_lock); 362 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); 363 if (entry) { 364 flush = (*entry != _SEGMENT_ENTRY_EMPTY); 365 *entry = _SEGMENT_ENTRY_EMPTY; 366 } 367 spin_unlock(&gmap->guest_table_lock); 368 return flush; 369 } 370 371 /** 372 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address 373 * @gmap: pointer to the guest address space structure 374 * @gaddr: address in the guest address space 375 * 376 * Returns 1 if a TLB flush is required 377 */ 378 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr) 379 { 380 unsigned long vmaddr; 381 382 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host, 383 gaddr >> PMD_SHIFT); 384 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0; 385 } 386 387 /** 388 * gmap_unmap_segment - unmap segment from the guest address space 389 * @gmap: pointer to the guest address space structure 390 * @to: address in the guest address space 391 * @len: length of the memory area to unmap 392 * 393 * Returns 0 if the unmap succeeded, -EINVAL if not. 394 */ 395 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) 396 { 397 unsigned long off; 398 int flush; 399 400 BUG_ON(gmap_is_shadow(gmap)); 401 if ((to | len) & (PMD_SIZE - 1)) 402 return -EINVAL; 403 if (len == 0 || to + len < to) 404 return -EINVAL; 405 406 flush = 0; 407 mmap_write_lock(gmap->mm); 408 for (off = 0; off < len; off += PMD_SIZE) 409 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 410 mmap_write_unlock(gmap->mm); 411 if (flush) 412 gmap_flush_tlb(gmap); 413 return 0; 414 } 415 EXPORT_SYMBOL_GPL(gmap_unmap_segment); 416 417 /** 418 * gmap_map_segment - map a segment to the guest address space 419 * @gmap: pointer to the guest address space structure 420 * @from: source address in the parent address space 421 * @to: target address in the guest address space 422 * @len: length of the memory area to map 423 * 424 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not. 425 */ 426 int gmap_map_segment(struct gmap *gmap, unsigned long from, 427 unsigned long to, unsigned long len) 428 { 429 unsigned long off; 430 int flush; 431 432 BUG_ON(gmap_is_shadow(gmap)); 433 if ((from | to | len) & (PMD_SIZE - 1)) 434 return -EINVAL; 435 if (len == 0 || from + len < from || to + len < to || 436 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end) 437 return -EINVAL; 438 439 flush = 0; 440 mmap_write_lock(gmap->mm); 441 for (off = 0; off < len; off += PMD_SIZE) { 442 /* Remove old translation */ 443 flush |= __gmap_unmap_by_gaddr(gmap, to + off); 444 /* Store new translation */ 445 if (radix_tree_insert(&gmap->guest_to_host, 446 (to + off) >> PMD_SHIFT, 447 (void *) from + off)) 448 break; 449 } 450 mmap_write_unlock(gmap->mm); 451 if (flush) 452 gmap_flush_tlb(gmap); 453 if (off >= len) 454 return 0; 455 gmap_unmap_segment(gmap, to, len); 456 return -ENOMEM; 457 } 458 EXPORT_SYMBOL_GPL(gmap_map_segment); 459 460 /** 461 * __gmap_translate - translate a guest address to a user space address 462 * @gmap: pointer to guest mapping meta data structure 463 * @gaddr: guest address 464 * 465 * Returns user space address which corresponds to the guest address or 466 * -EFAULT if no such mapping exists. 467 * This function does not establish potentially missing page table entries. 468 * The mmap_lock of the mm that belongs to the address space must be held 469 * when this function gets called. 470 * 471 * Note: Can also be called for shadow gmaps. 472 */ 473 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) 474 { 475 unsigned long vmaddr; 476 477 vmaddr = (unsigned long) 478 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); 479 /* Note: guest_to_host is empty for a shadow gmap */ 480 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; 481 } 482 EXPORT_SYMBOL_GPL(__gmap_translate); 483 484 /** 485 * gmap_translate - translate a guest address to a user space address 486 * @gmap: pointer to guest mapping meta data structure 487 * @gaddr: guest address 488 * 489 * Returns user space address which corresponds to the guest address or 490 * -EFAULT if no such mapping exists. 491 * This function does not establish potentially missing page table entries. 492 */ 493 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr) 494 { 495 unsigned long rc; 496 497 mmap_read_lock(gmap->mm); 498 rc = __gmap_translate(gmap, gaddr); 499 mmap_read_unlock(gmap->mm); 500 return rc; 501 } 502 EXPORT_SYMBOL_GPL(gmap_translate); 503 504 /** 505 * gmap_unlink - disconnect a page table from the gmap shadow tables 506 * @mm: pointer to the parent mm_struct 507 * @table: pointer to the host page table 508 * @vmaddr: vm address associated with the host page table 509 */ 510 void gmap_unlink(struct mm_struct *mm, unsigned long *table, 511 unsigned long vmaddr) 512 { 513 struct gmap *gmap; 514 int flush; 515 516 rcu_read_lock(); 517 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 518 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); 519 if (flush) 520 gmap_flush_tlb(gmap); 521 } 522 rcu_read_unlock(); 523 } 524 525 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new, 526 unsigned long gaddr); 527 528 /** 529 * __gmap_link - set up shadow page tables to connect a host to a guest address 530 * @gmap: pointer to guest mapping meta data structure 531 * @gaddr: guest address 532 * @vmaddr: vm address 533 * 534 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 535 * if the vm address is already mapped to a different guest segment. 536 * The mmap_lock of the mm that belongs to the address space must be held 537 * when this function gets called. 538 */ 539 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) 540 { 541 struct mm_struct *mm; 542 unsigned long *table; 543 spinlock_t *ptl; 544 pgd_t *pgd; 545 p4d_t *p4d; 546 pud_t *pud; 547 pmd_t *pmd; 548 u64 unprot; 549 int rc; 550 551 BUG_ON(gmap_is_shadow(gmap)); 552 /* Create higher level tables in the gmap page table */ 553 table = gmap->table; 554 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { 555 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 556 if ((*table & _REGION_ENTRY_INVALID) && 557 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY, 558 gaddr & _REGION1_MASK)) 559 return -ENOMEM; 560 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 561 } 562 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) { 563 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 564 if ((*table & _REGION_ENTRY_INVALID) && 565 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY, 566 gaddr & _REGION2_MASK)) 567 return -ENOMEM; 568 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 569 } 570 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) { 571 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 572 if ((*table & _REGION_ENTRY_INVALID) && 573 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY, 574 gaddr & _REGION3_MASK)) 575 return -ENOMEM; 576 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 577 } 578 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 579 /* Walk the parent mm page table */ 580 mm = gmap->mm; 581 pgd = pgd_offset(mm, vmaddr); 582 VM_BUG_ON(pgd_none(*pgd)); 583 p4d = p4d_offset(pgd, vmaddr); 584 VM_BUG_ON(p4d_none(*p4d)); 585 pud = pud_offset(p4d, vmaddr); 586 VM_BUG_ON(pud_none(*pud)); 587 /* large puds cannot yet be handled */ 588 if (pud_large(*pud)) 589 return -EFAULT; 590 pmd = pmd_offset(pud, vmaddr); 591 VM_BUG_ON(pmd_none(*pmd)); 592 /* Are we allowed to use huge pages? */ 593 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m) 594 return -EFAULT; 595 /* Link gmap segment table entry location to page table. */ 596 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 597 if (rc) 598 return rc; 599 ptl = pmd_lock(mm, pmd); 600 spin_lock(&gmap->guest_table_lock); 601 if (*table == _SEGMENT_ENTRY_EMPTY) { 602 rc = radix_tree_insert(&gmap->host_to_guest, 603 vmaddr >> PMD_SHIFT, table); 604 if (!rc) { 605 if (pmd_large(*pmd)) { 606 *table = (pmd_val(*pmd) & 607 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE) 608 | _SEGMENT_ENTRY_GMAP_UC; 609 } else 610 *table = pmd_val(*pmd) & 611 _SEGMENT_ENTRY_HARDWARE_BITS; 612 } 613 } else if (*table & _SEGMENT_ENTRY_PROTECT && 614 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) { 615 unprot = (u64)*table; 616 unprot &= ~_SEGMENT_ENTRY_PROTECT; 617 unprot |= _SEGMENT_ENTRY_GMAP_UC; 618 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr); 619 } 620 spin_unlock(&gmap->guest_table_lock); 621 spin_unlock(ptl); 622 radix_tree_preload_end(); 623 return rc; 624 } 625 626 /** 627 * gmap_fault - resolve a fault on a guest address 628 * @gmap: pointer to guest mapping meta data structure 629 * @gaddr: guest address 630 * @fault_flags: flags to pass down to handle_mm_fault() 631 * 632 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT 633 * if the vm address is already mapped to a different guest segment. 634 */ 635 int gmap_fault(struct gmap *gmap, unsigned long gaddr, 636 unsigned int fault_flags) 637 { 638 unsigned long vmaddr; 639 int rc; 640 bool unlocked; 641 642 mmap_read_lock(gmap->mm); 643 644 retry: 645 unlocked = false; 646 vmaddr = __gmap_translate(gmap, gaddr); 647 if (IS_ERR_VALUE(vmaddr)) { 648 rc = vmaddr; 649 goto out_up; 650 } 651 if (fixup_user_fault(gmap->mm, vmaddr, fault_flags, 652 &unlocked)) { 653 rc = -EFAULT; 654 goto out_up; 655 } 656 /* 657 * In the case that fixup_user_fault unlocked the mmap_lock during 658 * faultin redo __gmap_translate to not race with a map/unmap_segment. 659 */ 660 if (unlocked) 661 goto retry; 662 663 rc = __gmap_link(gmap, gaddr, vmaddr); 664 out_up: 665 mmap_read_unlock(gmap->mm); 666 return rc; 667 } 668 EXPORT_SYMBOL_GPL(gmap_fault); 669 670 /* 671 * this function is assumed to be called with mmap_lock held 672 */ 673 void __gmap_zap(struct gmap *gmap, unsigned long gaddr) 674 { 675 struct vm_area_struct *vma; 676 unsigned long vmaddr; 677 spinlock_t *ptl; 678 pte_t *ptep; 679 680 /* Find the vm address for the guest address */ 681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host, 682 gaddr >> PMD_SHIFT); 683 if (vmaddr) { 684 vmaddr |= gaddr & ~PMD_MASK; 685 686 vma = vma_lookup(gmap->mm, vmaddr); 687 if (!vma || is_vm_hugetlb_page(vma)) 688 return; 689 690 /* Get pointer to the page table entry */ 691 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl); 692 if (likely(ptep)) { 693 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0); 694 pte_unmap_unlock(ptep, ptl); 695 } 696 } 697 } 698 EXPORT_SYMBOL_GPL(__gmap_zap); 699 700 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to) 701 { 702 unsigned long gaddr, vmaddr, size; 703 struct vm_area_struct *vma; 704 705 mmap_read_lock(gmap->mm); 706 for (gaddr = from; gaddr < to; 707 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) { 708 /* Find the vm address for the guest address */ 709 vmaddr = (unsigned long) 710 radix_tree_lookup(&gmap->guest_to_host, 711 gaddr >> PMD_SHIFT); 712 if (!vmaddr) 713 continue; 714 vmaddr |= gaddr & ~PMD_MASK; 715 /* Find vma in the parent mm */ 716 vma = find_vma(gmap->mm, vmaddr); 717 if (!vma) 718 continue; 719 /* 720 * We do not discard pages that are backed by 721 * hugetlbfs, so we don't have to refault them. 722 */ 723 if (is_vm_hugetlb_page(vma)) 724 continue; 725 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK)); 726 zap_page_range(vma, vmaddr, size); 727 } 728 mmap_read_unlock(gmap->mm); 729 } 730 EXPORT_SYMBOL_GPL(gmap_discard); 731 732 static LIST_HEAD(gmap_notifier_list); 733 static DEFINE_SPINLOCK(gmap_notifier_lock); 734 735 /** 736 * gmap_register_pte_notifier - register a pte invalidation callback 737 * @nb: pointer to the gmap notifier block 738 */ 739 void gmap_register_pte_notifier(struct gmap_notifier *nb) 740 { 741 spin_lock(&gmap_notifier_lock); 742 list_add_rcu(&nb->list, &gmap_notifier_list); 743 spin_unlock(&gmap_notifier_lock); 744 } 745 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier); 746 747 /** 748 * gmap_unregister_pte_notifier - remove a pte invalidation callback 749 * @nb: pointer to the gmap notifier block 750 */ 751 void gmap_unregister_pte_notifier(struct gmap_notifier *nb) 752 { 753 spin_lock(&gmap_notifier_lock); 754 list_del_rcu(&nb->list); 755 spin_unlock(&gmap_notifier_lock); 756 synchronize_rcu(); 757 } 758 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier); 759 760 /** 761 * gmap_call_notifier - call all registered invalidation callbacks 762 * @gmap: pointer to guest mapping meta data structure 763 * @start: start virtual address in the guest address space 764 * @end: end virtual address in the guest address space 765 */ 766 static void gmap_call_notifier(struct gmap *gmap, unsigned long start, 767 unsigned long end) 768 { 769 struct gmap_notifier *nb; 770 771 list_for_each_entry(nb, &gmap_notifier_list, list) 772 nb->notifier_call(gmap, start, end); 773 } 774 775 /** 776 * gmap_table_walk - walk the gmap page tables 777 * @gmap: pointer to guest mapping meta data structure 778 * @gaddr: virtual address in the guest address space 779 * @level: page table level to stop at 780 * 781 * Returns a table entry pointer for the given guest address and @level 782 * @level=0 : returns a pointer to a page table table entry (or NULL) 783 * @level=1 : returns a pointer to a segment table entry (or NULL) 784 * @level=2 : returns a pointer to a region-3 table entry (or NULL) 785 * @level=3 : returns a pointer to a region-2 table entry (or NULL) 786 * @level=4 : returns a pointer to a region-1 table entry (or NULL) 787 * 788 * Returns NULL if the gmap page tables could not be walked to the 789 * requested level. 790 * 791 * Note: Can also be called for shadow gmaps. 792 */ 793 static inline unsigned long *gmap_table_walk(struct gmap *gmap, 794 unsigned long gaddr, int level) 795 { 796 const int asce_type = gmap->asce & _ASCE_TYPE_MASK; 797 unsigned long *table = gmap->table; 798 799 if (gmap_is_shadow(gmap) && gmap->removed) 800 return NULL; 801 802 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1)) 803 return NULL; 804 805 if (asce_type != _ASCE_TYPE_REGION1 && 806 gaddr & (-1UL << (31 + (asce_type >> 2) * 11))) 807 return NULL; 808 809 switch (asce_type) { 810 case _ASCE_TYPE_REGION1: 811 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT; 812 if (level == 4) 813 break; 814 if (*table & _REGION_ENTRY_INVALID) 815 return NULL; 816 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 817 fallthrough; 818 case _ASCE_TYPE_REGION2: 819 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT; 820 if (level == 3) 821 break; 822 if (*table & _REGION_ENTRY_INVALID) 823 return NULL; 824 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 825 fallthrough; 826 case _ASCE_TYPE_REGION3: 827 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT; 828 if (level == 2) 829 break; 830 if (*table & _REGION_ENTRY_INVALID) 831 return NULL; 832 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN); 833 fallthrough; 834 case _ASCE_TYPE_SEGMENT: 835 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT; 836 if (level == 1) 837 break; 838 if (*table & _REGION_ENTRY_INVALID) 839 return NULL; 840 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN); 841 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT; 842 } 843 return table; 844 } 845 846 /** 847 * gmap_pte_op_walk - walk the gmap page table, get the page table lock 848 * and return the pte pointer 849 * @gmap: pointer to guest mapping meta data structure 850 * @gaddr: virtual address in the guest address space 851 * @ptl: pointer to the spinlock pointer 852 * 853 * Returns a pointer to the locked pte for a guest address, or NULL 854 */ 855 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr, 856 spinlock_t **ptl) 857 { 858 unsigned long *table; 859 860 BUG_ON(gmap_is_shadow(gmap)); 861 /* Walk the gmap page table, lock and get pte pointer */ 862 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */ 863 if (!table || *table & _SEGMENT_ENTRY_INVALID) 864 return NULL; 865 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl); 866 } 867 868 /** 869 * gmap_pte_op_fixup - force a page in and connect the gmap page table 870 * @gmap: pointer to guest mapping meta data structure 871 * @gaddr: virtual address in the guest address space 872 * @vmaddr: address in the host process address space 873 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 874 * 875 * Returns 0 if the caller can retry __gmap_translate (might fail again), 876 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing 877 * up or connecting the gmap page table. 878 */ 879 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr, 880 unsigned long vmaddr, int prot) 881 { 882 struct mm_struct *mm = gmap->mm; 883 unsigned int fault_flags; 884 bool unlocked = false; 885 886 BUG_ON(gmap_is_shadow(gmap)); 887 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0; 888 if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked)) 889 return -EFAULT; 890 if (unlocked) 891 /* lost mmap_lock, caller has to retry __gmap_translate */ 892 return 0; 893 /* Connect the page tables */ 894 return __gmap_link(gmap, gaddr, vmaddr); 895 } 896 897 /** 898 * gmap_pte_op_end - release the page table lock 899 * @ptl: pointer to the spinlock pointer 900 */ 901 static void gmap_pte_op_end(spinlock_t *ptl) 902 { 903 if (ptl) 904 spin_unlock(ptl); 905 } 906 907 /** 908 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock 909 * and return the pmd pointer 910 * @gmap: pointer to guest mapping meta data structure 911 * @gaddr: virtual address in the guest address space 912 * 913 * Returns a pointer to the pmd for a guest address, or NULL 914 */ 915 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr) 916 { 917 pmd_t *pmdp; 918 919 BUG_ON(gmap_is_shadow(gmap)); 920 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1); 921 if (!pmdp) 922 return NULL; 923 924 /* without huge pages, there is no need to take the table lock */ 925 if (!gmap->mm->context.allow_gmap_hpage_1m) 926 return pmd_none(*pmdp) ? NULL : pmdp; 927 928 spin_lock(&gmap->guest_table_lock); 929 if (pmd_none(*pmdp)) { 930 spin_unlock(&gmap->guest_table_lock); 931 return NULL; 932 } 933 934 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */ 935 if (!pmd_large(*pmdp)) 936 spin_unlock(&gmap->guest_table_lock); 937 return pmdp; 938 } 939 940 /** 941 * gmap_pmd_op_end - release the guest_table_lock if needed 942 * @gmap: pointer to the guest mapping meta data structure 943 * @pmdp: pointer to the pmd 944 */ 945 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp) 946 { 947 if (pmd_large(*pmdp)) 948 spin_unlock(&gmap->guest_table_lock); 949 } 950 951 /* 952 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits 953 * @pmdp: pointer to the pmd to be protected 954 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 955 * @bits: notification bits to set 956 * 957 * Returns: 958 * 0 if successfully protected 959 * -EAGAIN if a fixup is needed 960 * -EINVAL if unsupported notifier bits have been specified 961 * 962 * Expected to be called with sg->mm->mmap_lock in read and 963 * guest_table_lock held. 964 */ 965 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr, 966 pmd_t *pmdp, int prot, unsigned long bits) 967 { 968 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID; 969 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT; 970 pmd_t new = *pmdp; 971 972 /* Fixup needed */ 973 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE))) 974 return -EAGAIN; 975 976 if (prot == PROT_NONE && !pmd_i) { 977 pmd_val(new) |= _SEGMENT_ENTRY_INVALID; 978 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 979 } 980 981 if (prot == PROT_READ && !pmd_p) { 982 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID; 983 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT; 984 gmap_pmdp_xchg(gmap, pmdp, new, gaddr); 985 } 986 987 if (bits & GMAP_NOTIFY_MPROT) 988 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN; 989 990 /* Shadow GMAP protection needs split PMDs */ 991 if (bits & GMAP_NOTIFY_SHADOW) 992 return -EINVAL; 993 994 return 0; 995 } 996 997 /* 998 * gmap_protect_pte - remove access rights to memory and set pgste bits 999 * @gmap: pointer to guest mapping meta data structure 1000 * @gaddr: virtual address in the guest address space 1001 * @pmdp: pointer to the pmd associated with the pte 1002 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1003 * @bits: notification bits to set 1004 * 1005 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1006 * -EAGAIN if a fixup is needed. 1007 * 1008 * Expected to be called with sg->mm->mmap_lock in read 1009 */ 1010 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr, 1011 pmd_t *pmdp, int prot, unsigned long bits) 1012 { 1013 int rc; 1014 pte_t *ptep; 1015 spinlock_t *ptl = NULL; 1016 unsigned long pbits = 0; 1017 1018 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1019 return -EAGAIN; 1020 1021 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl); 1022 if (!ptep) 1023 return -ENOMEM; 1024 1025 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0; 1026 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0; 1027 /* Protect and unlock. */ 1028 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits); 1029 gmap_pte_op_end(ptl); 1030 return rc; 1031 } 1032 1033 /* 1034 * gmap_protect_range - remove access rights to memory and set pgste bits 1035 * @gmap: pointer to guest mapping meta data structure 1036 * @gaddr: virtual address in the guest address space 1037 * @len: size of area 1038 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1039 * @bits: pgste notification bits to set 1040 * 1041 * Returns 0 if successfully protected, -ENOMEM if out of memory and 1042 * -EFAULT if gaddr is invalid (or mapping for shadows is missing). 1043 * 1044 * Called with sg->mm->mmap_lock in read. 1045 */ 1046 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr, 1047 unsigned long len, int prot, unsigned long bits) 1048 { 1049 unsigned long vmaddr, dist; 1050 pmd_t *pmdp; 1051 int rc; 1052 1053 BUG_ON(gmap_is_shadow(gmap)); 1054 while (len) { 1055 rc = -EAGAIN; 1056 pmdp = gmap_pmd_op_walk(gmap, gaddr); 1057 if (pmdp) { 1058 if (!pmd_large(*pmdp)) { 1059 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot, 1060 bits); 1061 if (!rc) { 1062 len -= PAGE_SIZE; 1063 gaddr += PAGE_SIZE; 1064 } 1065 } else { 1066 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot, 1067 bits); 1068 if (!rc) { 1069 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK); 1070 len = len < dist ? 0 : len - dist; 1071 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE; 1072 } 1073 } 1074 gmap_pmd_op_end(gmap, pmdp); 1075 } 1076 if (rc) { 1077 if (rc == -EINVAL) 1078 return rc; 1079 1080 /* -EAGAIN, fixup of userspace mm and gmap */ 1081 vmaddr = __gmap_translate(gmap, gaddr); 1082 if (IS_ERR_VALUE(vmaddr)) 1083 return vmaddr; 1084 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot); 1085 if (rc) 1086 return rc; 1087 } 1088 } 1089 return 0; 1090 } 1091 1092 /** 1093 * gmap_mprotect_notify - change access rights for a range of ptes and 1094 * call the notifier if any pte changes again 1095 * @gmap: pointer to guest mapping meta data structure 1096 * @gaddr: virtual address in the guest address space 1097 * @len: size of area 1098 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE 1099 * 1100 * Returns 0 if for each page in the given range a gmap mapping exists, 1101 * the new access rights could be set and the notifier could be armed. 1102 * If the gmap mapping is missing for one or more pages -EFAULT is 1103 * returned. If no memory could be allocated -ENOMEM is returned. 1104 * This function establishes missing page table entries. 1105 */ 1106 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr, 1107 unsigned long len, int prot) 1108 { 1109 int rc; 1110 1111 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap)) 1112 return -EINVAL; 1113 if (!MACHINE_HAS_ESOP && prot == PROT_READ) 1114 return -EINVAL; 1115 mmap_read_lock(gmap->mm); 1116 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT); 1117 mmap_read_unlock(gmap->mm); 1118 return rc; 1119 } 1120 EXPORT_SYMBOL_GPL(gmap_mprotect_notify); 1121 1122 /** 1123 * gmap_read_table - get an unsigned long value from a guest page table using 1124 * absolute addressing, without marking the page referenced. 1125 * @gmap: pointer to guest mapping meta data structure 1126 * @gaddr: virtual address in the guest address space 1127 * @val: pointer to the unsigned long value to return 1128 * 1129 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT 1130 * if reading using the virtual address failed. -EINVAL if called on a gmap 1131 * shadow. 1132 * 1133 * Called with gmap->mm->mmap_lock in read. 1134 */ 1135 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val) 1136 { 1137 unsigned long address, vmaddr; 1138 spinlock_t *ptl; 1139 pte_t *ptep, pte; 1140 int rc; 1141 1142 if (gmap_is_shadow(gmap)) 1143 return -EINVAL; 1144 1145 while (1) { 1146 rc = -EAGAIN; 1147 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl); 1148 if (ptep) { 1149 pte = *ptep; 1150 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) { 1151 address = pte_val(pte) & PAGE_MASK; 1152 address += gaddr & ~PAGE_MASK; 1153 *val = *(unsigned long *) address; 1154 pte_val(*ptep) |= _PAGE_YOUNG; 1155 /* Do *NOT* clear the _PAGE_INVALID bit! */ 1156 rc = 0; 1157 } 1158 gmap_pte_op_end(ptl); 1159 } 1160 if (!rc) 1161 break; 1162 vmaddr = __gmap_translate(gmap, gaddr); 1163 if (IS_ERR_VALUE(vmaddr)) { 1164 rc = vmaddr; 1165 break; 1166 } 1167 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ); 1168 if (rc) 1169 break; 1170 } 1171 return rc; 1172 } 1173 EXPORT_SYMBOL_GPL(gmap_read_table); 1174 1175 /** 1176 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree 1177 * @sg: pointer to the shadow guest address space structure 1178 * @vmaddr: vm address associated with the rmap 1179 * @rmap: pointer to the rmap structure 1180 * 1181 * Called with the sg->guest_table_lock 1182 */ 1183 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr, 1184 struct gmap_rmap *rmap) 1185 { 1186 void __rcu **slot; 1187 1188 BUG_ON(!gmap_is_shadow(sg)); 1189 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 1190 if (slot) { 1191 rmap->next = radix_tree_deref_slot_protected(slot, 1192 &sg->guest_table_lock); 1193 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap); 1194 } else { 1195 rmap->next = NULL; 1196 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT, 1197 rmap); 1198 } 1199 } 1200 1201 /** 1202 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap 1203 * @sg: pointer to the shadow guest address space structure 1204 * @raddr: rmap address in the shadow gmap 1205 * @paddr: address in the parent guest address space 1206 * @len: length of the memory area to protect 1207 * 1208 * Returns 0 if successfully protected and the rmap was created, -ENOMEM 1209 * if out of memory and -EFAULT if paddr is invalid. 1210 */ 1211 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr, 1212 unsigned long paddr, unsigned long len) 1213 { 1214 struct gmap *parent; 1215 struct gmap_rmap *rmap; 1216 unsigned long vmaddr; 1217 spinlock_t *ptl; 1218 pte_t *ptep; 1219 int rc; 1220 1221 BUG_ON(!gmap_is_shadow(sg)); 1222 parent = sg->parent; 1223 while (len) { 1224 vmaddr = __gmap_translate(parent, paddr); 1225 if (IS_ERR_VALUE(vmaddr)) 1226 return vmaddr; 1227 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 1228 if (!rmap) 1229 return -ENOMEM; 1230 rmap->raddr = raddr; 1231 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 1232 if (rc) { 1233 kfree(rmap); 1234 return rc; 1235 } 1236 rc = -EAGAIN; 1237 ptep = gmap_pte_op_walk(parent, paddr, &ptl); 1238 if (ptep) { 1239 spin_lock(&sg->guest_table_lock); 1240 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ, 1241 PGSTE_VSIE_BIT); 1242 if (!rc) 1243 gmap_insert_rmap(sg, vmaddr, rmap); 1244 spin_unlock(&sg->guest_table_lock); 1245 gmap_pte_op_end(ptl); 1246 } 1247 radix_tree_preload_end(); 1248 if (rc) { 1249 kfree(rmap); 1250 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ); 1251 if (rc) 1252 return rc; 1253 continue; 1254 } 1255 paddr += PAGE_SIZE; 1256 len -= PAGE_SIZE; 1257 } 1258 return 0; 1259 } 1260 1261 #define _SHADOW_RMAP_MASK 0x7 1262 #define _SHADOW_RMAP_REGION1 0x5 1263 #define _SHADOW_RMAP_REGION2 0x4 1264 #define _SHADOW_RMAP_REGION3 0x3 1265 #define _SHADOW_RMAP_SEGMENT 0x2 1266 #define _SHADOW_RMAP_PGTABLE 0x1 1267 1268 /** 1269 * gmap_idte_one - invalidate a single region or segment table entry 1270 * @asce: region or segment table *origin* + table-type bits 1271 * @vaddr: virtual address to identify the table entry to flush 1272 * 1273 * The invalid bit of a single region or segment table entry is set 1274 * and the associated TLB entries depending on the entry are flushed. 1275 * The table-type of the @asce identifies the portion of the @vaddr 1276 * that is used as the invalidation index. 1277 */ 1278 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr) 1279 { 1280 asm volatile( 1281 " .insn rrf,0xb98e0000,%0,%1,0,0" 1282 : : "a" (asce), "a" (vaddr) : "cc", "memory"); 1283 } 1284 1285 /** 1286 * gmap_unshadow_page - remove a page from a shadow page table 1287 * @sg: pointer to the shadow guest address space structure 1288 * @raddr: rmap address in the shadow guest address space 1289 * 1290 * Called with the sg->guest_table_lock 1291 */ 1292 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr) 1293 { 1294 unsigned long *table; 1295 1296 BUG_ON(!gmap_is_shadow(sg)); 1297 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */ 1298 if (!table || *table & _PAGE_INVALID) 1299 return; 1300 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1); 1301 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table); 1302 } 1303 1304 /** 1305 * __gmap_unshadow_pgt - remove all entries from a shadow page table 1306 * @sg: pointer to the shadow guest address space structure 1307 * @raddr: rmap address in the shadow guest address space 1308 * @pgt: pointer to the start of a shadow page table 1309 * 1310 * Called with the sg->guest_table_lock 1311 */ 1312 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr, 1313 unsigned long *pgt) 1314 { 1315 int i; 1316 1317 BUG_ON(!gmap_is_shadow(sg)); 1318 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE) 1319 pgt[i] = _PAGE_INVALID; 1320 } 1321 1322 /** 1323 * gmap_unshadow_pgt - remove a shadow page table from a segment entry 1324 * @sg: pointer to the shadow guest address space structure 1325 * @raddr: address in the shadow guest address space 1326 * 1327 * Called with the sg->guest_table_lock 1328 */ 1329 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr) 1330 { 1331 unsigned long sto, *ste, *pgt; 1332 struct page *page; 1333 1334 BUG_ON(!gmap_is_shadow(sg)); 1335 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */ 1336 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN)) 1337 return; 1338 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1); 1339 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT)); 1340 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr); 1341 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN); 1342 *ste = _SEGMENT_ENTRY_EMPTY; 1343 __gmap_unshadow_pgt(sg, raddr, pgt); 1344 /* Free page table */ 1345 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1346 list_del(&page->lru); 1347 page_table_free_pgste(page); 1348 } 1349 1350 /** 1351 * __gmap_unshadow_sgt - remove all entries from a shadow segment table 1352 * @sg: pointer to the shadow guest address space structure 1353 * @raddr: rmap address in the shadow guest address space 1354 * @sgt: pointer to the start of a shadow segment table 1355 * 1356 * Called with the sg->guest_table_lock 1357 */ 1358 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr, 1359 unsigned long *sgt) 1360 { 1361 unsigned long *pgt; 1362 struct page *page; 1363 int i; 1364 1365 BUG_ON(!gmap_is_shadow(sg)); 1366 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) { 1367 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN)) 1368 continue; 1369 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN); 1370 sgt[i] = _SEGMENT_ENTRY_EMPTY; 1371 __gmap_unshadow_pgt(sg, raddr, pgt); 1372 /* Free page table */ 1373 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT); 1374 list_del(&page->lru); 1375 page_table_free_pgste(page); 1376 } 1377 } 1378 1379 /** 1380 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry 1381 * @sg: pointer to the shadow guest address space structure 1382 * @raddr: rmap address in the shadow guest address space 1383 * 1384 * Called with the shadow->guest_table_lock 1385 */ 1386 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr) 1387 { 1388 unsigned long r3o, *r3e, *sgt; 1389 struct page *page; 1390 1391 BUG_ON(!gmap_is_shadow(sg)); 1392 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */ 1393 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN)) 1394 return; 1395 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1); 1396 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT)); 1397 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr); 1398 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN); 1399 *r3e = _REGION3_ENTRY_EMPTY; 1400 __gmap_unshadow_sgt(sg, raddr, sgt); 1401 /* Free segment table */ 1402 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1403 list_del(&page->lru); 1404 __free_pages(page, CRST_ALLOC_ORDER); 1405 } 1406 1407 /** 1408 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table 1409 * @sg: pointer to the shadow guest address space structure 1410 * @raddr: address in the shadow guest address space 1411 * @r3t: pointer to the start of a shadow region-3 table 1412 * 1413 * Called with the sg->guest_table_lock 1414 */ 1415 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr, 1416 unsigned long *r3t) 1417 { 1418 unsigned long *sgt; 1419 struct page *page; 1420 int i; 1421 1422 BUG_ON(!gmap_is_shadow(sg)); 1423 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) { 1424 if (!(r3t[i] & _REGION_ENTRY_ORIGIN)) 1425 continue; 1426 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN); 1427 r3t[i] = _REGION3_ENTRY_EMPTY; 1428 __gmap_unshadow_sgt(sg, raddr, sgt); 1429 /* Free segment table */ 1430 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT); 1431 list_del(&page->lru); 1432 __free_pages(page, CRST_ALLOC_ORDER); 1433 } 1434 } 1435 1436 /** 1437 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry 1438 * @sg: pointer to the shadow guest address space structure 1439 * @raddr: rmap address in the shadow guest address space 1440 * 1441 * Called with the sg->guest_table_lock 1442 */ 1443 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr) 1444 { 1445 unsigned long r2o, *r2e, *r3t; 1446 struct page *page; 1447 1448 BUG_ON(!gmap_is_shadow(sg)); 1449 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */ 1450 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN)) 1451 return; 1452 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1); 1453 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT)); 1454 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr); 1455 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN); 1456 *r2e = _REGION2_ENTRY_EMPTY; 1457 __gmap_unshadow_r3t(sg, raddr, r3t); 1458 /* Free region 3 table */ 1459 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1460 list_del(&page->lru); 1461 __free_pages(page, CRST_ALLOC_ORDER); 1462 } 1463 1464 /** 1465 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table 1466 * @sg: pointer to the shadow guest address space structure 1467 * @raddr: rmap address in the shadow guest address space 1468 * @r2t: pointer to the start of a shadow region-2 table 1469 * 1470 * Called with the sg->guest_table_lock 1471 */ 1472 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr, 1473 unsigned long *r2t) 1474 { 1475 unsigned long *r3t; 1476 struct page *page; 1477 int i; 1478 1479 BUG_ON(!gmap_is_shadow(sg)); 1480 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) { 1481 if (!(r2t[i] & _REGION_ENTRY_ORIGIN)) 1482 continue; 1483 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN); 1484 r2t[i] = _REGION2_ENTRY_EMPTY; 1485 __gmap_unshadow_r3t(sg, raddr, r3t); 1486 /* Free region 3 table */ 1487 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT); 1488 list_del(&page->lru); 1489 __free_pages(page, CRST_ALLOC_ORDER); 1490 } 1491 } 1492 1493 /** 1494 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry 1495 * @sg: pointer to the shadow guest address space structure 1496 * @raddr: rmap address in the shadow guest address space 1497 * 1498 * Called with the sg->guest_table_lock 1499 */ 1500 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr) 1501 { 1502 unsigned long r1o, *r1e, *r2t; 1503 struct page *page; 1504 1505 BUG_ON(!gmap_is_shadow(sg)); 1506 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */ 1507 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN)) 1508 return; 1509 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1); 1510 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT)); 1511 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr); 1512 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN); 1513 *r1e = _REGION1_ENTRY_EMPTY; 1514 __gmap_unshadow_r2t(sg, raddr, r2t); 1515 /* Free region 2 table */ 1516 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1517 list_del(&page->lru); 1518 __free_pages(page, CRST_ALLOC_ORDER); 1519 } 1520 1521 /** 1522 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table 1523 * @sg: pointer to the shadow guest address space structure 1524 * @raddr: rmap address in the shadow guest address space 1525 * @r1t: pointer to the start of a shadow region-1 table 1526 * 1527 * Called with the shadow->guest_table_lock 1528 */ 1529 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr, 1530 unsigned long *r1t) 1531 { 1532 unsigned long asce, *r2t; 1533 struct page *page; 1534 int i; 1535 1536 BUG_ON(!gmap_is_shadow(sg)); 1537 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1; 1538 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) { 1539 if (!(r1t[i] & _REGION_ENTRY_ORIGIN)) 1540 continue; 1541 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN); 1542 __gmap_unshadow_r2t(sg, raddr, r2t); 1543 /* Clear entry and flush translation r1t -> r2t */ 1544 gmap_idte_one(asce, raddr); 1545 r1t[i] = _REGION1_ENTRY_EMPTY; 1546 /* Free region 2 table */ 1547 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT); 1548 list_del(&page->lru); 1549 __free_pages(page, CRST_ALLOC_ORDER); 1550 } 1551 } 1552 1553 /** 1554 * gmap_unshadow - remove a shadow page table completely 1555 * @sg: pointer to the shadow guest address space structure 1556 * 1557 * Called with sg->guest_table_lock 1558 */ 1559 static void gmap_unshadow(struct gmap *sg) 1560 { 1561 unsigned long *table; 1562 1563 BUG_ON(!gmap_is_shadow(sg)); 1564 if (sg->removed) 1565 return; 1566 sg->removed = 1; 1567 gmap_call_notifier(sg, 0, -1UL); 1568 gmap_flush_tlb(sg); 1569 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN); 1570 switch (sg->asce & _ASCE_TYPE_MASK) { 1571 case _ASCE_TYPE_REGION1: 1572 __gmap_unshadow_r1t(sg, 0, table); 1573 break; 1574 case _ASCE_TYPE_REGION2: 1575 __gmap_unshadow_r2t(sg, 0, table); 1576 break; 1577 case _ASCE_TYPE_REGION3: 1578 __gmap_unshadow_r3t(sg, 0, table); 1579 break; 1580 case _ASCE_TYPE_SEGMENT: 1581 __gmap_unshadow_sgt(sg, 0, table); 1582 break; 1583 } 1584 } 1585 1586 /** 1587 * gmap_find_shadow - find a specific asce in the list of shadow tables 1588 * @parent: pointer to the parent gmap 1589 * @asce: ASCE for which the shadow table is created 1590 * @edat_level: edat level to be used for the shadow translation 1591 * 1592 * Returns the pointer to a gmap if a shadow table with the given asce is 1593 * already available, ERR_PTR(-EAGAIN) if another one is just being created, 1594 * otherwise NULL 1595 */ 1596 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce, 1597 int edat_level) 1598 { 1599 struct gmap *sg; 1600 1601 list_for_each_entry(sg, &parent->children, list) { 1602 if (sg->orig_asce != asce || sg->edat_level != edat_level || 1603 sg->removed) 1604 continue; 1605 if (!sg->initialized) 1606 return ERR_PTR(-EAGAIN); 1607 refcount_inc(&sg->ref_count); 1608 return sg; 1609 } 1610 return NULL; 1611 } 1612 1613 /** 1614 * gmap_shadow_valid - check if a shadow guest address space matches the 1615 * given properties and is still valid 1616 * @sg: pointer to the shadow guest address space structure 1617 * @asce: ASCE for which the shadow table is requested 1618 * @edat_level: edat level to be used for the shadow translation 1619 * 1620 * Returns 1 if the gmap shadow is still valid and matches the given 1621 * properties, the caller can continue using it. Returns 0 otherwise, the 1622 * caller has to request a new shadow gmap in this case. 1623 * 1624 */ 1625 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level) 1626 { 1627 if (sg->removed) 1628 return 0; 1629 return sg->orig_asce == asce && sg->edat_level == edat_level; 1630 } 1631 EXPORT_SYMBOL_GPL(gmap_shadow_valid); 1632 1633 /** 1634 * gmap_shadow - create/find a shadow guest address space 1635 * @parent: pointer to the parent gmap 1636 * @asce: ASCE for which the shadow table is created 1637 * @edat_level: edat level to be used for the shadow translation 1638 * 1639 * The pages of the top level page table referred by the asce parameter 1640 * will be set to read-only and marked in the PGSTEs of the kvm process. 1641 * The shadow table will be removed automatically on any change to the 1642 * PTE mapping for the source table. 1643 * 1644 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory, 1645 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the 1646 * parent gmap table could not be protected. 1647 */ 1648 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce, 1649 int edat_level) 1650 { 1651 struct gmap *sg, *new; 1652 unsigned long limit; 1653 int rc; 1654 1655 BUG_ON(parent->mm->context.allow_gmap_hpage_1m); 1656 BUG_ON(gmap_is_shadow(parent)); 1657 spin_lock(&parent->shadow_lock); 1658 sg = gmap_find_shadow(parent, asce, edat_level); 1659 spin_unlock(&parent->shadow_lock); 1660 if (sg) 1661 return sg; 1662 /* Create a new shadow gmap */ 1663 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11)); 1664 if (asce & _ASCE_REAL_SPACE) 1665 limit = -1UL; 1666 new = gmap_alloc(limit); 1667 if (!new) 1668 return ERR_PTR(-ENOMEM); 1669 new->mm = parent->mm; 1670 new->parent = gmap_get(parent); 1671 new->orig_asce = asce; 1672 new->edat_level = edat_level; 1673 new->initialized = false; 1674 spin_lock(&parent->shadow_lock); 1675 /* Recheck if another CPU created the same shadow */ 1676 sg = gmap_find_shadow(parent, asce, edat_level); 1677 if (sg) { 1678 spin_unlock(&parent->shadow_lock); 1679 gmap_free(new); 1680 return sg; 1681 } 1682 if (asce & _ASCE_REAL_SPACE) { 1683 /* only allow one real-space gmap shadow */ 1684 list_for_each_entry(sg, &parent->children, list) { 1685 if (sg->orig_asce & _ASCE_REAL_SPACE) { 1686 spin_lock(&sg->guest_table_lock); 1687 gmap_unshadow(sg); 1688 spin_unlock(&sg->guest_table_lock); 1689 list_del(&sg->list); 1690 gmap_put(sg); 1691 break; 1692 } 1693 } 1694 } 1695 refcount_set(&new->ref_count, 2); 1696 list_add(&new->list, &parent->children); 1697 if (asce & _ASCE_REAL_SPACE) { 1698 /* nothing to protect, return right away */ 1699 new->initialized = true; 1700 spin_unlock(&parent->shadow_lock); 1701 return new; 1702 } 1703 spin_unlock(&parent->shadow_lock); 1704 /* protect after insertion, so it will get properly invalidated */ 1705 mmap_read_lock(parent->mm); 1706 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN, 1707 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE, 1708 PROT_READ, GMAP_NOTIFY_SHADOW); 1709 mmap_read_unlock(parent->mm); 1710 spin_lock(&parent->shadow_lock); 1711 new->initialized = true; 1712 if (rc) { 1713 list_del(&new->list); 1714 gmap_free(new); 1715 new = ERR_PTR(rc); 1716 } 1717 spin_unlock(&parent->shadow_lock); 1718 return new; 1719 } 1720 EXPORT_SYMBOL_GPL(gmap_shadow); 1721 1722 /** 1723 * gmap_shadow_r2t - create an empty shadow region 2 table 1724 * @sg: pointer to the shadow guest address space structure 1725 * @saddr: faulting address in the shadow gmap 1726 * @r2t: parent gmap address of the region 2 table to get shadowed 1727 * @fake: r2t references contiguous guest memory block, not a r2t 1728 * 1729 * The r2t parameter specifies the address of the source table. The 1730 * four pages of the source table are made read-only in the parent gmap 1731 * address space. A write to the source table area @r2t will automatically 1732 * remove the shadow r2 table and all of its decendents. 1733 * 1734 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1735 * shadow table structure is incomplete, -ENOMEM if out of memory and 1736 * -EFAULT if an address in the parent gmap could not be resolved. 1737 * 1738 * Called with sg->mm->mmap_lock in read. 1739 */ 1740 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t, 1741 int fake) 1742 { 1743 unsigned long raddr, origin, offset, len; 1744 unsigned long *s_r2t, *table; 1745 struct page *page; 1746 int rc; 1747 1748 BUG_ON(!gmap_is_shadow(sg)); 1749 /* Allocate a shadow region second table */ 1750 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1751 if (!page) 1752 return -ENOMEM; 1753 page->index = r2t & _REGION_ENTRY_ORIGIN; 1754 if (fake) 1755 page->index |= GMAP_SHADOW_FAKE_TABLE; 1756 s_r2t = (unsigned long *) page_to_phys(page); 1757 /* Install shadow region second table */ 1758 spin_lock(&sg->guest_table_lock); 1759 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */ 1760 if (!table) { 1761 rc = -EAGAIN; /* Race with unshadow */ 1762 goto out_free; 1763 } 1764 if (!(*table & _REGION_ENTRY_INVALID)) { 1765 rc = 0; /* Already established */ 1766 goto out_free; 1767 } else if (*table & _REGION_ENTRY_ORIGIN) { 1768 rc = -EAGAIN; /* Race with shadow */ 1769 goto out_free; 1770 } 1771 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY); 1772 /* mark as invalid as long as the parent table is not protected */ 1773 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH | 1774 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID; 1775 if (sg->edat_level >= 1) 1776 *table |= (r2t & _REGION_ENTRY_PROTECT); 1777 list_add(&page->lru, &sg->crst_list); 1778 if (fake) { 1779 /* nothing to protect for fake tables */ 1780 *table &= ~_REGION_ENTRY_INVALID; 1781 spin_unlock(&sg->guest_table_lock); 1782 return 0; 1783 } 1784 spin_unlock(&sg->guest_table_lock); 1785 /* Make r2t read-only in parent gmap page table */ 1786 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1; 1787 origin = r2t & _REGION_ENTRY_ORIGIN; 1788 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1789 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1790 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1791 spin_lock(&sg->guest_table_lock); 1792 if (!rc) { 1793 table = gmap_table_walk(sg, saddr, 4); 1794 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1795 (unsigned long) s_r2t) 1796 rc = -EAGAIN; /* Race with unshadow */ 1797 else 1798 *table &= ~_REGION_ENTRY_INVALID; 1799 } else { 1800 gmap_unshadow_r2t(sg, raddr); 1801 } 1802 spin_unlock(&sg->guest_table_lock); 1803 return rc; 1804 out_free: 1805 spin_unlock(&sg->guest_table_lock); 1806 __free_pages(page, CRST_ALLOC_ORDER); 1807 return rc; 1808 } 1809 EXPORT_SYMBOL_GPL(gmap_shadow_r2t); 1810 1811 /** 1812 * gmap_shadow_r3t - create a shadow region 3 table 1813 * @sg: pointer to the shadow guest address space structure 1814 * @saddr: faulting address in the shadow gmap 1815 * @r3t: parent gmap address of the region 3 table to get shadowed 1816 * @fake: r3t references contiguous guest memory block, not a r3t 1817 * 1818 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 1819 * shadow table structure is incomplete, -ENOMEM if out of memory and 1820 * -EFAULT if an address in the parent gmap could not be resolved. 1821 * 1822 * Called with sg->mm->mmap_lock in read. 1823 */ 1824 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t, 1825 int fake) 1826 { 1827 unsigned long raddr, origin, offset, len; 1828 unsigned long *s_r3t, *table; 1829 struct page *page; 1830 int rc; 1831 1832 BUG_ON(!gmap_is_shadow(sg)); 1833 /* Allocate a shadow region second table */ 1834 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1835 if (!page) 1836 return -ENOMEM; 1837 page->index = r3t & _REGION_ENTRY_ORIGIN; 1838 if (fake) 1839 page->index |= GMAP_SHADOW_FAKE_TABLE; 1840 s_r3t = (unsigned long *) page_to_phys(page); 1841 /* Install shadow region second table */ 1842 spin_lock(&sg->guest_table_lock); 1843 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */ 1844 if (!table) { 1845 rc = -EAGAIN; /* Race with unshadow */ 1846 goto out_free; 1847 } 1848 if (!(*table & _REGION_ENTRY_INVALID)) { 1849 rc = 0; /* Already established */ 1850 goto out_free; 1851 } else if (*table & _REGION_ENTRY_ORIGIN) { 1852 rc = -EAGAIN; /* Race with shadow */ 1853 goto out_free; 1854 } 1855 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY); 1856 /* mark as invalid as long as the parent table is not protected */ 1857 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH | 1858 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID; 1859 if (sg->edat_level >= 1) 1860 *table |= (r3t & _REGION_ENTRY_PROTECT); 1861 list_add(&page->lru, &sg->crst_list); 1862 if (fake) { 1863 /* nothing to protect for fake tables */ 1864 *table &= ~_REGION_ENTRY_INVALID; 1865 spin_unlock(&sg->guest_table_lock); 1866 return 0; 1867 } 1868 spin_unlock(&sg->guest_table_lock); 1869 /* Make r3t read-only in parent gmap page table */ 1870 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2; 1871 origin = r3t & _REGION_ENTRY_ORIGIN; 1872 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1873 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1874 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1875 spin_lock(&sg->guest_table_lock); 1876 if (!rc) { 1877 table = gmap_table_walk(sg, saddr, 3); 1878 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1879 (unsigned long) s_r3t) 1880 rc = -EAGAIN; /* Race with unshadow */ 1881 else 1882 *table &= ~_REGION_ENTRY_INVALID; 1883 } else { 1884 gmap_unshadow_r3t(sg, raddr); 1885 } 1886 spin_unlock(&sg->guest_table_lock); 1887 return rc; 1888 out_free: 1889 spin_unlock(&sg->guest_table_lock); 1890 __free_pages(page, CRST_ALLOC_ORDER); 1891 return rc; 1892 } 1893 EXPORT_SYMBOL_GPL(gmap_shadow_r3t); 1894 1895 /** 1896 * gmap_shadow_sgt - create a shadow segment table 1897 * @sg: pointer to the shadow guest address space structure 1898 * @saddr: faulting address in the shadow gmap 1899 * @sgt: parent gmap address of the segment table to get shadowed 1900 * @fake: sgt references contiguous guest memory block, not a sgt 1901 * 1902 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the 1903 * shadow table structure is incomplete, -ENOMEM if out of memory and 1904 * -EFAULT if an address in the parent gmap could not be resolved. 1905 * 1906 * Called with sg->mm->mmap_lock in read. 1907 */ 1908 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt, 1909 int fake) 1910 { 1911 unsigned long raddr, origin, offset, len; 1912 unsigned long *s_sgt, *table; 1913 struct page *page; 1914 int rc; 1915 1916 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE)); 1917 /* Allocate a shadow segment table */ 1918 page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER); 1919 if (!page) 1920 return -ENOMEM; 1921 page->index = sgt & _REGION_ENTRY_ORIGIN; 1922 if (fake) 1923 page->index |= GMAP_SHADOW_FAKE_TABLE; 1924 s_sgt = (unsigned long *) page_to_phys(page); 1925 /* Install shadow region second table */ 1926 spin_lock(&sg->guest_table_lock); 1927 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */ 1928 if (!table) { 1929 rc = -EAGAIN; /* Race with unshadow */ 1930 goto out_free; 1931 } 1932 if (!(*table & _REGION_ENTRY_INVALID)) { 1933 rc = 0; /* Already established */ 1934 goto out_free; 1935 } else if (*table & _REGION_ENTRY_ORIGIN) { 1936 rc = -EAGAIN; /* Race with shadow */ 1937 goto out_free; 1938 } 1939 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY); 1940 /* mark as invalid as long as the parent table is not protected */ 1941 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH | 1942 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID; 1943 if (sg->edat_level >= 1) 1944 *table |= sgt & _REGION_ENTRY_PROTECT; 1945 list_add(&page->lru, &sg->crst_list); 1946 if (fake) { 1947 /* nothing to protect for fake tables */ 1948 *table &= ~_REGION_ENTRY_INVALID; 1949 spin_unlock(&sg->guest_table_lock); 1950 return 0; 1951 } 1952 spin_unlock(&sg->guest_table_lock); 1953 /* Make sgt read-only in parent gmap page table */ 1954 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3; 1955 origin = sgt & _REGION_ENTRY_ORIGIN; 1956 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE; 1957 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset; 1958 rc = gmap_protect_rmap(sg, raddr, origin + offset, len); 1959 spin_lock(&sg->guest_table_lock); 1960 if (!rc) { 1961 table = gmap_table_walk(sg, saddr, 2); 1962 if (!table || (*table & _REGION_ENTRY_ORIGIN) != 1963 (unsigned long) s_sgt) 1964 rc = -EAGAIN; /* Race with unshadow */ 1965 else 1966 *table &= ~_REGION_ENTRY_INVALID; 1967 } else { 1968 gmap_unshadow_sgt(sg, raddr); 1969 } 1970 spin_unlock(&sg->guest_table_lock); 1971 return rc; 1972 out_free: 1973 spin_unlock(&sg->guest_table_lock); 1974 __free_pages(page, CRST_ALLOC_ORDER); 1975 return rc; 1976 } 1977 EXPORT_SYMBOL_GPL(gmap_shadow_sgt); 1978 1979 /** 1980 * gmap_shadow_pgt_lookup - find a shadow page table 1981 * @sg: pointer to the shadow guest address space structure 1982 * @saddr: the address in the shadow aguest address space 1983 * @pgt: parent gmap address of the page table to get shadowed 1984 * @dat_protection: if the pgtable is marked as protected by dat 1985 * @fake: pgt references contiguous guest memory block, not a pgtable 1986 * 1987 * Returns 0 if the shadow page table was found and -EAGAIN if the page 1988 * table was not found. 1989 * 1990 * Called with sg->mm->mmap_lock in read. 1991 */ 1992 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr, 1993 unsigned long *pgt, int *dat_protection, 1994 int *fake) 1995 { 1996 unsigned long *table; 1997 struct page *page; 1998 int rc; 1999 2000 BUG_ON(!gmap_is_shadow(sg)); 2001 spin_lock(&sg->guest_table_lock); 2002 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2003 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) { 2004 /* Shadow page tables are full pages (pte+pgste) */ 2005 page = pfn_to_page(*table >> PAGE_SHIFT); 2006 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE; 2007 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT); 2008 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE); 2009 rc = 0; 2010 } else { 2011 rc = -EAGAIN; 2012 } 2013 spin_unlock(&sg->guest_table_lock); 2014 return rc; 2015 2016 } 2017 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup); 2018 2019 /** 2020 * gmap_shadow_pgt - instantiate a shadow page table 2021 * @sg: pointer to the shadow guest address space structure 2022 * @saddr: faulting address in the shadow gmap 2023 * @pgt: parent gmap address of the page table to get shadowed 2024 * @fake: pgt references contiguous guest memory block, not a pgtable 2025 * 2026 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2027 * shadow table structure is incomplete, -ENOMEM if out of memory, 2028 * -EFAULT if an address in the parent gmap could not be resolved and 2029 * 2030 * Called with gmap->mm->mmap_lock in read 2031 */ 2032 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt, 2033 int fake) 2034 { 2035 unsigned long raddr, origin; 2036 unsigned long *s_pgt, *table; 2037 struct page *page; 2038 int rc; 2039 2040 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE)); 2041 /* Allocate a shadow page table */ 2042 page = page_table_alloc_pgste(sg->mm); 2043 if (!page) 2044 return -ENOMEM; 2045 page->index = pgt & _SEGMENT_ENTRY_ORIGIN; 2046 if (fake) 2047 page->index |= GMAP_SHADOW_FAKE_TABLE; 2048 s_pgt = (unsigned long *) page_to_phys(page); 2049 /* Install shadow page table */ 2050 spin_lock(&sg->guest_table_lock); 2051 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */ 2052 if (!table) { 2053 rc = -EAGAIN; /* Race with unshadow */ 2054 goto out_free; 2055 } 2056 if (!(*table & _SEGMENT_ENTRY_INVALID)) { 2057 rc = 0; /* Already established */ 2058 goto out_free; 2059 } else if (*table & _SEGMENT_ENTRY_ORIGIN) { 2060 rc = -EAGAIN; /* Race with shadow */ 2061 goto out_free; 2062 } 2063 /* mark as invalid as long as the parent table is not protected */ 2064 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY | 2065 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID; 2066 list_add(&page->lru, &sg->pt_list); 2067 if (fake) { 2068 /* nothing to protect for fake tables */ 2069 *table &= ~_SEGMENT_ENTRY_INVALID; 2070 spin_unlock(&sg->guest_table_lock); 2071 return 0; 2072 } 2073 spin_unlock(&sg->guest_table_lock); 2074 /* Make pgt read-only in parent gmap page table (not the pgste) */ 2075 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT; 2076 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK; 2077 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE); 2078 spin_lock(&sg->guest_table_lock); 2079 if (!rc) { 2080 table = gmap_table_walk(sg, saddr, 1); 2081 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != 2082 (unsigned long) s_pgt) 2083 rc = -EAGAIN; /* Race with unshadow */ 2084 else 2085 *table &= ~_SEGMENT_ENTRY_INVALID; 2086 } else { 2087 gmap_unshadow_pgt(sg, raddr); 2088 } 2089 spin_unlock(&sg->guest_table_lock); 2090 return rc; 2091 out_free: 2092 spin_unlock(&sg->guest_table_lock); 2093 page_table_free_pgste(page); 2094 return rc; 2095 2096 } 2097 EXPORT_SYMBOL_GPL(gmap_shadow_pgt); 2098 2099 /** 2100 * gmap_shadow_page - create a shadow page mapping 2101 * @sg: pointer to the shadow guest address space structure 2102 * @saddr: faulting address in the shadow gmap 2103 * @pte: pte in parent gmap address space to get shadowed 2104 * 2105 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the 2106 * shadow table structure is incomplete, -ENOMEM if out of memory and 2107 * -EFAULT if an address in the parent gmap could not be resolved. 2108 * 2109 * Called with sg->mm->mmap_lock in read. 2110 */ 2111 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte) 2112 { 2113 struct gmap *parent; 2114 struct gmap_rmap *rmap; 2115 unsigned long vmaddr, paddr; 2116 spinlock_t *ptl; 2117 pte_t *sptep, *tptep; 2118 int prot; 2119 int rc; 2120 2121 BUG_ON(!gmap_is_shadow(sg)); 2122 parent = sg->parent; 2123 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE; 2124 2125 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT); 2126 if (!rmap) 2127 return -ENOMEM; 2128 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE; 2129 2130 while (1) { 2131 paddr = pte_val(pte) & PAGE_MASK; 2132 vmaddr = __gmap_translate(parent, paddr); 2133 if (IS_ERR_VALUE(vmaddr)) { 2134 rc = vmaddr; 2135 break; 2136 } 2137 rc = radix_tree_preload(GFP_KERNEL_ACCOUNT); 2138 if (rc) 2139 break; 2140 rc = -EAGAIN; 2141 sptep = gmap_pte_op_walk(parent, paddr, &ptl); 2142 if (sptep) { 2143 spin_lock(&sg->guest_table_lock); 2144 /* Get page table pointer */ 2145 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0); 2146 if (!tptep) { 2147 spin_unlock(&sg->guest_table_lock); 2148 gmap_pte_op_end(ptl); 2149 radix_tree_preload_end(); 2150 break; 2151 } 2152 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte); 2153 if (rc > 0) { 2154 /* Success and a new mapping */ 2155 gmap_insert_rmap(sg, vmaddr, rmap); 2156 rmap = NULL; 2157 rc = 0; 2158 } 2159 gmap_pte_op_end(ptl); 2160 spin_unlock(&sg->guest_table_lock); 2161 } 2162 radix_tree_preload_end(); 2163 if (!rc) 2164 break; 2165 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot); 2166 if (rc) 2167 break; 2168 } 2169 kfree(rmap); 2170 return rc; 2171 } 2172 EXPORT_SYMBOL_GPL(gmap_shadow_page); 2173 2174 /* 2175 * gmap_shadow_notify - handle notifications for shadow gmap 2176 * 2177 * Called with sg->parent->shadow_lock. 2178 */ 2179 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr, 2180 unsigned long gaddr) 2181 { 2182 struct gmap_rmap *rmap, *rnext, *head; 2183 unsigned long start, end, bits, raddr; 2184 2185 BUG_ON(!gmap_is_shadow(sg)); 2186 2187 spin_lock(&sg->guest_table_lock); 2188 if (sg->removed) { 2189 spin_unlock(&sg->guest_table_lock); 2190 return; 2191 } 2192 /* Check for top level table */ 2193 start = sg->orig_asce & _ASCE_ORIGIN; 2194 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE; 2195 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start && 2196 gaddr < end) { 2197 /* The complete shadow table has to go */ 2198 gmap_unshadow(sg); 2199 spin_unlock(&sg->guest_table_lock); 2200 list_del(&sg->list); 2201 gmap_put(sg); 2202 return; 2203 } 2204 /* Remove the page table tree from on specific entry */ 2205 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT); 2206 gmap_for_each_rmap_safe(rmap, rnext, head) { 2207 bits = rmap->raddr & _SHADOW_RMAP_MASK; 2208 raddr = rmap->raddr ^ bits; 2209 switch (bits) { 2210 case _SHADOW_RMAP_REGION1: 2211 gmap_unshadow_r2t(sg, raddr); 2212 break; 2213 case _SHADOW_RMAP_REGION2: 2214 gmap_unshadow_r3t(sg, raddr); 2215 break; 2216 case _SHADOW_RMAP_REGION3: 2217 gmap_unshadow_sgt(sg, raddr); 2218 break; 2219 case _SHADOW_RMAP_SEGMENT: 2220 gmap_unshadow_pgt(sg, raddr); 2221 break; 2222 case _SHADOW_RMAP_PGTABLE: 2223 gmap_unshadow_page(sg, raddr); 2224 break; 2225 } 2226 kfree(rmap); 2227 } 2228 spin_unlock(&sg->guest_table_lock); 2229 } 2230 2231 /** 2232 * ptep_notify - call all invalidation callbacks for a specific pte. 2233 * @mm: pointer to the process mm_struct 2234 * @vmaddr: virtual address in the process address space 2235 * @pte: pointer to the page table entry 2236 * @bits: bits from the pgste that caused the notify call 2237 * 2238 * This function is assumed to be called with the page table lock held 2239 * for the pte to notify. 2240 */ 2241 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, 2242 pte_t *pte, unsigned long bits) 2243 { 2244 unsigned long offset, gaddr = 0; 2245 unsigned long *table; 2246 struct gmap *gmap, *sg, *next; 2247 2248 offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); 2249 offset = offset * (PAGE_SIZE / sizeof(pte_t)); 2250 rcu_read_lock(); 2251 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2252 spin_lock(&gmap->guest_table_lock); 2253 table = radix_tree_lookup(&gmap->host_to_guest, 2254 vmaddr >> PMD_SHIFT); 2255 if (table) 2256 gaddr = __gmap_segment_gaddr(table) + offset; 2257 spin_unlock(&gmap->guest_table_lock); 2258 if (!table) 2259 continue; 2260 2261 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) { 2262 spin_lock(&gmap->shadow_lock); 2263 list_for_each_entry_safe(sg, next, 2264 &gmap->children, list) 2265 gmap_shadow_notify(sg, vmaddr, gaddr); 2266 spin_unlock(&gmap->shadow_lock); 2267 } 2268 if (bits & PGSTE_IN_BIT) 2269 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1); 2270 } 2271 rcu_read_unlock(); 2272 } 2273 EXPORT_SYMBOL_GPL(ptep_notify); 2274 2275 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp, 2276 unsigned long gaddr) 2277 { 2278 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN; 2279 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1); 2280 } 2281 2282 /** 2283 * gmap_pmdp_xchg - exchange a gmap pmd with another 2284 * @gmap: pointer to the guest address space structure 2285 * @pmdp: pointer to the pmd entry 2286 * @new: replacement entry 2287 * @gaddr: the affected guest address 2288 * 2289 * This function is assumed to be called with the guest_table_lock 2290 * held. 2291 */ 2292 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new, 2293 unsigned long gaddr) 2294 { 2295 gaddr &= HPAGE_MASK; 2296 pmdp_notify_gmap(gmap, pmdp, gaddr); 2297 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN; 2298 if (MACHINE_HAS_TLB_GUEST) 2299 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce, 2300 IDTE_GLOBAL); 2301 else if (MACHINE_HAS_IDTE) 2302 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL); 2303 else 2304 __pmdp_csp(pmdp); 2305 *pmdp = new; 2306 } 2307 2308 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr, 2309 int purge) 2310 { 2311 pmd_t *pmdp; 2312 struct gmap *gmap; 2313 unsigned long gaddr; 2314 2315 rcu_read_lock(); 2316 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2317 spin_lock(&gmap->guest_table_lock); 2318 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest, 2319 vmaddr >> PMD_SHIFT); 2320 if (pmdp) { 2321 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp); 2322 pmdp_notify_gmap(gmap, pmdp, gaddr); 2323 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2324 _SEGMENT_ENTRY_GMAP_UC)); 2325 if (purge) 2326 __pmdp_csp(pmdp); 2327 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 2328 } 2329 spin_unlock(&gmap->guest_table_lock); 2330 } 2331 rcu_read_unlock(); 2332 } 2333 2334 /** 2335 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without 2336 * flushing 2337 * @mm: pointer to the process mm_struct 2338 * @vmaddr: virtual address in the process address space 2339 */ 2340 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr) 2341 { 2342 gmap_pmdp_clear(mm, vmaddr, 0); 2343 } 2344 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate); 2345 2346 /** 2347 * gmap_pmdp_csp - csp all affected guest pmd entries 2348 * @mm: pointer to the process mm_struct 2349 * @vmaddr: virtual address in the process address space 2350 */ 2351 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr) 2352 { 2353 gmap_pmdp_clear(mm, vmaddr, 1); 2354 } 2355 EXPORT_SYMBOL_GPL(gmap_pmdp_csp); 2356 2357 /** 2358 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry 2359 * @mm: pointer to the process mm_struct 2360 * @vmaddr: virtual address in the process address space 2361 */ 2362 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr) 2363 { 2364 unsigned long *entry, gaddr; 2365 struct gmap *gmap; 2366 pmd_t *pmdp; 2367 2368 rcu_read_lock(); 2369 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2370 spin_lock(&gmap->guest_table_lock); 2371 entry = radix_tree_delete(&gmap->host_to_guest, 2372 vmaddr >> PMD_SHIFT); 2373 if (entry) { 2374 pmdp = (pmd_t *)entry; 2375 gaddr = __gmap_segment_gaddr(entry); 2376 pmdp_notify_gmap(gmap, pmdp, gaddr); 2377 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2378 _SEGMENT_ENTRY_GMAP_UC)); 2379 if (MACHINE_HAS_TLB_GUEST) 2380 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2381 gmap->asce, IDTE_LOCAL); 2382 else if (MACHINE_HAS_IDTE) 2383 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL); 2384 *entry = _SEGMENT_ENTRY_EMPTY; 2385 } 2386 spin_unlock(&gmap->guest_table_lock); 2387 } 2388 rcu_read_unlock(); 2389 } 2390 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local); 2391 2392 /** 2393 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry 2394 * @mm: pointer to the process mm_struct 2395 * @vmaddr: virtual address in the process address space 2396 */ 2397 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr) 2398 { 2399 unsigned long *entry, gaddr; 2400 struct gmap *gmap; 2401 pmd_t *pmdp; 2402 2403 rcu_read_lock(); 2404 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) { 2405 spin_lock(&gmap->guest_table_lock); 2406 entry = radix_tree_delete(&gmap->host_to_guest, 2407 vmaddr >> PMD_SHIFT); 2408 if (entry) { 2409 pmdp = (pmd_t *)entry; 2410 gaddr = __gmap_segment_gaddr(entry); 2411 pmdp_notify_gmap(gmap, pmdp, gaddr); 2412 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE | 2413 _SEGMENT_ENTRY_GMAP_UC)); 2414 if (MACHINE_HAS_TLB_GUEST) 2415 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE, 2416 gmap->asce, IDTE_GLOBAL); 2417 else if (MACHINE_HAS_IDTE) 2418 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL); 2419 else 2420 __pmdp_csp(pmdp); 2421 *entry = _SEGMENT_ENTRY_EMPTY; 2422 } 2423 spin_unlock(&gmap->guest_table_lock); 2424 } 2425 rcu_read_unlock(); 2426 } 2427 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global); 2428 2429 /** 2430 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status 2431 * @gmap: pointer to guest address space 2432 * @pmdp: pointer to the pmd to be tested 2433 * @gaddr: virtual address in the guest address space 2434 * 2435 * This function is assumed to be called with the guest_table_lock 2436 * held. 2437 */ 2438 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp, 2439 unsigned long gaddr) 2440 { 2441 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 2442 return false; 2443 2444 /* Already protected memory, which did not change is clean */ 2445 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT && 2446 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC)) 2447 return false; 2448 2449 /* Clear UC indication and reset protection */ 2450 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC; 2451 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0); 2452 return true; 2453 } 2454 2455 /** 2456 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment 2457 * @gmap: pointer to guest address space 2458 * @bitmap: dirty bitmap for this pmd 2459 * @gaddr: virtual address in the guest address space 2460 * @vmaddr: virtual address in the host address space 2461 * 2462 * This function is assumed to be called with the guest_table_lock 2463 * held. 2464 */ 2465 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4], 2466 unsigned long gaddr, unsigned long vmaddr) 2467 { 2468 int i; 2469 pmd_t *pmdp; 2470 pte_t *ptep; 2471 spinlock_t *ptl; 2472 2473 pmdp = gmap_pmd_op_walk(gmap, gaddr); 2474 if (!pmdp) 2475 return; 2476 2477 if (pmd_large(*pmdp)) { 2478 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr)) 2479 bitmap_fill(bitmap, _PAGE_ENTRIES); 2480 } else { 2481 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) { 2482 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl); 2483 if (!ptep) 2484 continue; 2485 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep)) 2486 set_bit(i, bitmap); 2487 spin_unlock(ptl); 2488 } 2489 } 2490 gmap_pmd_op_end(gmap, pmdp); 2491 } 2492 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd); 2493 2494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2495 static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr, 2496 unsigned long end, struct mm_walk *walk) 2497 { 2498 struct vm_area_struct *vma = walk->vma; 2499 2500 split_huge_pmd(vma, pmd, addr); 2501 return 0; 2502 } 2503 2504 static const struct mm_walk_ops thp_split_walk_ops = { 2505 .pmd_entry = thp_split_walk_pmd_entry, 2506 }; 2507 2508 static inline void thp_split_mm(struct mm_struct *mm) 2509 { 2510 struct vm_area_struct *vma; 2511 2512 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) { 2513 vma->vm_flags &= ~VM_HUGEPAGE; 2514 vma->vm_flags |= VM_NOHUGEPAGE; 2515 walk_page_vma(vma, &thp_split_walk_ops, NULL); 2516 } 2517 mm->def_flags |= VM_NOHUGEPAGE; 2518 } 2519 #else 2520 static inline void thp_split_mm(struct mm_struct *mm) 2521 { 2522 } 2523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2524 2525 /* 2526 * Remove all empty zero pages from the mapping for lazy refaulting 2527 * - This must be called after mm->context.has_pgste is set, to avoid 2528 * future creation of zero pages 2529 * - This must be called after THP was enabled 2530 */ 2531 static int __zap_zero_pages(pmd_t *pmd, unsigned long start, 2532 unsigned long end, struct mm_walk *walk) 2533 { 2534 unsigned long addr; 2535 2536 for (addr = start; addr != end; addr += PAGE_SIZE) { 2537 pte_t *ptep; 2538 spinlock_t *ptl; 2539 2540 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 2541 if (is_zero_pfn(pte_pfn(*ptep))) 2542 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID)); 2543 pte_unmap_unlock(ptep, ptl); 2544 } 2545 return 0; 2546 } 2547 2548 static const struct mm_walk_ops zap_zero_walk_ops = { 2549 .pmd_entry = __zap_zero_pages, 2550 }; 2551 2552 /* 2553 * switch on pgstes for its userspace process (for kvm) 2554 */ 2555 int s390_enable_sie(void) 2556 { 2557 struct mm_struct *mm = current->mm; 2558 2559 /* Do we have pgstes? if yes, we are done */ 2560 if (mm_has_pgste(mm)) 2561 return 0; 2562 /* Fail if the page tables are 2K */ 2563 if (!mm_alloc_pgste(mm)) 2564 return -EINVAL; 2565 mmap_write_lock(mm); 2566 mm->context.has_pgste = 1; 2567 /* split thp mappings and disable thp for future mappings */ 2568 thp_split_mm(mm); 2569 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL); 2570 mmap_write_unlock(mm); 2571 return 0; 2572 } 2573 EXPORT_SYMBOL_GPL(s390_enable_sie); 2574 2575 int gmap_mark_unmergeable(void) 2576 { 2577 struct mm_struct *mm = current->mm; 2578 struct vm_area_struct *vma; 2579 int ret; 2580 2581 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2582 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end, 2583 MADV_UNMERGEABLE, &vma->vm_flags); 2584 if (ret) 2585 return ret; 2586 } 2587 mm->def_flags &= ~VM_MERGEABLE; 2588 return 0; 2589 } 2590 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable); 2591 2592 /* 2593 * Enable storage key handling from now on and initialize the storage 2594 * keys with the default key. 2595 */ 2596 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr, 2597 unsigned long next, struct mm_walk *walk) 2598 { 2599 /* Clear storage key */ 2600 ptep_zap_key(walk->mm, addr, pte); 2601 return 0; 2602 } 2603 2604 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr, 2605 unsigned long hmask, unsigned long next, 2606 struct mm_walk *walk) 2607 { 2608 pmd_t *pmd = (pmd_t *)pte; 2609 unsigned long start, end; 2610 struct page *page = pmd_page(*pmd); 2611 2612 /* 2613 * The write check makes sure we do not set a key on shared 2614 * memory. This is needed as the walker does not differentiate 2615 * between actual guest memory and the process executable or 2616 * shared libraries. 2617 */ 2618 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID || 2619 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE)) 2620 return 0; 2621 2622 start = pmd_val(*pmd) & HPAGE_MASK; 2623 end = start + HPAGE_SIZE - 1; 2624 __storage_key_init_range(start, end); 2625 set_bit(PG_arch_1, &page->flags); 2626 return 0; 2627 } 2628 2629 static const struct mm_walk_ops enable_skey_walk_ops = { 2630 .hugetlb_entry = __s390_enable_skey_hugetlb, 2631 .pte_entry = __s390_enable_skey_pte, 2632 }; 2633 2634 int s390_enable_skey(void) 2635 { 2636 struct mm_struct *mm = current->mm; 2637 int rc = 0; 2638 2639 mmap_write_lock(mm); 2640 if (mm_uses_skeys(mm)) 2641 goto out_up; 2642 2643 mm->context.uses_skeys = 1; 2644 rc = gmap_mark_unmergeable(); 2645 if (rc) { 2646 mm->context.uses_skeys = 0; 2647 goto out_up; 2648 } 2649 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL); 2650 2651 out_up: 2652 mmap_write_unlock(mm); 2653 return rc; 2654 } 2655 EXPORT_SYMBOL_GPL(s390_enable_skey); 2656 2657 /* 2658 * Reset CMMA state, make all pages stable again. 2659 */ 2660 static int __s390_reset_cmma(pte_t *pte, unsigned long addr, 2661 unsigned long next, struct mm_walk *walk) 2662 { 2663 ptep_zap_unused(walk->mm, addr, pte, 1); 2664 return 0; 2665 } 2666 2667 static const struct mm_walk_ops reset_cmma_walk_ops = { 2668 .pte_entry = __s390_reset_cmma, 2669 }; 2670 2671 void s390_reset_cmma(struct mm_struct *mm) 2672 { 2673 mmap_write_lock(mm); 2674 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL); 2675 mmap_write_unlock(mm); 2676 } 2677 EXPORT_SYMBOL_GPL(s390_reset_cmma); 2678 2679 /* 2680 * make inaccessible pages accessible again 2681 */ 2682 static int __s390_reset_acc(pte_t *ptep, unsigned long addr, 2683 unsigned long next, struct mm_walk *walk) 2684 { 2685 pte_t pte = READ_ONCE(*ptep); 2686 2687 /* There is a reference through the mapping */ 2688 if (pte_present(pte)) 2689 WARN_ON_ONCE(uv_destroy_owned_page(pte_val(pte) & PAGE_MASK)); 2690 2691 return 0; 2692 } 2693 2694 static const struct mm_walk_ops reset_acc_walk_ops = { 2695 .pte_entry = __s390_reset_acc, 2696 }; 2697 2698 #include <linux/sched/mm.h> 2699 void s390_reset_acc(struct mm_struct *mm) 2700 { 2701 if (!mm_is_protected(mm)) 2702 return; 2703 /* 2704 * we might be called during 2705 * reset: we walk the pages and clear 2706 * close of all kvm file descriptors: we walk the pages and clear 2707 * exit of process on fd closure: vma already gone, do nothing 2708 */ 2709 if (!mmget_not_zero(mm)) 2710 return; 2711 mmap_read_lock(mm); 2712 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL); 2713 mmap_read_unlock(mm); 2714 mmput(mm); 2715 } 2716 EXPORT_SYMBOL_GPL(s390_reset_acc); 2717