xref: /openbmc/linux/arch/s390/mm/fault.c (revision cb1aaebe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include "../kernel/entry.h"
42 
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
46 
47 #define VM_FAULT_BADCONTEXT	0x010000
48 #define VM_FAULT_BADMAP		0x020000
49 #define VM_FAULT_BADACCESS	0x040000
50 #define VM_FAULT_SIGNAL		0x080000
51 #define VM_FAULT_PFAULT		0x100000
52 
53 enum fault_type {
54 	KERNEL_FAULT,
55 	USER_FAULT,
56 	VDSO_FAULT,
57 	GMAP_FAULT,
58 };
59 
60 static unsigned long store_indication __read_mostly;
61 
62 static int __init fault_init(void)
63 {
64 	if (test_facility(75))
65 		store_indication = 0xc00;
66 	return 0;
67 }
68 early_initcall(fault_init);
69 
70 static inline int notify_page_fault(struct pt_regs *regs)
71 {
72 	int ret = 0;
73 
74 	/* kprobe_running() needs smp_processor_id() */
75 	if (kprobes_built_in() && !user_mode(regs)) {
76 		preempt_disable();
77 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
78 			ret = 1;
79 		preempt_enable();
80 	}
81 	return ret;
82 }
83 
84 /*
85  * Find out which address space caused the exception.
86  * Access register mode is impossible, ignore space == 3.
87  */
88 static inline enum fault_type get_fault_type(struct pt_regs *regs)
89 {
90 	unsigned long trans_exc_code;
91 
92 	trans_exc_code = regs->int_parm_long & 3;
93 	if (likely(trans_exc_code == 0)) {
94 		/* primary space exception */
95 		if (IS_ENABLED(CONFIG_PGSTE) &&
96 		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
97 			return GMAP_FAULT;
98 		if (current->thread.mm_segment == USER_DS)
99 			return USER_FAULT;
100 		return KERNEL_FAULT;
101 	}
102 	if (trans_exc_code == 2) {
103 		/* secondary space exception */
104 		if (current->thread.mm_segment & 1) {
105 			if (current->thread.mm_segment == USER_DS_SACF)
106 				return USER_FAULT;
107 			return KERNEL_FAULT;
108 		}
109 		return VDSO_FAULT;
110 	}
111 	/* home space exception -> access via kernel ASCE */
112 	return KERNEL_FAULT;
113 }
114 
115 static int bad_address(void *p)
116 {
117 	unsigned long dummy;
118 
119 	return probe_kernel_address((unsigned long *)p, dummy);
120 }
121 
122 static void dump_pagetable(unsigned long asce, unsigned long address)
123 {
124 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
125 
126 	pr_alert("AS:%016lx ", asce);
127 	switch (asce & _ASCE_TYPE_MASK) {
128 	case _ASCE_TYPE_REGION1:
129 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
130 		if (bad_address(table))
131 			goto bad;
132 		pr_cont("R1:%016lx ", *table);
133 		if (*table & _REGION_ENTRY_INVALID)
134 			goto out;
135 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
136 		/* fallthrough */
137 	case _ASCE_TYPE_REGION2:
138 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
139 		if (bad_address(table))
140 			goto bad;
141 		pr_cont("R2:%016lx ", *table);
142 		if (*table & _REGION_ENTRY_INVALID)
143 			goto out;
144 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
145 		/* fallthrough */
146 	case _ASCE_TYPE_REGION3:
147 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
148 		if (bad_address(table))
149 			goto bad;
150 		pr_cont("R3:%016lx ", *table);
151 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
152 			goto out;
153 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
154 		/* fallthrough */
155 	case _ASCE_TYPE_SEGMENT:
156 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
157 		if (bad_address(table))
158 			goto bad;
159 		pr_cont("S:%016lx ", *table);
160 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
161 			goto out;
162 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
163 	}
164 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
165 	if (bad_address(table))
166 		goto bad;
167 	pr_cont("P:%016lx ", *table);
168 out:
169 	pr_cont("\n");
170 	return;
171 bad:
172 	pr_cont("BAD\n");
173 }
174 
175 static void dump_fault_info(struct pt_regs *regs)
176 {
177 	unsigned long asce;
178 
179 	pr_alert("Failing address: %016lx TEID: %016lx\n",
180 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
181 	pr_alert("Fault in ");
182 	switch (regs->int_parm_long & 3) {
183 	case 3:
184 		pr_cont("home space ");
185 		break;
186 	case 2:
187 		pr_cont("secondary space ");
188 		break;
189 	case 1:
190 		pr_cont("access register ");
191 		break;
192 	case 0:
193 		pr_cont("primary space ");
194 		break;
195 	}
196 	pr_cont("mode while using ");
197 	switch (get_fault_type(regs)) {
198 	case USER_FAULT:
199 		asce = S390_lowcore.user_asce;
200 		pr_cont("user ");
201 		break;
202 	case VDSO_FAULT:
203 		asce = S390_lowcore.vdso_asce;
204 		pr_cont("vdso ");
205 		break;
206 	case GMAP_FAULT:
207 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
208 		pr_cont("gmap ");
209 		break;
210 	case KERNEL_FAULT:
211 		asce = S390_lowcore.kernel_asce;
212 		pr_cont("kernel ");
213 		break;
214 	}
215 	pr_cont("ASCE.\n");
216 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
217 }
218 
219 int show_unhandled_signals = 1;
220 
221 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
222 {
223 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
224 		return;
225 	if (!unhandled_signal(current, signr))
226 		return;
227 	if (!printk_ratelimit())
228 		return;
229 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
230 	       regs->int_code & 0xffff, regs->int_code >> 17);
231 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
232 	printk(KERN_CONT "\n");
233 	if (is_mm_fault)
234 		dump_fault_info(regs);
235 	show_regs(regs);
236 }
237 
238 /*
239  * Send SIGSEGV to task.  This is an external routine
240  * to keep the stack usage of do_page_fault small.
241  */
242 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
243 {
244 	report_user_fault(regs, SIGSEGV, 1);
245 	force_sig_fault(SIGSEGV, si_code,
246 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
247 			current);
248 }
249 
250 const struct exception_table_entry *s390_search_extables(unsigned long addr)
251 {
252 	const struct exception_table_entry *fixup;
253 
254 	fixup = search_extable(__start_dma_ex_table,
255 			       __stop_dma_ex_table - __start_dma_ex_table,
256 			       addr);
257 	if (!fixup)
258 		fixup = search_exception_tables(addr);
259 	return fixup;
260 }
261 
262 static noinline void do_no_context(struct pt_regs *regs)
263 {
264 	const struct exception_table_entry *fixup;
265 
266 	/* Are we prepared to handle this kernel fault?  */
267 	fixup = s390_search_extables(regs->psw.addr);
268 	if (fixup) {
269 		regs->psw.addr = extable_fixup(fixup);
270 		return;
271 	}
272 
273 	/*
274 	 * Oops. The kernel tried to access some bad page. We'll have to
275 	 * terminate things with extreme prejudice.
276 	 */
277 	if (get_fault_type(regs) == KERNEL_FAULT)
278 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
279 		       " in virtual kernel address space\n");
280 	else
281 		printk(KERN_ALERT "Unable to handle kernel paging request"
282 		       " in virtual user address space\n");
283 	dump_fault_info(regs);
284 	die(regs, "Oops");
285 	do_exit(SIGKILL);
286 }
287 
288 static noinline void do_low_address(struct pt_regs *regs)
289 {
290 	/* Low-address protection hit in kernel mode means
291 	   NULL pointer write access in kernel mode.  */
292 	if (regs->psw.mask & PSW_MASK_PSTATE) {
293 		/* Low-address protection hit in user mode 'cannot happen'. */
294 		die (regs, "Low-address protection");
295 		do_exit(SIGKILL);
296 	}
297 
298 	do_no_context(regs);
299 }
300 
301 static noinline void do_sigbus(struct pt_regs *regs)
302 {
303 	/*
304 	 * Send a sigbus, regardless of whether we were in kernel
305 	 * or user mode.
306 	 */
307 	force_sig_fault(SIGBUS, BUS_ADRERR,
308 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
309 			current);
310 }
311 
312 static noinline int signal_return(struct pt_regs *regs)
313 {
314 	u16 instruction;
315 	int rc;
316 
317 	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
318 	if (rc)
319 		return rc;
320 	if (instruction == 0x0a77) {
321 		set_pt_regs_flag(regs, PIF_SYSCALL);
322 		regs->int_code = 0x00040077;
323 		return 0;
324 	} else if (instruction == 0x0aad) {
325 		set_pt_regs_flag(regs, PIF_SYSCALL);
326 		regs->int_code = 0x000400ad;
327 		return 0;
328 	}
329 	return -EACCES;
330 }
331 
332 static noinline void do_fault_error(struct pt_regs *regs, int access,
333 					vm_fault_t fault)
334 {
335 	int si_code;
336 
337 	switch (fault) {
338 	case VM_FAULT_BADACCESS:
339 		if (access == VM_EXEC && signal_return(regs) == 0)
340 			break;
341 	case VM_FAULT_BADMAP:
342 		/* Bad memory access. Check if it is kernel or user space. */
343 		if (user_mode(regs)) {
344 			/* User mode accesses just cause a SIGSEGV */
345 			si_code = (fault == VM_FAULT_BADMAP) ?
346 				SEGV_MAPERR : SEGV_ACCERR;
347 			do_sigsegv(regs, si_code);
348 			break;
349 		}
350 	case VM_FAULT_BADCONTEXT:
351 	case VM_FAULT_PFAULT:
352 		do_no_context(regs);
353 		break;
354 	case VM_FAULT_SIGNAL:
355 		if (!user_mode(regs))
356 			do_no_context(regs);
357 		break;
358 	default: /* fault & VM_FAULT_ERROR */
359 		if (fault & VM_FAULT_OOM) {
360 			if (!user_mode(regs))
361 				do_no_context(regs);
362 			else
363 				pagefault_out_of_memory();
364 		} else if (fault & VM_FAULT_SIGSEGV) {
365 			/* Kernel mode? Handle exceptions or die */
366 			if (!user_mode(regs))
367 				do_no_context(regs);
368 			else
369 				do_sigsegv(regs, SEGV_MAPERR);
370 		} else if (fault & VM_FAULT_SIGBUS) {
371 			/* Kernel mode? Handle exceptions or die */
372 			if (!user_mode(regs))
373 				do_no_context(regs);
374 			else
375 				do_sigbus(regs);
376 		} else
377 			BUG();
378 		break;
379 	}
380 }
381 
382 /*
383  * This routine handles page faults.  It determines the address,
384  * and the problem, and then passes it off to one of the appropriate
385  * routines.
386  *
387  * interruption code (int_code):
388  *   04       Protection           ->  Write-Protection  (suprression)
389  *   10       Segment translation  ->  Not present       (nullification)
390  *   11       Page translation     ->  Not present       (nullification)
391  *   3b       Region third trans.  ->  Not present       (nullification)
392  */
393 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
394 {
395 	struct gmap *gmap;
396 	struct task_struct *tsk;
397 	struct mm_struct *mm;
398 	struct vm_area_struct *vma;
399 	enum fault_type type;
400 	unsigned long trans_exc_code;
401 	unsigned long address;
402 	unsigned int flags;
403 	vm_fault_t fault;
404 
405 	tsk = current;
406 	/*
407 	 * The instruction that caused the program check has
408 	 * been nullified. Don't signal single step via SIGTRAP.
409 	 */
410 	clear_pt_regs_flag(regs, PIF_PER_TRAP);
411 
412 	if (notify_page_fault(regs))
413 		return 0;
414 
415 	mm = tsk->mm;
416 	trans_exc_code = regs->int_parm_long;
417 
418 	/*
419 	 * Verify that the fault happened in user space, that
420 	 * we are not in an interrupt and that there is a
421 	 * user context.
422 	 */
423 	fault = VM_FAULT_BADCONTEXT;
424 	type = get_fault_type(regs);
425 	switch (type) {
426 	case KERNEL_FAULT:
427 		goto out;
428 	case VDSO_FAULT:
429 		fault = VM_FAULT_BADMAP;
430 		goto out;
431 	case USER_FAULT:
432 	case GMAP_FAULT:
433 		if (faulthandler_disabled() || !mm)
434 			goto out;
435 		break;
436 	}
437 
438 	address = trans_exc_code & __FAIL_ADDR_MASK;
439 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
440 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
441 	if (user_mode(regs))
442 		flags |= FAULT_FLAG_USER;
443 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
444 		flags |= FAULT_FLAG_WRITE;
445 	down_read(&mm->mmap_sem);
446 
447 	gmap = NULL;
448 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
449 		gmap = (struct gmap *) S390_lowcore.gmap;
450 		current->thread.gmap_addr = address;
451 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
452 		current->thread.gmap_int_code = regs->int_code & 0xffff;
453 		address = __gmap_translate(gmap, address);
454 		if (address == -EFAULT) {
455 			fault = VM_FAULT_BADMAP;
456 			goto out_up;
457 		}
458 		if (gmap->pfault_enabled)
459 			flags |= FAULT_FLAG_RETRY_NOWAIT;
460 	}
461 
462 retry:
463 	fault = VM_FAULT_BADMAP;
464 	vma = find_vma(mm, address);
465 	if (!vma)
466 		goto out_up;
467 
468 	if (unlikely(vma->vm_start > address)) {
469 		if (!(vma->vm_flags & VM_GROWSDOWN))
470 			goto out_up;
471 		if (expand_stack(vma, address))
472 			goto out_up;
473 	}
474 
475 	/*
476 	 * Ok, we have a good vm_area for this memory access, so
477 	 * we can handle it..
478 	 */
479 	fault = VM_FAULT_BADACCESS;
480 	if (unlikely(!(vma->vm_flags & access)))
481 		goto out_up;
482 
483 	if (is_vm_hugetlb_page(vma))
484 		address &= HPAGE_MASK;
485 	/*
486 	 * If for any reason at all we couldn't handle the fault,
487 	 * make sure we exit gracefully rather than endlessly redo
488 	 * the fault.
489 	 */
490 	fault = handle_mm_fault(vma, address, flags);
491 	/* No reason to continue if interrupted by SIGKILL. */
492 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
493 		fault = VM_FAULT_SIGNAL;
494 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
495 			goto out_up;
496 		goto out;
497 	}
498 	if (unlikely(fault & VM_FAULT_ERROR))
499 		goto out_up;
500 
501 	/*
502 	 * Major/minor page fault accounting is only done on the
503 	 * initial attempt. If we go through a retry, it is extremely
504 	 * likely that the page will be found in page cache at that point.
505 	 */
506 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
507 		if (fault & VM_FAULT_MAJOR) {
508 			tsk->maj_flt++;
509 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
510 				      regs, address);
511 		} else {
512 			tsk->min_flt++;
513 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
514 				      regs, address);
515 		}
516 		if (fault & VM_FAULT_RETRY) {
517 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
518 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
519 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
520 				 * mmap_sem has not been released */
521 				current->thread.gmap_pfault = 1;
522 				fault = VM_FAULT_PFAULT;
523 				goto out_up;
524 			}
525 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
526 			 * of starvation. */
527 			flags &= ~(FAULT_FLAG_ALLOW_RETRY |
528 				   FAULT_FLAG_RETRY_NOWAIT);
529 			flags |= FAULT_FLAG_TRIED;
530 			down_read(&mm->mmap_sem);
531 			goto retry;
532 		}
533 	}
534 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
535 		address =  __gmap_link(gmap, current->thread.gmap_addr,
536 				       address);
537 		if (address == -EFAULT) {
538 			fault = VM_FAULT_BADMAP;
539 			goto out_up;
540 		}
541 		if (address == -ENOMEM) {
542 			fault = VM_FAULT_OOM;
543 			goto out_up;
544 		}
545 	}
546 	fault = 0;
547 out_up:
548 	up_read(&mm->mmap_sem);
549 out:
550 	return fault;
551 }
552 
553 void do_protection_exception(struct pt_regs *regs)
554 {
555 	unsigned long trans_exc_code;
556 	int access;
557 	vm_fault_t fault;
558 
559 	trans_exc_code = regs->int_parm_long;
560 	/*
561 	 * Protection exceptions are suppressing, decrement psw address.
562 	 * The exception to this rule are aborted transactions, for these
563 	 * the PSW already points to the correct location.
564 	 */
565 	if (!(regs->int_code & 0x200))
566 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
567 	/*
568 	 * Check for low-address protection.  This needs to be treated
569 	 * as a special case because the translation exception code
570 	 * field is not guaranteed to contain valid data in this case.
571 	 */
572 	if (unlikely(!(trans_exc_code & 4))) {
573 		do_low_address(regs);
574 		return;
575 	}
576 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
577 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
578 					(regs->psw.addr & PAGE_MASK);
579 		access = VM_EXEC;
580 		fault = VM_FAULT_BADACCESS;
581 	} else {
582 		access = VM_WRITE;
583 		fault = do_exception(regs, access);
584 	}
585 	if (unlikely(fault))
586 		do_fault_error(regs, access, fault);
587 }
588 NOKPROBE_SYMBOL(do_protection_exception);
589 
590 void do_dat_exception(struct pt_regs *regs)
591 {
592 	int access;
593 	vm_fault_t fault;
594 
595 	access = VM_READ | VM_EXEC | VM_WRITE;
596 	fault = do_exception(regs, access);
597 	if (unlikely(fault))
598 		do_fault_error(regs, access, fault);
599 }
600 NOKPROBE_SYMBOL(do_dat_exception);
601 
602 #ifdef CONFIG_PFAULT
603 /*
604  * 'pfault' pseudo page faults routines.
605  */
606 static int pfault_disable;
607 
608 static int __init nopfault(char *str)
609 {
610 	pfault_disable = 1;
611 	return 1;
612 }
613 
614 __setup("nopfault", nopfault);
615 
616 struct pfault_refbk {
617 	u16 refdiagc;
618 	u16 reffcode;
619 	u16 refdwlen;
620 	u16 refversn;
621 	u64 refgaddr;
622 	u64 refselmk;
623 	u64 refcmpmk;
624 	u64 reserved;
625 } __attribute__ ((packed, aligned(8)));
626 
627 static struct pfault_refbk pfault_init_refbk = {
628 	.refdiagc = 0x258,
629 	.reffcode = 0,
630 	.refdwlen = 5,
631 	.refversn = 2,
632 	.refgaddr = __LC_LPP,
633 	.refselmk = 1ULL << 48,
634 	.refcmpmk = 1ULL << 48,
635 	.reserved = __PF_RES_FIELD
636 };
637 
638 int pfault_init(void)
639 {
640         int rc;
641 
642 	if (pfault_disable)
643 		return -1;
644 	diag_stat_inc(DIAG_STAT_X258);
645 	asm volatile(
646 		"	diag	%1,%0,0x258\n"
647 		"0:	j	2f\n"
648 		"1:	la	%0,8\n"
649 		"2:\n"
650 		EX_TABLE(0b,1b)
651 		: "=d" (rc)
652 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
653         return rc;
654 }
655 
656 static struct pfault_refbk pfault_fini_refbk = {
657 	.refdiagc = 0x258,
658 	.reffcode = 1,
659 	.refdwlen = 5,
660 	.refversn = 2,
661 };
662 
663 void pfault_fini(void)
664 {
665 
666 	if (pfault_disable)
667 		return;
668 	diag_stat_inc(DIAG_STAT_X258);
669 	asm volatile(
670 		"	diag	%0,0,0x258\n"
671 		"0:	nopr	%%r7\n"
672 		EX_TABLE(0b,0b)
673 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
674 }
675 
676 static DEFINE_SPINLOCK(pfault_lock);
677 static LIST_HEAD(pfault_list);
678 
679 #define PF_COMPLETE	0x0080
680 
681 /*
682  * The mechanism of our pfault code: if Linux is running as guest, runs a user
683  * space process and the user space process accesses a page that the host has
684  * paged out we get a pfault interrupt.
685  *
686  * This allows us, within the guest, to schedule a different process. Without
687  * this mechanism the host would have to suspend the whole virtual cpu until
688  * the page has been paged in.
689  *
690  * So when we get such an interrupt then we set the state of the current task
691  * to uninterruptible and also set the need_resched flag. Both happens within
692  * interrupt context(!). If we later on want to return to user space we
693  * recognize the need_resched flag and then call schedule().  It's not very
694  * obvious how this works...
695  *
696  * Of course we have a lot of additional fun with the completion interrupt (->
697  * host signals that a page of a process has been paged in and the process can
698  * continue to run). This interrupt can arrive on any cpu and, since we have
699  * virtual cpus, actually appear before the interrupt that signals that a page
700  * is missing.
701  */
702 static void pfault_interrupt(struct ext_code ext_code,
703 			     unsigned int param32, unsigned long param64)
704 {
705 	struct task_struct *tsk;
706 	__u16 subcode;
707 	pid_t pid;
708 
709 	/*
710 	 * Get the external interruption subcode & pfault initial/completion
711 	 * signal bit. VM stores this in the 'cpu address' field associated
712 	 * with the external interrupt.
713 	 */
714 	subcode = ext_code.subcode;
715 	if ((subcode & 0xff00) != __SUBCODE_MASK)
716 		return;
717 	inc_irq_stat(IRQEXT_PFL);
718 	/* Get the token (= pid of the affected task). */
719 	pid = param64 & LPP_PID_MASK;
720 	rcu_read_lock();
721 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
722 	if (tsk)
723 		get_task_struct(tsk);
724 	rcu_read_unlock();
725 	if (!tsk)
726 		return;
727 	spin_lock(&pfault_lock);
728 	if (subcode & PF_COMPLETE) {
729 		/* signal bit is set -> a page has been swapped in by VM */
730 		if (tsk->thread.pfault_wait == 1) {
731 			/* Initial interrupt was faster than the completion
732 			 * interrupt. pfault_wait is valid. Set pfault_wait
733 			 * back to zero and wake up the process. This can
734 			 * safely be done because the task is still sleeping
735 			 * and can't produce new pfaults. */
736 			tsk->thread.pfault_wait = 0;
737 			list_del(&tsk->thread.list);
738 			wake_up_process(tsk);
739 			put_task_struct(tsk);
740 		} else {
741 			/* Completion interrupt was faster than initial
742 			 * interrupt. Set pfault_wait to -1 so the initial
743 			 * interrupt doesn't put the task to sleep.
744 			 * If the task is not running, ignore the completion
745 			 * interrupt since it must be a leftover of a PFAULT
746 			 * CANCEL operation which didn't remove all pending
747 			 * completion interrupts. */
748 			if (tsk->state == TASK_RUNNING)
749 				tsk->thread.pfault_wait = -1;
750 		}
751 	} else {
752 		/* signal bit not set -> a real page is missing. */
753 		if (WARN_ON_ONCE(tsk != current))
754 			goto out;
755 		if (tsk->thread.pfault_wait == 1) {
756 			/* Already on the list with a reference: put to sleep */
757 			goto block;
758 		} else if (tsk->thread.pfault_wait == -1) {
759 			/* Completion interrupt was faster than the initial
760 			 * interrupt (pfault_wait == -1). Set pfault_wait
761 			 * back to zero and exit. */
762 			tsk->thread.pfault_wait = 0;
763 		} else {
764 			/* Initial interrupt arrived before completion
765 			 * interrupt. Let the task sleep.
766 			 * An extra task reference is needed since a different
767 			 * cpu may set the task state to TASK_RUNNING again
768 			 * before the scheduler is reached. */
769 			get_task_struct(tsk);
770 			tsk->thread.pfault_wait = 1;
771 			list_add(&tsk->thread.list, &pfault_list);
772 block:
773 			/* Since this must be a userspace fault, there
774 			 * is no kernel task state to trample. Rely on the
775 			 * return to userspace schedule() to block. */
776 			__set_current_state(TASK_UNINTERRUPTIBLE);
777 			set_tsk_need_resched(tsk);
778 			set_preempt_need_resched();
779 		}
780 	}
781 out:
782 	spin_unlock(&pfault_lock);
783 	put_task_struct(tsk);
784 }
785 
786 static int pfault_cpu_dead(unsigned int cpu)
787 {
788 	struct thread_struct *thread, *next;
789 	struct task_struct *tsk;
790 
791 	spin_lock_irq(&pfault_lock);
792 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
793 		thread->pfault_wait = 0;
794 		list_del(&thread->list);
795 		tsk = container_of(thread, struct task_struct, thread);
796 		wake_up_process(tsk);
797 		put_task_struct(tsk);
798 	}
799 	spin_unlock_irq(&pfault_lock);
800 	return 0;
801 }
802 
803 static int __init pfault_irq_init(void)
804 {
805 	int rc;
806 
807 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
808 	if (rc)
809 		goto out_extint;
810 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
811 	if (rc)
812 		goto out_pfault;
813 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
814 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
815 				  NULL, pfault_cpu_dead);
816 	return 0;
817 
818 out_pfault:
819 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
820 out_extint:
821 	pfault_disable = 1;
822 	return rc;
823 }
824 early_initcall(pfault_irq_init);
825 
826 #endif /* CONFIG_PFAULT */
827