xref: /openbmc/linux/arch/s390/mm/fault.c (revision c5d3cdad)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include <asm/uv.h>
42 #include "../kernel/entry.h"
43 
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 
48 #define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
49 #define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
50 #define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
51 #define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
52 #define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
53 
54 enum fault_type {
55 	KERNEL_FAULT,
56 	USER_FAULT,
57 	VDSO_FAULT,
58 	GMAP_FAULT,
59 };
60 
61 static unsigned long store_indication __read_mostly;
62 
63 static int __init fault_init(void)
64 {
65 	if (test_facility(75))
66 		store_indication = 0xc00;
67 	return 0;
68 }
69 early_initcall(fault_init);
70 
71 /*
72  * Find out which address space caused the exception.
73  */
74 static enum fault_type get_fault_type(struct pt_regs *regs)
75 {
76 	unsigned long trans_exc_code;
77 
78 	trans_exc_code = regs->int_parm_long & 3;
79 	if (likely(trans_exc_code == 0)) {
80 		/* primary space exception */
81 		if (IS_ENABLED(CONFIG_PGSTE) &&
82 		    test_pt_regs_flag(regs, PIF_GUEST_FAULT))
83 			return GMAP_FAULT;
84 		if (current->thread.mm_segment == USER_DS)
85 			return USER_FAULT;
86 		return KERNEL_FAULT;
87 	}
88 	if (trans_exc_code == 2) {
89 		/* secondary space exception */
90 		if (current->thread.mm_segment & 1) {
91 			if (current->thread.mm_segment == USER_DS_SACF)
92 				return USER_FAULT;
93 			return KERNEL_FAULT;
94 		}
95 		return VDSO_FAULT;
96 	}
97 	if (trans_exc_code == 1) {
98 		/* access register mode, not used in the kernel */
99 		return USER_FAULT;
100 	}
101 	/* home space exception -> access via kernel ASCE */
102 	return KERNEL_FAULT;
103 }
104 
105 static int bad_address(void *p)
106 {
107 	unsigned long dummy;
108 
109 	return probe_kernel_address((unsigned long *)p, dummy);
110 }
111 
112 static void dump_pagetable(unsigned long asce, unsigned long address)
113 {
114 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
115 
116 	pr_alert("AS:%016lx ", asce);
117 	switch (asce & _ASCE_TYPE_MASK) {
118 	case _ASCE_TYPE_REGION1:
119 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
120 		if (bad_address(table))
121 			goto bad;
122 		pr_cont("R1:%016lx ", *table);
123 		if (*table & _REGION_ENTRY_INVALID)
124 			goto out;
125 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
126 		fallthrough;
127 	case _ASCE_TYPE_REGION2:
128 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
129 		if (bad_address(table))
130 			goto bad;
131 		pr_cont("R2:%016lx ", *table);
132 		if (*table & _REGION_ENTRY_INVALID)
133 			goto out;
134 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
135 		fallthrough;
136 	case _ASCE_TYPE_REGION3:
137 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
138 		if (bad_address(table))
139 			goto bad;
140 		pr_cont("R3:%016lx ", *table);
141 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
142 			goto out;
143 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
144 		fallthrough;
145 	case _ASCE_TYPE_SEGMENT:
146 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
147 		if (bad_address(table))
148 			goto bad;
149 		pr_cont("S:%016lx ", *table);
150 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
151 			goto out;
152 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
153 	}
154 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
155 	if (bad_address(table))
156 		goto bad;
157 	pr_cont("P:%016lx ", *table);
158 out:
159 	pr_cont("\n");
160 	return;
161 bad:
162 	pr_cont("BAD\n");
163 }
164 
165 static void dump_fault_info(struct pt_regs *regs)
166 {
167 	unsigned long asce;
168 
169 	pr_alert("Failing address: %016lx TEID: %016lx\n",
170 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
171 	pr_alert("Fault in ");
172 	switch (regs->int_parm_long & 3) {
173 	case 3:
174 		pr_cont("home space ");
175 		break;
176 	case 2:
177 		pr_cont("secondary space ");
178 		break;
179 	case 1:
180 		pr_cont("access register ");
181 		break;
182 	case 0:
183 		pr_cont("primary space ");
184 		break;
185 	}
186 	pr_cont("mode while using ");
187 	switch (get_fault_type(regs)) {
188 	case USER_FAULT:
189 		asce = S390_lowcore.user_asce;
190 		pr_cont("user ");
191 		break;
192 	case VDSO_FAULT:
193 		asce = S390_lowcore.vdso_asce;
194 		pr_cont("vdso ");
195 		break;
196 	case GMAP_FAULT:
197 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
198 		pr_cont("gmap ");
199 		break;
200 	case KERNEL_FAULT:
201 		asce = S390_lowcore.kernel_asce;
202 		pr_cont("kernel ");
203 		break;
204 	default:
205 		unreachable();
206 	}
207 	pr_cont("ASCE.\n");
208 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
209 }
210 
211 int show_unhandled_signals = 1;
212 
213 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
214 {
215 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
216 		return;
217 	if (!unhandled_signal(current, signr))
218 		return;
219 	if (!printk_ratelimit())
220 		return;
221 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
222 	       regs->int_code & 0xffff, regs->int_code >> 17);
223 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
224 	printk(KERN_CONT "\n");
225 	if (is_mm_fault)
226 		dump_fault_info(regs);
227 	show_regs(regs);
228 }
229 
230 /*
231  * Send SIGSEGV to task.  This is an external routine
232  * to keep the stack usage of do_page_fault small.
233  */
234 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
235 {
236 	report_user_fault(regs, SIGSEGV, 1);
237 	force_sig_fault(SIGSEGV, si_code,
238 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
239 }
240 
241 const struct exception_table_entry *s390_search_extables(unsigned long addr)
242 {
243 	const struct exception_table_entry *fixup;
244 
245 	fixup = search_extable(__start_dma_ex_table,
246 			       __stop_dma_ex_table - __start_dma_ex_table,
247 			       addr);
248 	if (!fixup)
249 		fixup = search_exception_tables(addr);
250 	return fixup;
251 }
252 
253 static noinline void do_no_context(struct pt_regs *regs)
254 {
255 	const struct exception_table_entry *fixup;
256 
257 	/* Are we prepared to handle this kernel fault?  */
258 	fixup = s390_search_extables(regs->psw.addr);
259 	if (fixup) {
260 		regs->psw.addr = extable_fixup(fixup);
261 		return;
262 	}
263 
264 	/*
265 	 * Oops. The kernel tried to access some bad page. We'll have to
266 	 * terminate things with extreme prejudice.
267 	 */
268 	if (get_fault_type(regs) == KERNEL_FAULT)
269 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
270 		       " in virtual kernel address space\n");
271 	else
272 		printk(KERN_ALERT "Unable to handle kernel paging request"
273 		       " in virtual user address space\n");
274 	dump_fault_info(regs);
275 	die(regs, "Oops");
276 	do_exit(SIGKILL);
277 }
278 
279 static noinline void do_low_address(struct pt_regs *regs)
280 {
281 	/* Low-address protection hit in kernel mode means
282 	   NULL pointer write access in kernel mode.  */
283 	if (regs->psw.mask & PSW_MASK_PSTATE) {
284 		/* Low-address protection hit in user mode 'cannot happen'. */
285 		die (regs, "Low-address protection");
286 		do_exit(SIGKILL);
287 	}
288 
289 	do_no_context(regs);
290 }
291 
292 static noinline void do_sigbus(struct pt_regs *regs)
293 {
294 	/*
295 	 * Send a sigbus, regardless of whether we were in kernel
296 	 * or user mode.
297 	 */
298 	force_sig_fault(SIGBUS, BUS_ADRERR,
299 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
300 }
301 
302 static noinline int signal_return(struct pt_regs *regs)
303 {
304 	u16 instruction;
305 	int rc;
306 
307 	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
308 	if (rc)
309 		return rc;
310 	if (instruction == 0x0a77) {
311 		set_pt_regs_flag(regs, PIF_SYSCALL);
312 		regs->int_code = 0x00040077;
313 		return 0;
314 	} else if (instruction == 0x0aad) {
315 		set_pt_regs_flag(regs, PIF_SYSCALL);
316 		regs->int_code = 0x000400ad;
317 		return 0;
318 	}
319 	return -EACCES;
320 }
321 
322 static noinline void do_fault_error(struct pt_regs *regs, int access,
323 					vm_fault_t fault)
324 {
325 	int si_code;
326 
327 	switch (fault) {
328 	case VM_FAULT_BADACCESS:
329 		if (access == VM_EXEC && signal_return(regs) == 0)
330 			break;
331 		fallthrough;
332 	case VM_FAULT_BADMAP:
333 		/* Bad memory access. Check if it is kernel or user space. */
334 		if (user_mode(regs)) {
335 			/* User mode accesses just cause a SIGSEGV */
336 			si_code = (fault == VM_FAULT_BADMAP) ?
337 				SEGV_MAPERR : SEGV_ACCERR;
338 			do_sigsegv(regs, si_code);
339 			break;
340 		}
341 		fallthrough;
342 	case VM_FAULT_BADCONTEXT:
343 	case VM_FAULT_PFAULT:
344 		do_no_context(regs);
345 		break;
346 	case VM_FAULT_SIGNAL:
347 		if (!user_mode(regs))
348 			do_no_context(regs);
349 		break;
350 	default: /* fault & VM_FAULT_ERROR */
351 		if (fault & VM_FAULT_OOM) {
352 			if (!user_mode(regs))
353 				do_no_context(regs);
354 			else
355 				pagefault_out_of_memory();
356 		} else if (fault & VM_FAULT_SIGSEGV) {
357 			/* Kernel mode? Handle exceptions or die */
358 			if (!user_mode(regs))
359 				do_no_context(regs);
360 			else
361 				do_sigsegv(regs, SEGV_MAPERR);
362 		} else if (fault & VM_FAULT_SIGBUS) {
363 			/* Kernel mode? Handle exceptions or die */
364 			if (!user_mode(regs))
365 				do_no_context(regs);
366 			else
367 				do_sigbus(regs);
368 		} else
369 			BUG();
370 		break;
371 	}
372 }
373 
374 /*
375  * This routine handles page faults.  It determines the address,
376  * and the problem, and then passes it off to one of the appropriate
377  * routines.
378  *
379  * interruption code (int_code):
380  *   04       Protection           ->  Write-Protection  (suprression)
381  *   10       Segment translation  ->  Not present       (nullification)
382  *   11       Page translation     ->  Not present       (nullification)
383  *   3b       Region third trans.  ->  Not present       (nullification)
384  */
385 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
386 {
387 	struct gmap *gmap;
388 	struct task_struct *tsk;
389 	struct mm_struct *mm;
390 	struct vm_area_struct *vma;
391 	enum fault_type type;
392 	unsigned long trans_exc_code;
393 	unsigned long address;
394 	unsigned int flags;
395 	vm_fault_t fault;
396 
397 	tsk = current;
398 	/*
399 	 * The instruction that caused the program check has
400 	 * been nullified. Don't signal single step via SIGTRAP.
401 	 */
402 	clear_pt_regs_flag(regs, PIF_PER_TRAP);
403 
404 	if (kprobe_page_fault(regs, 14))
405 		return 0;
406 
407 	mm = tsk->mm;
408 	trans_exc_code = regs->int_parm_long;
409 
410 	/*
411 	 * Verify that the fault happened in user space, that
412 	 * we are not in an interrupt and that there is a
413 	 * user context.
414 	 */
415 	fault = VM_FAULT_BADCONTEXT;
416 	type = get_fault_type(regs);
417 	switch (type) {
418 	case KERNEL_FAULT:
419 		goto out;
420 	case VDSO_FAULT:
421 		fault = VM_FAULT_BADMAP;
422 		goto out;
423 	case USER_FAULT:
424 	case GMAP_FAULT:
425 		if (faulthandler_disabled() || !mm)
426 			goto out;
427 		break;
428 	}
429 
430 	address = trans_exc_code & __FAIL_ADDR_MASK;
431 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
432 	flags = FAULT_FLAG_DEFAULT;
433 	if (user_mode(regs))
434 		flags |= FAULT_FLAG_USER;
435 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
436 		flags |= FAULT_FLAG_WRITE;
437 	down_read(&mm->mmap_sem);
438 
439 	gmap = NULL;
440 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
441 		gmap = (struct gmap *) S390_lowcore.gmap;
442 		current->thread.gmap_addr = address;
443 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
444 		current->thread.gmap_int_code = regs->int_code & 0xffff;
445 		address = __gmap_translate(gmap, address);
446 		if (address == -EFAULT) {
447 			fault = VM_FAULT_BADMAP;
448 			goto out_up;
449 		}
450 		if (gmap->pfault_enabled)
451 			flags |= FAULT_FLAG_RETRY_NOWAIT;
452 	}
453 
454 retry:
455 	fault = VM_FAULT_BADMAP;
456 	vma = find_vma(mm, address);
457 	if (!vma)
458 		goto out_up;
459 
460 	if (unlikely(vma->vm_start > address)) {
461 		if (!(vma->vm_flags & VM_GROWSDOWN))
462 			goto out_up;
463 		if (expand_stack(vma, address))
464 			goto out_up;
465 	}
466 
467 	/*
468 	 * Ok, we have a good vm_area for this memory access, so
469 	 * we can handle it..
470 	 */
471 	fault = VM_FAULT_BADACCESS;
472 	if (unlikely(!(vma->vm_flags & access)))
473 		goto out_up;
474 
475 	if (is_vm_hugetlb_page(vma))
476 		address &= HPAGE_MASK;
477 	/*
478 	 * If for any reason at all we couldn't handle the fault,
479 	 * make sure we exit gracefully rather than endlessly redo
480 	 * the fault.
481 	 */
482 	fault = handle_mm_fault(vma, address, flags);
483 	if (fault_signal_pending(fault, regs)) {
484 		fault = VM_FAULT_SIGNAL;
485 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
486 			goto out_up;
487 		goto out;
488 	}
489 	if (unlikely(fault & VM_FAULT_ERROR))
490 		goto out_up;
491 
492 	/*
493 	 * Major/minor page fault accounting is only done on the
494 	 * initial attempt. If we go through a retry, it is extremely
495 	 * likely that the page will be found in page cache at that point.
496 	 */
497 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
498 		if (fault & VM_FAULT_MAJOR) {
499 			tsk->maj_flt++;
500 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
501 				      regs, address);
502 		} else {
503 			tsk->min_flt++;
504 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
505 				      regs, address);
506 		}
507 		if (fault & VM_FAULT_RETRY) {
508 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
509 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
510 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
511 				 * mmap_sem has not been released */
512 				current->thread.gmap_pfault = 1;
513 				fault = VM_FAULT_PFAULT;
514 				goto out_up;
515 			}
516 			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
517 			flags |= FAULT_FLAG_TRIED;
518 			down_read(&mm->mmap_sem);
519 			goto retry;
520 		}
521 	}
522 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
523 		address =  __gmap_link(gmap, current->thread.gmap_addr,
524 				       address);
525 		if (address == -EFAULT) {
526 			fault = VM_FAULT_BADMAP;
527 			goto out_up;
528 		}
529 		if (address == -ENOMEM) {
530 			fault = VM_FAULT_OOM;
531 			goto out_up;
532 		}
533 	}
534 	fault = 0;
535 out_up:
536 	up_read(&mm->mmap_sem);
537 out:
538 	return fault;
539 }
540 
541 void do_protection_exception(struct pt_regs *regs)
542 {
543 	unsigned long trans_exc_code;
544 	int access;
545 	vm_fault_t fault;
546 
547 	trans_exc_code = regs->int_parm_long;
548 	/*
549 	 * Protection exceptions are suppressing, decrement psw address.
550 	 * The exception to this rule are aborted transactions, for these
551 	 * the PSW already points to the correct location.
552 	 */
553 	if (!(regs->int_code & 0x200))
554 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
555 	/*
556 	 * Check for low-address protection.  This needs to be treated
557 	 * as a special case because the translation exception code
558 	 * field is not guaranteed to contain valid data in this case.
559 	 */
560 	if (unlikely(!(trans_exc_code & 4))) {
561 		do_low_address(regs);
562 		return;
563 	}
564 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
565 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
566 					(regs->psw.addr & PAGE_MASK);
567 		access = VM_EXEC;
568 		fault = VM_FAULT_BADACCESS;
569 	} else {
570 		access = VM_WRITE;
571 		fault = do_exception(regs, access);
572 	}
573 	if (unlikely(fault))
574 		do_fault_error(regs, access, fault);
575 }
576 NOKPROBE_SYMBOL(do_protection_exception);
577 
578 void do_dat_exception(struct pt_regs *regs)
579 {
580 	int access;
581 	vm_fault_t fault;
582 
583 	access = VM_ACCESS_FLAGS;
584 	fault = do_exception(regs, access);
585 	if (unlikely(fault))
586 		do_fault_error(regs, access, fault);
587 }
588 NOKPROBE_SYMBOL(do_dat_exception);
589 
590 #ifdef CONFIG_PFAULT
591 /*
592  * 'pfault' pseudo page faults routines.
593  */
594 static int pfault_disable;
595 
596 static int __init nopfault(char *str)
597 {
598 	pfault_disable = 1;
599 	return 1;
600 }
601 
602 __setup("nopfault", nopfault);
603 
604 struct pfault_refbk {
605 	u16 refdiagc;
606 	u16 reffcode;
607 	u16 refdwlen;
608 	u16 refversn;
609 	u64 refgaddr;
610 	u64 refselmk;
611 	u64 refcmpmk;
612 	u64 reserved;
613 } __attribute__ ((packed, aligned(8)));
614 
615 static struct pfault_refbk pfault_init_refbk = {
616 	.refdiagc = 0x258,
617 	.reffcode = 0,
618 	.refdwlen = 5,
619 	.refversn = 2,
620 	.refgaddr = __LC_LPP,
621 	.refselmk = 1ULL << 48,
622 	.refcmpmk = 1ULL << 48,
623 	.reserved = __PF_RES_FIELD
624 };
625 
626 int pfault_init(void)
627 {
628         int rc;
629 
630 	if (pfault_disable)
631 		return -1;
632 	diag_stat_inc(DIAG_STAT_X258);
633 	asm volatile(
634 		"	diag	%1,%0,0x258\n"
635 		"0:	j	2f\n"
636 		"1:	la	%0,8\n"
637 		"2:\n"
638 		EX_TABLE(0b,1b)
639 		: "=d" (rc)
640 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
641         return rc;
642 }
643 
644 static struct pfault_refbk pfault_fini_refbk = {
645 	.refdiagc = 0x258,
646 	.reffcode = 1,
647 	.refdwlen = 5,
648 	.refversn = 2,
649 };
650 
651 void pfault_fini(void)
652 {
653 
654 	if (pfault_disable)
655 		return;
656 	diag_stat_inc(DIAG_STAT_X258);
657 	asm volatile(
658 		"	diag	%0,0,0x258\n"
659 		"0:	nopr	%%r7\n"
660 		EX_TABLE(0b,0b)
661 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
662 }
663 
664 static DEFINE_SPINLOCK(pfault_lock);
665 static LIST_HEAD(pfault_list);
666 
667 #define PF_COMPLETE	0x0080
668 
669 /*
670  * The mechanism of our pfault code: if Linux is running as guest, runs a user
671  * space process and the user space process accesses a page that the host has
672  * paged out we get a pfault interrupt.
673  *
674  * This allows us, within the guest, to schedule a different process. Without
675  * this mechanism the host would have to suspend the whole virtual cpu until
676  * the page has been paged in.
677  *
678  * So when we get such an interrupt then we set the state of the current task
679  * to uninterruptible and also set the need_resched flag. Both happens within
680  * interrupt context(!). If we later on want to return to user space we
681  * recognize the need_resched flag and then call schedule().  It's not very
682  * obvious how this works...
683  *
684  * Of course we have a lot of additional fun with the completion interrupt (->
685  * host signals that a page of a process has been paged in and the process can
686  * continue to run). This interrupt can arrive on any cpu and, since we have
687  * virtual cpus, actually appear before the interrupt that signals that a page
688  * is missing.
689  */
690 static void pfault_interrupt(struct ext_code ext_code,
691 			     unsigned int param32, unsigned long param64)
692 {
693 	struct task_struct *tsk;
694 	__u16 subcode;
695 	pid_t pid;
696 
697 	/*
698 	 * Get the external interruption subcode & pfault initial/completion
699 	 * signal bit. VM stores this in the 'cpu address' field associated
700 	 * with the external interrupt.
701 	 */
702 	subcode = ext_code.subcode;
703 	if ((subcode & 0xff00) != __SUBCODE_MASK)
704 		return;
705 	inc_irq_stat(IRQEXT_PFL);
706 	/* Get the token (= pid of the affected task). */
707 	pid = param64 & LPP_PID_MASK;
708 	rcu_read_lock();
709 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
710 	if (tsk)
711 		get_task_struct(tsk);
712 	rcu_read_unlock();
713 	if (!tsk)
714 		return;
715 	spin_lock(&pfault_lock);
716 	if (subcode & PF_COMPLETE) {
717 		/* signal bit is set -> a page has been swapped in by VM */
718 		if (tsk->thread.pfault_wait == 1) {
719 			/* Initial interrupt was faster than the completion
720 			 * interrupt. pfault_wait is valid. Set pfault_wait
721 			 * back to zero and wake up the process. This can
722 			 * safely be done because the task is still sleeping
723 			 * and can't produce new pfaults. */
724 			tsk->thread.pfault_wait = 0;
725 			list_del(&tsk->thread.list);
726 			wake_up_process(tsk);
727 			put_task_struct(tsk);
728 		} else {
729 			/* Completion interrupt was faster than initial
730 			 * interrupt. Set pfault_wait to -1 so the initial
731 			 * interrupt doesn't put the task to sleep.
732 			 * If the task is not running, ignore the completion
733 			 * interrupt since it must be a leftover of a PFAULT
734 			 * CANCEL operation which didn't remove all pending
735 			 * completion interrupts. */
736 			if (tsk->state == TASK_RUNNING)
737 				tsk->thread.pfault_wait = -1;
738 		}
739 	} else {
740 		/* signal bit not set -> a real page is missing. */
741 		if (WARN_ON_ONCE(tsk != current))
742 			goto out;
743 		if (tsk->thread.pfault_wait == 1) {
744 			/* Already on the list with a reference: put to sleep */
745 			goto block;
746 		} else if (tsk->thread.pfault_wait == -1) {
747 			/* Completion interrupt was faster than the initial
748 			 * interrupt (pfault_wait == -1). Set pfault_wait
749 			 * back to zero and exit. */
750 			tsk->thread.pfault_wait = 0;
751 		} else {
752 			/* Initial interrupt arrived before completion
753 			 * interrupt. Let the task sleep.
754 			 * An extra task reference is needed since a different
755 			 * cpu may set the task state to TASK_RUNNING again
756 			 * before the scheduler is reached. */
757 			get_task_struct(tsk);
758 			tsk->thread.pfault_wait = 1;
759 			list_add(&tsk->thread.list, &pfault_list);
760 block:
761 			/* Since this must be a userspace fault, there
762 			 * is no kernel task state to trample. Rely on the
763 			 * return to userspace schedule() to block. */
764 			__set_current_state(TASK_UNINTERRUPTIBLE);
765 			set_tsk_need_resched(tsk);
766 			set_preempt_need_resched();
767 		}
768 	}
769 out:
770 	spin_unlock(&pfault_lock);
771 	put_task_struct(tsk);
772 }
773 
774 static int pfault_cpu_dead(unsigned int cpu)
775 {
776 	struct thread_struct *thread, *next;
777 	struct task_struct *tsk;
778 
779 	spin_lock_irq(&pfault_lock);
780 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
781 		thread->pfault_wait = 0;
782 		list_del(&thread->list);
783 		tsk = container_of(thread, struct task_struct, thread);
784 		wake_up_process(tsk);
785 		put_task_struct(tsk);
786 	}
787 	spin_unlock_irq(&pfault_lock);
788 	return 0;
789 }
790 
791 static int __init pfault_irq_init(void)
792 {
793 	int rc;
794 
795 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
796 	if (rc)
797 		goto out_extint;
798 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
799 	if (rc)
800 		goto out_pfault;
801 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
802 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
803 				  NULL, pfault_cpu_dead);
804 	return 0;
805 
806 out_pfault:
807 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
808 out_extint:
809 	pfault_disable = 1;
810 	return rc;
811 }
812 early_initcall(pfault_irq_init);
813 
814 #endif /* CONFIG_PFAULT */
815 
816 #if IS_ENABLED(CONFIG_PGSTE)
817 void do_secure_storage_access(struct pt_regs *regs)
818 {
819 	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
820 	struct vm_area_struct *vma;
821 	struct mm_struct *mm;
822 	struct page *page;
823 	int rc;
824 
825 	switch (get_fault_type(regs)) {
826 	case USER_FAULT:
827 		mm = current->mm;
828 		down_read(&mm->mmap_sem);
829 		vma = find_vma(mm, addr);
830 		if (!vma) {
831 			up_read(&mm->mmap_sem);
832 			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
833 			break;
834 		}
835 		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
836 		if (IS_ERR_OR_NULL(page)) {
837 			up_read(&mm->mmap_sem);
838 			break;
839 		}
840 		if (arch_make_page_accessible(page))
841 			send_sig(SIGSEGV, current, 0);
842 		put_page(page);
843 		up_read(&mm->mmap_sem);
844 		break;
845 	case KERNEL_FAULT:
846 		page = phys_to_page(addr);
847 		if (unlikely(!try_get_page(page)))
848 			break;
849 		rc = arch_make_page_accessible(page);
850 		put_page(page);
851 		if (rc)
852 			BUG();
853 		break;
854 	case VDSO_FAULT:
855 	case GMAP_FAULT:
856 	default:
857 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
858 		WARN_ON_ONCE(1);
859 	}
860 }
861 NOKPROBE_SYMBOL(do_secure_storage_access);
862 
863 void do_non_secure_storage_access(struct pt_regs *regs)
864 {
865 	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
866 	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
867 
868 	if (get_fault_type(regs) != GMAP_FAULT) {
869 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
870 		WARN_ON_ONCE(1);
871 		return;
872 	}
873 
874 	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
875 		send_sig(SIGSEGV, current, 0);
876 }
877 NOKPROBE_SYMBOL(do_non_secure_storage_access);
878 
879 #else
880 void do_secure_storage_access(struct pt_regs *regs)
881 {
882 	default_trap_handler(regs);
883 }
884 
885 void do_non_secure_storage_access(struct pt_regs *regs)
886 {
887 	default_trap_handler(regs);
888 }
889 #endif
890