xref: /openbmc/linux/arch/s390/mm/fault.c (revision c4c11dd1)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (uweigand@de.ibm.com)
6  *
7  *  Derived from "arch/i386/mm/fault.c"
8  *    Copyright (C) 1995  Linus Torvalds
9  */
10 
11 #include <linux/kernel_stat.h>
12 #include <linux/perf_event.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
21 #include <linux/mm.h>
22 #include <linux/compat.h>
23 #include <linux/smp.h>
24 #include <linux/kdebug.h>
25 #include <linux/init.h>
26 #include <linux/console.h>
27 #include <linux/module.h>
28 #include <linux/hardirq.h>
29 #include <linux/kprobes.h>
30 #include <linux/uaccess.h>
31 #include <linux/hugetlb.h>
32 #include <asm/asm-offsets.h>
33 #include <asm/pgtable.h>
34 #include <asm/irq.h>
35 #include <asm/mmu_context.h>
36 #include <asm/facility.h>
37 #include "../kernel/entry.h"
38 
39 #ifndef CONFIG_64BIT
40 #define __FAIL_ADDR_MASK 0x7ffff000
41 #define __SUBCODE_MASK 0x0200
42 #define __PF_RES_FIELD 0ULL
43 #else /* CONFIG_64BIT */
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 #endif /* CONFIG_64BIT */
48 
49 #define VM_FAULT_BADCONTEXT	0x010000
50 #define VM_FAULT_BADMAP		0x020000
51 #define VM_FAULT_BADACCESS	0x040000
52 #define VM_FAULT_SIGNAL		0x080000
53 
54 static unsigned long store_indication __read_mostly;
55 
56 #ifdef CONFIG_64BIT
57 static int __init fault_init(void)
58 {
59 	if (test_facility(75))
60 		store_indication = 0xc00;
61 	return 0;
62 }
63 early_initcall(fault_init);
64 #endif
65 
66 static inline int notify_page_fault(struct pt_regs *regs)
67 {
68 	int ret = 0;
69 
70 	/* kprobe_running() needs smp_processor_id() */
71 	if (kprobes_built_in() && !user_mode(regs)) {
72 		preempt_disable();
73 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
74 			ret = 1;
75 		preempt_enable();
76 	}
77 	return ret;
78 }
79 
80 
81 /*
82  * Unlock any spinlocks which will prevent us from getting the
83  * message out.
84  */
85 void bust_spinlocks(int yes)
86 {
87 	if (yes) {
88 		oops_in_progress = 1;
89 	} else {
90 		int loglevel_save = console_loglevel;
91 		console_unblank();
92 		oops_in_progress = 0;
93 		/*
94 		 * OK, the message is on the console.  Now we call printk()
95 		 * without oops_in_progress set so that printk will give klogd
96 		 * a poke.  Hold onto your hats...
97 		 */
98 		console_loglevel = 15;
99 		printk(" ");
100 		console_loglevel = loglevel_save;
101 	}
102 }
103 
104 /*
105  * Returns the address space associated with the fault.
106  * Returns 0 for kernel space and 1 for user space.
107  */
108 static inline int user_space_fault(unsigned long trans_exc_code)
109 {
110 	/*
111 	 * The lowest two bits of the translation exception
112 	 * identification indicate which paging table was used.
113 	 */
114 	trans_exc_code &= 3;
115 	if (trans_exc_code == 2)
116 		/* Access via secondary space, set_fs setting decides */
117 		return current->thread.mm_segment.ar4;
118 	if (s390_user_mode == HOME_SPACE_MODE)
119 		/* User space if the access has been done via home space. */
120 		return trans_exc_code == 3;
121 	/*
122 	 * If the user space is not the home space the kernel runs in home
123 	 * space. Access via secondary space has already been covered,
124 	 * access via primary space or access register is from user space
125 	 * and access via home space is from the kernel.
126 	 */
127 	return trans_exc_code != 3;
128 }
129 
130 static inline void report_user_fault(struct pt_regs *regs, long signr)
131 {
132 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
133 		return;
134 	if (!unhandled_signal(current, signr))
135 		return;
136 	if (!printk_ratelimit())
137 		return;
138 	printk(KERN_ALERT "User process fault: interruption code 0x%X ",
139 	       regs->int_code);
140 	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
141 	printk(KERN_CONT "\n");
142 	printk(KERN_ALERT "failing address: %lX\n",
143 	       regs->int_parm_long & __FAIL_ADDR_MASK);
144 	show_regs(regs);
145 }
146 
147 /*
148  * Send SIGSEGV to task.  This is an external routine
149  * to keep the stack usage of do_page_fault small.
150  */
151 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
152 {
153 	struct siginfo si;
154 
155 	report_user_fault(regs, SIGSEGV);
156 	si.si_signo = SIGSEGV;
157 	si.si_code = si_code;
158 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
159 	force_sig_info(SIGSEGV, &si, current);
160 }
161 
162 static noinline void do_no_context(struct pt_regs *regs)
163 {
164 	const struct exception_table_entry *fixup;
165 	unsigned long address;
166 
167 	/* Are we prepared to handle this kernel fault?  */
168 	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
169 	if (fixup) {
170 		regs->psw.addr = extable_fixup(fixup) | PSW_ADDR_AMODE;
171 		return;
172 	}
173 
174 	/*
175 	 * Oops. The kernel tried to access some bad page. We'll have to
176 	 * terminate things with extreme prejudice.
177 	 */
178 	address = regs->int_parm_long & __FAIL_ADDR_MASK;
179 	if (!user_space_fault(regs->int_parm_long))
180 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
181 		       " at virtual kernel address %p\n", (void *)address);
182 	else
183 		printk(KERN_ALERT "Unable to handle kernel paging request"
184 		       " at virtual user address %p\n", (void *)address);
185 
186 	die(regs, "Oops");
187 	do_exit(SIGKILL);
188 }
189 
190 static noinline void do_low_address(struct pt_regs *regs)
191 {
192 	/* Low-address protection hit in kernel mode means
193 	   NULL pointer write access in kernel mode.  */
194 	if (regs->psw.mask & PSW_MASK_PSTATE) {
195 		/* Low-address protection hit in user mode 'cannot happen'. */
196 		die (regs, "Low-address protection");
197 		do_exit(SIGKILL);
198 	}
199 
200 	do_no_context(regs);
201 }
202 
203 static noinline void do_sigbus(struct pt_regs *regs)
204 {
205 	struct task_struct *tsk = current;
206 	struct siginfo si;
207 
208 	/*
209 	 * Send a sigbus, regardless of whether we were in kernel
210 	 * or user mode.
211 	 */
212 	si.si_signo = SIGBUS;
213 	si.si_errno = 0;
214 	si.si_code = BUS_ADRERR;
215 	si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
216 	force_sig_info(SIGBUS, &si, tsk);
217 }
218 
219 static noinline void do_fault_error(struct pt_regs *regs, int fault)
220 {
221 	int si_code;
222 
223 	switch (fault) {
224 	case VM_FAULT_BADACCESS:
225 	case VM_FAULT_BADMAP:
226 		/* Bad memory access. Check if it is kernel or user space. */
227 		if (user_mode(regs)) {
228 			/* User mode accesses just cause a SIGSEGV */
229 			si_code = (fault == VM_FAULT_BADMAP) ?
230 				SEGV_MAPERR : SEGV_ACCERR;
231 			do_sigsegv(regs, si_code);
232 			return;
233 		}
234 	case VM_FAULT_BADCONTEXT:
235 		do_no_context(regs);
236 		break;
237 	case VM_FAULT_SIGNAL:
238 		if (!user_mode(regs))
239 			do_no_context(regs);
240 		break;
241 	default: /* fault & VM_FAULT_ERROR */
242 		if (fault & VM_FAULT_OOM) {
243 			if (!user_mode(regs))
244 				do_no_context(regs);
245 			else
246 				pagefault_out_of_memory();
247 		} else if (fault & VM_FAULT_SIGBUS) {
248 			/* Kernel mode? Handle exceptions or die */
249 			if (!user_mode(regs))
250 				do_no_context(regs);
251 			else
252 				do_sigbus(regs);
253 		} else
254 			BUG();
255 		break;
256 	}
257 }
258 
259 /*
260  * This routine handles page faults.  It determines the address,
261  * and the problem, and then passes it off to one of the appropriate
262  * routines.
263  *
264  * interruption code (int_code):
265  *   04       Protection           ->  Write-Protection  (suprression)
266  *   10       Segment translation  ->  Not present       (nullification)
267  *   11       Page translation     ->  Not present       (nullification)
268  *   3b       Region third trans.  ->  Not present       (nullification)
269  */
270 static inline int do_exception(struct pt_regs *regs, int access)
271 {
272 	struct task_struct *tsk;
273 	struct mm_struct *mm;
274 	struct vm_area_struct *vma;
275 	unsigned long trans_exc_code;
276 	unsigned long address;
277 	unsigned int flags;
278 	int fault;
279 
280 	tsk = current;
281 	/*
282 	 * The instruction that caused the program check has
283 	 * been nullified. Don't signal single step via SIGTRAP.
284 	 */
285 	clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
286 
287 	if (notify_page_fault(regs))
288 		return 0;
289 
290 	mm = tsk->mm;
291 	trans_exc_code = regs->int_parm_long;
292 
293 	/*
294 	 * Verify that the fault happened in user space, that
295 	 * we are not in an interrupt and that there is a
296 	 * user context.
297 	 */
298 	fault = VM_FAULT_BADCONTEXT;
299 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
300 		goto out;
301 
302 	address = trans_exc_code & __FAIL_ADDR_MASK;
303 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
304 	flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
305 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
306 		flags |= FAULT_FLAG_WRITE;
307 	down_read(&mm->mmap_sem);
308 
309 #ifdef CONFIG_PGSTE
310 	if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
311 		address = __gmap_fault(address,
312 				     (struct gmap *) S390_lowcore.gmap);
313 		if (address == -EFAULT) {
314 			fault = VM_FAULT_BADMAP;
315 			goto out_up;
316 		}
317 		if (address == -ENOMEM) {
318 			fault = VM_FAULT_OOM;
319 			goto out_up;
320 		}
321 	}
322 #endif
323 
324 retry:
325 	fault = VM_FAULT_BADMAP;
326 	vma = find_vma(mm, address);
327 	if (!vma)
328 		goto out_up;
329 
330 	if (unlikely(vma->vm_start > address)) {
331 		if (!(vma->vm_flags & VM_GROWSDOWN))
332 			goto out_up;
333 		if (expand_stack(vma, address))
334 			goto out_up;
335 	}
336 
337 	/*
338 	 * Ok, we have a good vm_area for this memory access, so
339 	 * we can handle it..
340 	 */
341 	fault = VM_FAULT_BADACCESS;
342 	if (unlikely(!(vma->vm_flags & access)))
343 		goto out_up;
344 
345 	if (is_vm_hugetlb_page(vma))
346 		address &= HPAGE_MASK;
347 	/*
348 	 * If for any reason at all we couldn't handle the fault,
349 	 * make sure we exit gracefully rather than endlessly redo
350 	 * the fault.
351 	 */
352 	fault = handle_mm_fault(mm, vma, address, flags);
353 	/* No reason to continue if interrupted by SIGKILL. */
354 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
355 		fault = VM_FAULT_SIGNAL;
356 		goto out;
357 	}
358 	if (unlikely(fault & VM_FAULT_ERROR))
359 		goto out_up;
360 
361 	/*
362 	 * Major/minor page fault accounting is only done on the
363 	 * initial attempt. If we go through a retry, it is extremely
364 	 * likely that the page will be found in page cache at that point.
365 	 */
366 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
367 		if (fault & VM_FAULT_MAJOR) {
368 			tsk->maj_flt++;
369 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
370 				      regs, address);
371 		} else {
372 			tsk->min_flt++;
373 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
374 				      regs, address);
375 		}
376 		if (fault & VM_FAULT_RETRY) {
377 			/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
378 			 * of starvation. */
379 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
380 			flags |= FAULT_FLAG_TRIED;
381 			down_read(&mm->mmap_sem);
382 			goto retry;
383 		}
384 	}
385 	fault = 0;
386 out_up:
387 	up_read(&mm->mmap_sem);
388 out:
389 	return fault;
390 }
391 
392 void __kprobes do_protection_exception(struct pt_regs *regs)
393 {
394 	unsigned long trans_exc_code;
395 	int fault;
396 
397 	trans_exc_code = regs->int_parm_long;
398 	/*
399 	 * Protection exceptions are suppressing, decrement psw address.
400 	 * The exception to this rule are aborted transactions, for these
401 	 * the PSW already points to the correct location.
402 	 */
403 	if (!(regs->int_code & 0x200))
404 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
405 	/*
406 	 * Check for low-address protection.  This needs to be treated
407 	 * as a special case because the translation exception code
408 	 * field is not guaranteed to contain valid data in this case.
409 	 */
410 	if (unlikely(!(trans_exc_code & 4))) {
411 		do_low_address(regs);
412 		return;
413 	}
414 	fault = do_exception(regs, VM_WRITE);
415 	if (unlikely(fault))
416 		do_fault_error(regs, fault);
417 }
418 
419 void __kprobes do_dat_exception(struct pt_regs *regs)
420 {
421 	int access, fault;
422 
423 	access = VM_READ | VM_EXEC | VM_WRITE;
424 	fault = do_exception(regs, access);
425 	if (unlikely(fault))
426 		do_fault_error(regs, fault);
427 }
428 
429 #ifdef CONFIG_64BIT
430 void __kprobes do_asce_exception(struct pt_regs *regs)
431 {
432 	struct mm_struct *mm = current->mm;
433 	struct vm_area_struct *vma;
434 	unsigned long trans_exc_code;
435 
436 	/*
437 	 * The instruction that caused the program check has
438 	 * been nullified. Don't signal single step via SIGTRAP.
439 	 */
440 	clear_tsk_thread_flag(current, TIF_PER_TRAP);
441 
442 	trans_exc_code = regs->int_parm_long;
443 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
444 		goto no_context;
445 
446 	down_read(&mm->mmap_sem);
447 	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
448 	up_read(&mm->mmap_sem);
449 
450 	if (vma) {
451 		update_mm(mm, current);
452 		return;
453 	}
454 
455 	/* User mode accesses just cause a SIGSEGV */
456 	if (user_mode(regs)) {
457 		do_sigsegv(regs, SEGV_MAPERR);
458 		return;
459 	}
460 
461 no_context:
462 	do_no_context(regs);
463 }
464 #endif
465 
466 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
467 {
468 	struct pt_regs regs;
469 	int access, fault;
470 
471 	/* Emulate a uaccess fault from kernel mode. */
472 	regs.psw.mask = psw_kernel_bits | PSW_MASK_DAT | PSW_MASK_MCHECK;
473 	if (!irqs_disabled())
474 		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
475 	regs.psw.addr = (unsigned long) __builtin_return_address(0);
476 	regs.psw.addr |= PSW_ADDR_AMODE;
477 	regs.int_code = pgm_int_code;
478 	regs.int_parm_long = (uaddr & PAGE_MASK) | 2;
479 	access = write ? VM_WRITE : VM_READ;
480 	fault = do_exception(&regs, access);
481 	/*
482 	 * Since the fault happened in kernel mode while performing a uaccess
483 	 * all we need to do now is emulating a fixup in case "fault" is not
484 	 * zero.
485 	 * For the calling uaccess functions this results always in -EFAULT.
486 	 */
487 	return fault ? -EFAULT : 0;
488 }
489 
490 #ifdef CONFIG_PFAULT
491 /*
492  * 'pfault' pseudo page faults routines.
493  */
494 static int pfault_disable;
495 
496 static int __init nopfault(char *str)
497 {
498 	pfault_disable = 1;
499 	return 1;
500 }
501 
502 __setup("nopfault", nopfault);
503 
504 struct pfault_refbk {
505 	u16 refdiagc;
506 	u16 reffcode;
507 	u16 refdwlen;
508 	u16 refversn;
509 	u64 refgaddr;
510 	u64 refselmk;
511 	u64 refcmpmk;
512 	u64 reserved;
513 } __attribute__ ((packed, aligned(8)));
514 
515 int pfault_init(void)
516 {
517 	struct pfault_refbk refbk = {
518 		.refdiagc = 0x258,
519 		.reffcode = 0,
520 		.refdwlen = 5,
521 		.refversn = 2,
522 		.refgaddr = __LC_CURRENT_PID,
523 		.refselmk = 1ULL << 48,
524 		.refcmpmk = 1ULL << 48,
525 		.reserved = __PF_RES_FIELD };
526         int rc;
527 
528 	if (pfault_disable)
529 		return -1;
530 	asm volatile(
531 		"	diag	%1,%0,0x258\n"
532 		"0:	j	2f\n"
533 		"1:	la	%0,8\n"
534 		"2:\n"
535 		EX_TABLE(0b,1b)
536 		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
537         return rc;
538 }
539 
540 void pfault_fini(void)
541 {
542 	struct pfault_refbk refbk = {
543 		.refdiagc = 0x258,
544 		.reffcode = 1,
545 		.refdwlen = 5,
546 		.refversn = 2,
547 	};
548 
549 	if (pfault_disable)
550 		return;
551 	asm volatile(
552 		"	diag	%0,0,0x258\n"
553 		"0:\n"
554 		EX_TABLE(0b,0b)
555 		: : "a" (&refbk), "m" (refbk) : "cc");
556 }
557 
558 static DEFINE_SPINLOCK(pfault_lock);
559 static LIST_HEAD(pfault_list);
560 
561 static void pfault_interrupt(struct ext_code ext_code,
562 			     unsigned int param32, unsigned long param64)
563 {
564 	struct task_struct *tsk;
565 	__u16 subcode;
566 	pid_t pid;
567 
568 	/*
569 	 * Get the external interruption subcode & pfault
570 	 * initial/completion signal bit. VM stores this
571 	 * in the 'cpu address' field associated with the
572          * external interrupt.
573 	 */
574 	subcode = ext_code.subcode;
575 	if ((subcode & 0xff00) != __SUBCODE_MASK)
576 		return;
577 	inc_irq_stat(IRQEXT_PFL);
578 	/* Get the token (= pid of the affected task). */
579 	pid = sizeof(void *) == 4 ? param32 : param64;
580 	rcu_read_lock();
581 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
582 	if (tsk)
583 		get_task_struct(tsk);
584 	rcu_read_unlock();
585 	if (!tsk)
586 		return;
587 	spin_lock(&pfault_lock);
588 	if (subcode & 0x0080) {
589 		/* signal bit is set -> a page has been swapped in by VM */
590 		if (tsk->thread.pfault_wait == 1) {
591 			/* Initial interrupt was faster than the completion
592 			 * interrupt. pfault_wait is valid. Set pfault_wait
593 			 * back to zero and wake up the process. This can
594 			 * safely be done because the task is still sleeping
595 			 * and can't produce new pfaults. */
596 			tsk->thread.pfault_wait = 0;
597 			list_del(&tsk->thread.list);
598 			wake_up_process(tsk);
599 			put_task_struct(tsk);
600 		} else {
601 			/* Completion interrupt was faster than initial
602 			 * interrupt. Set pfault_wait to -1 so the initial
603 			 * interrupt doesn't put the task to sleep.
604 			 * If the task is not running, ignore the completion
605 			 * interrupt since it must be a leftover of a PFAULT
606 			 * CANCEL operation which didn't remove all pending
607 			 * completion interrupts. */
608 			if (tsk->state == TASK_RUNNING)
609 				tsk->thread.pfault_wait = -1;
610 		}
611 	} else {
612 		/* signal bit not set -> a real page is missing. */
613 		if (WARN_ON_ONCE(tsk != current))
614 			goto out;
615 		if (tsk->thread.pfault_wait == 1) {
616 			/* Already on the list with a reference: put to sleep */
617 			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
618 			set_tsk_need_resched(tsk);
619 		} else if (tsk->thread.pfault_wait == -1) {
620 			/* Completion interrupt was faster than the initial
621 			 * interrupt (pfault_wait == -1). Set pfault_wait
622 			 * back to zero and exit. */
623 			tsk->thread.pfault_wait = 0;
624 		} else {
625 			/* Initial interrupt arrived before completion
626 			 * interrupt. Let the task sleep.
627 			 * An extra task reference is needed since a different
628 			 * cpu may set the task state to TASK_RUNNING again
629 			 * before the scheduler is reached. */
630 			get_task_struct(tsk);
631 			tsk->thread.pfault_wait = 1;
632 			list_add(&tsk->thread.list, &pfault_list);
633 			__set_task_state(tsk, TASK_UNINTERRUPTIBLE);
634 			set_tsk_need_resched(tsk);
635 		}
636 	}
637 out:
638 	spin_unlock(&pfault_lock);
639 	put_task_struct(tsk);
640 }
641 
642 static int pfault_cpu_notify(struct notifier_block *self, unsigned long action,
643 			     void *hcpu)
644 {
645 	struct thread_struct *thread, *next;
646 	struct task_struct *tsk;
647 
648 	switch (action & ~CPU_TASKS_FROZEN) {
649 	case CPU_DEAD:
650 		spin_lock_irq(&pfault_lock);
651 		list_for_each_entry_safe(thread, next, &pfault_list, list) {
652 			thread->pfault_wait = 0;
653 			list_del(&thread->list);
654 			tsk = container_of(thread, struct task_struct, thread);
655 			wake_up_process(tsk);
656 			put_task_struct(tsk);
657 		}
658 		spin_unlock_irq(&pfault_lock);
659 		break;
660 	default:
661 		break;
662 	}
663 	return NOTIFY_OK;
664 }
665 
666 static int __init pfault_irq_init(void)
667 {
668 	int rc;
669 
670 	rc = register_external_interrupt(0x2603, pfault_interrupt);
671 	if (rc)
672 		goto out_extint;
673 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
674 	if (rc)
675 		goto out_pfault;
676 	service_subclass_irq_register();
677 	hotcpu_notifier(pfault_cpu_notify, 0);
678 	return 0;
679 
680 out_pfault:
681 	unregister_external_interrupt(0x2603, pfault_interrupt);
682 out_extint:
683 	pfault_disable = 1;
684 	return rc;
685 }
686 early_initcall(pfault_irq_init);
687 
688 #endif /* CONFIG_PFAULT */
689