1 /* 2 * arch/s390/mm/fault.c 3 * 4 * S390 version 5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (uweigand@de.ibm.com) 8 * 9 * Derived from "arch/i386/mm/fault.c" 10 * Copyright (C) 1995 Linus Torvalds 11 */ 12 13 #include <linux/perf_event.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/kernel.h> 17 #include <linux/errno.h> 18 #include <linux/string.h> 19 #include <linux/types.h> 20 #include <linux/ptrace.h> 21 #include <linux/mman.h> 22 #include <linux/mm.h> 23 #include <linux/compat.h> 24 #include <linux/smp.h> 25 #include <linux/kdebug.h> 26 #include <linux/init.h> 27 #include <linux/console.h> 28 #include <linux/module.h> 29 #include <linux/hardirq.h> 30 #include <linux/kprobes.h> 31 #include <linux/uaccess.h> 32 #include <linux/hugetlb.h> 33 #include <asm/asm-offsets.h> 34 #include <asm/system.h> 35 #include <asm/pgtable.h> 36 #include <asm/s390_ext.h> 37 #include <asm/mmu_context.h> 38 #include <asm/compat.h> 39 #include "../kernel/entry.h" 40 41 #ifndef CONFIG_64BIT 42 #define __FAIL_ADDR_MASK 0x7ffff000 43 #define __SUBCODE_MASK 0x0200 44 #define __PF_RES_FIELD 0ULL 45 #else /* CONFIG_64BIT */ 46 #define __FAIL_ADDR_MASK -4096L 47 #define __SUBCODE_MASK 0x0600 48 #define __PF_RES_FIELD 0x8000000000000000ULL 49 #endif /* CONFIG_64BIT */ 50 51 #define VM_FAULT_BADCONTEXT 0x010000 52 #define VM_FAULT_BADMAP 0x020000 53 #define VM_FAULT_BADACCESS 0x040000 54 55 static unsigned long store_indication; 56 57 void fault_init(void) 58 { 59 if (test_facility(2) && test_facility(75)) 60 store_indication = 0xc00; 61 } 62 63 static inline int notify_page_fault(struct pt_regs *regs) 64 { 65 int ret = 0; 66 67 /* kprobe_running() needs smp_processor_id() */ 68 if (kprobes_built_in() && !user_mode(regs)) { 69 preempt_disable(); 70 if (kprobe_running() && kprobe_fault_handler(regs, 14)) 71 ret = 1; 72 preempt_enable(); 73 } 74 return ret; 75 } 76 77 78 /* 79 * Unlock any spinlocks which will prevent us from getting the 80 * message out. 81 */ 82 void bust_spinlocks(int yes) 83 { 84 if (yes) { 85 oops_in_progress = 1; 86 } else { 87 int loglevel_save = console_loglevel; 88 console_unblank(); 89 oops_in_progress = 0; 90 /* 91 * OK, the message is on the console. Now we call printk() 92 * without oops_in_progress set so that printk will give klogd 93 * a poke. Hold onto your hats... 94 */ 95 console_loglevel = 15; 96 printk(" "); 97 console_loglevel = loglevel_save; 98 } 99 } 100 101 /* 102 * Returns the address space associated with the fault. 103 * Returns 0 for kernel space and 1 for user space. 104 */ 105 static inline int user_space_fault(unsigned long trans_exc_code) 106 { 107 /* 108 * The lowest two bits of the translation exception 109 * identification indicate which paging table was used. 110 */ 111 trans_exc_code &= 3; 112 if (trans_exc_code == 2) 113 /* Access via secondary space, set_fs setting decides */ 114 return current->thread.mm_segment.ar4; 115 if (user_mode == HOME_SPACE_MODE) 116 /* User space if the access has been done via home space. */ 117 return trans_exc_code == 3; 118 /* 119 * If the user space is not the home space the kernel runs in home 120 * space. Access via secondary space has already been covered, 121 * access via primary space or access register is from user space 122 * and access via home space is from the kernel. 123 */ 124 return trans_exc_code != 3; 125 } 126 127 static inline void report_user_fault(struct pt_regs *regs, long int_code, 128 int signr, unsigned long address) 129 { 130 if ((task_pid_nr(current) > 1) && !show_unhandled_signals) 131 return; 132 if (!unhandled_signal(current, signr)) 133 return; 134 if (!printk_ratelimit()) 135 return; 136 printk("User process fault: interruption code 0x%lX ", int_code); 137 print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN); 138 printk("\n"); 139 printk("failing address: %lX\n", address); 140 show_regs(regs); 141 } 142 143 /* 144 * Send SIGSEGV to task. This is an external routine 145 * to keep the stack usage of do_page_fault small. 146 */ 147 static noinline void do_sigsegv(struct pt_regs *regs, long int_code, 148 int si_code, unsigned long trans_exc_code) 149 { 150 struct siginfo si; 151 unsigned long address; 152 153 address = trans_exc_code & __FAIL_ADDR_MASK; 154 current->thread.prot_addr = address; 155 current->thread.trap_no = int_code; 156 report_user_fault(regs, int_code, SIGSEGV, address); 157 si.si_signo = SIGSEGV; 158 si.si_code = si_code; 159 si.si_addr = (void __user *) address; 160 force_sig_info(SIGSEGV, &si, current); 161 } 162 163 static noinline void do_no_context(struct pt_regs *regs, long int_code, 164 unsigned long trans_exc_code) 165 { 166 const struct exception_table_entry *fixup; 167 unsigned long address; 168 169 /* Are we prepared to handle this kernel fault? */ 170 fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 171 if (fixup) { 172 regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE; 173 return; 174 } 175 176 /* 177 * Oops. The kernel tried to access some bad page. We'll have to 178 * terminate things with extreme prejudice. 179 */ 180 address = trans_exc_code & __FAIL_ADDR_MASK; 181 if (!user_space_fault(trans_exc_code)) 182 printk(KERN_ALERT "Unable to handle kernel pointer dereference" 183 " at virtual kernel address %p\n", (void *)address); 184 else 185 printk(KERN_ALERT "Unable to handle kernel paging request" 186 " at virtual user address %p\n", (void *)address); 187 188 die("Oops", regs, int_code); 189 do_exit(SIGKILL); 190 } 191 192 static noinline void do_low_address(struct pt_regs *regs, long int_code, 193 unsigned long trans_exc_code) 194 { 195 /* Low-address protection hit in kernel mode means 196 NULL pointer write access in kernel mode. */ 197 if (regs->psw.mask & PSW_MASK_PSTATE) { 198 /* Low-address protection hit in user mode 'cannot happen'. */ 199 die ("Low-address protection", regs, int_code); 200 do_exit(SIGKILL); 201 } 202 203 do_no_context(regs, int_code, trans_exc_code); 204 } 205 206 static noinline void do_sigbus(struct pt_regs *regs, long int_code, 207 unsigned long trans_exc_code) 208 { 209 struct task_struct *tsk = current; 210 unsigned long address; 211 struct siginfo si; 212 213 /* 214 * Send a sigbus, regardless of whether we were in kernel 215 * or user mode. 216 */ 217 address = trans_exc_code & __FAIL_ADDR_MASK; 218 tsk->thread.prot_addr = address; 219 tsk->thread.trap_no = int_code; 220 si.si_signo = SIGBUS; 221 si.si_errno = 0; 222 si.si_code = BUS_ADRERR; 223 si.si_addr = (void __user *) address; 224 force_sig_info(SIGBUS, &si, tsk); 225 } 226 227 #ifdef CONFIG_S390_EXEC_PROTECT 228 static noinline int signal_return(struct pt_regs *regs, long int_code, 229 unsigned long trans_exc_code) 230 { 231 u16 instruction; 232 int rc; 233 234 rc = __get_user(instruction, (u16 __user *) regs->psw.addr); 235 236 if (!rc && instruction == 0x0a77) { 237 clear_tsk_thread_flag(current, TIF_SINGLE_STEP); 238 if (is_compat_task()) 239 sys32_sigreturn(); 240 else 241 sys_sigreturn(); 242 } else if (!rc && instruction == 0x0aad) { 243 clear_tsk_thread_flag(current, TIF_SINGLE_STEP); 244 if (is_compat_task()) 245 sys32_rt_sigreturn(); 246 else 247 sys_rt_sigreturn(); 248 } else 249 do_sigsegv(regs, int_code, SEGV_MAPERR, trans_exc_code); 250 return 0; 251 } 252 #endif /* CONFIG_S390_EXEC_PROTECT */ 253 254 static noinline void do_fault_error(struct pt_regs *regs, long int_code, 255 unsigned long trans_exc_code, int fault) 256 { 257 int si_code; 258 259 switch (fault) { 260 case VM_FAULT_BADACCESS: 261 #ifdef CONFIG_S390_EXEC_PROTECT 262 if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY && 263 (trans_exc_code & 3) == 0) { 264 signal_return(regs, int_code, trans_exc_code); 265 break; 266 } 267 #endif /* CONFIG_S390_EXEC_PROTECT */ 268 case VM_FAULT_BADMAP: 269 /* Bad memory access. Check if it is kernel or user space. */ 270 if (regs->psw.mask & PSW_MASK_PSTATE) { 271 /* User mode accesses just cause a SIGSEGV */ 272 si_code = (fault == VM_FAULT_BADMAP) ? 273 SEGV_MAPERR : SEGV_ACCERR; 274 do_sigsegv(regs, int_code, si_code, trans_exc_code); 275 return; 276 } 277 case VM_FAULT_BADCONTEXT: 278 do_no_context(regs, int_code, trans_exc_code); 279 break; 280 default: /* fault & VM_FAULT_ERROR */ 281 if (fault & VM_FAULT_OOM) 282 pagefault_out_of_memory(); 283 else if (fault & VM_FAULT_SIGBUS) { 284 /* Kernel mode? Handle exceptions or die */ 285 if (!(regs->psw.mask & PSW_MASK_PSTATE)) 286 do_no_context(regs, int_code, trans_exc_code); 287 else 288 do_sigbus(regs, int_code, trans_exc_code); 289 } else 290 BUG(); 291 break; 292 } 293 } 294 295 /* 296 * This routine handles page faults. It determines the address, 297 * and the problem, and then passes it off to one of the appropriate 298 * routines. 299 * 300 * interruption code (int_code): 301 * 04 Protection -> Write-Protection (suprression) 302 * 10 Segment translation -> Not present (nullification) 303 * 11 Page translation -> Not present (nullification) 304 * 3b Region third trans. -> Not present (nullification) 305 */ 306 static inline int do_exception(struct pt_regs *regs, int access, 307 unsigned long trans_exc_code) 308 { 309 struct task_struct *tsk; 310 struct mm_struct *mm; 311 struct vm_area_struct *vma; 312 unsigned long address; 313 int fault, write; 314 315 if (notify_page_fault(regs)) 316 return 0; 317 318 tsk = current; 319 mm = tsk->mm; 320 321 /* 322 * Verify that the fault happened in user space, that 323 * we are not in an interrupt and that there is a 324 * user context. 325 */ 326 fault = VM_FAULT_BADCONTEXT; 327 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm)) 328 goto out; 329 330 address = trans_exc_code & __FAIL_ADDR_MASK; 331 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address); 332 down_read(&mm->mmap_sem); 333 334 fault = VM_FAULT_BADMAP; 335 vma = find_vma(mm, address); 336 if (!vma) 337 goto out_up; 338 339 if (unlikely(vma->vm_start > address)) { 340 if (!(vma->vm_flags & VM_GROWSDOWN)) 341 goto out_up; 342 if (expand_stack(vma, address)) 343 goto out_up; 344 } 345 346 /* 347 * Ok, we have a good vm_area for this memory access, so 348 * we can handle it.. 349 */ 350 fault = VM_FAULT_BADACCESS; 351 if (unlikely(!(vma->vm_flags & access))) 352 goto out_up; 353 354 if (is_vm_hugetlb_page(vma)) 355 address &= HPAGE_MASK; 356 /* 357 * If for any reason at all we couldn't handle the fault, 358 * make sure we exit gracefully rather than endlessly redo 359 * the fault. 360 */ 361 write = (access == VM_WRITE || 362 (trans_exc_code & store_indication) == 0x400) ? 363 FAULT_FLAG_WRITE : 0; 364 fault = handle_mm_fault(mm, vma, address, write); 365 if (unlikely(fault & VM_FAULT_ERROR)) 366 goto out_up; 367 368 if (fault & VM_FAULT_MAJOR) { 369 tsk->maj_flt++; 370 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, 371 regs, address); 372 } else { 373 tsk->min_flt++; 374 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, 375 regs, address); 376 } 377 /* 378 * The instruction that caused the program check will 379 * be repeated. Don't signal single step via SIGTRAP. 380 */ 381 clear_tsk_thread_flag(tsk, TIF_SINGLE_STEP); 382 fault = 0; 383 out_up: 384 up_read(&mm->mmap_sem); 385 out: 386 return fault; 387 } 388 389 void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code, 390 unsigned long trans_exc_code) 391 { 392 int fault; 393 394 /* Protection exception is supressing, decrement psw address. */ 395 regs->psw.addr -= (pgm_int_code >> 16); 396 /* 397 * Check for low-address protection. This needs to be treated 398 * as a special case because the translation exception code 399 * field is not guaranteed to contain valid data in this case. 400 */ 401 if (unlikely(!(trans_exc_code & 4))) { 402 do_low_address(regs, pgm_int_code, trans_exc_code); 403 return; 404 } 405 fault = do_exception(regs, VM_WRITE, trans_exc_code); 406 if (unlikely(fault)) 407 do_fault_error(regs, 4, trans_exc_code, fault); 408 } 409 410 void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code, 411 unsigned long trans_exc_code) 412 { 413 int access, fault; 414 415 access = VM_READ | VM_EXEC | VM_WRITE; 416 #ifdef CONFIG_S390_EXEC_PROTECT 417 if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY && 418 (trans_exc_code & 3) == 0) 419 access = VM_EXEC; 420 #endif 421 fault = do_exception(regs, access, trans_exc_code); 422 if (unlikely(fault)) 423 do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault); 424 } 425 426 #ifdef CONFIG_64BIT 427 void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code, 428 unsigned long trans_exc_code) 429 { 430 struct mm_struct *mm = current->mm; 431 struct vm_area_struct *vma; 432 433 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm)) 434 goto no_context; 435 436 down_read(&mm->mmap_sem); 437 vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK); 438 up_read(&mm->mmap_sem); 439 440 if (vma) { 441 update_mm(mm, current); 442 return; 443 } 444 445 /* User mode accesses just cause a SIGSEGV */ 446 if (regs->psw.mask & PSW_MASK_PSTATE) { 447 do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code); 448 return; 449 } 450 451 no_context: 452 do_no_context(regs, pgm_int_code, trans_exc_code); 453 } 454 #endif 455 456 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write) 457 { 458 struct pt_regs regs; 459 int access, fault; 460 461 regs.psw.mask = psw_kernel_bits; 462 if (!irqs_disabled()) 463 regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT; 464 regs.psw.addr = (unsigned long) __builtin_return_address(0); 465 regs.psw.addr |= PSW_ADDR_AMODE; 466 uaddr &= PAGE_MASK; 467 access = write ? VM_WRITE : VM_READ; 468 fault = do_exception(®s, access, uaddr | 2); 469 if (unlikely(fault)) { 470 if (fault & VM_FAULT_OOM) { 471 pagefault_out_of_memory(); 472 fault = 0; 473 } else if (fault & VM_FAULT_SIGBUS) 474 do_sigbus(®s, pgm_int_code, uaddr); 475 } 476 return fault ? -EFAULT : 0; 477 } 478 479 #ifdef CONFIG_PFAULT 480 /* 481 * 'pfault' pseudo page faults routines. 482 */ 483 static ext_int_info_t ext_int_pfault; 484 static int pfault_disable = 0; 485 486 static int __init nopfault(char *str) 487 { 488 pfault_disable = 1; 489 return 1; 490 } 491 492 __setup("nopfault", nopfault); 493 494 typedef struct { 495 __u16 refdiagc; 496 __u16 reffcode; 497 __u16 refdwlen; 498 __u16 refversn; 499 __u64 refgaddr; 500 __u64 refselmk; 501 __u64 refcmpmk; 502 __u64 reserved; 503 } __attribute__ ((packed, aligned(8))) pfault_refbk_t; 504 505 int pfault_init(void) 506 { 507 pfault_refbk_t refbk = 508 { 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48, 509 __PF_RES_FIELD }; 510 int rc; 511 512 if (!MACHINE_IS_VM || pfault_disable) 513 return -1; 514 asm volatile( 515 " diag %1,%0,0x258\n" 516 "0: j 2f\n" 517 "1: la %0,8\n" 518 "2:\n" 519 EX_TABLE(0b,1b) 520 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc"); 521 __ctl_set_bit(0, 9); 522 return rc; 523 } 524 525 void pfault_fini(void) 526 { 527 pfault_refbk_t refbk = 528 { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL }; 529 530 if (!MACHINE_IS_VM || pfault_disable) 531 return; 532 __ctl_clear_bit(0,9); 533 asm volatile( 534 " diag %0,0,0x258\n" 535 "0:\n" 536 EX_TABLE(0b,0b) 537 : : "a" (&refbk), "m" (refbk) : "cc"); 538 } 539 540 static void pfault_interrupt(unsigned int ext_int_code, 541 unsigned int param32, unsigned long param64) 542 { 543 struct task_struct *tsk; 544 __u16 subcode; 545 546 /* 547 * Get the external interruption subcode & pfault 548 * initial/completion signal bit. VM stores this 549 * in the 'cpu address' field associated with the 550 * external interrupt. 551 */ 552 subcode = ext_int_code >> 16; 553 if ((subcode & 0xff00) != __SUBCODE_MASK) 554 return; 555 556 /* 557 * Get the token (= address of the task structure of the affected task). 558 */ 559 #ifdef CONFIG_64BIT 560 tsk = *(struct task_struct **) param64; 561 #else 562 tsk = *(struct task_struct **) param32; 563 #endif 564 565 if (subcode & 0x0080) { 566 /* signal bit is set -> a page has been swapped in by VM */ 567 if (xchg(&tsk->thread.pfault_wait, -1) != 0) { 568 /* Initial interrupt was faster than the completion 569 * interrupt. pfault_wait is valid. Set pfault_wait 570 * back to zero and wake up the process. This can 571 * safely be done because the task is still sleeping 572 * and can't produce new pfaults. */ 573 tsk->thread.pfault_wait = 0; 574 wake_up_process(tsk); 575 put_task_struct(tsk); 576 } 577 } else { 578 /* signal bit not set -> a real page is missing. */ 579 get_task_struct(tsk); 580 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 581 if (xchg(&tsk->thread.pfault_wait, 1) != 0) { 582 /* Completion interrupt was faster than the initial 583 * interrupt (swapped in a -1 for pfault_wait). Set 584 * pfault_wait back to zero and exit. This can be 585 * done safely because tsk is running in kernel 586 * mode and can't produce new pfaults. */ 587 tsk->thread.pfault_wait = 0; 588 set_task_state(tsk, TASK_RUNNING); 589 put_task_struct(tsk); 590 } else 591 set_tsk_need_resched(tsk); 592 } 593 } 594 595 void __init pfault_irq_init(void) 596 { 597 if (!MACHINE_IS_VM) 598 return; 599 600 /* 601 * Try to get pfault pseudo page faults going. 602 */ 603 if (register_early_external_interrupt(0x2603, pfault_interrupt, 604 &ext_int_pfault) != 0) 605 panic("Couldn't request external interrupt 0x2603"); 606 607 if (pfault_init() == 0) 608 return; 609 610 /* Tough luck, no pfault. */ 611 pfault_disable = 1; 612 unregister_early_external_interrupt(0x2603, pfault_interrupt, 613 &ext_int_pfault); 614 } 615 #endif 616