xref: /openbmc/linux/arch/s390/mm/fault.c (revision 97e6ea6d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <linux/kfence.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include <asm/uv.h>
42 #include "../kernel/entry.h"
43 
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
47 
48 #define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
49 #define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
50 #define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
51 #define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
52 #define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
53 
54 enum fault_type {
55 	KERNEL_FAULT,
56 	USER_FAULT,
57 	GMAP_FAULT,
58 };
59 
60 static unsigned long store_indication __read_mostly;
61 
62 static int __init fault_init(void)
63 {
64 	if (test_facility(75))
65 		store_indication = 0xc00;
66 	return 0;
67 }
68 early_initcall(fault_init);
69 
70 /*
71  * Find out which address space caused the exception.
72  */
73 static enum fault_type get_fault_type(struct pt_regs *regs)
74 {
75 	unsigned long trans_exc_code;
76 
77 	trans_exc_code = regs->int_parm_long & 3;
78 	if (likely(trans_exc_code == 0)) {
79 		/* primary space exception */
80 		if (user_mode(regs))
81 			return USER_FAULT;
82 		if (!IS_ENABLED(CONFIG_PGSTE))
83 			return KERNEL_FAULT;
84 		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
85 			return GMAP_FAULT;
86 		return KERNEL_FAULT;
87 	}
88 	if (trans_exc_code == 2)
89 		return USER_FAULT;
90 	if (trans_exc_code == 1) {
91 		/* access register mode, not used in the kernel */
92 		return USER_FAULT;
93 	}
94 	/* home space exception -> access via kernel ASCE */
95 	return KERNEL_FAULT;
96 }
97 
98 static int bad_address(void *p)
99 {
100 	unsigned long dummy;
101 
102 	return get_kernel_nofault(dummy, (unsigned long *)p);
103 }
104 
105 static void dump_pagetable(unsigned long asce, unsigned long address)
106 {
107 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
108 
109 	pr_alert("AS:%016lx ", asce);
110 	switch (asce & _ASCE_TYPE_MASK) {
111 	case _ASCE_TYPE_REGION1:
112 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
113 		if (bad_address(table))
114 			goto bad;
115 		pr_cont("R1:%016lx ", *table);
116 		if (*table & _REGION_ENTRY_INVALID)
117 			goto out;
118 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
119 		fallthrough;
120 	case _ASCE_TYPE_REGION2:
121 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
122 		if (bad_address(table))
123 			goto bad;
124 		pr_cont("R2:%016lx ", *table);
125 		if (*table & _REGION_ENTRY_INVALID)
126 			goto out;
127 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
128 		fallthrough;
129 	case _ASCE_TYPE_REGION3:
130 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
131 		if (bad_address(table))
132 			goto bad;
133 		pr_cont("R3:%016lx ", *table);
134 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
135 			goto out;
136 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
137 		fallthrough;
138 	case _ASCE_TYPE_SEGMENT:
139 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
140 		if (bad_address(table))
141 			goto bad;
142 		pr_cont("S:%016lx ", *table);
143 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
144 			goto out;
145 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
146 	}
147 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
148 	if (bad_address(table))
149 		goto bad;
150 	pr_cont("P:%016lx ", *table);
151 out:
152 	pr_cont("\n");
153 	return;
154 bad:
155 	pr_cont("BAD\n");
156 }
157 
158 static void dump_fault_info(struct pt_regs *regs)
159 {
160 	unsigned long asce;
161 
162 	pr_alert("Failing address: %016lx TEID: %016lx\n",
163 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
164 	pr_alert("Fault in ");
165 	switch (regs->int_parm_long & 3) {
166 	case 3:
167 		pr_cont("home space ");
168 		break;
169 	case 2:
170 		pr_cont("secondary space ");
171 		break;
172 	case 1:
173 		pr_cont("access register ");
174 		break;
175 	case 0:
176 		pr_cont("primary space ");
177 		break;
178 	}
179 	pr_cont("mode while using ");
180 	switch (get_fault_type(regs)) {
181 	case USER_FAULT:
182 		asce = S390_lowcore.user_asce;
183 		pr_cont("user ");
184 		break;
185 	case GMAP_FAULT:
186 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
187 		pr_cont("gmap ");
188 		break;
189 	case KERNEL_FAULT:
190 		asce = S390_lowcore.kernel_asce;
191 		pr_cont("kernel ");
192 		break;
193 	default:
194 		unreachable();
195 	}
196 	pr_cont("ASCE.\n");
197 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
198 }
199 
200 int show_unhandled_signals = 1;
201 
202 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
203 {
204 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
205 		return;
206 	if (!unhandled_signal(current, signr))
207 		return;
208 	if (!printk_ratelimit())
209 		return;
210 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
211 	       regs->int_code & 0xffff, regs->int_code >> 17);
212 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
213 	printk(KERN_CONT "\n");
214 	if (is_mm_fault)
215 		dump_fault_info(regs);
216 	show_regs(regs);
217 }
218 
219 /*
220  * Send SIGSEGV to task.  This is an external routine
221  * to keep the stack usage of do_page_fault small.
222  */
223 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
224 {
225 	report_user_fault(regs, SIGSEGV, 1);
226 	force_sig_fault(SIGSEGV, si_code,
227 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
228 }
229 
230 const struct exception_table_entry *s390_search_extables(unsigned long addr)
231 {
232 	const struct exception_table_entry *fixup;
233 
234 	fixup = search_extable(__start_amode31_ex_table,
235 			       __stop_amode31_ex_table - __start_amode31_ex_table,
236 			       addr);
237 	if (!fixup)
238 		fixup = search_exception_tables(addr);
239 	return fixup;
240 }
241 
242 static noinline void do_no_context(struct pt_regs *regs)
243 {
244 	const struct exception_table_entry *fixup;
245 
246 	/* Are we prepared to handle this kernel fault?  */
247 	fixup = s390_search_extables(regs->psw.addr);
248 	if (fixup && ex_handle(fixup, regs))
249 		return;
250 
251 	/*
252 	 * Oops. The kernel tried to access some bad page. We'll have to
253 	 * terminate things with extreme prejudice.
254 	 */
255 	if (get_fault_type(regs) == KERNEL_FAULT)
256 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
257 		       " in virtual kernel address space\n");
258 	else
259 		printk(KERN_ALERT "Unable to handle kernel paging request"
260 		       " in virtual user address space\n");
261 	dump_fault_info(regs);
262 	die(regs, "Oops");
263 	do_exit(SIGKILL);
264 }
265 
266 static noinline void do_low_address(struct pt_regs *regs)
267 {
268 	/* Low-address protection hit in kernel mode means
269 	   NULL pointer write access in kernel mode.  */
270 	if (regs->psw.mask & PSW_MASK_PSTATE) {
271 		/* Low-address protection hit in user mode 'cannot happen'. */
272 		die (regs, "Low-address protection");
273 		do_exit(SIGKILL);
274 	}
275 
276 	do_no_context(regs);
277 }
278 
279 static noinline void do_sigbus(struct pt_regs *regs)
280 {
281 	/*
282 	 * Send a sigbus, regardless of whether we were in kernel
283 	 * or user mode.
284 	 */
285 	force_sig_fault(SIGBUS, BUS_ADRERR,
286 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
287 }
288 
289 static noinline void do_fault_error(struct pt_regs *regs, int access,
290 					vm_fault_t fault)
291 {
292 	int si_code;
293 
294 	switch (fault) {
295 	case VM_FAULT_BADACCESS:
296 	case VM_FAULT_BADMAP:
297 		/* Bad memory access. Check if it is kernel or user space. */
298 		if (user_mode(regs)) {
299 			/* User mode accesses just cause a SIGSEGV */
300 			si_code = (fault == VM_FAULT_BADMAP) ?
301 				SEGV_MAPERR : SEGV_ACCERR;
302 			do_sigsegv(regs, si_code);
303 			break;
304 		}
305 		fallthrough;
306 	case VM_FAULT_BADCONTEXT:
307 	case VM_FAULT_PFAULT:
308 		do_no_context(regs);
309 		break;
310 	case VM_FAULT_SIGNAL:
311 		if (!user_mode(regs))
312 			do_no_context(regs);
313 		break;
314 	default: /* fault & VM_FAULT_ERROR */
315 		if (fault & VM_FAULT_OOM) {
316 			if (!user_mode(regs))
317 				do_no_context(regs);
318 			else
319 				pagefault_out_of_memory();
320 		} else if (fault & VM_FAULT_SIGSEGV) {
321 			/* Kernel mode? Handle exceptions or die */
322 			if (!user_mode(regs))
323 				do_no_context(regs);
324 			else
325 				do_sigsegv(regs, SEGV_MAPERR);
326 		} else if (fault & VM_FAULT_SIGBUS) {
327 			/* Kernel mode? Handle exceptions or die */
328 			if (!user_mode(regs))
329 				do_no_context(regs);
330 			else
331 				do_sigbus(regs);
332 		} else
333 			BUG();
334 		break;
335 	}
336 }
337 
338 /*
339  * This routine handles page faults.  It determines the address,
340  * and the problem, and then passes it off to one of the appropriate
341  * routines.
342  *
343  * interruption code (int_code):
344  *   04       Protection           ->  Write-Protection  (suppression)
345  *   10       Segment translation  ->  Not present       (nullification)
346  *   11       Page translation     ->  Not present       (nullification)
347  *   3b       Region third trans.  ->  Not present       (nullification)
348  */
349 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
350 {
351 	struct gmap *gmap;
352 	struct task_struct *tsk;
353 	struct mm_struct *mm;
354 	struct vm_area_struct *vma;
355 	enum fault_type type;
356 	unsigned long trans_exc_code;
357 	unsigned long address;
358 	unsigned int flags;
359 	vm_fault_t fault;
360 	bool is_write;
361 
362 	tsk = current;
363 	/*
364 	 * The instruction that caused the program check has
365 	 * been nullified. Don't signal single step via SIGTRAP.
366 	 */
367 	clear_thread_flag(TIF_PER_TRAP);
368 
369 	if (kprobe_page_fault(regs, 14))
370 		return 0;
371 
372 	mm = tsk->mm;
373 	trans_exc_code = regs->int_parm_long;
374 	address = trans_exc_code & __FAIL_ADDR_MASK;
375 	is_write = (trans_exc_code & store_indication) == 0x400;
376 
377 	/*
378 	 * Verify that the fault happened in user space, that
379 	 * we are not in an interrupt and that there is a
380 	 * user context.
381 	 */
382 	fault = VM_FAULT_BADCONTEXT;
383 	type = get_fault_type(regs);
384 	switch (type) {
385 	case KERNEL_FAULT:
386 		if (kfence_handle_page_fault(address, is_write, regs))
387 			return 0;
388 		goto out;
389 	case USER_FAULT:
390 	case GMAP_FAULT:
391 		if (faulthandler_disabled() || !mm)
392 			goto out;
393 		break;
394 	}
395 
396 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
397 	flags = FAULT_FLAG_DEFAULT;
398 	if (user_mode(regs))
399 		flags |= FAULT_FLAG_USER;
400 	if (access == VM_WRITE || is_write)
401 		flags |= FAULT_FLAG_WRITE;
402 	mmap_read_lock(mm);
403 
404 	gmap = NULL;
405 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
406 		gmap = (struct gmap *) S390_lowcore.gmap;
407 		current->thread.gmap_addr = address;
408 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
409 		current->thread.gmap_int_code = regs->int_code & 0xffff;
410 		address = __gmap_translate(gmap, address);
411 		if (address == -EFAULT) {
412 			fault = VM_FAULT_BADMAP;
413 			goto out_up;
414 		}
415 		if (gmap->pfault_enabled)
416 			flags |= FAULT_FLAG_RETRY_NOWAIT;
417 	}
418 
419 retry:
420 	fault = VM_FAULT_BADMAP;
421 	vma = find_vma(mm, address);
422 	if (!vma)
423 		goto out_up;
424 
425 	if (unlikely(vma->vm_start > address)) {
426 		if (!(vma->vm_flags & VM_GROWSDOWN))
427 			goto out_up;
428 		if (expand_stack(vma, address))
429 			goto out_up;
430 	}
431 
432 	/*
433 	 * Ok, we have a good vm_area for this memory access, so
434 	 * we can handle it..
435 	 */
436 	fault = VM_FAULT_BADACCESS;
437 	if (unlikely(!(vma->vm_flags & access)))
438 		goto out_up;
439 
440 	if (is_vm_hugetlb_page(vma))
441 		address &= HPAGE_MASK;
442 	/*
443 	 * If for any reason at all we couldn't handle the fault,
444 	 * make sure we exit gracefully rather than endlessly redo
445 	 * the fault.
446 	 */
447 	fault = handle_mm_fault(vma, address, flags, regs);
448 	if (fault_signal_pending(fault, regs)) {
449 		fault = VM_FAULT_SIGNAL;
450 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
451 			goto out_up;
452 		goto out;
453 	}
454 	if (unlikely(fault & VM_FAULT_ERROR))
455 		goto out_up;
456 
457 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
458 		if (fault & VM_FAULT_RETRY) {
459 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
460 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
461 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
462 				 * mmap_lock has not been released */
463 				current->thread.gmap_pfault = 1;
464 				fault = VM_FAULT_PFAULT;
465 				goto out_up;
466 			}
467 			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
468 			flags |= FAULT_FLAG_TRIED;
469 			mmap_read_lock(mm);
470 			goto retry;
471 		}
472 	}
473 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
474 		address =  __gmap_link(gmap, current->thread.gmap_addr,
475 				       address);
476 		if (address == -EFAULT) {
477 			fault = VM_FAULT_BADMAP;
478 			goto out_up;
479 		}
480 		if (address == -ENOMEM) {
481 			fault = VM_FAULT_OOM;
482 			goto out_up;
483 		}
484 	}
485 	fault = 0;
486 out_up:
487 	mmap_read_unlock(mm);
488 out:
489 	return fault;
490 }
491 
492 void do_protection_exception(struct pt_regs *regs)
493 {
494 	unsigned long trans_exc_code;
495 	int access;
496 	vm_fault_t fault;
497 
498 	trans_exc_code = regs->int_parm_long;
499 	/*
500 	 * Protection exceptions are suppressing, decrement psw address.
501 	 * The exception to this rule are aborted transactions, for these
502 	 * the PSW already points to the correct location.
503 	 */
504 	if (!(regs->int_code & 0x200))
505 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
506 	/*
507 	 * Check for low-address protection.  This needs to be treated
508 	 * as a special case because the translation exception code
509 	 * field is not guaranteed to contain valid data in this case.
510 	 */
511 	if (unlikely(!(trans_exc_code & 4))) {
512 		do_low_address(regs);
513 		return;
514 	}
515 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
516 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
517 					(regs->psw.addr & PAGE_MASK);
518 		access = VM_EXEC;
519 		fault = VM_FAULT_BADACCESS;
520 	} else {
521 		access = VM_WRITE;
522 		fault = do_exception(regs, access);
523 	}
524 	if (unlikely(fault))
525 		do_fault_error(regs, access, fault);
526 }
527 NOKPROBE_SYMBOL(do_protection_exception);
528 
529 void do_dat_exception(struct pt_regs *regs)
530 {
531 	int access;
532 	vm_fault_t fault;
533 
534 	access = VM_ACCESS_FLAGS;
535 	fault = do_exception(regs, access);
536 	if (unlikely(fault))
537 		do_fault_error(regs, access, fault);
538 }
539 NOKPROBE_SYMBOL(do_dat_exception);
540 
541 #ifdef CONFIG_PFAULT
542 /*
543  * 'pfault' pseudo page faults routines.
544  */
545 static int pfault_disable;
546 
547 static int __init nopfault(char *str)
548 {
549 	pfault_disable = 1;
550 	return 1;
551 }
552 
553 __setup("nopfault", nopfault);
554 
555 struct pfault_refbk {
556 	u16 refdiagc;
557 	u16 reffcode;
558 	u16 refdwlen;
559 	u16 refversn;
560 	u64 refgaddr;
561 	u64 refselmk;
562 	u64 refcmpmk;
563 	u64 reserved;
564 } __attribute__ ((packed, aligned(8)));
565 
566 static struct pfault_refbk pfault_init_refbk = {
567 	.refdiagc = 0x258,
568 	.reffcode = 0,
569 	.refdwlen = 5,
570 	.refversn = 2,
571 	.refgaddr = __LC_LPP,
572 	.refselmk = 1ULL << 48,
573 	.refcmpmk = 1ULL << 48,
574 	.reserved = __PF_RES_FIELD
575 };
576 
577 int pfault_init(void)
578 {
579         int rc;
580 
581 	if (pfault_disable)
582 		return -1;
583 	diag_stat_inc(DIAG_STAT_X258);
584 	asm volatile(
585 		"	diag	%1,%0,0x258\n"
586 		"0:	j	2f\n"
587 		"1:	la	%0,8\n"
588 		"2:\n"
589 		EX_TABLE(0b,1b)
590 		: "=d" (rc)
591 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
592         return rc;
593 }
594 
595 static struct pfault_refbk pfault_fini_refbk = {
596 	.refdiagc = 0x258,
597 	.reffcode = 1,
598 	.refdwlen = 5,
599 	.refversn = 2,
600 };
601 
602 void pfault_fini(void)
603 {
604 
605 	if (pfault_disable)
606 		return;
607 	diag_stat_inc(DIAG_STAT_X258);
608 	asm volatile(
609 		"	diag	%0,0,0x258\n"
610 		"0:	nopr	%%r7\n"
611 		EX_TABLE(0b,0b)
612 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
613 }
614 
615 static DEFINE_SPINLOCK(pfault_lock);
616 static LIST_HEAD(pfault_list);
617 
618 #define PF_COMPLETE	0x0080
619 
620 /*
621  * The mechanism of our pfault code: if Linux is running as guest, runs a user
622  * space process and the user space process accesses a page that the host has
623  * paged out we get a pfault interrupt.
624  *
625  * This allows us, within the guest, to schedule a different process. Without
626  * this mechanism the host would have to suspend the whole virtual cpu until
627  * the page has been paged in.
628  *
629  * So when we get such an interrupt then we set the state of the current task
630  * to uninterruptible and also set the need_resched flag. Both happens within
631  * interrupt context(!). If we later on want to return to user space we
632  * recognize the need_resched flag and then call schedule().  It's not very
633  * obvious how this works...
634  *
635  * Of course we have a lot of additional fun with the completion interrupt (->
636  * host signals that a page of a process has been paged in and the process can
637  * continue to run). This interrupt can arrive on any cpu and, since we have
638  * virtual cpus, actually appear before the interrupt that signals that a page
639  * is missing.
640  */
641 static void pfault_interrupt(struct ext_code ext_code,
642 			     unsigned int param32, unsigned long param64)
643 {
644 	struct task_struct *tsk;
645 	__u16 subcode;
646 	pid_t pid;
647 
648 	/*
649 	 * Get the external interruption subcode & pfault initial/completion
650 	 * signal bit. VM stores this in the 'cpu address' field associated
651 	 * with the external interrupt.
652 	 */
653 	subcode = ext_code.subcode;
654 	if ((subcode & 0xff00) != __SUBCODE_MASK)
655 		return;
656 	inc_irq_stat(IRQEXT_PFL);
657 	/* Get the token (= pid of the affected task). */
658 	pid = param64 & LPP_PID_MASK;
659 	rcu_read_lock();
660 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
661 	if (tsk)
662 		get_task_struct(tsk);
663 	rcu_read_unlock();
664 	if (!tsk)
665 		return;
666 	spin_lock(&pfault_lock);
667 	if (subcode & PF_COMPLETE) {
668 		/* signal bit is set -> a page has been swapped in by VM */
669 		if (tsk->thread.pfault_wait == 1) {
670 			/* Initial interrupt was faster than the completion
671 			 * interrupt. pfault_wait is valid. Set pfault_wait
672 			 * back to zero and wake up the process. This can
673 			 * safely be done because the task is still sleeping
674 			 * and can't produce new pfaults. */
675 			tsk->thread.pfault_wait = 0;
676 			list_del(&tsk->thread.list);
677 			wake_up_process(tsk);
678 			put_task_struct(tsk);
679 		} else {
680 			/* Completion interrupt was faster than initial
681 			 * interrupt. Set pfault_wait to -1 so the initial
682 			 * interrupt doesn't put the task to sleep.
683 			 * If the task is not running, ignore the completion
684 			 * interrupt since it must be a leftover of a PFAULT
685 			 * CANCEL operation which didn't remove all pending
686 			 * completion interrupts. */
687 			if (task_is_running(tsk))
688 				tsk->thread.pfault_wait = -1;
689 		}
690 	} else {
691 		/* signal bit not set -> a real page is missing. */
692 		if (WARN_ON_ONCE(tsk != current))
693 			goto out;
694 		if (tsk->thread.pfault_wait == 1) {
695 			/* Already on the list with a reference: put to sleep */
696 			goto block;
697 		} else if (tsk->thread.pfault_wait == -1) {
698 			/* Completion interrupt was faster than the initial
699 			 * interrupt (pfault_wait == -1). Set pfault_wait
700 			 * back to zero and exit. */
701 			tsk->thread.pfault_wait = 0;
702 		} else {
703 			/* Initial interrupt arrived before completion
704 			 * interrupt. Let the task sleep.
705 			 * An extra task reference is needed since a different
706 			 * cpu may set the task state to TASK_RUNNING again
707 			 * before the scheduler is reached. */
708 			get_task_struct(tsk);
709 			tsk->thread.pfault_wait = 1;
710 			list_add(&tsk->thread.list, &pfault_list);
711 block:
712 			/* Since this must be a userspace fault, there
713 			 * is no kernel task state to trample. Rely on the
714 			 * return to userspace schedule() to block. */
715 			__set_current_state(TASK_UNINTERRUPTIBLE);
716 			set_tsk_need_resched(tsk);
717 			set_preempt_need_resched();
718 		}
719 	}
720 out:
721 	spin_unlock(&pfault_lock);
722 	put_task_struct(tsk);
723 }
724 
725 static int pfault_cpu_dead(unsigned int cpu)
726 {
727 	struct thread_struct *thread, *next;
728 	struct task_struct *tsk;
729 
730 	spin_lock_irq(&pfault_lock);
731 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
732 		thread->pfault_wait = 0;
733 		list_del(&thread->list);
734 		tsk = container_of(thread, struct task_struct, thread);
735 		wake_up_process(tsk);
736 		put_task_struct(tsk);
737 	}
738 	spin_unlock_irq(&pfault_lock);
739 	return 0;
740 }
741 
742 static int __init pfault_irq_init(void)
743 {
744 	int rc;
745 
746 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
747 	if (rc)
748 		goto out_extint;
749 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
750 	if (rc)
751 		goto out_pfault;
752 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
753 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
754 				  NULL, pfault_cpu_dead);
755 	return 0;
756 
757 out_pfault:
758 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
759 out_extint:
760 	pfault_disable = 1;
761 	return rc;
762 }
763 early_initcall(pfault_irq_init);
764 
765 #endif /* CONFIG_PFAULT */
766 
767 #if IS_ENABLED(CONFIG_PGSTE)
768 
769 void do_secure_storage_access(struct pt_regs *regs)
770 {
771 	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
772 	struct vm_area_struct *vma;
773 	struct mm_struct *mm;
774 	struct page *page;
775 	int rc;
776 
777 	/*
778 	 * bit 61 tells us if the address is valid, if it's not we
779 	 * have a major problem and should stop the kernel or send a
780 	 * SIGSEGV to the process. Unfortunately bit 61 is not
781 	 * reliable without the misc UV feature so we need to check
782 	 * for that as well.
783 	 */
784 	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications) &&
785 	    !test_bit_inv(61, &regs->int_parm_long)) {
786 		/*
787 		 * When this happens, userspace did something that it
788 		 * was not supposed to do, e.g. branching into secure
789 		 * memory. Trigger a segmentation fault.
790 		 */
791 		if (user_mode(regs)) {
792 			send_sig(SIGSEGV, current, 0);
793 			return;
794 		}
795 
796 		/*
797 		 * The kernel should never run into this case and we
798 		 * have no way out of this situation.
799 		 */
800 		panic("Unexpected PGM 0x3d with TEID bit 61=0");
801 	}
802 
803 	switch (get_fault_type(regs)) {
804 	case USER_FAULT:
805 		mm = current->mm;
806 		mmap_read_lock(mm);
807 		vma = find_vma(mm, addr);
808 		if (!vma) {
809 			mmap_read_unlock(mm);
810 			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
811 			break;
812 		}
813 		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
814 		if (IS_ERR_OR_NULL(page)) {
815 			mmap_read_unlock(mm);
816 			break;
817 		}
818 		if (arch_make_page_accessible(page))
819 			send_sig(SIGSEGV, current, 0);
820 		put_page(page);
821 		mmap_read_unlock(mm);
822 		break;
823 	case KERNEL_FAULT:
824 		page = phys_to_page(addr);
825 		if (unlikely(!try_get_page(page)))
826 			break;
827 		rc = arch_make_page_accessible(page);
828 		put_page(page);
829 		if (rc)
830 			BUG();
831 		break;
832 	case GMAP_FAULT:
833 	default:
834 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
835 		WARN_ON_ONCE(1);
836 	}
837 }
838 NOKPROBE_SYMBOL(do_secure_storage_access);
839 
840 void do_non_secure_storage_access(struct pt_regs *regs)
841 {
842 	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
843 	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
844 
845 	if (get_fault_type(regs) != GMAP_FAULT) {
846 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
847 		WARN_ON_ONCE(1);
848 		return;
849 	}
850 
851 	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
852 		send_sig(SIGSEGV, current, 0);
853 }
854 NOKPROBE_SYMBOL(do_non_secure_storage_access);
855 
856 void do_secure_storage_violation(struct pt_regs *regs)
857 {
858 	/*
859 	 * Either KVM messed up the secure guest mapping or the same
860 	 * page is mapped into multiple secure guests.
861 	 *
862 	 * This exception is only triggered when a guest 2 is running
863 	 * and can therefore never occur in kernel context.
864 	 */
865 	printk_ratelimited(KERN_WARNING
866 			   "Secure storage violation in task: %s, pid %d\n",
867 			   current->comm, current->pid);
868 	send_sig(SIGSEGV, current, 0);
869 }
870 
871 #endif /* CONFIG_PGSTE */
872