xref: /openbmc/linux/arch/s390/mm/fault.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (uweigand@de.ibm.com)
7  *
8  *  Derived from "arch/i386/mm/fault.c"
9  *    Copyright (C) 1995  Linus Torvalds
10  */
11 
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/gmap.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/facility.h>
40 #include <asm/uv.h>
41 #include "../kernel/entry.h"
42 
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
46 
47 #define VM_FAULT_BADCONTEXT	((__force vm_fault_t) 0x010000)
48 #define VM_FAULT_BADMAP		((__force vm_fault_t) 0x020000)
49 #define VM_FAULT_BADACCESS	((__force vm_fault_t) 0x040000)
50 #define VM_FAULT_SIGNAL		((__force vm_fault_t) 0x080000)
51 #define VM_FAULT_PFAULT		((__force vm_fault_t) 0x100000)
52 
53 enum fault_type {
54 	KERNEL_FAULT,
55 	USER_FAULT,
56 	GMAP_FAULT,
57 };
58 
59 static unsigned long store_indication __read_mostly;
60 
61 static int __init fault_init(void)
62 {
63 	if (test_facility(75))
64 		store_indication = 0xc00;
65 	return 0;
66 }
67 early_initcall(fault_init);
68 
69 /*
70  * Find out which address space caused the exception.
71  */
72 static enum fault_type get_fault_type(struct pt_regs *regs)
73 {
74 	unsigned long trans_exc_code;
75 
76 	trans_exc_code = regs->int_parm_long & 3;
77 	if (likely(trans_exc_code == 0)) {
78 		/* primary space exception */
79 		if (user_mode(regs))
80 			return USER_FAULT;
81 		if (!IS_ENABLED(CONFIG_PGSTE))
82 			return KERNEL_FAULT;
83 		if (test_pt_regs_flag(regs, PIF_GUEST_FAULT))
84 			return GMAP_FAULT;
85 		return KERNEL_FAULT;
86 	}
87 	if (trans_exc_code == 2)
88 		return USER_FAULT;
89 	if (trans_exc_code == 1) {
90 		/* access register mode, not used in the kernel */
91 		return USER_FAULT;
92 	}
93 	/* home space exception -> access via kernel ASCE */
94 	return KERNEL_FAULT;
95 }
96 
97 static int bad_address(void *p)
98 {
99 	unsigned long dummy;
100 
101 	return get_kernel_nofault(dummy, (unsigned long *)p);
102 }
103 
104 static void dump_pagetable(unsigned long asce, unsigned long address)
105 {
106 	unsigned long *table = __va(asce & _ASCE_ORIGIN);
107 
108 	pr_alert("AS:%016lx ", asce);
109 	switch (asce & _ASCE_TYPE_MASK) {
110 	case _ASCE_TYPE_REGION1:
111 		table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
112 		if (bad_address(table))
113 			goto bad;
114 		pr_cont("R1:%016lx ", *table);
115 		if (*table & _REGION_ENTRY_INVALID)
116 			goto out;
117 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
118 		fallthrough;
119 	case _ASCE_TYPE_REGION2:
120 		table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
121 		if (bad_address(table))
122 			goto bad;
123 		pr_cont("R2:%016lx ", *table);
124 		if (*table & _REGION_ENTRY_INVALID)
125 			goto out;
126 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
127 		fallthrough;
128 	case _ASCE_TYPE_REGION3:
129 		table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
130 		if (bad_address(table))
131 			goto bad;
132 		pr_cont("R3:%016lx ", *table);
133 		if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
134 			goto out;
135 		table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
136 		fallthrough;
137 	case _ASCE_TYPE_SEGMENT:
138 		table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
139 		if (bad_address(table))
140 			goto bad;
141 		pr_cont("S:%016lx ", *table);
142 		if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
143 			goto out;
144 		table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
145 	}
146 	table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
147 	if (bad_address(table))
148 		goto bad;
149 	pr_cont("P:%016lx ", *table);
150 out:
151 	pr_cont("\n");
152 	return;
153 bad:
154 	pr_cont("BAD\n");
155 }
156 
157 static void dump_fault_info(struct pt_regs *regs)
158 {
159 	unsigned long asce;
160 
161 	pr_alert("Failing address: %016lx TEID: %016lx\n",
162 		 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
163 	pr_alert("Fault in ");
164 	switch (regs->int_parm_long & 3) {
165 	case 3:
166 		pr_cont("home space ");
167 		break;
168 	case 2:
169 		pr_cont("secondary space ");
170 		break;
171 	case 1:
172 		pr_cont("access register ");
173 		break;
174 	case 0:
175 		pr_cont("primary space ");
176 		break;
177 	}
178 	pr_cont("mode while using ");
179 	switch (get_fault_type(regs)) {
180 	case USER_FAULT:
181 		asce = S390_lowcore.user_asce;
182 		pr_cont("user ");
183 		break;
184 	case GMAP_FAULT:
185 		asce = ((struct gmap *) S390_lowcore.gmap)->asce;
186 		pr_cont("gmap ");
187 		break;
188 	case KERNEL_FAULT:
189 		asce = S390_lowcore.kernel_asce;
190 		pr_cont("kernel ");
191 		break;
192 	default:
193 		unreachable();
194 	}
195 	pr_cont("ASCE.\n");
196 	dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
197 }
198 
199 int show_unhandled_signals = 1;
200 
201 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
202 {
203 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
204 		return;
205 	if (!unhandled_signal(current, signr))
206 		return;
207 	if (!printk_ratelimit())
208 		return;
209 	printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
210 	       regs->int_code & 0xffff, regs->int_code >> 17);
211 	print_vma_addr(KERN_CONT "in ", regs->psw.addr);
212 	printk(KERN_CONT "\n");
213 	if (is_mm_fault)
214 		dump_fault_info(regs);
215 	show_regs(regs);
216 }
217 
218 /*
219  * Send SIGSEGV to task.  This is an external routine
220  * to keep the stack usage of do_page_fault small.
221  */
222 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
223 {
224 	report_user_fault(regs, SIGSEGV, 1);
225 	force_sig_fault(SIGSEGV, si_code,
226 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
227 }
228 
229 const struct exception_table_entry *s390_search_extables(unsigned long addr)
230 {
231 	const struct exception_table_entry *fixup;
232 
233 	fixup = search_extable(__start_dma_ex_table,
234 			       __stop_dma_ex_table - __start_dma_ex_table,
235 			       addr);
236 	if (!fixup)
237 		fixup = search_exception_tables(addr);
238 	return fixup;
239 }
240 
241 static noinline void do_no_context(struct pt_regs *regs)
242 {
243 	const struct exception_table_entry *fixup;
244 
245 	/* Are we prepared to handle this kernel fault?  */
246 	fixup = s390_search_extables(regs->psw.addr);
247 	if (fixup && ex_handle(fixup, regs))
248 		return;
249 
250 	/*
251 	 * Oops. The kernel tried to access some bad page. We'll have to
252 	 * terminate things with extreme prejudice.
253 	 */
254 	if (get_fault_type(regs) == KERNEL_FAULT)
255 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
256 		       " in virtual kernel address space\n");
257 	else
258 		printk(KERN_ALERT "Unable to handle kernel paging request"
259 		       " in virtual user address space\n");
260 	dump_fault_info(regs);
261 	die(regs, "Oops");
262 	do_exit(SIGKILL);
263 }
264 
265 static noinline void do_low_address(struct pt_regs *regs)
266 {
267 	/* Low-address protection hit in kernel mode means
268 	   NULL pointer write access in kernel mode.  */
269 	if (regs->psw.mask & PSW_MASK_PSTATE) {
270 		/* Low-address protection hit in user mode 'cannot happen'. */
271 		die (regs, "Low-address protection");
272 		do_exit(SIGKILL);
273 	}
274 
275 	do_no_context(regs);
276 }
277 
278 static noinline void do_sigbus(struct pt_regs *regs)
279 {
280 	/*
281 	 * Send a sigbus, regardless of whether we were in kernel
282 	 * or user mode.
283 	 */
284 	force_sig_fault(SIGBUS, BUS_ADRERR,
285 			(void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
286 }
287 
288 static noinline void do_fault_error(struct pt_regs *regs, int access,
289 					vm_fault_t fault)
290 {
291 	int si_code;
292 
293 	switch (fault) {
294 	case VM_FAULT_BADACCESS:
295 	case VM_FAULT_BADMAP:
296 		/* Bad memory access. Check if it is kernel or user space. */
297 		if (user_mode(regs)) {
298 			/* User mode accesses just cause a SIGSEGV */
299 			si_code = (fault == VM_FAULT_BADMAP) ?
300 				SEGV_MAPERR : SEGV_ACCERR;
301 			do_sigsegv(regs, si_code);
302 			break;
303 		}
304 		fallthrough;
305 	case VM_FAULT_BADCONTEXT:
306 	case VM_FAULT_PFAULT:
307 		do_no_context(regs);
308 		break;
309 	case VM_FAULT_SIGNAL:
310 		if (!user_mode(regs))
311 			do_no_context(regs);
312 		break;
313 	default: /* fault & VM_FAULT_ERROR */
314 		if (fault & VM_FAULT_OOM) {
315 			if (!user_mode(regs))
316 				do_no_context(regs);
317 			else
318 				pagefault_out_of_memory();
319 		} else if (fault & VM_FAULT_SIGSEGV) {
320 			/* Kernel mode? Handle exceptions or die */
321 			if (!user_mode(regs))
322 				do_no_context(regs);
323 			else
324 				do_sigsegv(regs, SEGV_MAPERR);
325 		} else if (fault & VM_FAULT_SIGBUS) {
326 			/* Kernel mode? Handle exceptions or die */
327 			if (!user_mode(regs))
328 				do_no_context(regs);
329 			else
330 				do_sigbus(regs);
331 		} else
332 			BUG();
333 		break;
334 	}
335 }
336 
337 /*
338  * This routine handles page faults.  It determines the address,
339  * and the problem, and then passes it off to one of the appropriate
340  * routines.
341  *
342  * interruption code (int_code):
343  *   04       Protection           ->  Write-Protection  (suppression)
344  *   10       Segment translation  ->  Not present       (nullification)
345  *   11       Page translation     ->  Not present       (nullification)
346  *   3b       Region third trans.  ->  Not present       (nullification)
347  */
348 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
349 {
350 	struct gmap *gmap;
351 	struct task_struct *tsk;
352 	struct mm_struct *mm;
353 	struct vm_area_struct *vma;
354 	enum fault_type type;
355 	unsigned long trans_exc_code;
356 	unsigned long address;
357 	unsigned int flags;
358 	vm_fault_t fault;
359 
360 	tsk = current;
361 	/*
362 	 * The instruction that caused the program check has
363 	 * been nullified. Don't signal single step via SIGTRAP.
364 	 */
365 	clear_thread_flag(TIF_PER_TRAP);
366 
367 	if (kprobe_page_fault(regs, 14))
368 		return 0;
369 
370 	mm = tsk->mm;
371 	trans_exc_code = regs->int_parm_long;
372 
373 	/*
374 	 * Verify that the fault happened in user space, that
375 	 * we are not in an interrupt and that there is a
376 	 * user context.
377 	 */
378 	fault = VM_FAULT_BADCONTEXT;
379 	type = get_fault_type(regs);
380 	switch (type) {
381 	case KERNEL_FAULT:
382 		goto out;
383 	case USER_FAULT:
384 	case GMAP_FAULT:
385 		if (faulthandler_disabled() || !mm)
386 			goto out;
387 		break;
388 	}
389 
390 	address = trans_exc_code & __FAIL_ADDR_MASK;
391 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
392 	flags = FAULT_FLAG_DEFAULT;
393 	if (user_mode(regs))
394 		flags |= FAULT_FLAG_USER;
395 	if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
396 		flags |= FAULT_FLAG_WRITE;
397 	mmap_read_lock(mm);
398 
399 	gmap = NULL;
400 	if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
401 		gmap = (struct gmap *) S390_lowcore.gmap;
402 		current->thread.gmap_addr = address;
403 		current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
404 		current->thread.gmap_int_code = regs->int_code & 0xffff;
405 		address = __gmap_translate(gmap, address);
406 		if (address == -EFAULT) {
407 			fault = VM_FAULT_BADMAP;
408 			goto out_up;
409 		}
410 		if (gmap->pfault_enabled)
411 			flags |= FAULT_FLAG_RETRY_NOWAIT;
412 	}
413 
414 retry:
415 	fault = VM_FAULT_BADMAP;
416 	vma = find_vma(mm, address);
417 	if (!vma)
418 		goto out_up;
419 
420 	if (unlikely(vma->vm_start > address)) {
421 		if (!(vma->vm_flags & VM_GROWSDOWN))
422 			goto out_up;
423 		if (expand_stack(vma, address))
424 			goto out_up;
425 	}
426 
427 	/*
428 	 * Ok, we have a good vm_area for this memory access, so
429 	 * we can handle it..
430 	 */
431 	fault = VM_FAULT_BADACCESS;
432 	if (unlikely(!(vma->vm_flags & access)))
433 		goto out_up;
434 
435 	if (is_vm_hugetlb_page(vma))
436 		address &= HPAGE_MASK;
437 	/*
438 	 * If for any reason at all we couldn't handle the fault,
439 	 * make sure we exit gracefully rather than endlessly redo
440 	 * the fault.
441 	 */
442 	fault = handle_mm_fault(vma, address, flags, regs);
443 	if (fault_signal_pending(fault, regs)) {
444 		fault = VM_FAULT_SIGNAL;
445 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
446 			goto out_up;
447 		goto out;
448 	}
449 	if (unlikely(fault & VM_FAULT_ERROR))
450 		goto out_up;
451 
452 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
453 		if (fault & VM_FAULT_RETRY) {
454 			if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
455 			    (flags & FAULT_FLAG_RETRY_NOWAIT)) {
456 				/* FAULT_FLAG_RETRY_NOWAIT has been set,
457 				 * mmap_lock has not been released */
458 				current->thread.gmap_pfault = 1;
459 				fault = VM_FAULT_PFAULT;
460 				goto out_up;
461 			}
462 			flags &= ~FAULT_FLAG_RETRY_NOWAIT;
463 			flags |= FAULT_FLAG_TRIED;
464 			mmap_read_lock(mm);
465 			goto retry;
466 		}
467 	}
468 	if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
469 		address =  __gmap_link(gmap, current->thread.gmap_addr,
470 				       address);
471 		if (address == -EFAULT) {
472 			fault = VM_FAULT_BADMAP;
473 			goto out_up;
474 		}
475 		if (address == -ENOMEM) {
476 			fault = VM_FAULT_OOM;
477 			goto out_up;
478 		}
479 	}
480 	fault = 0;
481 out_up:
482 	mmap_read_unlock(mm);
483 out:
484 	return fault;
485 }
486 
487 void do_protection_exception(struct pt_regs *regs)
488 {
489 	unsigned long trans_exc_code;
490 	int access;
491 	vm_fault_t fault;
492 
493 	trans_exc_code = regs->int_parm_long;
494 	/*
495 	 * Protection exceptions are suppressing, decrement psw address.
496 	 * The exception to this rule are aborted transactions, for these
497 	 * the PSW already points to the correct location.
498 	 */
499 	if (!(regs->int_code & 0x200))
500 		regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
501 	/*
502 	 * Check for low-address protection.  This needs to be treated
503 	 * as a special case because the translation exception code
504 	 * field is not guaranteed to contain valid data in this case.
505 	 */
506 	if (unlikely(!(trans_exc_code & 4))) {
507 		do_low_address(regs);
508 		return;
509 	}
510 	if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
511 		regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
512 					(regs->psw.addr & PAGE_MASK);
513 		access = VM_EXEC;
514 		fault = VM_FAULT_BADACCESS;
515 	} else {
516 		access = VM_WRITE;
517 		fault = do_exception(regs, access);
518 	}
519 	if (unlikely(fault))
520 		do_fault_error(regs, access, fault);
521 }
522 NOKPROBE_SYMBOL(do_protection_exception);
523 
524 void do_dat_exception(struct pt_regs *regs)
525 {
526 	int access;
527 	vm_fault_t fault;
528 
529 	access = VM_ACCESS_FLAGS;
530 	fault = do_exception(regs, access);
531 	if (unlikely(fault))
532 		do_fault_error(regs, access, fault);
533 }
534 NOKPROBE_SYMBOL(do_dat_exception);
535 
536 #ifdef CONFIG_PFAULT
537 /*
538  * 'pfault' pseudo page faults routines.
539  */
540 static int pfault_disable;
541 
542 static int __init nopfault(char *str)
543 {
544 	pfault_disable = 1;
545 	return 1;
546 }
547 
548 __setup("nopfault", nopfault);
549 
550 struct pfault_refbk {
551 	u16 refdiagc;
552 	u16 reffcode;
553 	u16 refdwlen;
554 	u16 refversn;
555 	u64 refgaddr;
556 	u64 refselmk;
557 	u64 refcmpmk;
558 	u64 reserved;
559 } __attribute__ ((packed, aligned(8)));
560 
561 static struct pfault_refbk pfault_init_refbk = {
562 	.refdiagc = 0x258,
563 	.reffcode = 0,
564 	.refdwlen = 5,
565 	.refversn = 2,
566 	.refgaddr = __LC_LPP,
567 	.refselmk = 1ULL << 48,
568 	.refcmpmk = 1ULL << 48,
569 	.reserved = __PF_RES_FIELD
570 };
571 
572 int pfault_init(void)
573 {
574         int rc;
575 
576 	if (pfault_disable)
577 		return -1;
578 	diag_stat_inc(DIAG_STAT_X258);
579 	asm volatile(
580 		"	diag	%1,%0,0x258\n"
581 		"0:	j	2f\n"
582 		"1:	la	%0,8\n"
583 		"2:\n"
584 		EX_TABLE(0b,1b)
585 		: "=d" (rc)
586 		: "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
587         return rc;
588 }
589 
590 static struct pfault_refbk pfault_fini_refbk = {
591 	.refdiagc = 0x258,
592 	.reffcode = 1,
593 	.refdwlen = 5,
594 	.refversn = 2,
595 };
596 
597 void pfault_fini(void)
598 {
599 
600 	if (pfault_disable)
601 		return;
602 	diag_stat_inc(DIAG_STAT_X258);
603 	asm volatile(
604 		"	diag	%0,0,0x258\n"
605 		"0:	nopr	%%r7\n"
606 		EX_TABLE(0b,0b)
607 		: : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
608 }
609 
610 static DEFINE_SPINLOCK(pfault_lock);
611 static LIST_HEAD(pfault_list);
612 
613 #define PF_COMPLETE	0x0080
614 
615 /*
616  * The mechanism of our pfault code: if Linux is running as guest, runs a user
617  * space process and the user space process accesses a page that the host has
618  * paged out we get a pfault interrupt.
619  *
620  * This allows us, within the guest, to schedule a different process. Without
621  * this mechanism the host would have to suspend the whole virtual cpu until
622  * the page has been paged in.
623  *
624  * So when we get such an interrupt then we set the state of the current task
625  * to uninterruptible and also set the need_resched flag. Both happens within
626  * interrupt context(!). If we later on want to return to user space we
627  * recognize the need_resched flag and then call schedule().  It's not very
628  * obvious how this works...
629  *
630  * Of course we have a lot of additional fun with the completion interrupt (->
631  * host signals that a page of a process has been paged in and the process can
632  * continue to run). This interrupt can arrive on any cpu and, since we have
633  * virtual cpus, actually appear before the interrupt that signals that a page
634  * is missing.
635  */
636 static void pfault_interrupt(struct ext_code ext_code,
637 			     unsigned int param32, unsigned long param64)
638 {
639 	struct task_struct *tsk;
640 	__u16 subcode;
641 	pid_t pid;
642 
643 	/*
644 	 * Get the external interruption subcode & pfault initial/completion
645 	 * signal bit. VM stores this in the 'cpu address' field associated
646 	 * with the external interrupt.
647 	 */
648 	subcode = ext_code.subcode;
649 	if ((subcode & 0xff00) != __SUBCODE_MASK)
650 		return;
651 	inc_irq_stat(IRQEXT_PFL);
652 	/* Get the token (= pid of the affected task). */
653 	pid = param64 & LPP_PID_MASK;
654 	rcu_read_lock();
655 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
656 	if (tsk)
657 		get_task_struct(tsk);
658 	rcu_read_unlock();
659 	if (!tsk)
660 		return;
661 	spin_lock(&pfault_lock);
662 	if (subcode & PF_COMPLETE) {
663 		/* signal bit is set -> a page has been swapped in by VM */
664 		if (tsk->thread.pfault_wait == 1) {
665 			/* Initial interrupt was faster than the completion
666 			 * interrupt. pfault_wait is valid. Set pfault_wait
667 			 * back to zero and wake up the process. This can
668 			 * safely be done because the task is still sleeping
669 			 * and can't produce new pfaults. */
670 			tsk->thread.pfault_wait = 0;
671 			list_del(&tsk->thread.list);
672 			wake_up_process(tsk);
673 			put_task_struct(tsk);
674 		} else {
675 			/* Completion interrupt was faster than initial
676 			 * interrupt. Set pfault_wait to -1 so the initial
677 			 * interrupt doesn't put the task to sleep.
678 			 * If the task is not running, ignore the completion
679 			 * interrupt since it must be a leftover of a PFAULT
680 			 * CANCEL operation which didn't remove all pending
681 			 * completion interrupts. */
682 			if (task_is_running(tsk))
683 				tsk->thread.pfault_wait = -1;
684 		}
685 	} else {
686 		/* signal bit not set -> a real page is missing. */
687 		if (WARN_ON_ONCE(tsk != current))
688 			goto out;
689 		if (tsk->thread.pfault_wait == 1) {
690 			/* Already on the list with a reference: put to sleep */
691 			goto block;
692 		} else if (tsk->thread.pfault_wait == -1) {
693 			/* Completion interrupt was faster than the initial
694 			 * interrupt (pfault_wait == -1). Set pfault_wait
695 			 * back to zero and exit. */
696 			tsk->thread.pfault_wait = 0;
697 		} else {
698 			/* Initial interrupt arrived before completion
699 			 * interrupt. Let the task sleep.
700 			 * An extra task reference is needed since a different
701 			 * cpu may set the task state to TASK_RUNNING again
702 			 * before the scheduler is reached. */
703 			get_task_struct(tsk);
704 			tsk->thread.pfault_wait = 1;
705 			list_add(&tsk->thread.list, &pfault_list);
706 block:
707 			/* Since this must be a userspace fault, there
708 			 * is no kernel task state to trample. Rely on the
709 			 * return to userspace schedule() to block. */
710 			__set_current_state(TASK_UNINTERRUPTIBLE);
711 			set_tsk_need_resched(tsk);
712 			set_preempt_need_resched();
713 		}
714 	}
715 out:
716 	spin_unlock(&pfault_lock);
717 	put_task_struct(tsk);
718 }
719 
720 static int pfault_cpu_dead(unsigned int cpu)
721 {
722 	struct thread_struct *thread, *next;
723 	struct task_struct *tsk;
724 
725 	spin_lock_irq(&pfault_lock);
726 	list_for_each_entry_safe(thread, next, &pfault_list, list) {
727 		thread->pfault_wait = 0;
728 		list_del(&thread->list);
729 		tsk = container_of(thread, struct task_struct, thread);
730 		wake_up_process(tsk);
731 		put_task_struct(tsk);
732 	}
733 	spin_unlock_irq(&pfault_lock);
734 	return 0;
735 }
736 
737 static int __init pfault_irq_init(void)
738 {
739 	int rc;
740 
741 	rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
742 	if (rc)
743 		goto out_extint;
744 	rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
745 	if (rc)
746 		goto out_pfault;
747 	irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
748 	cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
749 				  NULL, pfault_cpu_dead);
750 	return 0;
751 
752 out_pfault:
753 	unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
754 out_extint:
755 	pfault_disable = 1;
756 	return rc;
757 }
758 early_initcall(pfault_irq_init);
759 
760 #endif /* CONFIG_PFAULT */
761 
762 #if IS_ENABLED(CONFIG_PGSTE)
763 
764 void do_secure_storage_access(struct pt_regs *regs)
765 {
766 	unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
767 	struct vm_area_struct *vma;
768 	struct mm_struct *mm;
769 	struct page *page;
770 	int rc;
771 
772 	/*
773 	 * bit 61 tells us if the address is valid, if it's not we
774 	 * have a major problem and should stop the kernel or send a
775 	 * SIGSEGV to the process. Unfortunately bit 61 is not
776 	 * reliable without the misc UV feature so we need to check
777 	 * for that as well.
778 	 */
779 	if (test_bit_inv(BIT_UV_FEAT_MISC, &uv_info.uv_feature_indications) &&
780 	    !test_bit_inv(61, &regs->int_parm_long)) {
781 		/*
782 		 * When this happens, userspace did something that it
783 		 * was not supposed to do, e.g. branching into secure
784 		 * memory. Trigger a segmentation fault.
785 		 */
786 		if (user_mode(regs)) {
787 			send_sig(SIGSEGV, current, 0);
788 			return;
789 		}
790 
791 		/*
792 		 * The kernel should never run into this case and we
793 		 * have no way out of this situation.
794 		 */
795 		panic("Unexpected PGM 0x3d with TEID bit 61=0");
796 	}
797 
798 	switch (get_fault_type(regs)) {
799 	case USER_FAULT:
800 		mm = current->mm;
801 		mmap_read_lock(mm);
802 		vma = find_vma(mm, addr);
803 		if (!vma) {
804 			mmap_read_unlock(mm);
805 			do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
806 			break;
807 		}
808 		page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
809 		if (IS_ERR_OR_NULL(page)) {
810 			mmap_read_unlock(mm);
811 			break;
812 		}
813 		if (arch_make_page_accessible(page))
814 			send_sig(SIGSEGV, current, 0);
815 		put_page(page);
816 		mmap_read_unlock(mm);
817 		break;
818 	case KERNEL_FAULT:
819 		page = phys_to_page(addr);
820 		if (unlikely(!try_get_page(page)))
821 			break;
822 		rc = arch_make_page_accessible(page);
823 		put_page(page);
824 		if (rc)
825 			BUG();
826 		break;
827 	case GMAP_FAULT:
828 	default:
829 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
830 		WARN_ON_ONCE(1);
831 	}
832 }
833 NOKPROBE_SYMBOL(do_secure_storage_access);
834 
835 void do_non_secure_storage_access(struct pt_regs *regs)
836 {
837 	unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
838 	struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
839 
840 	if (get_fault_type(regs) != GMAP_FAULT) {
841 		do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
842 		WARN_ON_ONCE(1);
843 		return;
844 	}
845 
846 	if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
847 		send_sig(SIGSEGV, current, 0);
848 }
849 NOKPROBE_SYMBOL(do_non_secure_storage_access);
850 
851 void do_secure_storage_violation(struct pt_regs *regs)
852 {
853 	/*
854 	 * Either KVM messed up the secure guest mapping or the same
855 	 * page is mapped into multiple secure guests.
856 	 *
857 	 * This exception is only triggered when a guest 2 is running
858 	 * and can therefore never occur in kernel context.
859 	 */
860 	printk_ratelimited(KERN_WARNING
861 			   "Secure storage violation in task: %s, pid %d\n",
862 			   current->comm, current->pid);
863 	send_sig(SIGSEGV, current, 0);
864 }
865 
866 #endif /* CONFIG_PGSTE */
867