xref: /openbmc/linux/arch/s390/mm/fault.c (revision 10247179)
1 /*
2  *  arch/s390/mm/fault.c
3  *
4  *  S390 version
5  *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (uweigand@de.ibm.com)
8  *
9  *  Derived from "arch/i386/mm/fault.c"
10  *    Copyright (C) 1995  Linus Torvalds
11  */
12 
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/string.h>
19 #include <linux/types.h>
20 #include <linux/ptrace.h>
21 #include <linux/mman.h>
22 #include <linux/mm.h>
23 #include <linux/compat.h>
24 #include <linux/smp.h>
25 #include <linux/kdebug.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/module.h>
29 #include <linux/hardirq.h>
30 #include <linux/kprobes.h>
31 #include <linux/uaccess.h>
32 #include <linux/hugetlb.h>
33 #include <asm/asm-offsets.h>
34 #include <asm/system.h>
35 #include <asm/pgtable.h>
36 #include <asm/s390_ext.h>
37 #include <asm/mmu_context.h>
38 #include <asm/compat.h>
39 #include "../kernel/entry.h"
40 
41 #ifndef CONFIG_64BIT
42 #define __FAIL_ADDR_MASK 0x7ffff000
43 #define __SUBCODE_MASK 0x0200
44 #define __PF_RES_FIELD 0ULL
45 #else /* CONFIG_64BIT */
46 #define __FAIL_ADDR_MASK -4096L
47 #define __SUBCODE_MASK 0x0600
48 #define __PF_RES_FIELD 0x8000000000000000ULL
49 #endif /* CONFIG_64BIT */
50 
51 #define VM_FAULT_BADCONTEXT	0x010000
52 #define VM_FAULT_BADMAP		0x020000
53 #define VM_FAULT_BADACCESS	0x040000
54 
55 static inline int notify_page_fault(struct pt_regs *regs)
56 {
57 	int ret = 0;
58 
59 	/* kprobe_running() needs smp_processor_id() */
60 	if (kprobes_built_in() && !user_mode(regs)) {
61 		preempt_disable();
62 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
63 			ret = 1;
64 		preempt_enable();
65 	}
66 	return ret;
67 }
68 
69 
70 /*
71  * Unlock any spinlocks which will prevent us from getting the
72  * message out.
73  */
74 void bust_spinlocks(int yes)
75 {
76 	if (yes) {
77 		oops_in_progress = 1;
78 	} else {
79 		int loglevel_save = console_loglevel;
80 		console_unblank();
81 		oops_in_progress = 0;
82 		/*
83 		 * OK, the message is on the console.  Now we call printk()
84 		 * without oops_in_progress set so that printk will give klogd
85 		 * a poke.  Hold onto your hats...
86 		 */
87 		console_loglevel = 15;
88 		printk(" ");
89 		console_loglevel = loglevel_save;
90 	}
91 }
92 
93 /*
94  * Returns the address space associated with the fault.
95  * Returns 0 for kernel space and 1 for user space.
96  */
97 static inline int user_space_fault(unsigned long trans_exc_code)
98 {
99 	/*
100 	 * The lowest two bits of the translation exception
101 	 * identification indicate which paging table was used.
102 	 */
103 	trans_exc_code &= 3;
104 	if (trans_exc_code == 2)
105 		/* Access via secondary space, set_fs setting decides */
106 		return current->thread.mm_segment.ar4;
107 	if (user_mode == HOME_SPACE_MODE)
108 		/* User space if the access has been done via home space. */
109 		return trans_exc_code == 3;
110 	/*
111 	 * If the user space is not the home space the kernel runs in home
112 	 * space. Access via secondary space has already been covered,
113 	 * access via primary space or access register is from user space
114 	 * and access via home space is from the kernel.
115 	 */
116 	return trans_exc_code != 3;
117 }
118 
119 static inline void report_user_fault(struct pt_regs *regs, long int_code,
120 				     int signr, unsigned long address)
121 {
122 	if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
123 		return;
124 	if (!unhandled_signal(current, signr))
125 		return;
126 	if (!printk_ratelimit())
127 		return;
128 	printk("User process fault: interruption code 0x%lX ", int_code);
129 	print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
130 	printk("\n");
131 	printk("failing address: %lX\n", address);
132 	show_regs(regs);
133 }
134 
135 /*
136  * Send SIGSEGV to task.  This is an external routine
137  * to keep the stack usage of do_page_fault small.
138  */
139 static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
140 				int si_code, unsigned long trans_exc_code)
141 {
142 	struct siginfo si;
143 	unsigned long address;
144 
145 	address = trans_exc_code & __FAIL_ADDR_MASK;
146 	current->thread.prot_addr = address;
147 	current->thread.trap_no = int_code;
148 	report_user_fault(regs, int_code, SIGSEGV, address);
149 	si.si_signo = SIGSEGV;
150 	si.si_code = si_code;
151 	si.si_addr = (void __user *) address;
152 	force_sig_info(SIGSEGV, &si, current);
153 }
154 
155 static noinline void do_no_context(struct pt_regs *regs, long int_code,
156 				   unsigned long trans_exc_code)
157 {
158 	const struct exception_table_entry *fixup;
159 	unsigned long address;
160 
161 	/* Are we prepared to handle this kernel fault?  */
162 	fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
163 	if (fixup) {
164 		regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
165 		return;
166 	}
167 
168 	/*
169 	 * Oops. The kernel tried to access some bad page. We'll have to
170 	 * terminate things with extreme prejudice.
171 	 */
172 	address = trans_exc_code & __FAIL_ADDR_MASK;
173 	if (!user_space_fault(trans_exc_code))
174 		printk(KERN_ALERT "Unable to handle kernel pointer dereference"
175 		       " at virtual kernel address %p\n", (void *)address);
176 	else
177 		printk(KERN_ALERT "Unable to handle kernel paging request"
178 		       " at virtual user address %p\n", (void *)address);
179 
180 	die("Oops", regs, int_code);
181 	do_exit(SIGKILL);
182 }
183 
184 static noinline void do_low_address(struct pt_regs *regs, long int_code,
185 				    unsigned long trans_exc_code)
186 {
187 	/* Low-address protection hit in kernel mode means
188 	   NULL pointer write access in kernel mode.  */
189 	if (regs->psw.mask & PSW_MASK_PSTATE) {
190 		/* Low-address protection hit in user mode 'cannot happen'. */
191 		die ("Low-address protection", regs, int_code);
192 		do_exit(SIGKILL);
193 	}
194 
195 	do_no_context(regs, int_code, trans_exc_code);
196 }
197 
198 static noinline void do_sigbus(struct pt_regs *regs, long int_code,
199 			       unsigned long trans_exc_code)
200 {
201 	struct task_struct *tsk = current;
202 
203 	/*
204 	 * Send a sigbus, regardless of whether we were in kernel
205 	 * or user mode.
206 	 */
207 	tsk->thread.prot_addr = trans_exc_code & __FAIL_ADDR_MASK;
208 	tsk->thread.trap_no = int_code;
209 	force_sig(SIGBUS, tsk);
210 }
211 
212 #ifdef CONFIG_S390_EXEC_PROTECT
213 static noinline int signal_return(struct pt_regs *regs, long int_code,
214 				  unsigned long trans_exc_code)
215 {
216 	u16 instruction;
217 	int rc;
218 
219 	rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
220 
221 	if (!rc && instruction == 0x0a77) {
222 		clear_tsk_thread_flag(current, TIF_SINGLE_STEP);
223 		if (is_compat_task())
224 			sys32_sigreturn();
225 		else
226 			sys_sigreturn();
227 	} else if (!rc && instruction == 0x0aad) {
228 		clear_tsk_thread_flag(current, TIF_SINGLE_STEP);
229 		if (is_compat_task())
230 			sys32_rt_sigreturn();
231 		else
232 			sys_rt_sigreturn();
233 	} else
234 		do_sigsegv(regs, int_code, SEGV_MAPERR, trans_exc_code);
235 	return 0;
236 }
237 #endif /* CONFIG_S390_EXEC_PROTECT */
238 
239 static noinline void do_fault_error(struct pt_regs *regs, long int_code,
240 				    unsigned long trans_exc_code, int fault)
241 {
242 	int si_code;
243 
244 	switch (fault) {
245 	case VM_FAULT_BADACCESS:
246 #ifdef CONFIG_S390_EXEC_PROTECT
247 		if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY &&
248 		    (trans_exc_code & 3) == 0) {
249 			signal_return(regs, int_code, trans_exc_code);
250 			break;
251 		}
252 #endif /* CONFIG_S390_EXEC_PROTECT */
253 	case VM_FAULT_BADMAP:
254 		/* Bad memory access. Check if it is kernel or user space. */
255 		if (regs->psw.mask & PSW_MASK_PSTATE) {
256 			/* User mode accesses just cause a SIGSEGV */
257 			si_code = (fault == VM_FAULT_BADMAP) ?
258 				SEGV_MAPERR : SEGV_ACCERR;
259 			do_sigsegv(regs, int_code, si_code, trans_exc_code);
260 			return;
261 		}
262 	case VM_FAULT_BADCONTEXT:
263 		do_no_context(regs, int_code, trans_exc_code);
264 		break;
265 	default: /* fault & VM_FAULT_ERROR */
266 		if (fault & VM_FAULT_OOM)
267 			pagefault_out_of_memory();
268 		else if (fault & VM_FAULT_SIGBUS) {
269 			do_sigbus(regs, int_code, trans_exc_code);
270 			/* Kernel mode? Handle exceptions or die */
271 			if (!(regs->psw.mask & PSW_MASK_PSTATE))
272 				do_no_context(regs, int_code, trans_exc_code);
273 		} else
274 			BUG();
275 		break;
276 	}
277 }
278 
279 /*
280  * This routine handles page faults.  It determines the address,
281  * and the problem, and then passes it off to one of the appropriate
282  * routines.
283  *
284  * interruption code (int_code):
285  *   04       Protection           ->  Write-Protection  (suprression)
286  *   10       Segment translation  ->  Not present       (nullification)
287  *   11       Page translation     ->  Not present       (nullification)
288  *   3b       Region third trans.  ->  Not present       (nullification)
289  */
290 static inline int do_exception(struct pt_regs *regs, int access,
291 			       unsigned long trans_exc_code)
292 {
293 	struct task_struct *tsk;
294 	struct mm_struct *mm;
295 	struct vm_area_struct *vma;
296 	unsigned long address;
297 	int fault;
298 
299 	if (notify_page_fault(regs))
300 		return 0;
301 
302 	tsk = current;
303 	mm = tsk->mm;
304 
305 	/*
306 	 * Verify that the fault happened in user space, that
307 	 * we are not in an interrupt and that there is a
308 	 * user context.
309 	 */
310 	fault = VM_FAULT_BADCONTEXT;
311 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
312 		goto out;
313 
314 	address = trans_exc_code & __FAIL_ADDR_MASK;
315 	/*
316 	 * When we get here, the fault happened in the current
317 	 * task's user address space, so we can switch on the
318 	 * interrupts again and then search the VMAs
319 	 */
320 	local_irq_enable();
321 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
322 	down_read(&mm->mmap_sem);
323 
324 	fault = VM_FAULT_BADMAP;
325 	vma = find_vma(mm, address);
326 	if (!vma)
327 		goto out_up;
328 
329 	if (unlikely(vma->vm_start > address)) {
330 		if (!(vma->vm_flags & VM_GROWSDOWN))
331 			goto out_up;
332 		if (expand_stack(vma, address))
333 			goto out_up;
334 	}
335 
336 	/*
337 	 * Ok, we have a good vm_area for this memory access, so
338 	 * we can handle it..
339 	 */
340 	fault = VM_FAULT_BADACCESS;
341 	if (unlikely(!(vma->vm_flags & access)))
342 		goto out_up;
343 
344 	if (is_vm_hugetlb_page(vma))
345 		address &= HPAGE_MASK;
346 	/*
347 	 * If for any reason at all we couldn't handle the fault,
348 	 * make sure we exit gracefully rather than endlessly redo
349 	 * the fault.
350 	 */
351 	fault = handle_mm_fault(mm, vma, address,
352 				(access == VM_WRITE) ? FAULT_FLAG_WRITE : 0);
353 	if (unlikely(fault & VM_FAULT_ERROR))
354 		goto out_up;
355 
356 	if (fault & VM_FAULT_MAJOR) {
357 		tsk->maj_flt++;
358 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
359 				     regs, address);
360 	} else {
361 		tsk->min_flt++;
362 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
363 				     regs, address);
364 	}
365 	/*
366 	 * The instruction that caused the program check will
367 	 * be repeated. Don't signal single step via SIGTRAP.
368 	 */
369 	clear_tsk_thread_flag(tsk, TIF_SINGLE_STEP);
370 	fault = 0;
371 out_up:
372 	up_read(&mm->mmap_sem);
373 out:
374 	return fault;
375 }
376 
377 void __kprobes do_protection_exception(struct pt_regs *regs, long int_code)
378 {
379 	unsigned long trans_exc_code = S390_lowcore.trans_exc_code;
380 	int fault;
381 
382 	/* Protection exception is supressing, decrement psw address. */
383 	regs->psw.addr -= (int_code >> 16);
384 	/*
385 	 * Check for low-address protection.  This needs to be treated
386 	 * as a special case because the translation exception code
387 	 * field is not guaranteed to contain valid data in this case.
388 	 */
389 	if (unlikely(!(trans_exc_code & 4))) {
390 		do_low_address(regs, int_code, trans_exc_code);
391 		return;
392 	}
393 	fault = do_exception(regs, VM_WRITE, trans_exc_code);
394 	if (unlikely(fault))
395 		do_fault_error(regs, 4, trans_exc_code, fault);
396 }
397 
398 void __kprobes do_dat_exception(struct pt_regs *regs, long int_code)
399 {
400 	unsigned long trans_exc_code = S390_lowcore.trans_exc_code;
401 	int access, fault;
402 
403 	access = VM_READ | VM_EXEC | VM_WRITE;
404 #ifdef CONFIG_S390_EXEC_PROTECT
405 	if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY &&
406 	    (trans_exc_code & 3) == 0)
407 		access = VM_EXEC;
408 #endif
409 	fault = do_exception(regs, access, trans_exc_code);
410 	if (unlikely(fault))
411 		do_fault_error(regs, int_code & 255, trans_exc_code, fault);
412 }
413 
414 #ifdef CONFIG_64BIT
415 void __kprobes do_asce_exception(struct pt_regs *regs, long int_code)
416 {
417 	unsigned long trans_exc_code = S390_lowcore.trans_exc_code;
418 	struct mm_struct *mm = current->mm;
419 	struct vm_area_struct *vma;
420 
421 	if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
422 		goto no_context;
423 
424 	local_irq_enable();
425 
426 	down_read(&mm->mmap_sem);
427 	vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
428 	up_read(&mm->mmap_sem);
429 
430 	if (vma) {
431 		update_mm(mm, current);
432 		return;
433 	}
434 
435 	/* User mode accesses just cause a SIGSEGV */
436 	if (regs->psw.mask & PSW_MASK_PSTATE) {
437 		do_sigsegv(regs, int_code, SEGV_MAPERR, trans_exc_code);
438 		return;
439 	}
440 
441 no_context:
442 	do_no_context(regs, int_code, trans_exc_code);
443 }
444 #endif
445 
446 int __handle_fault(unsigned long uaddr, unsigned long int_code, int write_user)
447 {
448 	struct pt_regs regs;
449 	int access, fault;
450 
451 	regs.psw.mask = psw_kernel_bits;
452 	if (!irqs_disabled())
453 		regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
454 	regs.psw.addr = (unsigned long) __builtin_return_address(0);
455 	regs.psw.addr |= PSW_ADDR_AMODE;
456 	uaddr &= PAGE_MASK;
457 	access = write_user ? VM_WRITE : VM_READ;
458 	fault = do_exception(&regs, access, uaddr | 2);
459 	if (unlikely(fault)) {
460 		if (fault & VM_FAULT_OOM) {
461 			pagefault_out_of_memory();
462 			fault = 0;
463 		} else if (fault & VM_FAULT_SIGBUS)
464 			do_sigbus(&regs, int_code, uaddr);
465 	}
466 	return fault ? -EFAULT : 0;
467 }
468 
469 #ifdef CONFIG_PFAULT
470 /*
471  * 'pfault' pseudo page faults routines.
472  */
473 static ext_int_info_t ext_int_pfault;
474 static int pfault_disable = 0;
475 
476 static int __init nopfault(char *str)
477 {
478 	pfault_disable = 1;
479 	return 1;
480 }
481 
482 __setup("nopfault", nopfault);
483 
484 typedef struct {
485 	__u16 refdiagc;
486 	__u16 reffcode;
487 	__u16 refdwlen;
488 	__u16 refversn;
489 	__u64 refgaddr;
490 	__u64 refselmk;
491 	__u64 refcmpmk;
492 	__u64 reserved;
493 } __attribute__ ((packed, aligned(8))) pfault_refbk_t;
494 
495 int pfault_init(void)
496 {
497 	pfault_refbk_t refbk =
498 		{ 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48,
499 		  __PF_RES_FIELD };
500         int rc;
501 
502 	if (!MACHINE_IS_VM || pfault_disable)
503 		return -1;
504 	asm volatile(
505 		"	diag	%1,%0,0x258\n"
506 		"0:	j	2f\n"
507 		"1:	la	%0,8\n"
508 		"2:\n"
509 		EX_TABLE(0b,1b)
510 		: "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
511         __ctl_set_bit(0, 9);
512         return rc;
513 }
514 
515 void pfault_fini(void)
516 {
517 	pfault_refbk_t refbk =
518 	{ 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL };
519 
520 	if (!MACHINE_IS_VM || pfault_disable)
521 		return;
522 	__ctl_clear_bit(0,9);
523 	asm volatile(
524 		"	diag	%0,0,0x258\n"
525 		"0:\n"
526 		EX_TABLE(0b,0b)
527 		: : "a" (&refbk), "m" (refbk) : "cc");
528 }
529 
530 static void pfault_interrupt(__u16 int_code)
531 {
532 	struct task_struct *tsk;
533 	__u16 subcode;
534 
535 	/*
536 	 * Get the external interruption subcode & pfault
537 	 * initial/completion signal bit. VM stores this
538 	 * in the 'cpu address' field associated with the
539          * external interrupt.
540 	 */
541 	subcode = S390_lowcore.cpu_addr;
542 	if ((subcode & 0xff00) != __SUBCODE_MASK)
543 		return;
544 
545 	/*
546 	 * Get the token (= address of the task structure of the affected task).
547 	 */
548 	tsk = *(struct task_struct **) __LC_PFAULT_INTPARM;
549 
550 	if (subcode & 0x0080) {
551 		/* signal bit is set -> a page has been swapped in by VM */
552 		if (xchg(&tsk->thread.pfault_wait, -1) != 0) {
553 			/* Initial interrupt was faster than the completion
554 			 * interrupt. pfault_wait is valid. Set pfault_wait
555 			 * back to zero and wake up the process. This can
556 			 * safely be done because the task is still sleeping
557 			 * and can't produce new pfaults. */
558 			tsk->thread.pfault_wait = 0;
559 			wake_up_process(tsk);
560 			put_task_struct(tsk);
561 		}
562 	} else {
563 		/* signal bit not set -> a real page is missing. */
564 		get_task_struct(tsk);
565 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
566 		if (xchg(&tsk->thread.pfault_wait, 1) != 0) {
567 			/* Completion interrupt was faster than the initial
568 			 * interrupt (swapped in a -1 for pfault_wait). Set
569 			 * pfault_wait back to zero and exit. This can be
570 			 * done safely because tsk is running in kernel
571 			 * mode and can't produce new pfaults. */
572 			tsk->thread.pfault_wait = 0;
573 			set_task_state(tsk, TASK_RUNNING);
574 			put_task_struct(tsk);
575 		} else
576 			set_tsk_need_resched(tsk);
577 	}
578 }
579 
580 void __init pfault_irq_init(void)
581 {
582 	if (!MACHINE_IS_VM)
583 		return;
584 
585 	/*
586 	 * Try to get pfault pseudo page faults going.
587 	 */
588 	if (register_early_external_interrupt(0x2603, pfault_interrupt,
589 					      &ext_int_pfault) != 0)
590 		panic("Couldn't request external interrupt 0x2603");
591 
592 	if (pfault_init() == 0)
593 		return;
594 
595 	/* Tough luck, no pfault. */
596 	pfault_disable = 1;
597 	unregister_early_external_interrupt(0x2603, pfault_interrupt,
598 					    &ext_int_pfault);
599 }
600 #endif
601