xref: /openbmc/linux/arch/s390/kvm/vsie.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kvm nested virtualization support for s390x
4  *
5  * Copyright IBM Corp. 2016, 2018
6  *
7  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8  */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15 
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include "kvm-s390.h"
22 #include "gaccess.h"
23 
24 struct vsie_page {
25 	struct kvm_s390_sie_block scb_s;	/* 0x0000 */
26 	/*
27 	 * the backup info for machine check. ensure it's at
28 	 * the same offset as that in struct sie_page!
29 	 */
30 	struct mcck_volatile_info mcck_info;    /* 0x0200 */
31 	/*
32 	 * The pinned original scb. Be aware that other VCPUs can modify
33 	 * it while we read from it. Values that are used for conditions or
34 	 * are reused conditionally, should be accessed via READ_ONCE.
35 	 */
36 	struct kvm_s390_sie_block *scb_o;	/* 0x0218 */
37 	/* the shadow gmap in use by the vsie_page */
38 	struct gmap *gmap;			/* 0x0220 */
39 	/* address of the last reported fault to guest2 */
40 	unsigned long fault_addr;		/* 0x0228 */
41 	/* calculated guest addresses of satellite control blocks */
42 	gpa_t sca_gpa;				/* 0x0230 */
43 	gpa_t itdba_gpa;			/* 0x0238 */
44 	gpa_t gvrd_gpa;				/* 0x0240 */
45 	gpa_t riccbd_gpa;			/* 0x0248 */
46 	gpa_t sdnx_gpa;				/* 0x0250 */
47 	__u8 reserved[0x0700 - 0x0258];		/* 0x0258 */
48 	struct kvm_s390_crypto_cb crycb;	/* 0x0700 */
49 	__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE];	/* 0x0800 */
50 };
51 
52 /* trigger a validity icpt for the given scb */
53 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
54 			     __u16 reason_code)
55 {
56 	scb->ipa = 0x1000;
57 	scb->ipb = ((__u32) reason_code) << 16;
58 	scb->icptcode = ICPT_VALIDITY;
59 	return 1;
60 }
61 
62 /* mark the prefix as unmapped, this will block the VSIE */
63 static void prefix_unmapped(struct vsie_page *vsie_page)
64 {
65 	atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
66 }
67 
68 /* mark the prefix as unmapped and wait until the VSIE has been left */
69 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
70 {
71 	prefix_unmapped(vsie_page);
72 	if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
73 		atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
74 	while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
75 		cpu_relax();
76 }
77 
78 /* mark the prefix as mapped, this will allow the VSIE to run */
79 static void prefix_mapped(struct vsie_page *vsie_page)
80 {
81 	atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
82 }
83 
84 /* test if the prefix is mapped into the gmap shadow */
85 static int prefix_is_mapped(struct vsie_page *vsie_page)
86 {
87 	return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
88 }
89 
90 /* copy the updated intervention request bits into the shadow scb */
91 static void update_intervention_requests(struct vsie_page *vsie_page)
92 {
93 	const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
94 	int cpuflags;
95 
96 	cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
97 	atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
98 	atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
99 }
100 
101 /* shadow (filter and validate) the cpuflags  */
102 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
103 {
104 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
105 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
106 	int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
107 
108 	/* we don't allow ESA/390 guests */
109 	if (!(cpuflags & CPUSTAT_ZARCH))
110 		return set_validity_icpt(scb_s, 0x0001U);
111 
112 	if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
113 		return set_validity_icpt(scb_s, 0x0001U);
114 	else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
115 		return set_validity_icpt(scb_s, 0x0007U);
116 
117 	/* intervention requests will be set later */
118 	newflags = CPUSTAT_ZARCH;
119 	if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
120 		newflags |= CPUSTAT_GED;
121 	if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
122 		if (cpuflags & CPUSTAT_GED)
123 			return set_validity_icpt(scb_s, 0x0001U);
124 		newflags |= CPUSTAT_GED2;
125 	}
126 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
127 		newflags |= cpuflags & CPUSTAT_P;
128 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
129 		newflags |= cpuflags & CPUSTAT_SM;
130 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
131 		newflags |= cpuflags & CPUSTAT_IBS;
132 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
133 		newflags |= cpuflags & CPUSTAT_KSS;
134 
135 	atomic_set(&scb_s->cpuflags, newflags);
136 	return 0;
137 }
138 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
139 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
140 			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
141 {
142 	struct kvm_s390_apcb0 tmp;
143 
144 	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
145 		return -EFAULT;
146 
147 	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
148 	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
149 	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
150 
151 	return 0;
152 
153 }
154 
155 /**
156  * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
157  * @vcpu: pointer to the virtual CPU
158  * @apcb_s: pointer to start of apcb in the shadow crycb
159  * @apcb_o: pointer to start of original apcb in the guest2
160  * @apcb_h: pointer to start of apcb in the guest1
161  *
162  * Returns 0 and -EFAULT on error reading guest apcb
163  */
164 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
165 			unsigned long apcb_o, unsigned long *apcb_h)
166 {
167 	if (read_guest_real(vcpu, apcb_o, apcb_s,
168 			    sizeof(struct kvm_s390_apcb0)))
169 		return -EFAULT;
170 
171 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
172 
173 	return 0;
174 }
175 
176 /**
177  * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
178  * @vcpu: pointer to the virtual CPU
179  * @apcb_s: pointer to start of apcb in the shadow crycb
180  * @apcb_o: pointer to start of original guest apcb
181  * @apcb_h: pointer to start of apcb in the host
182  *
183  * Returns 0 and -EFAULT on error reading guest apcb
184  */
185 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
186 			unsigned long apcb_o,
187 			unsigned long *apcb_h)
188 {
189 	if (read_guest_real(vcpu, apcb_o, apcb_s,
190 			    sizeof(struct kvm_s390_apcb1)))
191 		return -EFAULT;
192 
193 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
194 
195 	return 0;
196 }
197 
198 /**
199  * setup_apcb - Create a shadow copy of the apcb.
200  * @vcpu: pointer to the virtual CPU
201  * @crycb_s: pointer to shadow crycb
202  * @crycb_o: pointer to original guest crycb
203  * @crycb_h: pointer to the host crycb
204  * @fmt_o: format of the original guest crycb.
205  * @fmt_h: format of the host crycb.
206  *
207  * Checks the compatibility between the guest and host crycb and calls the
208  * appropriate copy function.
209  *
210  * Return 0 or an error number if the guest and host crycb are incompatible.
211  */
212 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
213 	       const u32 crycb_o,
214 	       struct kvm_s390_crypto_cb *crycb_h,
215 	       int fmt_o, int fmt_h)
216 {
217 	struct kvm_s390_crypto_cb *crycb;
218 
219 	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
220 
221 	switch (fmt_o) {
222 	case CRYCB_FORMAT2:
223 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
224 			return -EACCES;
225 		if (fmt_h != CRYCB_FORMAT2)
226 			return -EINVAL;
227 		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
228 				    (unsigned long) &crycb->apcb1,
229 				    (unsigned long *)&crycb_h->apcb1);
230 	case CRYCB_FORMAT1:
231 		switch (fmt_h) {
232 		case CRYCB_FORMAT2:
233 			return setup_apcb10(vcpu, &crycb_s->apcb1,
234 					    (unsigned long) &crycb->apcb0,
235 					    &crycb_h->apcb1);
236 		case CRYCB_FORMAT1:
237 			return setup_apcb00(vcpu,
238 					    (unsigned long *) &crycb_s->apcb0,
239 					    (unsigned long) &crycb->apcb0,
240 					    (unsigned long *) &crycb_h->apcb0);
241 		}
242 		break;
243 	case CRYCB_FORMAT0:
244 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
245 			return -EACCES;
246 
247 		switch (fmt_h) {
248 		case CRYCB_FORMAT2:
249 			return setup_apcb10(vcpu, &crycb_s->apcb1,
250 					    (unsigned long) &crycb->apcb0,
251 					    &crycb_h->apcb1);
252 		case CRYCB_FORMAT1:
253 		case CRYCB_FORMAT0:
254 			return setup_apcb00(vcpu,
255 					    (unsigned long *) &crycb_s->apcb0,
256 					    (unsigned long) &crycb->apcb0,
257 					    (unsigned long *) &crycb_h->apcb0);
258 		}
259 	}
260 	return -EINVAL;
261 }
262 
263 /**
264  * shadow_crycb - Create a shadow copy of the crycb block
265  * @vcpu: a pointer to the virtual CPU
266  * @vsie_page: a pointer to internal date used for the vSIE
267  *
268  * Create a shadow copy of the crycb block and setup key wrapping, if
269  * requested for guest 3 and enabled for guest 2.
270  *
271  * We accept format-1 or format-2, but we convert format-1 into format-2
272  * in the shadow CRYCB.
273  * Using format-2 enables the firmware to choose the right format when
274  * scheduling the SIE.
275  * There is nothing to do for format-0.
276  *
277  * This function centralize the issuing of set_validity_icpt() for all
278  * the subfunctions working on the crycb.
279  *
280  * Returns: - 0 if shadowed or nothing to do
281  *          - > 0 if control has to be given to guest 2
282  */
283 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
284 {
285 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
286 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
287 	const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
288 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
289 	unsigned long *b1, *b2;
290 	u8 ecb3_flags;
291 	u32 ecd_flags;
292 	int apie_h;
293 	int apie_s;
294 	int key_msk = test_kvm_facility(vcpu->kvm, 76);
295 	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
296 	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
297 	int ret = 0;
298 
299 	scb_s->crycbd = 0;
300 
301 	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
302 	apie_s = apie_h & scb_o->eca;
303 	if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
304 		return 0;
305 
306 	if (!crycb_addr)
307 		return set_validity_icpt(scb_s, 0x0039U);
308 
309 	if (fmt_o == CRYCB_FORMAT1)
310 		if ((crycb_addr & PAGE_MASK) !=
311 		    ((crycb_addr + 128) & PAGE_MASK))
312 			return set_validity_icpt(scb_s, 0x003CU);
313 
314 	if (apie_s) {
315 		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
316 				 vcpu->kvm->arch.crypto.crycb,
317 				 fmt_o, fmt_h);
318 		if (ret)
319 			goto end;
320 		scb_s->eca |= scb_o->eca & ECA_APIE;
321 	}
322 
323 	/* we may only allow it if enabled for guest 2 */
324 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
325 		     (ECB3_AES | ECB3_DEA);
326 	ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
327 	if (!ecb3_flags && !ecd_flags)
328 		goto end;
329 
330 	/* copy only the wrapping keys */
331 	if (read_guest_real(vcpu, crycb_addr + 72,
332 			    vsie_page->crycb.dea_wrapping_key_mask, 56))
333 		return set_validity_icpt(scb_s, 0x0035U);
334 
335 	scb_s->ecb3 |= ecb3_flags;
336 	scb_s->ecd |= ecd_flags;
337 
338 	/* xor both blocks in one run */
339 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
340 	b2 = (unsigned long *)
341 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
342 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
343 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
344 end:
345 	switch (ret) {
346 	case -EINVAL:
347 		return set_validity_icpt(scb_s, 0x0022U);
348 	case -EFAULT:
349 		return set_validity_icpt(scb_s, 0x0035U);
350 	case -EACCES:
351 		return set_validity_icpt(scb_s, 0x003CU);
352 	}
353 	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
354 	return 0;
355 }
356 
357 /* shadow (round up/down) the ibc to avoid validity icpt */
358 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
359 {
360 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
361 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
362 	/* READ_ONCE does not work on bitfields - use a temporary variable */
363 	const uint32_t __new_ibc = scb_o->ibc;
364 	const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
365 	__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
366 
367 	scb_s->ibc = 0;
368 	/* ibc installed in g2 and requested for g3 */
369 	if (vcpu->kvm->arch.model.ibc && new_ibc) {
370 		scb_s->ibc = new_ibc;
371 		/* takte care of the minimum ibc level of the machine */
372 		if (scb_s->ibc < min_ibc)
373 			scb_s->ibc = min_ibc;
374 		/* take care of the maximum ibc level set for the guest */
375 		if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
376 			scb_s->ibc = vcpu->kvm->arch.model.ibc;
377 	}
378 }
379 
380 /* unshadow the scb, copying parameters back to the real scb */
381 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
382 {
383 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
384 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
385 
386 	/* interception */
387 	scb_o->icptcode = scb_s->icptcode;
388 	scb_o->icptstatus = scb_s->icptstatus;
389 	scb_o->ipa = scb_s->ipa;
390 	scb_o->ipb = scb_s->ipb;
391 	scb_o->gbea = scb_s->gbea;
392 
393 	/* timer */
394 	scb_o->cputm = scb_s->cputm;
395 	scb_o->ckc = scb_s->ckc;
396 	scb_o->todpr = scb_s->todpr;
397 
398 	/* guest state */
399 	scb_o->gpsw = scb_s->gpsw;
400 	scb_o->gg14 = scb_s->gg14;
401 	scb_o->gg15 = scb_s->gg15;
402 	memcpy(scb_o->gcr, scb_s->gcr, 128);
403 	scb_o->pp = scb_s->pp;
404 
405 	/* branch prediction */
406 	if (test_kvm_facility(vcpu->kvm, 82)) {
407 		scb_o->fpf &= ~FPF_BPBC;
408 		scb_o->fpf |= scb_s->fpf & FPF_BPBC;
409 	}
410 
411 	/* interrupt intercept */
412 	switch (scb_s->icptcode) {
413 	case ICPT_PROGI:
414 	case ICPT_INSTPROGI:
415 	case ICPT_EXTINT:
416 		memcpy((void *)((u64)scb_o + 0xc0),
417 		       (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
418 		break;
419 	case ICPT_PARTEXEC:
420 		/* MVPG only */
421 		memcpy((void *)((u64)scb_o + 0xc0),
422 		       (void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
423 		break;
424 	}
425 
426 	if (scb_s->ihcpu != 0xffffU)
427 		scb_o->ihcpu = scb_s->ihcpu;
428 }
429 
430 /*
431  * Setup the shadow scb by copying and checking the relevant parts of the g2
432  * provided scb.
433  *
434  * Returns: - 0 if the scb has been shadowed
435  *          - > 0 if control has to be given to guest 2
436  */
437 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
438 {
439 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
440 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
441 	/* READ_ONCE does not work on bitfields - use a temporary variable */
442 	const uint32_t __new_prefix = scb_o->prefix;
443 	const uint32_t new_prefix = READ_ONCE(__new_prefix);
444 	const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
445 	bool had_tx = scb_s->ecb & ECB_TE;
446 	unsigned long new_mso = 0;
447 	int rc;
448 
449 	/* make sure we don't have any leftovers when reusing the scb */
450 	scb_s->icptcode = 0;
451 	scb_s->eca = 0;
452 	scb_s->ecb = 0;
453 	scb_s->ecb2 = 0;
454 	scb_s->ecb3 = 0;
455 	scb_s->ecd = 0;
456 	scb_s->fac = 0;
457 	scb_s->fpf = 0;
458 
459 	rc = prepare_cpuflags(vcpu, vsie_page);
460 	if (rc)
461 		goto out;
462 
463 	/* timer */
464 	scb_s->cputm = scb_o->cputm;
465 	scb_s->ckc = scb_o->ckc;
466 	scb_s->todpr = scb_o->todpr;
467 	scb_s->epoch = scb_o->epoch;
468 
469 	/* guest state */
470 	scb_s->gpsw = scb_o->gpsw;
471 	scb_s->gg14 = scb_o->gg14;
472 	scb_s->gg15 = scb_o->gg15;
473 	memcpy(scb_s->gcr, scb_o->gcr, 128);
474 	scb_s->pp = scb_o->pp;
475 
476 	/* interception / execution handling */
477 	scb_s->gbea = scb_o->gbea;
478 	scb_s->lctl = scb_o->lctl;
479 	scb_s->svcc = scb_o->svcc;
480 	scb_s->ictl = scb_o->ictl;
481 	/*
482 	 * SKEY handling functions can't deal with false setting of PTE invalid
483 	 * bits. Therefore we cannot provide interpretation and would later
484 	 * have to provide own emulation handlers.
485 	 */
486 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
487 		scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
488 
489 	scb_s->icpua = scb_o->icpua;
490 
491 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
492 		new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
493 	/* if the hva of the prefix changes, we have to remap the prefix */
494 	if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
495 		prefix_unmapped(vsie_page);
496 	 /* SIE will do mso/msl validity and exception checks for us */
497 	scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
498 	scb_s->mso = new_mso;
499 	scb_s->prefix = new_prefix;
500 
501 	/* We have to definetly flush the tlb if this scb never ran */
502 	if (scb_s->ihcpu != 0xffffU)
503 		scb_s->ihcpu = scb_o->ihcpu;
504 
505 	/* MVPG and Protection Exception Interpretation are always available */
506 	scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
507 	/* Host-protection-interruption introduced with ESOP */
508 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
509 		scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
510 	/* transactional execution */
511 	if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
512 		/* remap the prefix is tx is toggled on */
513 		if (!had_tx)
514 			prefix_unmapped(vsie_page);
515 		scb_s->ecb |= ECB_TE;
516 	}
517 	/* branch prediction */
518 	if (test_kvm_facility(vcpu->kvm, 82))
519 		scb_s->fpf |= scb_o->fpf & FPF_BPBC;
520 	/* SIMD */
521 	if (test_kvm_facility(vcpu->kvm, 129)) {
522 		scb_s->eca |= scb_o->eca & ECA_VX;
523 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
524 	}
525 	/* Run-time-Instrumentation */
526 	if (test_kvm_facility(vcpu->kvm, 64))
527 		scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
528 	/* Instruction Execution Prevention */
529 	if (test_kvm_facility(vcpu->kvm, 130))
530 		scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
531 	/* Guarded Storage */
532 	if (test_kvm_facility(vcpu->kvm, 133)) {
533 		scb_s->ecb |= scb_o->ecb & ECB_GS;
534 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
535 	}
536 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
537 		scb_s->eca |= scb_o->eca & ECA_SII;
538 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
539 		scb_s->eca |= scb_o->eca & ECA_IB;
540 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
541 		scb_s->eca |= scb_o->eca & ECA_CEI;
542 	/* Epoch Extension */
543 	if (test_kvm_facility(vcpu->kvm, 139))
544 		scb_s->ecd |= scb_o->ecd & ECD_MEF;
545 
546 	/* etoken */
547 	if (test_kvm_facility(vcpu->kvm, 156))
548 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
549 
550 	scb_s->hpid = HPID_VSIE;
551 	scb_s->cpnc = scb_o->cpnc;
552 
553 	prepare_ibc(vcpu, vsie_page);
554 	rc = shadow_crycb(vcpu, vsie_page);
555 out:
556 	if (rc)
557 		unshadow_scb(vcpu, vsie_page);
558 	return rc;
559 }
560 
561 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
562 				 unsigned long end)
563 {
564 	struct kvm *kvm = gmap->private;
565 	struct vsie_page *cur;
566 	unsigned long prefix;
567 	struct page *page;
568 	int i;
569 
570 	if (!gmap_is_shadow(gmap))
571 		return;
572 	if (start >= 1UL << 31)
573 		/* We are only interested in prefix pages */
574 		return;
575 
576 	/*
577 	 * Only new shadow blocks are added to the list during runtime,
578 	 * therefore we can safely reference them all the time.
579 	 */
580 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
581 		page = READ_ONCE(kvm->arch.vsie.pages[i]);
582 		if (!page)
583 			continue;
584 		cur = page_to_virt(page);
585 		if (READ_ONCE(cur->gmap) != gmap)
586 			continue;
587 		prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
588 		/* with mso/msl, the prefix lies at an offset */
589 		prefix += cur->scb_s.mso;
590 		if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
591 			prefix_unmapped_sync(cur);
592 	}
593 }
594 
595 /*
596  * Map the first prefix page and if tx is enabled also the second prefix page.
597  *
598  * The prefix will be protected, a gmap notifier will inform about unmaps.
599  * The shadow scb must not be executed until the prefix is remapped, this is
600  * guaranteed by properly handling PROG_REQUEST.
601  *
602  * Returns: - 0 on if successfully mapped or already mapped
603  *          - > 0 if control has to be given to guest 2
604  *          - -EAGAIN if the caller can retry immediately
605  *          - -ENOMEM if out of memory
606  */
607 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
608 {
609 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
610 	u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
611 	int rc;
612 
613 	if (prefix_is_mapped(vsie_page))
614 		return 0;
615 
616 	/* mark it as mapped so we can catch any concurrent unmappers */
617 	prefix_mapped(vsie_page);
618 
619 	/* with mso/msl, the prefix lies at offset *mso* */
620 	prefix += scb_s->mso;
621 
622 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
623 	if (!rc && (scb_s->ecb & ECB_TE))
624 		rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
625 					   prefix + PAGE_SIZE);
626 	/*
627 	 * We don't have to mprotect, we will be called for all unshadows.
628 	 * SIE will detect if protection applies and trigger a validity.
629 	 */
630 	if (rc)
631 		prefix_unmapped(vsie_page);
632 	if (rc > 0 || rc == -EFAULT)
633 		rc = set_validity_icpt(scb_s, 0x0037U);
634 	return rc;
635 }
636 
637 /*
638  * Pin the guest page given by gpa and set hpa to the pinned host address.
639  * Will always be pinned writable.
640  *
641  * Returns: - 0 on success
642  *          - -EINVAL if the gpa is not valid guest storage
643  */
644 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
645 {
646 	struct page *page;
647 
648 	page = gfn_to_page(kvm, gpa_to_gfn(gpa));
649 	if (is_error_page(page))
650 		return -EINVAL;
651 	*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
652 	return 0;
653 }
654 
655 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
656 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
657 {
658 	kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
659 	/* mark the page always as dirty for migration */
660 	mark_page_dirty(kvm, gpa_to_gfn(gpa));
661 }
662 
663 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
664 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
665 {
666 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
667 	hpa_t hpa;
668 
669 	hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
670 	if (hpa) {
671 		unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
672 		vsie_page->sca_gpa = 0;
673 		scb_s->scaol = 0;
674 		scb_s->scaoh = 0;
675 	}
676 
677 	hpa = scb_s->itdba;
678 	if (hpa) {
679 		unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
680 		vsie_page->itdba_gpa = 0;
681 		scb_s->itdba = 0;
682 	}
683 
684 	hpa = scb_s->gvrd;
685 	if (hpa) {
686 		unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
687 		vsie_page->gvrd_gpa = 0;
688 		scb_s->gvrd = 0;
689 	}
690 
691 	hpa = scb_s->riccbd;
692 	if (hpa) {
693 		unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
694 		vsie_page->riccbd_gpa = 0;
695 		scb_s->riccbd = 0;
696 	}
697 
698 	hpa = scb_s->sdnxo;
699 	if (hpa) {
700 		unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
701 		vsie_page->sdnx_gpa = 0;
702 		scb_s->sdnxo = 0;
703 	}
704 }
705 
706 /*
707  * Instead of shadowing some blocks, we can simply forward them because the
708  * addresses in the scb are 64 bit long.
709  *
710  * This works as long as the data lies in one page. If blocks ever exceed one
711  * page, we have to fall back to shadowing.
712  *
713  * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
714  * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
715  *
716  * Returns: - 0 if all blocks were pinned.
717  *          - > 0 if control has to be given to guest 2
718  *          - -ENOMEM if out of memory
719  */
720 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
721 {
722 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
723 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
724 	hpa_t hpa;
725 	gpa_t gpa;
726 	int rc = 0;
727 
728 	gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
729 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
730 		gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
731 	if (gpa) {
732 		if (gpa < 2 * PAGE_SIZE)
733 			rc = set_validity_icpt(scb_s, 0x0038U);
734 		else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
735 			rc = set_validity_icpt(scb_s, 0x0011U);
736 		else if ((gpa & PAGE_MASK) !=
737 			 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
738 			rc = set_validity_icpt(scb_s, 0x003bU);
739 		if (!rc) {
740 			rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
741 			if (rc)
742 				rc = set_validity_icpt(scb_s, 0x0034U);
743 		}
744 		if (rc)
745 			goto unpin;
746 		vsie_page->sca_gpa = gpa;
747 		scb_s->scaoh = (u32)((u64)hpa >> 32);
748 		scb_s->scaol = (u32)(u64)hpa;
749 	}
750 
751 	gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
752 	if (gpa && (scb_s->ecb & ECB_TE)) {
753 		if (gpa < 2 * PAGE_SIZE) {
754 			rc = set_validity_icpt(scb_s, 0x0080U);
755 			goto unpin;
756 		}
757 		/* 256 bytes cannot cross page boundaries */
758 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
759 		if (rc) {
760 			rc = set_validity_icpt(scb_s, 0x0080U);
761 			goto unpin;
762 		}
763 		vsie_page->itdba_gpa = gpa;
764 		scb_s->itdba = hpa;
765 	}
766 
767 	gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
768 	if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
769 		if (gpa < 2 * PAGE_SIZE) {
770 			rc = set_validity_icpt(scb_s, 0x1310U);
771 			goto unpin;
772 		}
773 		/*
774 		 * 512 bytes vector registers cannot cross page boundaries
775 		 * if this block gets bigger, we have to shadow it.
776 		 */
777 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
778 		if (rc) {
779 			rc = set_validity_icpt(scb_s, 0x1310U);
780 			goto unpin;
781 		}
782 		vsie_page->gvrd_gpa = gpa;
783 		scb_s->gvrd = hpa;
784 	}
785 
786 	gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
787 	if (gpa && (scb_s->ecb3 & ECB3_RI)) {
788 		if (gpa < 2 * PAGE_SIZE) {
789 			rc = set_validity_icpt(scb_s, 0x0043U);
790 			goto unpin;
791 		}
792 		/* 64 bytes cannot cross page boundaries */
793 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
794 		if (rc) {
795 			rc = set_validity_icpt(scb_s, 0x0043U);
796 			goto unpin;
797 		}
798 		/* Validity 0x0044 will be checked by SIE */
799 		vsie_page->riccbd_gpa = gpa;
800 		scb_s->riccbd = hpa;
801 	}
802 	if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
803 	    (scb_s->ecd & ECD_ETOKENF)) {
804 		unsigned long sdnxc;
805 
806 		gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
807 		sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
808 		if (!gpa || gpa < 2 * PAGE_SIZE) {
809 			rc = set_validity_icpt(scb_s, 0x10b0U);
810 			goto unpin;
811 		}
812 		if (sdnxc < 6 || sdnxc > 12) {
813 			rc = set_validity_icpt(scb_s, 0x10b1U);
814 			goto unpin;
815 		}
816 		if (gpa & ((1 << sdnxc) - 1)) {
817 			rc = set_validity_icpt(scb_s, 0x10b2U);
818 			goto unpin;
819 		}
820 		/* Due to alignment rules (checked above) this cannot
821 		 * cross page boundaries
822 		 */
823 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
824 		if (rc) {
825 			rc = set_validity_icpt(scb_s, 0x10b0U);
826 			goto unpin;
827 		}
828 		vsie_page->sdnx_gpa = gpa;
829 		scb_s->sdnxo = hpa | sdnxc;
830 	}
831 	return 0;
832 unpin:
833 	unpin_blocks(vcpu, vsie_page);
834 	return rc;
835 }
836 
837 /* unpin the scb provided by guest 2, marking it as dirty */
838 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
839 		      gpa_t gpa)
840 {
841 	hpa_t hpa = (hpa_t) vsie_page->scb_o;
842 
843 	if (hpa)
844 		unpin_guest_page(vcpu->kvm, gpa, hpa);
845 	vsie_page->scb_o = NULL;
846 }
847 
848 /*
849  * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
850  *
851  * Returns: - 0 if the scb was pinned.
852  *          - > 0 if control has to be given to guest 2
853  */
854 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
855 		   gpa_t gpa)
856 {
857 	hpa_t hpa;
858 	int rc;
859 
860 	rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
861 	if (rc) {
862 		rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
863 		WARN_ON_ONCE(rc);
864 		return 1;
865 	}
866 	vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
867 	return 0;
868 }
869 
870 /*
871  * Inject a fault into guest 2.
872  *
873  * Returns: - > 0 if control has to be given to guest 2
874  *            < 0 if an error occurred during injection.
875  */
876 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
877 			bool write_flag)
878 {
879 	struct kvm_s390_pgm_info pgm = {
880 		.code = code,
881 		.trans_exc_code =
882 			/* 0-51: virtual address */
883 			(vaddr & 0xfffffffffffff000UL) |
884 			/* 52-53: store / fetch */
885 			(((unsigned int) !write_flag) + 1) << 10,
886 			/* 62-63: asce id (alway primary == 0) */
887 		.exc_access_id = 0, /* always primary */
888 		.op_access_id = 0, /* not MVPG */
889 	};
890 	int rc;
891 
892 	if (code == PGM_PROTECTION)
893 		pgm.trans_exc_code |= 0x4UL;
894 
895 	rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
896 	return rc ? rc : 1;
897 }
898 
899 /*
900  * Handle a fault during vsie execution on a gmap shadow.
901  *
902  * Returns: - 0 if the fault was resolved
903  *          - > 0 if control has to be given to guest 2
904  *          - < 0 if an error occurred
905  */
906 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
907 {
908 	int rc;
909 
910 	if (current->thread.gmap_int_code == PGM_PROTECTION)
911 		/* we can directly forward all protection exceptions */
912 		return inject_fault(vcpu, PGM_PROTECTION,
913 				    current->thread.gmap_addr, 1);
914 
915 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
916 				   current->thread.gmap_addr);
917 	if (rc > 0) {
918 		rc = inject_fault(vcpu, rc,
919 				  current->thread.gmap_addr,
920 				  current->thread.gmap_write_flag);
921 		if (rc >= 0)
922 			vsie_page->fault_addr = current->thread.gmap_addr;
923 	}
924 	return rc;
925 }
926 
927 /*
928  * Retry the previous fault that required guest 2 intervention. This avoids
929  * one superfluous SIE re-entry and direct exit.
930  *
931  * Will ignore any errors. The next SIE fault will do proper fault handling.
932  */
933 static void handle_last_fault(struct kvm_vcpu *vcpu,
934 			      struct vsie_page *vsie_page)
935 {
936 	if (vsie_page->fault_addr)
937 		kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
938 				      vsie_page->fault_addr);
939 	vsie_page->fault_addr = 0;
940 }
941 
942 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
943 {
944 	vsie_page->scb_s.icptcode = 0;
945 }
946 
947 /* rewind the psw and clear the vsie icpt, so we can retry execution */
948 static void retry_vsie_icpt(struct vsie_page *vsie_page)
949 {
950 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
951 	int ilen = insn_length(scb_s->ipa >> 8);
952 
953 	/* take care of EXECUTE instructions */
954 	if (scb_s->icptstatus & 1) {
955 		ilen = (scb_s->icptstatus >> 4) & 0x6;
956 		if (!ilen)
957 			ilen = 4;
958 	}
959 	scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
960 	clear_vsie_icpt(vsie_page);
961 }
962 
963 /*
964  * Try to shadow + enable the guest 2 provided facility list.
965  * Retry instruction execution if enabled for and provided by guest 2.
966  *
967  * Returns: - 0 if handled (retry or guest 2 icpt)
968  *          - > 0 if control has to be given to guest 2
969  */
970 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
971 {
972 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
973 	__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
974 
975 	if (fac && test_kvm_facility(vcpu->kvm, 7)) {
976 		retry_vsie_icpt(vsie_page);
977 		if (read_guest_real(vcpu, fac, &vsie_page->fac,
978 				    sizeof(vsie_page->fac)))
979 			return set_validity_icpt(scb_s, 0x1090U);
980 		scb_s->fac = (__u32)(__u64) &vsie_page->fac;
981 	}
982 	return 0;
983 }
984 
985 /*
986  * Run the vsie on a shadow scb and a shadow gmap, without any further
987  * sanity checks, handling SIE faults.
988  *
989  * Returns: - 0 everything went fine
990  *          - > 0 if control has to be given to guest 2
991  *          - < 0 if an error occurred
992  */
993 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
994 	__releases(vcpu->kvm->srcu)
995 	__acquires(vcpu->kvm->srcu)
996 {
997 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
998 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
999 	int guest_bp_isolation;
1000 	int rc = 0;
1001 
1002 	handle_last_fault(vcpu, vsie_page);
1003 
1004 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1005 
1006 	/* save current guest state of bp isolation override */
1007 	guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1008 
1009 	/*
1010 	 * The guest is running with BPBC, so we have to force it on for our
1011 	 * nested guest. This is done by enabling BPBC globally, so the BPBC
1012 	 * control in the SCB (which the nested guest can modify) is simply
1013 	 * ignored.
1014 	 */
1015 	if (test_kvm_facility(vcpu->kvm, 82) &&
1016 	    vcpu->arch.sie_block->fpf & FPF_BPBC)
1017 		set_thread_flag(TIF_ISOLATE_BP_GUEST);
1018 
1019 	local_irq_disable();
1020 	guest_enter_irqoff();
1021 	local_irq_enable();
1022 
1023 	/*
1024 	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1025 	 * and VCPU requests also hinder the vSIE from running and lead
1026 	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1027 	 * also kick the vSIE.
1028 	 */
1029 	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1030 	barrier();
1031 	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1032 		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1033 	barrier();
1034 	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1035 
1036 	local_irq_disable();
1037 	guest_exit_irqoff();
1038 	local_irq_enable();
1039 
1040 	/* restore guest state for bp isolation override */
1041 	if (!guest_bp_isolation)
1042 		clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1043 
1044 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1045 
1046 	if (rc == -EINTR) {
1047 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
1048 		kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1049 		return 0;
1050 	}
1051 
1052 	if (rc > 0)
1053 		rc = 0; /* we could still have an icpt */
1054 	else if (rc == -EFAULT)
1055 		return handle_fault(vcpu, vsie_page);
1056 
1057 	switch (scb_s->icptcode) {
1058 	case ICPT_INST:
1059 		if (scb_s->ipa == 0xb2b0)
1060 			rc = handle_stfle(vcpu, vsie_page);
1061 		break;
1062 	case ICPT_STOP:
1063 		/* stop not requested by g2 - must have been a kick */
1064 		if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1065 			clear_vsie_icpt(vsie_page);
1066 		break;
1067 	case ICPT_VALIDITY:
1068 		if ((scb_s->ipa & 0xf000) != 0xf000)
1069 			scb_s->ipa += 0x1000;
1070 		break;
1071 	}
1072 	return rc;
1073 }
1074 
1075 static void release_gmap_shadow(struct vsie_page *vsie_page)
1076 {
1077 	if (vsie_page->gmap)
1078 		gmap_put(vsie_page->gmap);
1079 	WRITE_ONCE(vsie_page->gmap, NULL);
1080 	prefix_unmapped(vsie_page);
1081 }
1082 
1083 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1084 			       struct vsie_page *vsie_page)
1085 {
1086 	unsigned long asce;
1087 	union ctlreg0 cr0;
1088 	struct gmap *gmap;
1089 	int edat;
1090 
1091 	asce = vcpu->arch.sie_block->gcr[1];
1092 	cr0.val = vcpu->arch.sie_block->gcr[0];
1093 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1094 	edat += edat && test_kvm_facility(vcpu->kvm, 78);
1095 
1096 	/*
1097 	 * ASCE or EDAT could have changed since last icpt, or the gmap
1098 	 * we're holding has been unshadowed. If the gmap is still valid,
1099 	 * we can safely reuse it.
1100 	 */
1101 	if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1102 		return 0;
1103 
1104 	/* release the old shadow - if any, and mark the prefix as unmapped */
1105 	release_gmap_shadow(vsie_page);
1106 	gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1107 	if (IS_ERR(gmap))
1108 		return PTR_ERR(gmap);
1109 	gmap->private = vcpu->kvm;
1110 	WRITE_ONCE(vsie_page->gmap, gmap);
1111 	return 0;
1112 }
1113 
1114 /*
1115  * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1116  */
1117 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1118 				struct vsie_page *vsie_page)
1119 {
1120 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1121 
1122 	WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1123 	/*
1124 	 * External calls have to lead to a kick of the vcpu and
1125 	 * therefore the vsie -> Simulate Wait state.
1126 	 */
1127 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1128 	/*
1129 	 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1130 	 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1131 	 */
1132 	preempt_disable();
1133 	scb_s->epoch += vcpu->kvm->arch.epoch;
1134 
1135 	if (scb_s->ecd & ECD_MEF) {
1136 		scb_s->epdx += vcpu->kvm->arch.epdx;
1137 		if (scb_s->epoch < vcpu->kvm->arch.epoch)
1138 			scb_s->epdx += 1;
1139 	}
1140 
1141 	preempt_enable();
1142 }
1143 
1144 /*
1145  * Unregister a shadow scb from a VCPU.
1146  */
1147 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1148 {
1149 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1150 	WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1151 }
1152 
1153 /*
1154  * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1155  * prefix pages and faults.
1156  *
1157  * Returns: - 0 if no errors occurred
1158  *          - > 0 if control has to be given to guest 2
1159  *          - -ENOMEM if out of memory
1160  */
1161 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1162 {
1163 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1164 	int rc = 0;
1165 
1166 	while (1) {
1167 		rc = acquire_gmap_shadow(vcpu, vsie_page);
1168 		if (!rc)
1169 			rc = map_prefix(vcpu, vsie_page);
1170 		if (!rc) {
1171 			gmap_enable(vsie_page->gmap);
1172 			update_intervention_requests(vsie_page);
1173 			rc = do_vsie_run(vcpu, vsie_page);
1174 			gmap_enable(vcpu->arch.gmap);
1175 		}
1176 		atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1177 
1178 		if (rc == -EAGAIN)
1179 			rc = 0;
1180 		if (rc || scb_s->icptcode || signal_pending(current) ||
1181 		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
1182 		    kvm_s390_vcpu_sie_inhibited(vcpu))
1183 			break;
1184 		cond_resched();
1185 	}
1186 
1187 	if (rc == -EFAULT) {
1188 		/*
1189 		 * Addressing exceptions are always presentes as intercepts.
1190 		 * As addressing exceptions are suppressing and our guest 3 PSW
1191 		 * points at the responsible instruction, we have to
1192 		 * forward the PSW and set the ilc. If we can't read guest 3
1193 		 * instruction, we can use an arbitrary ilc. Let's always use
1194 		 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1195 		 * memory. (we could also fake the shadow so the hardware
1196 		 * handles it).
1197 		 */
1198 		scb_s->icptcode = ICPT_PROGI;
1199 		scb_s->iprcc = PGM_ADDRESSING;
1200 		scb_s->pgmilc = 4;
1201 		scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1202 		rc = 1;
1203 	}
1204 	return rc;
1205 }
1206 
1207 /*
1208  * Get or create a vsie page for a scb address.
1209  *
1210  * Returns: - address of a vsie page (cached or new one)
1211  *          - NULL if the same scb address is already used by another VCPU
1212  *          - ERR_PTR(-ENOMEM) if out of memory
1213  */
1214 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1215 {
1216 	struct vsie_page *vsie_page;
1217 	struct page *page;
1218 	int nr_vcpus;
1219 
1220 	rcu_read_lock();
1221 	page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1222 	rcu_read_unlock();
1223 	if (page) {
1224 		if (page_ref_inc_return(page) == 2)
1225 			return page_to_virt(page);
1226 		page_ref_dec(page);
1227 	}
1228 
1229 	/*
1230 	 * We want at least #online_vcpus shadows, so every VCPU can execute
1231 	 * the VSIE in parallel.
1232 	 */
1233 	nr_vcpus = atomic_read(&kvm->online_vcpus);
1234 
1235 	mutex_lock(&kvm->arch.vsie.mutex);
1236 	if (kvm->arch.vsie.page_count < nr_vcpus) {
1237 		page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA);
1238 		if (!page) {
1239 			mutex_unlock(&kvm->arch.vsie.mutex);
1240 			return ERR_PTR(-ENOMEM);
1241 		}
1242 		page_ref_inc(page);
1243 		kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1244 		kvm->arch.vsie.page_count++;
1245 	} else {
1246 		/* reuse an existing entry that belongs to nobody */
1247 		while (true) {
1248 			page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1249 			if (page_ref_inc_return(page) == 2)
1250 				break;
1251 			page_ref_dec(page);
1252 			kvm->arch.vsie.next++;
1253 			kvm->arch.vsie.next %= nr_vcpus;
1254 		}
1255 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1256 	}
1257 	page->index = addr;
1258 	/* double use of the same address */
1259 	if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1260 		page_ref_dec(page);
1261 		mutex_unlock(&kvm->arch.vsie.mutex);
1262 		return NULL;
1263 	}
1264 	mutex_unlock(&kvm->arch.vsie.mutex);
1265 
1266 	vsie_page = page_to_virt(page);
1267 	memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1268 	release_gmap_shadow(vsie_page);
1269 	vsie_page->fault_addr = 0;
1270 	vsie_page->scb_s.ihcpu = 0xffffU;
1271 	return vsie_page;
1272 }
1273 
1274 /* put a vsie page acquired via get_vsie_page */
1275 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1276 {
1277 	struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1278 
1279 	page_ref_dec(page);
1280 }
1281 
1282 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1283 {
1284 	struct vsie_page *vsie_page;
1285 	unsigned long scb_addr;
1286 	int rc;
1287 
1288 	vcpu->stat.instruction_sie++;
1289 	if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1290 		return -EOPNOTSUPP;
1291 	if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1292 		return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1293 
1294 	BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1295 	scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1296 
1297 	/* 512 byte alignment */
1298 	if (unlikely(scb_addr & 0x1ffUL))
1299 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1300 
1301 	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1302 	    kvm_s390_vcpu_sie_inhibited(vcpu))
1303 		return 0;
1304 
1305 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1306 	if (IS_ERR(vsie_page))
1307 		return PTR_ERR(vsie_page);
1308 	else if (!vsie_page)
1309 		/* double use of sie control block - simply do nothing */
1310 		return 0;
1311 
1312 	rc = pin_scb(vcpu, vsie_page, scb_addr);
1313 	if (rc)
1314 		goto out_put;
1315 	rc = shadow_scb(vcpu, vsie_page);
1316 	if (rc)
1317 		goto out_unpin_scb;
1318 	rc = pin_blocks(vcpu, vsie_page);
1319 	if (rc)
1320 		goto out_unshadow;
1321 	register_shadow_scb(vcpu, vsie_page);
1322 	rc = vsie_run(vcpu, vsie_page);
1323 	unregister_shadow_scb(vcpu);
1324 	unpin_blocks(vcpu, vsie_page);
1325 out_unshadow:
1326 	unshadow_scb(vcpu, vsie_page);
1327 out_unpin_scb:
1328 	unpin_scb(vcpu, vsie_page, scb_addr);
1329 out_put:
1330 	put_vsie_page(vcpu->kvm, vsie_page);
1331 
1332 	return rc < 0 ? rc : 0;
1333 }
1334 
1335 /* Init the vsie data structures. To be called when a vm is initialized. */
1336 void kvm_s390_vsie_init(struct kvm *kvm)
1337 {
1338 	mutex_init(&kvm->arch.vsie.mutex);
1339 	INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL);
1340 }
1341 
1342 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
1343 void kvm_s390_vsie_destroy(struct kvm *kvm)
1344 {
1345 	struct vsie_page *vsie_page;
1346 	struct page *page;
1347 	int i;
1348 
1349 	mutex_lock(&kvm->arch.vsie.mutex);
1350 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1351 		page = kvm->arch.vsie.pages[i];
1352 		kvm->arch.vsie.pages[i] = NULL;
1353 		vsie_page = page_to_virt(page);
1354 		release_gmap_shadow(vsie_page);
1355 		/* free the radix tree entry */
1356 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1357 		__free_page(page);
1358 	}
1359 	kvm->arch.vsie.page_count = 0;
1360 	mutex_unlock(&kvm->arch.vsie.mutex);
1361 }
1362 
1363 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1364 {
1365 	struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1366 
1367 	/*
1368 	 * Even if the VCPU lets go of the shadow sie block reference, it is
1369 	 * still valid in the cache. So we can safely kick it.
1370 	 */
1371 	if (scb) {
1372 		atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1373 		if (scb->prog0c & PROG_IN_SIE)
1374 			atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1375 	}
1376 }
1377