xref: /openbmc/linux/arch/s390/kvm/vsie.c (revision f32e5616)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kvm nested virtualization support for s390x
4  *
5  * Copyright IBM Corp. 2016, 2018
6  *
7  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8  */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15 
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include "kvm-s390.h"
22 #include "gaccess.h"
23 
24 struct vsie_page {
25 	struct kvm_s390_sie_block scb_s;	/* 0x0000 */
26 	/*
27 	 * the backup info for machine check. ensure it's at
28 	 * the same offset as that in struct sie_page!
29 	 */
30 	struct mcck_volatile_info mcck_info;    /* 0x0200 */
31 	/*
32 	 * The pinned original scb. Be aware that other VCPUs can modify
33 	 * it while we read from it. Values that are used for conditions or
34 	 * are reused conditionally, should be accessed via READ_ONCE.
35 	 */
36 	struct kvm_s390_sie_block *scb_o;	/* 0x0218 */
37 	/* the shadow gmap in use by the vsie_page */
38 	struct gmap *gmap;			/* 0x0220 */
39 	/* address of the last reported fault to guest2 */
40 	unsigned long fault_addr;		/* 0x0228 */
41 	/* calculated guest addresses of satellite control blocks */
42 	gpa_t sca_gpa;				/* 0x0230 */
43 	gpa_t itdba_gpa;			/* 0x0238 */
44 	gpa_t gvrd_gpa;				/* 0x0240 */
45 	gpa_t riccbd_gpa;			/* 0x0248 */
46 	gpa_t sdnx_gpa;				/* 0x0250 */
47 	__u8 reserved[0x0700 - 0x0258];		/* 0x0258 */
48 	struct kvm_s390_crypto_cb crycb;	/* 0x0700 */
49 	__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE];	/* 0x0800 */
50 };
51 
52 /* trigger a validity icpt for the given scb */
53 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
54 			     __u16 reason_code)
55 {
56 	scb->ipa = 0x1000;
57 	scb->ipb = ((__u32) reason_code) << 16;
58 	scb->icptcode = ICPT_VALIDITY;
59 	return 1;
60 }
61 
62 /* mark the prefix as unmapped, this will block the VSIE */
63 static void prefix_unmapped(struct vsie_page *vsie_page)
64 {
65 	atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
66 }
67 
68 /* mark the prefix as unmapped and wait until the VSIE has been left */
69 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
70 {
71 	prefix_unmapped(vsie_page);
72 	if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
73 		atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
74 	while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
75 		cpu_relax();
76 }
77 
78 /* mark the prefix as mapped, this will allow the VSIE to run */
79 static void prefix_mapped(struct vsie_page *vsie_page)
80 {
81 	atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
82 }
83 
84 /* test if the prefix is mapped into the gmap shadow */
85 static int prefix_is_mapped(struct vsie_page *vsie_page)
86 {
87 	return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
88 }
89 
90 /* copy the updated intervention request bits into the shadow scb */
91 static void update_intervention_requests(struct vsie_page *vsie_page)
92 {
93 	const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
94 	int cpuflags;
95 
96 	cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
97 	atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
98 	atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
99 }
100 
101 /* shadow (filter and validate) the cpuflags  */
102 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
103 {
104 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
105 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
106 	int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
107 
108 	/* we don't allow ESA/390 guests */
109 	if (!(cpuflags & CPUSTAT_ZARCH))
110 		return set_validity_icpt(scb_s, 0x0001U);
111 
112 	if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
113 		return set_validity_icpt(scb_s, 0x0001U);
114 	else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
115 		return set_validity_icpt(scb_s, 0x0007U);
116 
117 	/* intervention requests will be set later */
118 	newflags = CPUSTAT_ZARCH;
119 	if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
120 		newflags |= CPUSTAT_GED;
121 	if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
122 		if (cpuflags & CPUSTAT_GED)
123 			return set_validity_icpt(scb_s, 0x0001U);
124 		newflags |= CPUSTAT_GED2;
125 	}
126 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
127 		newflags |= cpuflags & CPUSTAT_P;
128 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
129 		newflags |= cpuflags & CPUSTAT_SM;
130 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
131 		newflags |= cpuflags & CPUSTAT_IBS;
132 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
133 		newflags |= cpuflags & CPUSTAT_KSS;
134 
135 	atomic_set(&scb_s->cpuflags, newflags);
136 	return 0;
137 }
138 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
139 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
140 			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
141 {
142 	struct kvm_s390_apcb0 tmp;
143 
144 	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
145 		return -EFAULT;
146 
147 	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
148 	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
149 	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
150 
151 	return 0;
152 
153 }
154 
155 /**
156  * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
157  * @vcpu: pointer to the virtual CPU
158  * @apcb_s: pointer to start of apcb in the shadow crycb
159  * @apcb_o: pointer to start of original apcb in the guest2
160  * @apcb_h: pointer to start of apcb in the guest1
161  *
162  * Returns 0 and -EFAULT on error reading guest apcb
163  */
164 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
165 			unsigned long apcb_o, unsigned long *apcb_h)
166 {
167 	if (read_guest_real(vcpu, apcb_o, apcb_s,
168 			    sizeof(struct kvm_s390_apcb0)))
169 		return -EFAULT;
170 
171 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
172 
173 	return 0;
174 }
175 
176 /**
177  * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
178  * @vcpu: pointer to the virtual CPU
179  * @apcb_s: pointer to start of apcb in the shadow crycb
180  * @apcb_o: pointer to start of original guest apcb
181  * @apcb_h: pointer to start of apcb in the host
182  *
183  * Returns 0 and -EFAULT on error reading guest apcb
184  */
185 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
186 			unsigned long apcb_o,
187 			unsigned long *apcb_h)
188 {
189 	if (read_guest_real(vcpu, apcb_o, apcb_s,
190 			    sizeof(struct kvm_s390_apcb1)))
191 		return -EFAULT;
192 
193 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
194 
195 	return 0;
196 }
197 
198 /**
199  * setup_apcb - Create a shadow copy of the apcb.
200  * @vcpu: pointer to the virtual CPU
201  * @crycb_s: pointer to shadow crycb
202  * @crycb_o: pointer to original guest crycb
203  * @crycb_h: pointer to the host crycb
204  * @fmt_o: format of the original guest crycb.
205  * @fmt_h: format of the host crycb.
206  *
207  * Checks the compatibility between the guest and host crycb and calls the
208  * appropriate copy function.
209  *
210  * Return 0 or an error number if the guest and host crycb are incompatible.
211  */
212 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
213 	       const u32 crycb_o,
214 	       struct kvm_s390_crypto_cb *crycb_h,
215 	       int fmt_o, int fmt_h)
216 {
217 	struct kvm_s390_crypto_cb *crycb;
218 
219 	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
220 
221 	switch (fmt_o) {
222 	case CRYCB_FORMAT2:
223 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
224 			return -EACCES;
225 		if (fmt_h != CRYCB_FORMAT2)
226 			return -EINVAL;
227 		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
228 				    (unsigned long) &crycb->apcb1,
229 				    (unsigned long *)&crycb_h->apcb1);
230 	case CRYCB_FORMAT1:
231 		switch (fmt_h) {
232 		case CRYCB_FORMAT2:
233 			return setup_apcb10(vcpu, &crycb_s->apcb1,
234 					    (unsigned long) &crycb->apcb0,
235 					    &crycb_h->apcb1);
236 		case CRYCB_FORMAT1:
237 			return setup_apcb00(vcpu,
238 					    (unsigned long *) &crycb_s->apcb0,
239 					    (unsigned long) &crycb->apcb0,
240 					    (unsigned long *) &crycb_h->apcb0);
241 		}
242 		break;
243 	case CRYCB_FORMAT0:
244 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
245 			return -EACCES;
246 
247 		switch (fmt_h) {
248 		case CRYCB_FORMAT2:
249 			return setup_apcb10(vcpu, &crycb_s->apcb1,
250 					    (unsigned long) &crycb->apcb0,
251 					    &crycb_h->apcb1);
252 		case CRYCB_FORMAT1:
253 		case CRYCB_FORMAT0:
254 			return setup_apcb00(vcpu,
255 					    (unsigned long *) &crycb_s->apcb0,
256 					    (unsigned long) &crycb->apcb0,
257 					    (unsigned long *) &crycb_h->apcb0);
258 		}
259 	}
260 	return -EINVAL;
261 }
262 
263 /**
264  * shadow_crycb - Create a shadow copy of the crycb block
265  * @vcpu: a pointer to the virtual CPU
266  * @vsie_page: a pointer to internal date used for the vSIE
267  *
268  * Create a shadow copy of the crycb block and setup key wrapping, if
269  * requested for guest 3 and enabled for guest 2.
270  *
271  * We accept format-1 or format-2, but we convert format-1 into format-2
272  * in the shadow CRYCB.
273  * Using format-2 enables the firmware to choose the right format when
274  * scheduling the SIE.
275  * There is nothing to do for format-0.
276  *
277  * This function centralize the issuing of set_validity_icpt() for all
278  * the subfunctions working on the crycb.
279  *
280  * Returns: - 0 if shadowed or nothing to do
281  *          - > 0 if control has to be given to guest 2
282  */
283 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
284 {
285 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
286 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
287 	const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
288 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
289 	unsigned long *b1, *b2;
290 	u8 ecb3_flags;
291 	int apie_h;
292 	int key_msk = test_kvm_facility(vcpu->kvm, 76);
293 	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
294 	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
295 	int ret = 0;
296 
297 	scb_s->crycbd = 0;
298 
299 	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
300 	if (!apie_h && !key_msk)
301 		return 0;
302 
303 	if (!crycb_addr)
304 		return set_validity_icpt(scb_s, 0x0039U);
305 
306 	if (fmt_o == CRYCB_FORMAT1)
307 		if ((crycb_addr & PAGE_MASK) !=
308 		    ((crycb_addr + 128) & PAGE_MASK))
309 			return set_validity_icpt(scb_s, 0x003CU);
310 
311 	if (apie_h && (scb_o->eca & ECA_APIE)) {
312 		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
313 				 vcpu->kvm->arch.crypto.crycb,
314 				 fmt_o, fmt_h);
315 		if (ret)
316 			goto end;
317 		scb_s->eca |= scb_o->eca & ECA_APIE;
318 	}
319 
320 	/* we may only allow it if enabled for guest 2 */
321 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
322 		     (ECB3_AES | ECB3_DEA);
323 	if (!ecb3_flags)
324 		goto end;
325 
326 	/* copy only the wrapping keys */
327 	if (read_guest_real(vcpu, crycb_addr + 72,
328 			    vsie_page->crycb.dea_wrapping_key_mask, 56))
329 		return set_validity_icpt(scb_s, 0x0035U);
330 
331 	scb_s->ecb3 |= ecb3_flags;
332 
333 	/* xor both blocks in one run */
334 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
335 	b2 = (unsigned long *)
336 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
337 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
338 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
339 end:
340 	switch (ret) {
341 	case -EINVAL:
342 		return set_validity_icpt(scb_s, 0x0020U);
343 	case -EFAULT:
344 		return set_validity_icpt(scb_s, 0x0035U);
345 	case -EACCES:
346 		return set_validity_icpt(scb_s, 0x003CU);
347 	}
348 	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
349 	return 0;
350 }
351 
352 /* shadow (round up/down) the ibc to avoid validity icpt */
353 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
354 {
355 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
356 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
357 	/* READ_ONCE does not work on bitfields - use a temporary variable */
358 	const uint32_t __new_ibc = scb_o->ibc;
359 	const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
360 	__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
361 
362 	scb_s->ibc = 0;
363 	/* ibc installed in g2 and requested for g3 */
364 	if (vcpu->kvm->arch.model.ibc && new_ibc) {
365 		scb_s->ibc = new_ibc;
366 		/* takte care of the minimum ibc level of the machine */
367 		if (scb_s->ibc < min_ibc)
368 			scb_s->ibc = min_ibc;
369 		/* take care of the maximum ibc level set for the guest */
370 		if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
371 			scb_s->ibc = vcpu->kvm->arch.model.ibc;
372 	}
373 }
374 
375 /* unshadow the scb, copying parameters back to the real scb */
376 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
377 {
378 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
379 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
380 
381 	/* interception */
382 	scb_o->icptcode = scb_s->icptcode;
383 	scb_o->icptstatus = scb_s->icptstatus;
384 	scb_o->ipa = scb_s->ipa;
385 	scb_o->ipb = scb_s->ipb;
386 	scb_o->gbea = scb_s->gbea;
387 
388 	/* timer */
389 	scb_o->cputm = scb_s->cputm;
390 	scb_o->ckc = scb_s->ckc;
391 	scb_o->todpr = scb_s->todpr;
392 
393 	/* guest state */
394 	scb_o->gpsw = scb_s->gpsw;
395 	scb_o->gg14 = scb_s->gg14;
396 	scb_o->gg15 = scb_s->gg15;
397 	memcpy(scb_o->gcr, scb_s->gcr, 128);
398 	scb_o->pp = scb_s->pp;
399 
400 	/* branch prediction */
401 	if (test_kvm_facility(vcpu->kvm, 82)) {
402 		scb_o->fpf &= ~FPF_BPBC;
403 		scb_o->fpf |= scb_s->fpf & FPF_BPBC;
404 	}
405 
406 	/* interrupt intercept */
407 	switch (scb_s->icptcode) {
408 	case ICPT_PROGI:
409 	case ICPT_INSTPROGI:
410 	case ICPT_EXTINT:
411 		memcpy((void *)((u64)scb_o + 0xc0),
412 		       (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
413 		break;
414 	case ICPT_PARTEXEC:
415 		/* MVPG only */
416 		memcpy((void *)((u64)scb_o + 0xc0),
417 		       (void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
418 		break;
419 	}
420 
421 	if (scb_s->ihcpu != 0xffffU)
422 		scb_o->ihcpu = scb_s->ihcpu;
423 }
424 
425 /*
426  * Setup the shadow scb by copying and checking the relevant parts of the g2
427  * provided scb.
428  *
429  * Returns: - 0 if the scb has been shadowed
430  *          - > 0 if control has to be given to guest 2
431  */
432 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
433 {
434 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
435 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
436 	/* READ_ONCE does not work on bitfields - use a temporary variable */
437 	const uint32_t __new_prefix = scb_o->prefix;
438 	const uint32_t new_prefix = READ_ONCE(__new_prefix);
439 	const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
440 	bool had_tx = scb_s->ecb & ECB_TE;
441 	unsigned long new_mso = 0;
442 	int rc;
443 
444 	/* make sure we don't have any leftovers when reusing the scb */
445 	scb_s->icptcode = 0;
446 	scb_s->eca = 0;
447 	scb_s->ecb = 0;
448 	scb_s->ecb2 = 0;
449 	scb_s->ecb3 = 0;
450 	scb_s->ecd = 0;
451 	scb_s->fac = 0;
452 	scb_s->fpf = 0;
453 
454 	rc = prepare_cpuflags(vcpu, vsie_page);
455 	if (rc)
456 		goto out;
457 
458 	/* timer */
459 	scb_s->cputm = scb_o->cputm;
460 	scb_s->ckc = scb_o->ckc;
461 	scb_s->todpr = scb_o->todpr;
462 	scb_s->epoch = scb_o->epoch;
463 
464 	/* guest state */
465 	scb_s->gpsw = scb_o->gpsw;
466 	scb_s->gg14 = scb_o->gg14;
467 	scb_s->gg15 = scb_o->gg15;
468 	memcpy(scb_s->gcr, scb_o->gcr, 128);
469 	scb_s->pp = scb_o->pp;
470 
471 	/* interception / execution handling */
472 	scb_s->gbea = scb_o->gbea;
473 	scb_s->lctl = scb_o->lctl;
474 	scb_s->svcc = scb_o->svcc;
475 	scb_s->ictl = scb_o->ictl;
476 	/*
477 	 * SKEY handling functions can't deal with false setting of PTE invalid
478 	 * bits. Therefore we cannot provide interpretation and would later
479 	 * have to provide own emulation handlers.
480 	 */
481 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
482 		scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
483 
484 	scb_s->icpua = scb_o->icpua;
485 
486 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
487 		new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
488 	/* if the hva of the prefix changes, we have to remap the prefix */
489 	if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
490 		prefix_unmapped(vsie_page);
491 	 /* SIE will do mso/msl validity and exception checks for us */
492 	scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
493 	scb_s->mso = new_mso;
494 	scb_s->prefix = new_prefix;
495 
496 	/* We have to definetly flush the tlb if this scb never ran */
497 	if (scb_s->ihcpu != 0xffffU)
498 		scb_s->ihcpu = scb_o->ihcpu;
499 
500 	/* MVPG and Protection Exception Interpretation are always available */
501 	scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
502 	/* Host-protection-interruption introduced with ESOP */
503 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
504 		scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
505 	/* transactional execution */
506 	if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
507 		/* remap the prefix is tx is toggled on */
508 		if (!had_tx)
509 			prefix_unmapped(vsie_page);
510 		scb_s->ecb |= ECB_TE;
511 	}
512 	/* branch prediction */
513 	if (test_kvm_facility(vcpu->kvm, 82))
514 		scb_s->fpf |= scb_o->fpf & FPF_BPBC;
515 	/* SIMD */
516 	if (test_kvm_facility(vcpu->kvm, 129)) {
517 		scb_s->eca |= scb_o->eca & ECA_VX;
518 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
519 	}
520 	/* Run-time-Instrumentation */
521 	if (test_kvm_facility(vcpu->kvm, 64))
522 		scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
523 	/* Instruction Execution Prevention */
524 	if (test_kvm_facility(vcpu->kvm, 130))
525 		scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
526 	/* Guarded Storage */
527 	if (test_kvm_facility(vcpu->kvm, 133)) {
528 		scb_s->ecb |= scb_o->ecb & ECB_GS;
529 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
530 	}
531 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
532 		scb_s->eca |= scb_o->eca & ECA_SII;
533 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
534 		scb_s->eca |= scb_o->eca & ECA_IB;
535 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
536 		scb_s->eca |= scb_o->eca & ECA_CEI;
537 	/* Epoch Extension */
538 	if (test_kvm_facility(vcpu->kvm, 139))
539 		scb_s->ecd |= scb_o->ecd & ECD_MEF;
540 
541 	/* etoken */
542 	if (test_kvm_facility(vcpu->kvm, 156))
543 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
544 
545 	scb_s->hpid = HPID_VSIE;
546 
547 	prepare_ibc(vcpu, vsie_page);
548 	rc = shadow_crycb(vcpu, vsie_page);
549 out:
550 	if (rc)
551 		unshadow_scb(vcpu, vsie_page);
552 	return rc;
553 }
554 
555 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
556 				 unsigned long end)
557 {
558 	struct kvm *kvm = gmap->private;
559 	struct vsie_page *cur;
560 	unsigned long prefix;
561 	struct page *page;
562 	int i;
563 
564 	if (!gmap_is_shadow(gmap))
565 		return;
566 	if (start >= 1UL << 31)
567 		/* We are only interested in prefix pages */
568 		return;
569 
570 	/*
571 	 * Only new shadow blocks are added to the list during runtime,
572 	 * therefore we can safely reference them all the time.
573 	 */
574 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
575 		page = READ_ONCE(kvm->arch.vsie.pages[i]);
576 		if (!page)
577 			continue;
578 		cur = page_to_virt(page);
579 		if (READ_ONCE(cur->gmap) != gmap)
580 			continue;
581 		prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
582 		/* with mso/msl, the prefix lies at an offset */
583 		prefix += cur->scb_s.mso;
584 		if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
585 			prefix_unmapped_sync(cur);
586 	}
587 }
588 
589 /*
590  * Map the first prefix page and if tx is enabled also the second prefix page.
591  *
592  * The prefix will be protected, a gmap notifier will inform about unmaps.
593  * The shadow scb must not be executed until the prefix is remapped, this is
594  * guaranteed by properly handling PROG_REQUEST.
595  *
596  * Returns: - 0 on if successfully mapped or already mapped
597  *          - > 0 if control has to be given to guest 2
598  *          - -EAGAIN if the caller can retry immediately
599  *          - -ENOMEM if out of memory
600  */
601 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
602 {
603 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
604 	u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
605 	int rc;
606 
607 	if (prefix_is_mapped(vsie_page))
608 		return 0;
609 
610 	/* mark it as mapped so we can catch any concurrent unmappers */
611 	prefix_mapped(vsie_page);
612 
613 	/* with mso/msl, the prefix lies at offset *mso* */
614 	prefix += scb_s->mso;
615 
616 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
617 	if (!rc && (scb_s->ecb & ECB_TE))
618 		rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
619 					   prefix + PAGE_SIZE);
620 	/*
621 	 * We don't have to mprotect, we will be called for all unshadows.
622 	 * SIE will detect if protection applies and trigger a validity.
623 	 */
624 	if (rc)
625 		prefix_unmapped(vsie_page);
626 	if (rc > 0 || rc == -EFAULT)
627 		rc = set_validity_icpt(scb_s, 0x0037U);
628 	return rc;
629 }
630 
631 /*
632  * Pin the guest page given by gpa and set hpa to the pinned host address.
633  * Will always be pinned writable.
634  *
635  * Returns: - 0 on success
636  *          - -EINVAL if the gpa is not valid guest storage
637  */
638 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
639 {
640 	struct page *page;
641 
642 	page = gfn_to_page(kvm, gpa_to_gfn(gpa));
643 	if (is_error_page(page))
644 		return -EINVAL;
645 	*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
646 	return 0;
647 }
648 
649 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
650 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
651 {
652 	kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
653 	/* mark the page always as dirty for migration */
654 	mark_page_dirty(kvm, gpa_to_gfn(gpa));
655 }
656 
657 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
658 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
659 {
660 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
661 	hpa_t hpa;
662 
663 	hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
664 	if (hpa) {
665 		unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
666 		vsie_page->sca_gpa = 0;
667 		scb_s->scaol = 0;
668 		scb_s->scaoh = 0;
669 	}
670 
671 	hpa = scb_s->itdba;
672 	if (hpa) {
673 		unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
674 		vsie_page->itdba_gpa = 0;
675 		scb_s->itdba = 0;
676 	}
677 
678 	hpa = scb_s->gvrd;
679 	if (hpa) {
680 		unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
681 		vsie_page->gvrd_gpa = 0;
682 		scb_s->gvrd = 0;
683 	}
684 
685 	hpa = scb_s->riccbd;
686 	if (hpa) {
687 		unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
688 		vsie_page->riccbd_gpa = 0;
689 		scb_s->riccbd = 0;
690 	}
691 
692 	hpa = scb_s->sdnxo;
693 	if (hpa) {
694 		unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
695 		vsie_page->sdnx_gpa = 0;
696 		scb_s->sdnxo = 0;
697 	}
698 }
699 
700 /*
701  * Instead of shadowing some blocks, we can simply forward them because the
702  * addresses in the scb are 64 bit long.
703  *
704  * This works as long as the data lies in one page. If blocks ever exceed one
705  * page, we have to fall back to shadowing.
706  *
707  * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
708  * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
709  *
710  * Returns: - 0 if all blocks were pinned.
711  *          - > 0 if control has to be given to guest 2
712  *          - -ENOMEM if out of memory
713  */
714 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
715 {
716 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
717 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
718 	hpa_t hpa;
719 	gpa_t gpa;
720 	int rc = 0;
721 
722 	gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
723 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
724 		gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
725 	if (gpa) {
726 		if (gpa < 2 * PAGE_SIZE)
727 			rc = set_validity_icpt(scb_s, 0x0038U);
728 		else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
729 			rc = set_validity_icpt(scb_s, 0x0011U);
730 		else if ((gpa & PAGE_MASK) !=
731 			 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
732 			rc = set_validity_icpt(scb_s, 0x003bU);
733 		if (!rc) {
734 			rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
735 			if (rc)
736 				rc = set_validity_icpt(scb_s, 0x0034U);
737 		}
738 		if (rc)
739 			goto unpin;
740 		vsie_page->sca_gpa = gpa;
741 		scb_s->scaoh = (u32)((u64)hpa >> 32);
742 		scb_s->scaol = (u32)(u64)hpa;
743 	}
744 
745 	gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
746 	if (gpa && (scb_s->ecb & ECB_TE)) {
747 		if (gpa < 2 * PAGE_SIZE) {
748 			rc = set_validity_icpt(scb_s, 0x0080U);
749 			goto unpin;
750 		}
751 		/* 256 bytes cannot cross page boundaries */
752 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
753 		if (rc) {
754 			rc = set_validity_icpt(scb_s, 0x0080U);
755 			goto unpin;
756 		}
757 		vsie_page->itdba_gpa = gpa;
758 		scb_s->itdba = hpa;
759 	}
760 
761 	gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
762 	if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
763 		if (gpa < 2 * PAGE_SIZE) {
764 			rc = set_validity_icpt(scb_s, 0x1310U);
765 			goto unpin;
766 		}
767 		/*
768 		 * 512 bytes vector registers cannot cross page boundaries
769 		 * if this block gets bigger, we have to shadow it.
770 		 */
771 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
772 		if (rc) {
773 			rc = set_validity_icpt(scb_s, 0x1310U);
774 			goto unpin;
775 		}
776 		vsie_page->gvrd_gpa = gpa;
777 		scb_s->gvrd = hpa;
778 	}
779 
780 	gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
781 	if (gpa && (scb_s->ecb3 & ECB3_RI)) {
782 		if (gpa < 2 * PAGE_SIZE) {
783 			rc = set_validity_icpt(scb_s, 0x0043U);
784 			goto unpin;
785 		}
786 		/* 64 bytes cannot cross page boundaries */
787 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
788 		if (rc) {
789 			rc = set_validity_icpt(scb_s, 0x0043U);
790 			goto unpin;
791 		}
792 		/* Validity 0x0044 will be checked by SIE */
793 		vsie_page->riccbd_gpa = gpa;
794 		scb_s->riccbd = hpa;
795 	}
796 	if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
797 	    (scb_s->ecd & ECD_ETOKENF)) {
798 		unsigned long sdnxc;
799 
800 		gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
801 		sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
802 		if (!gpa || gpa < 2 * PAGE_SIZE) {
803 			rc = set_validity_icpt(scb_s, 0x10b0U);
804 			goto unpin;
805 		}
806 		if (sdnxc < 6 || sdnxc > 12) {
807 			rc = set_validity_icpt(scb_s, 0x10b1U);
808 			goto unpin;
809 		}
810 		if (gpa & ((1 << sdnxc) - 1)) {
811 			rc = set_validity_icpt(scb_s, 0x10b2U);
812 			goto unpin;
813 		}
814 		/* Due to alignment rules (checked above) this cannot
815 		 * cross page boundaries
816 		 */
817 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
818 		if (rc) {
819 			rc = set_validity_icpt(scb_s, 0x10b0U);
820 			goto unpin;
821 		}
822 		vsie_page->sdnx_gpa = gpa;
823 		scb_s->sdnxo = hpa | sdnxc;
824 	}
825 	return 0;
826 unpin:
827 	unpin_blocks(vcpu, vsie_page);
828 	return rc;
829 }
830 
831 /* unpin the scb provided by guest 2, marking it as dirty */
832 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
833 		      gpa_t gpa)
834 {
835 	hpa_t hpa = (hpa_t) vsie_page->scb_o;
836 
837 	if (hpa)
838 		unpin_guest_page(vcpu->kvm, gpa, hpa);
839 	vsie_page->scb_o = NULL;
840 }
841 
842 /*
843  * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
844  *
845  * Returns: - 0 if the scb was pinned.
846  *          - > 0 if control has to be given to guest 2
847  */
848 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
849 		   gpa_t gpa)
850 {
851 	hpa_t hpa;
852 	int rc;
853 
854 	rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
855 	if (rc) {
856 		rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
857 		WARN_ON_ONCE(rc);
858 		return 1;
859 	}
860 	vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
861 	return 0;
862 }
863 
864 /*
865  * Inject a fault into guest 2.
866  *
867  * Returns: - > 0 if control has to be given to guest 2
868  *            < 0 if an error occurred during injection.
869  */
870 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
871 			bool write_flag)
872 {
873 	struct kvm_s390_pgm_info pgm = {
874 		.code = code,
875 		.trans_exc_code =
876 			/* 0-51: virtual address */
877 			(vaddr & 0xfffffffffffff000UL) |
878 			/* 52-53: store / fetch */
879 			(((unsigned int) !write_flag) + 1) << 10,
880 			/* 62-63: asce id (alway primary == 0) */
881 		.exc_access_id = 0, /* always primary */
882 		.op_access_id = 0, /* not MVPG */
883 	};
884 	int rc;
885 
886 	if (code == PGM_PROTECTION)
887 		pgm.trans_exc_code |= 0x4UL;
888 
889 	rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
890 	return rc ? rc : 1;
891 }
892 
893 /*
894  * Handle a fault during vsie execution on a gmap shadow.
895  *
896  * Returns: - 0 if the fault was resolved
897  *          - > 0 if control has to be given to guest 2
898  *          - < 0 if an error occurred
899  */
900 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
901 {
902 	int rc;
903 
904 	if (current->thread.gmap_int_code == PGM_PROTECTION)
905 		/* we can directly forward all protection exceptions */
906 		return inject_fault(vcpu, PGM_PROTECTION,
907 				    current->thread.gmap_addr, 1);
908 
909 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
910 				   current->thread.gmap_addr);
911 	if (rc > 0) {
912 		rc = inject_fault(vcpu, rc,
913 				  current->thread.gmap_addr,
914 				  current->thread.gmap_write_flag);
915 		if (rc >= 0)
916 			vsie_page->fault_addr = current->thread.gmap_addr;
917 	}
918 	return rc;
919 }
920 
921 /*
922  * Retry the previous fault that required guest 2 intervention. This avoids
923  * one superfluous SIE re-entry and direct exit.
924  *
925  * Will ignore any errors. The next SIE fault will do proper fault handling.
926  */
927 static void handle_last_fault(struct kvm_vcpu *vcpu,
928 			      struct vsie_page *vsie_page)
929 {
930 	if (vsie_page->fault_addr)
931 		kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
932 				      vsie_page->fault_addr);
933 	vsie_page->fault_addr = 0;
934 }
935 
936 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
937 {
938 	vsie_page->scb_s.icptcode = 0;
939 }
940 
941 /* rewind the psw and clear the vsie icpt, so we can retry execution */
942 static void retry_vsie_icpt(struct vsie_page *vsie_page)
943 {
944 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
945 	int ilen = insn_length(scb_s->ipa >> 8);
946 
947 	/* take care of EXECUTE instructions */
948 	if (scb_s->icptstatus & 1) {
949 		ilen = (scb_s->icptstatus >> 4) & 0x6;
950 		if (!ilen)
951 			ilen = 4;
952 	}
953 	scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
954 	clear_vsie_icpt(vsie_page);
955 }
956 
957 /*
958  * Try to shadow + enable the guest 2 provided facility list.
959  * Retry instruction execution if enabled for and provided by guest 2.
960  *
961  * Returns: - 0 if handled (retry or guest 2 icpt)
962  *          - > 0 if control has to be given to guest 2
963  */
964 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
965 {
966 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
967 	__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
968 
969 	if (fac && test_kvm_facility(vcpu->kvm, 7)) {
970 		retry_vsie_icpt(vsie_page);
971 		if (read_guest_real(vcpu, fac, &vsie_page->fac,
972 				    sizeof(vsie_page->fac)))
973 			return set_validity_icpt(scb_s, 0x1090U);
974 		scb_s->fac = (__u32)(__u64) &vsie_page->fac;
975 	}
976 	return 0;
977 }
978 
979 /*
980  * Run the vsie on a shadow scb and a shadow gmap, without any further
981  * sanity checks, handling SIE faults.
982  *
983  * Returns: - 0 everything went fine
984  *          - > 0 if control has to be given to guest 2
985  *          - < 0 if an error occurred
986  */
987 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
988 	__releases(vcpu->kvm->srcu)
989 	__acquires(vcpu->kvm->srcu)
990 {
991 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
992 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
993 	int guest_bp_isolation;
994 	int rc = 0;
995 
996 	handle_last_fault(vcpu, vsie_page);
997 
998 	if (need_resched())
999 		schedule();
1000 	if (test_cpu_flag(CIF_MCCK_PENDING))
1001 		s390_handle_mcck();
1002 
1003 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1004 
1005 	/* save current guest state of bp isolation override */
1006 	guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1007 
1008 	/*
1009 	 * The guest is running with BPBC, so we have to force it on for our
1010 	 * nested guest. This is done by enabling BPBC globally, so the BPBC
1011 	 * control in the SCB (which the nested guest can modify) is simply
1012 	 * ignored.
1013 	 */
1014 	if (test_kvm_facility(vcpu->kvm, 82) &&
1015 	    vcpu->arch.sie_block->fpf & FPF_BPBC)
1016 		set_thread_flag(TIF_ISOLATE_BP_GUEST);
1017 
1018 	local_irq_disable();
1019 	guest_enter_irqoff();
1020 	local_irq_enable();
1021 
1022 	/*
1023 	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1024 	 * and VCPU requests also hinder the vSIE from running and lead
1025 	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1026 	 * also kick the vSIE.
1027 	 */
1028 	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1029 	barrier();
1030 	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1031 		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1032 	barrier();
1033 	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1034 
1035 	local_irq_disable();
1036 	guest_exit_irqoff();
1037 	local_irq_enable();
1038 
1039 	/* restore guest state for bp isolation override */
1040 	if (!guest_bp_isolation)
1041 		clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1042 
1043 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1044 
1045 	if (rc == -EINTR) {
1046 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
1047 		kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1048 		return 0;
1049 	}
1050 
1051 	if (rc > 0)
1052 		rc = 0; /* we could still have an icpt */
1053 	else if (rc == -EFAULT)
1054 		return handle_fault(vcpu, vsie_page);
1055 
1056 	switch (scb_s->icptcode) {
1057 	case ICPT_INST:
1058 		if (scb_s->ipa == 0xb2b0)
1059 			rc = handle_stfle(vcpu, vsie_page);
1060 		break;
1061 	case ICPT_STOP:
1062 		/* stop not requested by g2 - must have been a kick */
1063 		if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1064 			clear_vsie_icpt(vsie_page);
1065 		break;
1066 	case ICPT_VALIDITY:
1067 		if ((scb_s->ipa & 0xf000) != 0xf000)
1068 			scb_s->ipa += 0x1000;
1069 		break;
1070 	}
1071 	return rc;
1072 }
1073 
1074 static void release_gmap_shadow(struct vsie_page *vsie_page)
1075 {
1076 	if (vsie_page->gmap)
1077 		gmap_put(vsie_page->gmap);
1078 	WRITE_ONCE(vsie_page->gmap, NULL);
1079 	prefix_unmapped(vsie_page);
1080 }
1081 
1082 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1083 			       struct vsie_page *vsie_page)
1084 {
1085 	unsigned long asce;
1086 	union ctlreg0 cr0;
1087 	struct gmap *gmap;
1088 	int edat;
1089 
1090 	asce = vcpu->arch.sie_block->gcr[1];
1091 	cr0.val = vcpu->arch.sie_block->gcr[0];
1092 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1093 	edat += edat && test_kvm_facility(vcpu->kvm, 78);
1094 
1095 	/*
1096 	 * ASCE or EDAT could have changed since last icpt, or the gmap
1097 	 * we're holding has been unshadowed. If the gmap is still valid,
1098 	 * we can safely reuse it.
1099 	 */
1100 	if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1101 		return 0;
1102 
1103 	/* release the old shadow - if any, and mark the prefix as unmapped */
1104 	release_gmap_shadow(vsie_page);
1105 	gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1106 	if (IS_ERR(gmap))
1107 		return PTR_ERR(gmap);
1108 	gmap->private = vcpu->kvm;
1109 	WRITE_ONCE(vsie_page->gmap, gmap);
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1115  */
1116 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1117 				struct vsie_page *vsie_page)
1118 {
1119 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1120 
1121 	WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1122 	/*
1123 	 * External calls have to lead to a kick of the vcpu and
1124 	 * therefore the vsie -> Simulate Wait state.
1125 	 */
1126 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1127 	/*
1128 	 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1129 	 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1130 	 */
1131 	preempt_disable();
1132 	scb_s->epoch += vcpu->kvm->arch.epoch;
1133 
1134 	if (scb_s->ecd & ECD_MEF) {
1135 		scb_s->epdx += vcpu->kvm->arch.epdx;
1136 		if (scb_s->epoch < vcpu->kvm->arch.epoch)
1137 			scb_s->epdx += 1;
1138 	}
1139 
1140 	preempt_enable();
1141 }
1142 
1143 /*
1144  * Unregister a shadow scb from a VCPU.
1145  */
1146 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1147 {
1148 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1149 	WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1150 }
1151 
1152 /*
1153  * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1154  * prefix pages and faults.
1155  *
1156  * Returns: - 0 if no errors occurred
1157  *          - > 0 if control has to be given to guest 2
1158  *          - -ENOMEM if out of memory
1159  */
1160 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1161 {
1162 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1163 	int rc = 0;
1164 
1165 	while (1) {
1166 		rc = acquire_gmap_shadow(vcpu, vsie_page);
1167 		if (!rc)
1168 			rc = map_prefix(vcpu, vsie_page);
1169 		if (!rc) {
1170 			gmap_enable(vsie_page->gmap);
1171 			update_intervention_requests(vsie_page);
1172 			rc = do_vsie_run(vcpu, vsie_page);
1173 			gmap_enable(vcpu->arch.gmap);
1174 		}
1175 		atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1176 
1177 		if (rc == -EAGAIN)
1178 			rc = 0;
1179 		if (rc || scb_s->icptcode || signal_pending(current) ||
1180 		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
1181 		    kvm_s390_vcpu_sie_inhibited(vcpu))
1182 			break;
1183 	}
1184 
1185 	if (rc == -EFAULT) {
1186 		/*
1187 		 * Addressing exceptions are always presentes as intercepts.
1188 		 * As addressing exceptions are suppressing and our guest 3 PSW
1189 		 * points at the responsible instruction, we have to
1190 		 * forward the PSW and set the ilc. If we can't read guest 3
1191 		 * instruction, we can use an arbitrary ilc. Let's always use
1192 		 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1193 		 * memory. (we could also fake the shadow so the hardware
1194 		 * handles it).
1195 		 */
1196 		scb_s->icptcode = ICPT_PROGI;
1197 		scb_s->iprcc = PGM_ADDRESSING;
1198 		scb_s->pgmilc = 4;
1199 		scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1200 	}
1201 	return rc;
1202 }
1203 
1204 /*
1205  * Get or create a vsie page for a scb address.
1206  *
1207  * Returns: - address of a vsie page (cached or new one)
1208  *          - NULL if the same scb address is already used by another VCPU
1209  *          - ERR_PTR(-ENOMEM) if out of memory
1210  */
1211 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1212 {
1213 	struct vsie_page *vsie_page;
1214 	struct page *page;
1215 	int nr_vcpus;
1216 
1217 	rcu_read_lock();
1218 	page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1219 	rcu_read_unlock();
1220 	if (page) {
1221 		if (page_ref_inc_return(page) == 2)
1222 			return page_to_virt(page);
1223 		page_ref_dec(page);
1224 	}
1225 
1226 	/*
1227 	 * We want at least #online_vcpus shadows, so every VCPU can execute
1228 	 * the VSIE in parallel.
1229 	 */
1230 	nr_vcpus = atomic_read(&kvm->online_vcpus);
1231 
1232 	mutex_lock(&kvm->arch.vsie.mutex);
1233 	if (kvm->arch.vsie.page_count < nr_vcpus) {
1234 		page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA);
1235 		if (!page) {
1236 			mutex_unlock(&kvm->arch.vsie.mutex);
1237 			return ERR_PTR(-ENOMEM);
1238 		}
1239 		page_ref_inc(page);
1240 		kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1241 		kvm->arch.vsie.page_count++;
1242 	} else {
1243 		/* reuse an existing entry that belongs to nobody */
1244 		while (true) {
1245 			page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1246 			if (page_ref_inc_return(page) == 2)
1247 				break;
1248 			page_ref_dec(page);
1249 			kvm->arch.vsie.next++;
1250 			kvm->arch.vsie.next %= nr_vcpus;
1251 		}
1252 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1253 	}
1254 	page->index = addr;
1255 	/* double use of the same address */
1256 	if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1257 		page_ref_dec(page);
1258 		mutex_unlock(&kvm->arch.vsie.mutex);
1259 		return NULL;
1260 	}
1261 	mutex_unlock(&kvm->arch.vsie.mutex);
1262 
1263 	vsie_page = page_to_virt(page);
1264 	memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1265 	release_gmap_shadow(vsie_page);
1266 	vsie_page->fault_addr = 0;
1267 	vsie_page->scb_s.ihcpu = 0xffffU;
1268 	return vsie_page;
1269 }
1270 
1271 /* put a vsie page acquired via get_vsie_page */
1272 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1273 {
1274 	struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1275 
1276 	page_ref_dec(page);
1277 }
1278 
1279 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1280 {
1281 	struct vsie_page *vsie_page;
1282 	unsigned long scb_addr;
1283 	int rc;
1284 
1285 	vcpu->stat.instruction_sie++;
1286 	if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1287 		return -EOPNOTSUPP;
1288 	if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1289 		return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1290 
1291 	BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1292 	scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1293 
1294 	/* 512 byte alignment */
1295 	if (unlikely(scb_addr & 0x1ffUL))
1296 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1297 
1298 	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1299 	    kvm_s390_vcpu_sie_inhibited(vcpu))
1300 		return 0;
1301 
1302 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1303 	if (IS_ERR(vsie_page))
1304 		return PTR_ERR(vsie_page);
1305 	else if (!vsie_page)
1306 		/* double use of sie control block - simply do nothing */
1307 		return 0;
1308 
1309 	rc = pin_scb(vcpu, vsie_page, scb_addr);
1310 	if (rc)
1311 		goto out_put;
1312 	rc = shadow_scb(vcpu, vsie_page);
1313 	if (rc)
1314 		goto out_unpin_scb;
1315 	rc = pin_blocks(vcpu, vsie_page);
1316 	if (rc)
1317 		goto out_unshadow;
1318 	register_shadow_scb(vcpu, vsie_page);
1319 	rc = vsie_run(vcpu, vsie_page);
1320 	unregister_shadow_scb(vcpu);
1321 	unpin_blocks(vcpu, vsie_page);
1322 out_unshadow:
1323 	unshadow_scb(vcpu, vsie_page);
1324 out_unpin_scb:
1325 	unpin_scb(vcpu, vsie_page, scb_addr);
1326 out_put:
1327 	put_vsie_page(vcpu->kvm, vsie_page);
1328 
1329 	return rc < 0 ? rc : 0;
1330 }
1331 
1332 /* Init the vsie data structures. To be called when a vm is initialized. */
1333 void kvm_s390_vsie_init(struct kvm *kvm)
1334 {
1335 	mutex_init(&kvm->arch.vsie.mutex);
1336 	INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL);
1337 }
1338 
1339 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
1340 void kvm_s390_vsie_destroy(struct kvm *kvm)
1341 {
1342 	struct vsie_page *vsie_page;
1343 	struct page *page;
1344 	int i;
1345 
1346 	mutex_lock(&kvm->arch.vsie.mutex);
1347 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1348 		page = kvm->arch.vsie.pages[i];
1349 		kvm->arch.vsie.pages[i] = NULL;
1350 		vsie_page = page_to_virt(page);
1351 		release_gmap_shadow(vsie_page);
1352 		/* free the radix tree entry */
1353 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1354 		__free_page(page);
1355 	}
1356 	kvm->arch.vsie.page_count = 0;
1357 	mutex_unlock(&kvm->arch.vsie.mutex);
1358 }
1359 
1360 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1361 {
1362 	struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1363 
1364 	/*
1365 	 * Even if the VCPU lets go of the shadow sie block reference, it is
1366 	 * still valid in the cache. So we can safely kick it.
1367 	 */
1368 	if (scb) {
1369 		atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1370 		if (scb->prog0c & PROG_IN_SIE)
1371 			atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1372 	}
1373 }
1374