xref: /openbmc/linux/arch/s390/kvm/vsie.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kvm nested virtualization support for s390x
4  *
5  * Copyright IBM Corp. 2016, 2018
6  *
7  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8  */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15 
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include <asm/fpu/api.h>
22 #include "kvm-s390.h"
23 #include "gaccess.h"
24 
25 struct vsie_page {
26 	struct kvm_s390_sie_block scb_s;	/* 0x0000 */
27 	/*
28 	 * the backup info for machine check. ensure it's at
29 	 * the same offset as that in struct sie_page!
30 	 */
31 	struct mcck_volatile_info mcck_info;    /* 0x0200 */
32 	/*
33 	 * The pinned original scb. Be aware that other VCPUs can modify
34 	 * it while we read from it. Values that are used for conditions or
35 	 * are reused conditionally, should be accessed via READ_ONCE.
36 	 */
37 	struct kvm_s390_sie_block *scb_o;	/* 0x0218 */
38 	/* the shadow gmap in use by the vsie_page */
39 	struct gmap *gmap;			/* 0x0220 */
40 	/* address of the last reported fault to guest2 */
41 	unsigned long fault_addr;		/* 0x0228 */
42 	/* calculated guest addresses of satellite control blocks */
43 	gpa_t sca_gpa;				/* 0x0230 */
44 	gpa_t itdba_gpa;			/* 0x0238 */
45 	gpa_t gvrd_gpa;				/* 0x0240 */
46 	gpa_t riccbd_gpa;			/* 0x0248 */
47 	gpa_t sdnx_gpa;				/* 0x0250 */
48 	__u8 reserved[0x0700 - 0x0258];		/* 0x0258 */
49 	struct kvm_s390_crypto_cb crycb;	/* 0x0700 */
50 	__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE];	/* 0x0800 */
51 };
52 
53 /* trigger a validity icpt for the given scb */
54 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
55 			     __u16 reason_code)
56 {
57 	scb->ipa = 0x1000;
58 	scb->ipb = ((__u32) reason_code) << 16;
59 	scb->icptcode = ICPT_VALIDITY;
60 	return 1;
61 }
62 
63 /* mark the prefix as unmapped, this will block the VSIE */
64 static void prefix_unmapped(struct vsie_page *vsie_page)
65 {
66 	atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
67 }
68 
69 /* mark the prefix as unmapped and wait until the VSIE has been left */
70 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
71 {
72 	prefix_unmapped(vsie_page);
73 	if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
74 		atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
75 	while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
76 		cpu_relax();
77 }
78 
79 /* mark the prefix as mapped, this will allow the VSIE to run */
80 static void prefix_mapped(struct vsie_page *vsie_page)
81 {
82 	atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
83 }
84 
85 /* test if the prefix is mapped into the gmap shadow */
86 static int prefix_is_mapped(struct vsie_page *vsie_page)
87 {
88 	return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
89 }
90 
91 /* copy the updated intervention request bits into the shadow scb */
92 static void update_intervention_requests(struct vsie_page *vsie_page)
93 {
94 	const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
95 	int cpuflags;
96 
97 	cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
98 	atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
99 	atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
100 }
101 
102 /* shadow (filter and validate) the cpuflags  */
103 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
104 {
105 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
106 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
107 	int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
108 
109 	/* we don't allow ESA/390 guests */
110 	if (!(cpuflags & CPUSTAT_ZARCH))
111 		return set_validity_icpt(scb_s, 0x0001U);
112 
113 	if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
114 		return set_validity_icpt(scb_s, 0x0001U);
115 	else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
116 		return set_validity_icpt(scb_s, 0x0007U);
117 
118 	/* intervention requests will be set later */
119 	newflags = CPUSTAT_ZARCH;
120 	if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
121 		newflags |= CPUSTAT_GED;
122 	if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
123 		if (cpuflags & CPUSTAT_GED)
124 			return set_validity_icpt(scb_s, 0x0001U);
125 		newflags |= CPUSTAT_GED2;
126 	}
127 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
128 		newflags |= cpuflags & CPUSTAT_P;
129 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
130 		newflags |= cpuflags & CPUSTAT_SM;
131 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
132 		newflags |= cpuflags & CPUSTAT_IBS;
133 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
134 		newflags |= cpuflags & CPUSTAT_KSS;
135 
136 	atomic_set(&scb_s->cpuflags, newflags);
137 	return 0;
138 }
139 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
140 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
141 			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
142 {
143 	struct kvm_s390_apcb0 tmp;
144 
145 	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
146 		return -EFAULT;
147 
148 	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
149 	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
150 	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
151 
152 	return 0;
153 
154 }
155 
156 /**
157  * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
158  * @vcpu: pointer to the virtual CPU
159  * @apcb_s: pointer to start of apcb in the shadow crycb
160  * @apcb_o: pointer to start of original apcb in the guest2
161  * @apcb_h: pointer to start of apcb in the guest1
162  *
163  * Returns 0 and -EFAULT on error reading guest apcb
164  */
165 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
166 			unsigned long apcb_o, unsigned long *apcb_h)
167 {
168 	if (read_guest_real(vcpu, apcb_o, apcb_s,
169 			    sizeof(struct kvm_s390_apcb0)))
170 		return -EFAULT;
171 
172 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
173 
174 	return 0;
175 }
176 
177 /**
178  * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
179  * @vcpu: pointer to the virtual CPU
180  * @apcb_s: pointer to start of apcb in the shadow crycb
181  * @apcb_o: pointer to start of original guest apcb
182  * @apcb_h: pointer to start of apcb in the host
183  *
184  * Returns 0 and -EFAULT on error reading guest apcb
185  */
186 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
187 			unsigned long apcb_o,
188 			unsigned long *apcb_h)
189 {
190 	if (read_guest_real(vcpu, apcb_o, apcb_s,
191 			    sizeof(struct kvm_s390_apcb1)))
192 		return -EFAULT;
193 
194 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
195 
196 	return 0;
197 }
198 
199 /**
200  * setup_apcb - Create a shadow copy of the apcb.
201  * @vcpu: pointer to the virtual CPU
202  * @crycb_s: pointer to shadow crycb
203  * @crycb_o: pointer to original guest crycb
204  * @crycb_h: pointer to the host crycb
205  * @fmt_o: format of the original guest crycb.
206  * @fmt_h: format of the host crycb.
207  *
208  * Checks the compatibility between the guest and host crycb and calls the
209  * appropriate copy function.
210  *
211  * Return 0 or an error number if the guest and host crycb are incompatible.
212  */
213 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
214 	       const u32 crycb_o,
215 	       struct kvm_s390_crypto_cb *crycb_h,
216 	       int fmt_o, int fmt_h)
217 {
218 	struct kvm_s390_crypto_cb *crycb;
219 
220 	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
221 
222 	switch (fmt_o) {
223 	case CRYCB_FORMAT2:
224 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
225 			return -EACCES;
226 		if (fmt_h != CRYCB_FORMAT2)
227 			return -EINVAL;
228 		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
229 				    (unsigned long) &crycb->apcb1,
230 				    (unsigned long *)&crycb_h->apcb1);
231 	case CRYCB_FORMAT1:
232 		switch (fmt_h) {
233 		case CRYCB_FORMAT2:
234 			return setup_apcb10(vcpu, &crycb_s->apcb1,
235 					    (unsigned long) &crycb->apcb0,
236 					    &crycb_h->apcb1);
237 		case CRYCB_FORMAT1:
238 			return setup_apcb00(vcpu,
239 					    (unsigned long *) &crycb_s->apcb0,
240 					    (unsigned long) &crycb->apcb0,
241 					    (unsigned long *) &crycb_h->apcb0);
242 		}
243 		break;
244 	case CRYCB_FORMAT0:
245 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
246 			return -EACCES;
247 
248 		switch (fmt_h) {
249 		case CRYCB_FORMAT2:
250 			return setup_apcb10(vcpu, &crycb_s->apcb1,
251 					    (unsigned long) &crycb->apcb0,
252 					    &crycb_h->apcb1);
253 		case CRYCB_FORMAT1:
254 		case CRYCB_FORMAT0:
255 			return setup_apcb00(vcpu,
256 					    (unsigned long *) &crycb_s->apcb0,
257 					    (unsigned long) &crycb->apcb0,
258 					    (unsigned long *) &crycb_h->apcb0);
259 		}
260 	}
261 	return -EINVAL;
262 }
263 
264 /**
265  * shadow_crycb - Create a shadow copy of the crycb block
266  * @vcpu: a pointer to the virtual CPU
267  * @vsie_page: a pointer to internal date used for the vSIE
268  *
269  * Create a shadow copy of the crycb block and setup key wrapping, if
270  * requested for guest 3 and enabled for guest 2.
271  *
272  * We accept format-1 or format-2, but we convert format-1 into format-2
273  * in the shadow CRYCB.
274  * Using format-2 enables the firmware to choose the right format when
275  * scheduling the SIE.
276  * There is nothing to do for format-0.
277  *
278  * This function centralize the issuing of set_validity_icpt() for all
279  * the subfunctions working on the crycb.
280  *
281  * Returns: - 0 if shadowed or nothing to do
282  *          - > 0 if control has to be given to guest 2
283  */
284 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
285 {
286 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
287 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
288 	const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
289 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
290 	unsigned long *b1, *b2;
291 	u8 ecb3_flags;
292 	u32 ecd_flags;
293 	int apie_h;
294 	int apie_s;
295 	int key_msk = test_kvm_facility(vcpu->kvm, 76);
296 	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
297 	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
298 	int ret = 0;
299 
300 	scb_s->crycbd = 0;
301 
302 	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
303 	apie_s = apie_h & scb_o->eca;
304 	if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
305 		return 0;
306 
307 	if (!crycb_addr)
308 		return set_validity_icpt(scb_s, 0x0039U);
309 
310 	if (fmt_o == CRYCB_FORMAT1)
311 		if ((crycb_addr & PAGE_MASK) !=
312 		    ((crycb_addr + 128) & PAGE_MASK))
313 			return set_validity_icpt(scb_s, 0x003CU);
314 
315 	if (apie_s) {
316 		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
317 				 vcpu->kvm->arch.crypto.crycb,
318 				 fmt_o, fmt_h);
319 		if (ret)
320 			goto end;
321 		scb_s->eca |= scb_o->eca & ECA_APIE;
322 	}
323 
324 	/* we may only allow it if enabled for guest 2 */
325 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
326 		     (ECB3_AES | ECB3_DEA);
327 	ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
328 	if (!ecb3_flags && !ecd_flags)
329 		goto end;
330 
331 	/* copy only the wrapping keys */
332 	if (read_guest_real(vcpu, crycb_addr + 72,
333 			    vsie_page->crycb.dea_wrapping_key_mask, 56))
334 		return set_validity_icpt(scb_s, 0x0035U);
335 
336 	scb_s->ecb3 |= ecb3_flags;
337 	scb_s->ecd |= ecd_flags;
338 
339 	/* xor both blocks in one run */
340 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
341 	b2 = (unsigned long *)
342 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
343 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
344 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
345 end:
346 	switch (ret) {
347 	case -EINVAL:
348 		return set_validity_icpt(scb_s, 0x0022U);
349 	case -EFAULT:
350 		return set_validity_icpt(scb_s, 0x0035U);
351 	case -EACCES:
352 		return set_validity_icpt(scb_s, 0x003CU);
353 	}
354 	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
355 	return 0;
356 }
357 
358 /* shadow (round up/down) the ibc to avoid validity icpt */
359 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
360 {
361 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
362 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
363 	/* READ_ONCE does not work on bitfields - use a temporary variable */
364 	const uint32_t __new_ibc = scb_o->ibc;
365 	const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
366 	__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
367 
368 	scb_s->ibc = 0;
369 	/* ibc installed in g2 and requested for g3 */
370 	if (vcpu->kvm->arch.model.ibc && new_ibc) {
371 		scb_s->ibc = new_ibc;
372 		/* takte care of the minimum ibc level of the machine */
373 		if (scb_s->ibc < min_ibc)
374 			scb_s->ibc = min_ibc;
375 		/* take care of the maximum ibc level set for the guest */
376 		if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
377 			scb_s->ibc = vcpu->kvm->arch.model.ibc;
378 	}
379 }
380 
381 /* unshadow the scb, copying parameters back to the real scb */
382 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
383 {
384 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
385 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
386 
387 	/* interception */
388 	scb_o->icptcode = scb_s->icptcode;
389 	scb_o->icptstatus = scb_s->icptstatus;
390 	scb_o->ipa = scb_s->ipa;
391 	scb_o->ipb = scb_s->ipb;
392 	scb_o->gbea = scb_s->gbea;
393 
394 	/* timer */
395 	scb_o->cputm = scb_s->cputm;
396 	scb_o->ckc = scb_s->ckc;
397 	scb_o->todpr = scb_s->todpr;
398 
399 	/* guest state */
400 	scb_o->gpsw = scb_s->gpsw;
401 	scb_o->gg14 = scb_s->gg14;
402 	scb_o->gg15 = scb_s->gg15;
403 	memcpy(scb_o->gcr, scb_s->gcr, 128);
404 	scb_o->pp = scb_s->pp;
405 
406 	/* branch prediction */
407 	if (test_kvm_facility(vcpu->kvm, 82)) {
408 		scb_o->fpf &= ~FPF_BPBC;
409 		scb_o->fpf |= scb_s->fpf & FPF_BPBC;
410 	}
411 
412 	/* interrupt intercept */
413 	switch (scb_s->icptcode) {
414 	case ICPT_PROGI:
415 	case ICPT_INSTPROGI:
416 	case ICPT_EXTINT:
417 		memcpy((void *)((u64)scb_o + 0xc0),
418 		       (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
419 		break;
420 	}
421 
422 	if (scb_s->ihcpu != 0xffffU)
423 		scb_o->ihcpu = scb_s->ihcpu;
424 }
425 
426 /*
427  * Setup the shadow scb by copying and checking the relevant parts of the g2
428  * provided scb.
429  *
430  * Returns: - 0 if the scb has been shadowed
431  *          - > 0 if control has to be given to guest 2
432  */
433 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
434 {
435 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
436 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
437 	/* READ_ONCE does not work on bitfields - use a temporary variable */
438 	const uint32_t __new_prefix = scb_o->prefix;
439 	const uint32_t new_prefix = READ_ONCE(__new_prefix);
440 	const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
441 	bool had_tx = scb_s->ecb & ECB_TE;
442 	unsigned long new_mso = 0;
443 	int rc;
444 
445 	/* make sure we don't have any leftovers when reusing the scb */
446 	scb_s->icptcode = 0;
447 	scb_s->eca = 0;
448 	scb_s->ecb = 0;
449 	scb_s->ecb2 = 0;
450 	scb_s->ecb3 = 0;
451 	scb_s->ecd = 0;
452 	scb_s->fac = 0;
453 	scb_s->fpf = 0;
454 
455 	rc = prepare_cpuflags(vcpu, vsie_page);
456 	if (rc)
457 		goto out;
458 
459 	/* timer */
460 	scb_s->cputm = scb_o->cputm;
461 	scb_s->ckc = scb_o->ckc;
462 	scb_s->todpr = scb_o->todpr;
463 	scb_s->epoch = scb_o->epoch;
464 
465 	/* guest state */
466 	scb_s->gpsw = scb_o->gpsw;
467 	scb_s->gg14 = scb_o->gg14;
468 	scb_s->gg15 = scb_o->gg15;
469 	memcpy(scb_s->gcr, scb_o->gcr, 128);
470 	scb_s->pp = scb_o->pp;
471 
472 	/* interception / execution handling */
473 	scb_s->gbea = scb_o->gbea;
474 	scb_s->lctl = scb_o->lctl;
475 	scb_s->svcc = scb_o->svcc;
476 	scb_s->ictl = scb_o->ictl;
477 	/*
478 	 * SKEY handling functions can't deal with false setting of PTE invalid
479 	 * bits. Therefore we cannot provide interpretation and would later
480 	 * have to provide own emulation handlers.
481 	 */
482 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
483 		scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
484 
485 	scb_s->icpua = scb_o->icpua;
486 
487 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
488 		new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
489 	/* if the hva of the prefix changes, we have to remap the prefix */
490 	if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
491 		prefix_unmapped(vsie_page);
492 	 /* SIE will do mso/msl validity and exception checks for us */
493 	scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
494 	scb_s->mso = new_mso;
495 	scb_s->prefix = new_prefix;
496 
497 	/* We have to definetly flush the tlb if this scb never ran */
498 	if (scb_s->ihcpu != 0xffffU)
499 		scb_s->ihcpu = scb_o->ihcpu;
500 
501 	/* MVPG and Protection Exception Interpretation are always available */
502 	scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
503 	/* Host-protection-interruption introduced with ESOP */
504 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
505 		scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
506 	/* transactional execution */
507 	if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
508 		/* remap the prefix is tx is toggled on */
509 		if (!had_tx)
510 			prefix_unmapped(vsie_page);
511 		scb_s->ecb |= ECB_TE;
512 	}
513 	/* branch prediction */
514 	if (test_kvm_facility(vcpu->kvm, 82))
515 		scb_s->fpf |= scb_o->fpf & FPF_BPBC;
516 	/* SIMD */
517 	if (test_kvm_facility(vcpu->kvm, 129)) {
518 		scb_s->eca |= scb_o->eca & ECA_VX;
519 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
520 	}
521 	/* Run-time-Instrumentation */
522 	if (test_kvm_facility(vcpu->kvm, 64))
523 		scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
524 	/* Instruction Execution Prevention */
525 	if (test_kvm_facility(vcpu->kvm, 130))
526 		scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
527 	/* Guarded Storage */
528 	if (test_kvm_facility(vcpu->kvm, 133)) {
529 		scb_s->ecb |= scb_o->ecb & ECB_GS;
530 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
531 	}
532 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
533 		scb_s->eca |= scb_o->eca & ECA_SII;
534 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
535 		scb_s->eca |= scb_o->eca & ECA_IB;
536 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
537 		scb_s->eca |= scb_o->eca & ECA_CEI;
538 	/* Epoch Extension */
539 	if (test_kvm_facility(vcpu->kvm, 139))
540 		scb_s->ecd |= scb_o->ecd & ECD_MEF;
541 
542 	/* etoken */
543 	if (test_kvm_facility(vcpu->kvm, 156))
544 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
545 
546 	scb_s->hpid = HPID_VSIE;
547 	scb_s->cpnc = scb_o->cpnc;
548 
549 	prepare_ibc(vcpu, vsie_page);
550 	rc = shadow_crycb(vcpu, vsie_page);
551 out:
552 	if (rc)
553 		unshadow_scb(vcpu, vsie_page);
554 	return rc;
555 }
556 
557 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
558 				 unsigned long end)
559 {
560 	struct kvm *kvm = gmap->private;
561 	struct vsie_page *cur;
562 	unsigned long prefix;
563 	struct page *page;
564 	int i;
565 
566 	if (!gmap_is_shadow(gmap))
567 		return;
568 	if (start >= 1UL << 31)
569 		/* We are only interested in prefix pages */
570 		return;
571 
572 	/*
573 	 * Only new shadow blocks are added to the list during runtime,
574 	 * therefore we can safely reference them all the time.
575 	 */
576 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
577 		page = READ_ONCE(kvm->arch.vsie.pages[i]);
578 		if (!page)
579 			continue;
580 		cur = page_to_virt(page);
581 		if (READ_ONCE(cur->gmap) != gmap)
582 			continue;
583 		prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
584 		/* with mso/msl, the prefix lies at an offset */
585 		prefix += cur->scb_s.mso;
586 		if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
587 			prefix_unmapped_sync(cur);
588 	}
589 }
590 
591 /*
592  * Map the first prefix page and if tx is enabled also the second prefix page.
593  *
594  * The prefix will be protected, a gmap notifier will inform about unmaps.
595  * The shadow scb must not be executed until the prefix is remapped, this is
596  * guaranteed by properly handling PROG_REQUEST.
597  *
598  * Returns: - 0 on if successfully mapped or already mapped
599  *          - > 0 if control has to be given to guest 2
600  *          - -EAGAIN if the caller can retry immediately
601  *          - -ENOMEM if out of memory
602  */
603 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
604 {
605 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
606 	u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
607 	int rc;
608 
609 	if (prefix_is_mapped(vsie_page))
610 		return 0;
611 
612 	/* mark it as mapped so we can catch any concurrent unmappers */
613 	prefix_mapped(vsie_page);
614 
615 	/* with mso/msl, the prefix lies at offset *mso* */
616 	prefix += scb_s->mso;
617 
618 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix, NULL);
619 	if (!rc && (scb_s->ecb & ECB_TE))
620 		rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
621 					   prefix + PAGE_SIZE, NULL);
622 	/*
623 	 * We don't have to mprotect, we will be called for all unshadows.
624 	 * SIE will detect if protection applies and trigger a validity.
625 	 */
626 	if (rc)
627 		prefix_unmapped(vsie_page);
628 	if (rc > 0 || rc == -EFAULT)
629 		rc = set_validity_icpt(scb_s, 0x0037U);
630 	return rc;
631 }
632 
633 /*
634  * Pin the guest page given by gpa and set hpa to the pinned host address.
635  * Will always be pinned writable.
636  *
637  * Returns: - 0 on success
638  *          - -EINVAL if the gpa is not valid guest storage
639  */
640 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
641 {
642 	struct page *page;
643 
644 	page = gfn_to_page(kvm, gpa_to_gfn(gpa));
645 	if (is_error_page(page))
646 		return -EINVAL;
647 	*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
648 	return 0;
649 }
650 
651 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
652 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
653 {
654 	kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
655 	/* mark the page always as dirty for migration */
656 	mark_page_dirty(kvm, gpa_to_gfn(gpa));
657 }
658 
659 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
660 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
661 {
662 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
663 	hpa_t hpa;
664 
665 	hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
666 	if (hpa) {
667 		unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
668 		vsie_page->sca_gpa = 0;
669 		scb_s->scaol = 0;
670 		scb_s->scaoh = 0;
671 	}
672 
673 	hpa = scb_s->itdba;
674 	if (hpa) {
675 		unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
676 		vsie_page->itdba_gpa = 0;
677 		scb_s->itdba = 0;
678 	}
679 
680 	hpa = scb_s->gvrd;
681 	if (hpa) {
682 		unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
683 		vsie_page->gvrd_gpa = 0;
684 		scb_s->gvrd = 0;
685 	}
686 
687 	hpa = scb_s->riccbd;
688 	if (hpa) {
689 		unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
690 		vsie_page->riccbd_gpa = 0;
691 		scb_s->riccbd = 0;
692 	}
693 
694 	hpa = scb_s->sdnxo;
695 	if (hpa) {
696 		unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
697 		vsie_page->sdnx_gpa = 0;
698 		scb_s->sdnxo = 0;
699 	}
700 }
701 
702 /*
703  * Instead of shadowing some blocks, we can simply forward them because the
704  * addresses in the scb are 64 bit long.
705  *
706  * This works as long as the data lies in one page. If blocks ever exceed one
707  * page, we have to fall back to shadowing.
708  *
709  * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
710  * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
711  *
712  * Returns: - 0 if all blocks were pinned.
713  *          - > 0 if control has to be given to guest 2
714  *          - -ENOMEM if out of memory
715  */
716 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
717 {
718 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
719 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
720 	hpa_t hpa;
721 	gpa_t gpa;
722 	int rc = 0;
723 
724 	gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
725 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
726 		gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
727 	if (gpa) {
728 		if (gpa < 2 * PAGE_SIZE)
729 			rc = set_validity_icpt(scb_s, 0x0038U);
730 		else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
731 			rc = set_validity_icpt(scb_s, 0x0011U);
732 		else if ((gpa & PAGE_MASK) !=
733 			 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
734 			rc = set_validity_icpt(scb_s, 0x003bU);
735 		if (!rc) {
736 			rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
737 			if (rc)
738 				rc = set_validity_icpt(scb_s, 0x0034U);
739 		}
740 		if (rc)
741 			goto unpin;
742 		vsie_page->sca_gpa = gpa;
743 		scb_s->scaoh = (u32)((u64)hpa >> 32);
744 		scb_s->scaol = (u32)(u64)hpa;
745 	}
746 
747 	gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
748 	if (gpa && (scb_s->ecb & ECB_TE)) {
749 		if (gpa < 2 * PAGE_SIZE) {
750 			rc = set_validity_icpt(scb_s, 0x0080U);
751 			goto unpin;
752 		}
753 		/* 256 bytes cannot cross page boundaries */
754 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
755 		if (rc) {
756 			rc = set_validity_icpt(scb_s, 0x0080U);
757 			goto unpin;
758 		}
759 		vsie_page->itdba_gpa = gpa;
760 		scb_s->itdba = hpa;
761 	}
762 
763 	gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
764 	if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
765 		if (gpa < 2 * PAGE_SIZE) {
766 			rc = set_validity_icpt(scb_s, 0x1310U);
767 			goto unpin;
768 		}
769 		/*
770 		 * 512 bytes vector registers cannot cross page boundaries
771 		 * if this block gets bigger, we have to shadow it.
772 		 */
773 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
774 		if (rc) {
775 			rc = set_validity_icpt(scb_s, 0x1310U);
776 			goto unpin;
777 		}
778 		vsie_page->gvrd_gpa = gpa;
779 		scb_s->gvrd = hpa;
780 	}
781 
782 	gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
783 	if (gpa && (scb_s->ecb3 & ECB3_RI)) {
784 		if (gpa < 2 * PAGE_SIZE) {
785 			rc = set_validity_icpt(scb_s, 0x0043U);
786 			goto unpin;
787 		}
788 		/* 64 bytes cannot cross page boundaries */
789 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
790 		if (rc) {
791 			rc = set_validity_icpt(scb_s, 0x0043U);
792 			goto unpin;
793 		}
794 		/* Validity 0x0044 will be checked by SIE */
795 		vsie_page->riccbd_gpa = gpa;
796 		scb_s->riccbd = hpa;
797 	}
798 	if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
799 	    (scb_s->ecd & ECD_ETOKENF)) {
800 		unsigned long sdnxc;
801 
802 		gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
803 		sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
804 		if (!gpa || gpa < 2 * PAGE_SIZE) {
805 			rc = set_validity_icpt(scb_s, 0x10b0U);
806 			goto unpin;
807 		}
808 		if (sdnxc < 6 || sdnxc > 12) {
809 			rc = set_validity_icpt(scb_s, 0x10b1U);
810 			goto unpin;
811 		}
812 		if (gpa & ((1 << sdnxc) - 1)) {
813 			rc = set_validity_icpt(scb_s, 0x10b2U);
814 			goto unpin;
815 		}
816 		/* Due to alignment rules (checked above) this cannot
817 		 * cross page boundaries
818 		 */
819 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
820 		if (rc) {
821 			rc = set_validity_icpt(scb_s, 0x10b0U);
822 			goto unpin;
823 		}
824 		vsie_page->sdnx_gpa = gpa;
825 		scb_s->sdnxo = hpa | sdnxc;
826 	}
827 	return 0;
828 unpin:
829 	unpin_blocks(vcpu, vsie_page);
830 	return rc;
831 }
832 
833 /* unpin the scb provided by guest 2, marking it as dirty */
834 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
835 		      gpa_t gpa)
836 {
837 	hpa_t hpa = (hpa_t) vsie_page->scb_o;
838 
839 	if (hpa)
840 		unpin_guest_page(vcpu->kvm, gpa, hpa);
841 	vsie_page->scb_o = NULL;
842 }
843 
844 /*
845  * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
846  *
847  * Returns: - 0 if the scb was pinned.
848  *          - > 0 if control has to be given to guest 2
849  */
850 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
851 		   gpa_t gpa)
852 {
853 	hpa_t hpa;
854 	int rc;
855 
856 	rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
857 	if (rc) {
858 		rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
859 		WARN_ON_ONCE(rc);
860 		return 1;
861 	}
862 	vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
863 	return 0;
864 }
865 
866 /*
867  * Inject a fault into guest 2.
868  *
869  * Returns: - > 0 if control has to be given to guest 2
870  *            < 0 if an error occurred during injection.
871  */
872 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
873 			bool write_flag)
874 {
875 	struct kvm_s390_pgm_info pgm = {
876 		.code = code,
877 		.trans_exc_code =
878 			/* 0-51: virtual address */
879 			(vaddr & 0xfffffffffffff000UL) |
880 			/* 52-53: store / fetch */
881 			(((unsigned int) !write_flag) + 1) << 10,
882 			/* 62-63: asce id (alway primary == 0) */
883 		.exc_access_id = 0, /* always primary */
884 		.op_access_id = 0, /* not MVPG */
885 	};
886 	int rc;
887 
888 	if (code == PGM_PROTECTION)
889 		pgm.trans_exc_code |= 0x4UL;
890 
891 	rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
892 	return rc ? rc : 1;
893 }
894 
895 /*
896  * Handle a fault during vsie execution on a gmap shadow.
897  *
898  * Returns: - 0 if the fault was resolved
899  *          - > 0 if control has to be given to guest 2
900  *          - < 0 if an error occurred
901  */
902 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
903 {
904 	int rc;
905 
906 	if (current->thread.gmap_int_code == PGM_PROTECTION)
907 		/* we can directly forward all protection exceptions */
908 		return inject_fault(vcpu, PGM_PROTECTION,
909 				    current->thread.gmap_addr, 1);
910 
911 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
912 				   current->thread.gmap_addr, NULL);
913 	if (rc > 0) {
914 		rc = inject_fault(vcpu, rc,
915 				  current->thread.gmap_addr,
916 				  current->thread.gmap_write_flag);
917 		if (rc >= 0)
918 			vsie_page->fault_addr = current->thread.gmap_addr;
919 	}
920 	return rc;
921 }
922 
923 /*
924  * Retry the previous fault that required guest 2 intervention. This avoids
925  * one superfluous SIE re-entry and direct exit.
926  *
927  * Will ignore any errors. The next SIE fault will do proper fault handling.
928  */
929 static void handle_last_fault(struct kvm_vcpu *vcpu,
930 			      struct vsie_page *vsie_page)
931 {
932 	if (vsie_page->fault_addr)
933 		kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
934 				      vsie_page->fault_addr, NULL);
935 	vsie_page->fault_addr = 0;
936 }
937 
938 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
939 {
940 	vsie_page->scb_s.icptcode = 0;
941 }
942 
943 /* rewind the psw and clear the vsie icpt, so we can retry execution */
944 static void retry_vsie_icpt(struct vsie_page *vsie_page)
945 {
946 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
947 	int ilen = insn_length(scb_s->ipa >> 8);
948 
949 	/* take care of EXECUTE instructions */
950 	if (scb_s->icptstatus & 1) {
951 		ilen = (scb_s->icptstatus >> 4) & 0x6;
952 		if (!ilen)
953 			ilen = 4;
954 	}
955 	scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
956 	clear_vsie_icpt(vsie_page);
957 }
958 
959 /*
960  * Try to shadow + enable the guest 2 provided facility list.
961  * Retry instruction execution if enabled for and provided by guest 2.
962  *
963  * Returns: - 0 if handled (retry or guest 2 icpt)
964  *          - > 0 if control has to be given to guest 2
965  */
966 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
967 {
968 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
969 	__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
970 
971 	if (fac && test_kvm_facility(vcpu->kvm, 7)) {
972 		retry_vsie_icpt(vsie_page);
973 		if (read_guest_real(vcpu, fac, &vsie_page->fac,
974 				    sizeof(vsie_page->fac)))
975 			return set_validity_icpt(scb_s, 0x1090U);
976 		scb_s->fac = (__u32)(__u64) &vsie_page->fac;
977 	}
978 	return 0;
979 }
980 
981 /*
982  * Get a register for a nested guest.
983  * @vcpu the vcpu of the guest
984  * @vsie_page the vsie_page for the nested guest
985  * @reg the register number, the upper 4 bits are ignored.
986  * returns: the value of the register.
987  */
988 static u64 vsie_get_register(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page, u8 reg)
989 {
990 	/* no need to validate the parameter and/or perform error handling */
991 	reg &= 0xf;
992 	switch (reg) {
993 	case 15:
994 		return vsie_page->scb_s.gg15;
995 	case 14:
996 		return vsie_page->scb_s.gg14;
997 	default:
998 		return vcpu->run->s.regs.gprs[reg];
999 	}
1000 }
1001 
1002 static int vsie_handle_mvpg(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1003 {
1004 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1005 	unsigned long pei_dest, pei_src, src, dest, mask, prefix;
1006 	u64 *pei_block = &vsie_page->scb_o->mcic;
1007 	int edat, rc_dest, rc_src;
1008 	union ctlreg0 cr0;
1009 
1010 	cr0.val = vcpu->arch.sie_block->gcr[0];
1011 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1012 	mask = _kvm_s390_logical_to_effective(&scb_s->gpsw, PAGE_MASK);
1013 	prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
1014 
1015 	dest = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 20) & mask;
1016 	dest = _kvm_s390_real_to_abs(prefix, dest) + scb_s->mso;
1017 	src = vsie_get_register(vcpu, vsie_page, scb_s->ipb >> 16) & mask;
1018 	src = _kvm_s390_real_to_abs(prefix, src) + scb_s->mso;
1019 
1020 	rc_dest = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, dest, &pei_dest);
1021 	rc_src = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, src, &pei_src);
1022 	/*
1023 	 * Either everything went well, or something non-critical went wrong
1024 	 * e.g. because of a race. In either case, simply retry.
1025 	 */
1026 	if (rc_dest == -EAGAIN || rc_src == -EAGAIN || (!rc_dest && !rc_src)) {
1027 		retry_vsie_icpt(vsie_page);
1028 		return -EAGAIN;
1029 	}
1030 	/* Something more serious went wrong, propagate the error */
1031 	if (rc_dest < 0)
1032 		return rc_dest;
1033 	if (rc_src < 0)
1034 		return rc_src;
1035 
1036 	/* The only possible suppressing exception: just deliver it */
1037 	if (rc_dest == PGM_TRANSLATION_SPEC || rc_src == PGM_TRANSLATION_SPEC) {
1038 		clear_vsie_icpt(vsie_page);
1039 		rc_dest = kvm_s390_inject_program_int(vcpu, PGM_TRANSLATION_SPEC);
1040 		WARN_ON_ONCE(rc_dest);
1041 		return 1;
1042 	}
1043 
1044 	/*
1045 	 * Forward the PEI intercept to the guest if it was a page fault, or
1046 	 * also for segment and region table faults if EDAT applies.
1047 	 */
1048 	if (edat) {
1049 		rc_dest = rc_dest == PGM_ASCE_TYPE ? rc_dest : 0;
1050 		rc_src = rc_src == PGM_ASCE_TYPE ? rc_src : 0;
1051 	} else {
1052 		rc_dest = rc_dest != PGM_PAGE_TRANSLATION ? rc_dest : 0;
1053 		rc_src = rc_src != PGM_PAGE_TRANSLATION ? rc_src : 0;
1054 	}
1055 	if (!rc_dest && !rc_src) {
1056 		pei_block[0] = pei_dest;
1057 		pei_block[1] = pei_src;
1058 		return 1;
1059 	}
1060 
1061 	retry_vsie_icpt(vsie_page);
1062 
1063 	/*
1064 	 * The host has edat, and the guest does not, or it was an ASCE type
1065 	 * exception. The host needs to inject the appropriate DAT interrupts
1066 	 * into the guest.
1067 	 */
1068 	if (rc_dest)
1069 		return inject_fault(vcpu, rc_dest, dest, 1);
1070 	return inject_fault(vcpu, rc_src, src, 0);
1071 }
1072 
1073 /*
1074  * Run the vsie on a shadow scb and a shadow gmap, without any further
1075  * sanity checks, handling SIE faults.
1076  *
1077  * Returns: - 0 everything went fine
1078  *          - > 0 if control has to be given to guest 2
1079  *          - < 0 if an error occurred
1080  */
1081 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1082 	__releases(vcpu->kvm->srcu)
1083 	__acquires(vcpu->kvm->srcu)
1084 {
1085 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1086 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
1087 	int guest_bp_isolation;
1088 	int rc = 0;
1089 
1090 	handle_last_fault(vcpu, vsie_page);
1091 
1092 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1093 
1094 	/* save current guest state of bp isolation override */
1095 	guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1096 
1097 	/*
1098 	 * The guest is running with BPBC, so we have to force it on for our
1099 	 * nested guest. This is done by enabling BPBC globally, so the BPBC
1100 	 * control in the SCB (which the nested guest can modify) is simply
1101 	 * ignored.
1102 	 */
1103 	if (test_kvm_facility(vcpu->kvm, 82) &&
1104 	    vcpu->arch.sie_block->fpf & FPF_BPBC)
1105 		set_thread_flag(TIF_ISOLATE_BP_GUEST);
1106 
1107 	local_irq_disable();
1108 	guest_enter_irqoff();
1109 	local_irq_enable();
1110 
1111 	/*
1112 	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1113 	 * and VCPU requests also hinder the vSIE from running and lead
1114 	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1115 	 * also kick the vSIE.
1116 	 */
1117 	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1118 	barrier();
1119 	if (test_cpu_flag(CIF_FPU))
1120 		load_fpu_regs();
1121 	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1122 		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1123 	barrier();
1124 	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1125 
1126 	local_irq_disable();
1127 	guest_exit_irqoff();
1128 	local_irq_enable();
1129 
1130 	/* restore guest state for bp isolation override */
1131 	if (!guest_bp_isolation)
1132 		clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1133 
1134 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1135 
1136 	if (rc == -EINTR) {
1137 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
1138 		kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1139 		return 0;
1140 	}
1141 
1142 	if (rc > 0)
1143 		rc = 0; /* we could still have an icpt */
1144 	else if (rc == -EFAULT)
1145 		return handle_fault(vcpu, vsie_page);
1146 
1147 	switch (scb_s->icptcode) {
1148 	case ICPT_INST:
1149 		if (scb_s->ipa == 0xb2b0)
1150 			rc = handle_stfle(vcpu, vsie_page);
1151 		break;
1152 	case ICPT_STOP:
1153 		/* stop not requested by g2 - must have been a kick */
1154 		if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1155 			clear_vsie_icpt(vsie_page);
1156 		break;
1157 	case ICPT_VALIDITY:
1158 		if ((scb_s->ipa & 0xf000) != 0xf000)
1159 			scb_s->ipa += 0x1000;
1160 		break;
1161 	case ICPT_PARTEXEC:
1162 		if (scb_s->ipa == 0xb254)
1163 			rc = vsie_handle_mvpg(vcpu, vsie_page);
1164 		break;
1165 	}
1166 	return rc;
1167 }
1168 
1169 static void release_gmap_shadow(struct vsie_page *vsie_page)
1170 {
1171 	if (vsie_page->gmap)
1172 		gmap_put(vsie_page->gmap);
1173 	WRITE_ONCE(vsie_page->gmap, NULL);
1174 	prefix_unmapped(vsie_page);
1175 }
1176 
1177 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1178 			       struct vsie_page *vsie_page)
1179 {
1180 	unsigned long asce;
1181 	union ctlreg0 cr0;
1182 	struct gmap *gmap;
1183 	int edat;
1184 
1185 	asce = vcpu->arch.sie_block->gcr[1];
1186 	cr0.val = vcpu->arch.sie_block->gcr[0];
1187 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1188 	edat += edat && test_kvm_facility(vcpu->kvm, 78);
1189 
1190 	/*
1191 	 * ASCE or EDAT could have changed since last icpt, or the gmap
1192 	 * we're holding has been unshadowed. If the gmap is still valid,
1193 	 * we can safely reuse it.
1194 	 */
1195 	if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1196 		return 0;
1197 
1198 	/* release the old shadow - if any, and mark the prefix as unmapped */
1199 	release_gmap_shadow(vsie_page);
1200 	gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1201 	if (IS_ERR(gmap))
1202 		return PTR_ERR(gmap);
1203 	gmap->private = vcpu->kvm;
1204 	WRITE_ONCE(vsie_page->gmap, gmap);
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1210  */
1211 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1212 				struct vsie_page *vsie_page)
1213 {
1214 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1215 
1216 	WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1217 	/*
1218 	 * External calls have to lead to a kick of the vcpu and
1219 	 * therefore the vsie -> Simulate Wait state.
1220 	 */
1221 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1222 	/*
1223 	 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1224 	 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1225 	 */
1226 	preempt_disable();
1227 	scb_s->epoch += vcpu->kvm->arch.epoch;
1228 
1229 	if (scb_s->ecd & ECD_MEF) {
1230 		scb_s->epdx += vcpu->kvm->arch.epdx;
1231 		if (scb_s->epoch < vcpu->kvm->arch.epoch)
1232 			scb_s->epdx += 1;
1233 	}
1234 
1235 	preempt_enable();
1236 }
1237 
1238 /*
1239  * Unregister a shadow scb from a VCPU.
1240  */
1241 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1242 {
1243 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1244 	WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1245 }
1246 
1247 /*
1248  * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1249  * prefix pages and faults.
1250  *
1251  * Returns: - 0 if no errors occurred
1252  *          - > 0 if control has to be given to guest 2
1253  *          - -ENOMEM if out of memory
1254  */
1255 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1256 {
1257 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1258 	int rc = 0;
1259 
1260 	while (1) {
1261 		rc = acquire_gmap_shadow(vcpu, vsie_page);
1262 		if (!rc)
1263 			rc = map_prefix(vcpu, vsie_page);
1264 		if (!rc) {
1265 			gmap_enable(vsie_page->gmap);
1266 			update_intervention_requests(vsie_page);
1267 			rc = do_vsie_run(vcpu, vsie_page);
1268 			gmap_enable(vcpu->arch.gmap);
1269 		}
1270 		atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1271 
1272 		if (rc == -EAGAIN)
1273 			rc = 0;
1274 		if (rc || scb_s->icptcode || signal_pending(current) ||
1275 		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
1276 		    kvm_s390_vcpu_sie_inhibited(vcpu))
1277 			break;
1278 		cond_resched();
1279 	}
1280 
1281 	if (rc == -EFAULT) {
1282 		/*
1283 		 * Addressing exceptions are always presentes as intercepts.
1284 		 * As addressing exceptions are suppressing and our guest 3 PSW
1285 		 * points at the responsible instruction, we have to
1286 		 * forward the PSW and set the ilc. If we can't read guest 3
1287 		 * instruction, we can use an arbitrary ilc. Let's always use
1288 		 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1289 		 * memory. (we could also fake the shadow so the hardware
1290 		 * handles it).
1291 		 */
1292 		scb_s->icptcode = ICPT_PROGI;
1293 		scb_s->iprcc = PGM_ADDRESSING;
1294 		scb_s->pgmilc = 4;
1295 		scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1296 		rc = 1;
1297 	}
1298 	return rc;
1299 }
1300 
1301 /*
1302  * Get or create a vsie page for a scb address.
1303  *
1304  * Returns: - address of a vsie page (cached or new one)
1305  *          - NULL if the same scb address is already used by another VCPU
1306  *          - ERR_PTR(-ENOMEM) if out of memory
1307  */
1308 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1309 {
1310 	struct vsie_page *vsie_page;
1311 	struct page *page;
1312 	int nr_vcpus;
1313 
1314 	rcu_read_lock();
1315 	page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1316 	rcu_read_unlock();
1317 	if (page) {
1318 		if (page_ref_inc_return(page) == 2)
1319 			return page_to_virt(page);
1320 		page_ref_dec(page);
1321 	}
1322 
1323 	/*
1324 	 * We want at least #online_vcpus shadows, so every VCPU can execute
1325 	 * the VSIE in parallel.
1326 	 */
1327 	nr_vcpus = atomic_read(&kvm->online_vcpus);
1328 
1329 	mutex_lock(&kvm->arch.vsie.mutex);
1330 	if (kvm->arch.vsie.page_count < nr_vcpus) {
1331 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO | GFP_DMA);
1332 		if (!page) {
1333 			mutex_unlock(&kvm->arch.vsie.mutex);
1334 			return ERR_PTR(-ENOMEM);
1335 		}
1336 		page_ref_inc(page);
1337 		kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1338 		kvm->arch.vsie.page_count++;
1339 	} else {
1340 		/* reuse an existing entry that belongs to nobody */
1341 		while (true) {
1342 			page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1343 			if (page_ref_inc_return(page) == 2)
1344 				break;
1345 			page_ref_dec(page);
1346 			kvm->arch.vsie.next++;
1347 			kvm->arch.vsie.next %= nr_vcpus;
1348 		}
1349 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1350 	}
1351 	page->index = addr;
1352 	/* double use of the same address */
1353 	if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1354 		page_ref_dec(page);
1355 		mutex_unlock(&kvm->arch.vsie.mutex);
1356 		return NULL;
1357 	}
1358 	mutex_unlock(&kvm->arch.vsie.mutex);
1359 
1360 	vsie_page = page_to_virt(page);
1361 	memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1362 	release_gmap_shadow(vsie_page);
1363 	vsie_page->fault_addr = 0;
1364 	vsie_page->scb_s.ihcpu = 0xffffU;
1365 	return vsie_page;
1366 }
1367 
1368 /* put a vsie page acquired via get_vsie_page */
1369 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1370 {
1371 	struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1372 
1373 	page_ref_dec(page);
1374 }
1375 
1376 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1377 {
1378 	struct vsie_page *vsie_page;
1379 	unsigned long scb_addr;
1380 	int rc;
1381 
1382 	vcpu->stat.instruction_sie++;
1383 	if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1384 		return -EOPNOTSUPP;
1385 	if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1386 		return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1387 
1388 	BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1389 	scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1390 
1391 	/* 512 byte alignment */
1392 	if (unlikely(scb_addr & 0x1ffUL))
1393 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1394 
1395 	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1396 	    kvm_s390_vcpu_sie_inhibited(vcpu))
1397 		return 0;
1398 
1399 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1400 	if (IS_ERR(vsie_page))
1401 		return PTR_ERR(vsie_page);
1402 	else if (!vsie_page)
1403 		/* double use of sie control block - simply do nothing */
1404 		return 0;
1405 
1406 	rc = pin_scb(vcpu, vsie_page, scb_addr);
1407 	if (rc)
1408 		goto out_put;
1409 	rc = shadow_scb(vcpu, vsie_page);
1410 	if (rc)
1411 		goto out_unpin_scb;
1412 	rc = pin_blocks(vcpu, vsie_page);
1413 	if (rc)
1414 		goto out_unshadow;
1415 	register_shadow_scb(vcpu, vsie_page);
1416 	rc = vsie_run(vcpu, vsie_page);
1417 	unregister_shadow_scb(vcpu);
1418 	unpin_blocks(vcpu, vsie_page);
1419 out_unshadow:
1420 	unshadow_scb(vcpu, vsie_page);
1421 out_unpin_scb:
1422 	unpin_scb(vcpu, vsie_page, scb_addr);
1423 out_put:
1424 	put_vsie_page(vcpu->kvm, vsie_page);
1425 
1426 	return rc < 0 ? rc : 0;
1427 }
1428 
1429 /* Init the vsie data structures. To be called when a vm is initialized. */
1430 void kvm_s390_vsie_init(struct kvm *kvm)
1431 {
1432 	mutex_init(&kvm->arch.vsie.mutex);
1433 	INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL_ACCOUNT);
1434 }
1435 
1436 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
1437 void kvm_s390_vsie_destroy(struct kvm *kvm)
1438 {
1439 	struct vsie_page *vsie_page;
1440 	struct page *page;
1441 	int i;
1442 
1443 	mutex_lock(&kvm->arch.vsie.mutex);
1444 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1445 		page = kvm->arch.vsie.pages[i];
1446 		kvm->arch.vsie.pages[i] = NULL;
1447 		vsie_page = page_to_virt(page);
1448 		release_gmap_shadow(vsie_page);
1449 		/* free the radix tree entry */
1450 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1451 		__free_page(page);
1452 	}
1453 	kvm->arch.vsie.page_count = 0;
1454 	mutex_unlock(&kvm->arch.vsie.mutex);
1455 }
1456 
1457 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1458 {
1459 	struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1460 
1461 	/*
1462 	 * Even if the VCPU lets go of the shadow sie block reference, it is
1463 	 * still valid in the cache. So we can safely kick it.
1464 	 */
1465 	if (scb) {
1466 		atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1467 		if (scb->prog0c & PROG_IN_SIE)
1468 			atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1469 	}
1470 }
1471