xref: /openbmc/linux/arch/s390/kvm/vsie.c (revision 9b93eb47)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * kvm nested virtualization support for s390x
4  *
5  * Copyright IBM Corp. 2016, 2018
6  *
7  *    Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
8  */
9 #include <linux/vmalloc.h>
10 #include <linux/kvm_host.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/bitmap.h>
14 #include <linux/sched/signal.h>
15 
16 #include <asm/gmap.h>
17 #include <asm/mmu_context.h>
18 #include <asm/sclp.h>
19 #include <asm/nmi.h>
20 #include <asm/dis.h>
21 #include "kvm-s390.h"
22 #include "gaccess.h"
23 
24 struct vsie_page {
25 	struct kvm_s390_sie_block scb_s;	/* 0x0000 */
26 	/*
27 	 * the backup info for machine check. ensure it's at
28 	 * the same offset as that in struct sie_page!
29 	 */
30 	struct mcck_volatile_info mcck_info;    /* 0x0200 */
31 	/*
32 	 * The pinned original scb. Be aware that other VCPUs can modify
33 	 * it while we read from it. Values that are used for conditions or
34 	 * are reused conditionally, should be accessed via READ_ONCE.
35 	 */
36 	struct kvm_s390_sie_block *scb_o;	/* 0x0218 */
37 	/* the shadow gmap in use by the vsie_page */
38 	struct gmap *gmap;			/* 0x0220 */
39 	/* address of the last reported fault to guest2 */
40 	unsigned long fault_addr;		/* 0x0228 */
41 	/* calculated guest addresses of satellite control blocks */
42 	gpa_t sca_gpa;				/* 0x0230 */
43 	gpa_t itdba_gpa;			/* 0x0238 */
44 	gpa_t gvrd_gpa;				/* 0x0240 */
45 	gpa_t riccbd_gpa;			/* 0x0248 */
46 	gpa_t sdnx_gpa;				/* 0x0250 */
47 	__u8 reserved[0x0700 - 0x0258];		/* 0x0258 */
48 	struct kvm_s390_crypto_cb crycb;	/* 0x0700 */
49 	__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE];	/* 0x0800 */
50 };
51 
52 /* trigger a validity icpt for the given scb */
53 static int set_validity_icpt(struct kvm_s390_sie_block *scb,
54 			     __u16 reason_code)
55 {
56 	scb->ipa = 0x1000;
57 	scb->ipb = ((__u32) reason_code) << 16;
58 	scb->icptcode = ICPT_VALIDITY;
59 	return 1;
60 }
61 
62 /* mark the prefix as unmapped, this will block the VSIE */
63 static void prefix_unmapped(struct vsie_page *vsie_page)
64 {
65 	atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
66 }
67 
68 /* mark the prefix as unmapped and wait until the VSIE has been left */
69 static void prefix_unmapped_sync(struct vsie_page *vsie_page)
70 {
71 	prefix_unmapped(vsie_page);
72 	if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
73 		atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
74 	while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
75 		cpu_relax();
76 }
77 
78 /* mark the prefix as mapped, this will allow the VSIE to run */
79 static void prefix_mapped(struct vsie_page *vsie_page)
80 {
81 	atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
82 }
83 
84 /* test if the prefix is mapped into the gmap shadow */
85 static int prefix_is_mapped(struct vsie_page *vsie_page)
86 {
87 	return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
88 }
89 
90 /* copy the updated intervention request bits into the shadow scb */
91 static void update_intervention_requests(struct vsie_page *vsie_page)
92 {
93 	const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
94 	int cpuflags;
95 
96 	cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
97 	atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
98 	atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
99 }
100 
101 /* shadow (filter and validate) the cpuflags  */
102 static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
103 {
104 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
105 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
106 	int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
107 
108 	/* we don't allow ESA/390 guests */
109 	if (!(cpuflags & CPUSTAT_ZARCH))
110 		return set_validity_icpt(scb_s, 0x0001U);
111 
112 	if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
113 		return set_validity_icpt(scb_s, 0x0001U);
114 	else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
115 		return set_validity_icpt(scb_s, 0x0007U);
116 
117 	/* intervention requests will be set later */
118 	newflags = CPUSTAT_ZARCH;
119 	if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
120 		newflags |= CPUSTAT_GED;
121 	if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
122 		if (cpuflags & CPUSTAT_GED)
123 			return set_validity_icpt(scb_s, 0x0001U);
124 		newflags |= CPUSTAT_GED2;
125 	}
126 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
127 		newflags |= cpuflags & CPUSTAT_P;
128 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
129 		newflags |= cpuflags & CPUSTAT_SM;
130 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
131 		newflags |= cpuflags & CPUSTAT_IBS;
132 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_KSS))
133 		newflags |= cpuflags & CPUSTAT_KSS;
134 
135 	atomic_set(&scb_s->cpuflags, newflags);
136 	return 0;
137 }
138 /* Copy to APCB FORMAT1 from APCB FORMAT0 */
139 static int setup_apcb10(struct kvm_vcpu *vcpu, struct kvm_s390_apcb1 *apcb_s,
140 			unsigned long apcb_o, struct kvm_s390_apcb1 *apcb_h)
141 {
142 	struct kvm_s390_apcb0 tmp;
143 
144 	if (read_guest_real(vcpu, apcb_o, &tmp, sizeof(struct kvm_s390_apcb0)))
145 		return -EFAULT;
146 
147 	apcb_s->apm[0] = apcb_h->apm[0] & tmp.apm[0];
148 	apcb_s->aqm[0] = apcb_h->aqm[0] & tmp.aqm[0] & 0xffff000000000000UL;
149 	apcb_s->adm[0] = apcb_h->adm[0] & tmp.adm[0] & 0xffff000000000000UL;
150 
151 	return 0;
152 
153 }
154 
155 /**
156  * setup_apcb00 - Copy to APCB FORMAT0 from APCB FORMAT0
157  * @vcpu: pointer to the virtual CPU
158  * @apcb_s: pointer to start of apcb in the shadow crycb
159  * @apcb_o: pointer to start of original apcb in the guest2
160  * @apcb_h: pointer to start of apcb in the guest1
161  *
162  * Returns 0 and -EFAULT on error reading guest apcb
163  */
164 static int setup_apcb00(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
165 			unsigned long apcb_o, unsigned long *apcb_h)
166 {
167 	if (read_guest_real(vcpu, apcb_o, apcb_s,
168 			    sizeof(struct kvm_s390_apcb0)))
169 		return -EFAULT;
170 
171 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb0));
172 
173 	return 0;
174 }
175 
176 /**
177  * setup_apcb11 - Copy the FORMAT1 APCB from the guest to the shadow CRYCB
178  * @vcpu: pointer to the virtual CPU
179  * @apcb_s: pointer to start of apcb in the shadow crycb
180  * @apcb_o: pointer to start of original guest apcb
181  * @apcb_h: pointer to start of apcb in the host
182  *
183  * Returns 0 and -EFAULT on error reading guest apcb
184  */
185 static int setup_apcb11(struct kvm_vcpu *vcpu, unsigned long *apcb_s,
186 			unsigned long apcb_o,
187 			unsigned long *apcb_h)
188 {
189 	if (read_guest_real(vcpu, apcb_o, apcb_s,
190 			    sizeof(struct kvm_s390_apcb1)))
191 		return -EFAULT;
192 
193 	bitmap_and(apcb_s, apcb_s, apcb_h, sizeof(struct kvm_s390_apcb1));
194 
195 	return 0;
196 }
197 
198 /**
199  * setup_apcb - Create a shadow copy of the apcb.
200  * @vcpu: pointer to the virtual CPU
201  * @crycb_s: pointer to shadow crycb
202  * @crycb_o: pointer to original guest crycb
203  * @crycb_h: pointer to the host crycb
204  * @fmt_o: format of the original guest crycb.
205  * @fmt_h: format of the host crycb.
206  *
207  * Checks the compatibility between the guest and host crycb and calls the
208  * appropriate copy function.
209  *
210  * Return 0 or an error number if the guest and host crycb are incompatible.
211  */
212 static int setup_apcb(struct kvm_vcpu *vcpu, struct kvm_s390_crypto_cb *crycb_s,
213 	       const u32 crycb_o,
214 	       struct kvm_s390_crypto_cb *crycb_h,
215 	       int fmt_o, int fmt_h)
216 {
217 	struct kvm_s390_crypto_cb *crycb;
218 
219 	crycb = (struct kvm_s390_crypto_cb *) (unsigned long)crycb_o;
220 
221 	switch (fmt_o) {
222 	case CRYCB_FORMAT2:
223 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 256) & PAGE_MASK))
224 			return -EACCES;
225 		if (fmt_h != CRYCB_FORMAT2)
226 			return -EINVAL;
227 		return setup_apcb11(vcpu, (unsigned long *)&crycb_s->apcb1,
228 				    (unsigned long) &crycb->apcb1,
229 				    (unsigned long *)&crycb_h->apcb1);
230 	case CRYCB_FORMAT1:
231 		switch (fmt_h) {
232 		case CRYCB_FORMAT2:
233 			return setup_apcb10(vcpu, &crycb_s->apcb1,
234 					    (unsigned long) &crycb->apcb0,
235 					    &crycb_h->apcb1);
236 		case CRYCB_FORMAT1:
237 			return setup_apcb00(vcpu,
238 					    (unsigned long *) &crycb_s->apcb0,
239 					    (unsigned long) &crycb->apcb0,
240 					    (unsigned long *) &crycb_h->apcb0);
241 		}
242 		break;
243 	case CRYCB_FORMAT0:
244 		if ((crycb_o & PAGE_MASK) != ((crycb_o + 32) & PAGE_MASK))
245 			return -EACCES;
246 
247 		switch (fmt_h) {
248 		case CRYCB_FORMAT2:
249 			return setup_apcb10(vcpu, &crycb_s->apcb1,
250 					    (unsigned long) &crycb->apcb0,
251 					    &crycb_h->apcb1);
252 		case CRYCB_FORMAT1:
253 		case CRYCB_FORMAT0:
254 			return setup_apcb00(vcpu,
255 					    (unsigned long *) &crycb_s->apcb0,
256 					    (unsigned long) &crycb->apcb0,
257 					    (unsigned long *) &crycb_h->apcb0);
258 		}
259 	}
260 	return -EINVAL;
261 }
262 
263 /**
264  * shadow_crycb - Create a shadow copy of the crycb block
265  * @vcpu: a pointer to the virtual CPU
266  * @vsie_page: a pointer to internal date used for the vSIE
267  *
268  * Create a shadow copy of the crycb block and setup key wrapping, if
269  * requested for guest 3 and enabled for guest 2.
270  *
271  * We accept format-1 or format-2, but we convert format-1 into format-2
272  * in the shadow CRYCB.
273  * Using format-2 enables the firmware to choose the right format when
274  * scheduling the SIE.
275  * There is nothing to do for format-0.
276  *
277  * This function centralize the issuing of set_validity_icpt() for all
278  * the subfunctions working on the crycb.
279  *
280  * Returns: - 0 if shadowed or nothing to do
281  *          - > 0 if control has to be given to guest 2
282  */
283 static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
284 {
285 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
286 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
287 	const uint32_t crycbd_o = READ_ONCE(scb_o->crycbd);
288 	const u32 crycb_addr = crycbd_o & 0x7ffffff8U;
289 	unsigned long *b1, *b2;
290 	u8 ecb3_flags;
291 	u32 ecd_flags;
292 	int apie_h;
293 	int apie_s;
294 	int key_msk = test_kvm_facility(vcpu->kvm, 76);
295 	int fmt_o = crycbd_o & CRYCB_FORMAT_MASK;
296 	int fmt_h = vcpu->arch.sie_block->crycbd & CRYCB_FORMAT_MASK;
297 	int ret = 0;
298 
299 	scb_s->crycbd = 0;
300 
301 	apie_h = vcpu->arch.sie_block->eca & ECA_APIE;
302 	apie_s = apie_h & scb_o->eca;
303 	if (!apie_s && (!key_msk || (fmt_o == CRYCB_FORMAT0)))
304 		return 0;
305 
306 	if (!crycb_addr)
307 		return set_validity_icpt(scb_s, 0x0039U);
308 
309 	if (fmt_o == CRYCB_FORMAT1)
310 		if ((crycb_addr & PAGE_MASK) !=
311 		    ((crycb_addr + 128) & PAGE_MASK))
312 			return set_validity_icpt(scb_s, 0x003CU);
313 
314 	if (apie_s) {
315 		ret = setup_apcb(vcpu, &vsie_page->crycb, crycb_addr,
316 				 vcpu->kvm->arch.crypto.crycb,
317 				 fmt_o, fmt_h);
318 		if (ret)
319 			goto end;
320 		scb_s->eca |= scb_o->eca & ECA_APIE;
321 	}
322 
323 	/* we may only allow it if enabled for guest 2 */
324 	ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
325 		     (ECB3_AES | ECB3_DEA);
326 	ecd_flags = scb_o->ecd & vcpu->arch.sie_block->ecd & ECD_ECC;
327 	if (!ecb3_flags && !ecd_flags)
328 		goto end;
329 
330 	/* copy only the wrapping keys */
331 	if (read_guest_real(vcpu, crycb_addr + 72,
332 			    vsie_page->crycb.dea_wrapping_key_mask, 56))
333 		return set_validity_icpt(scb_s, 0x0035U);
334 
335 	scb_s->ecb3 |= ecb3_flags;
336 	scb_s->ecd |= ecd_flags;
337 
338 	/* xor both blocks in one run */
339 	b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
340 	b2 = (unsigned long *)
341 			    vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
342 	/* as 56%8 == 0, bitmap_xor won't overwrite any data */
343 	bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
344 end:
345 	switch (ret) {
346 	case -EINVAL:
347 		return set_validity_icpt(scb_s, 0x0022U);
348 	case -EFAULT:
349 		return set_validity_icpt(scb_s, 0x0035U);
350 	case -EACCES:
351 		return set_validity_icpt(scb_s, 0x003CU);
352 	}
353 	scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT2;
354 	return 0;
355 }
356 
357 /* shadow (round up/down) the ibc to avoid validity icpt */
358 static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
359 {
360 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
361 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
362 	/* READ_ONCE does not work on bitfields - use a temporary variable */
363 	const uint32_t __new_ibc = scb_o->ibc;
364 	const uint32_t new_ibc = READ_ONCE(__new_ibc) & 0x0fffU;
365 	__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
366 
367 	scb_s->ibc = 0;
368 	/* ibc installed in g2 and requested for g3 */
369 	if (vcpu->kvm->arch.model.ibc && new_ibc) {
370 		scb_s->ibc = new_ibc;
371 		/* takte care of the minimum ibc level of the machine */
372 		if (scb_s->ibc < min_ibc)
373 			scb_s->ibc = min_ibc;
374 		/* take care of the maximum ibc level set for the guest */
375 		if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
376 			scb_s->ibc = vcpu->kvm->arch.model.ibc;
377 	}
378 }
379 
380 /* unshadow the scb, copying parameters back to the real scb */
381 static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
382 {
383 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
384 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
385 
386 	/* interception */
387 	scb_o->icptcode = scb_s->icptcode;
388 	scb_o->icptstatus = scb_s->icptstatus;
389 	scb_o->ipa = scb_s->ipa;
390 	scb_o->ipb = scb_s->ipb;
391 	scb_o->gbea = scb_s->gbea;
392 
393 	/* timer */
394 	scb_o->cputm = scb_s->cputm;
395 	scb_o->ckc = scb_s->ckc;
396 	scb_o->todpr = scb_s->todpr;
397 
398 	/* guest state */
399 	scb_o->gpsw = scb_s->gpsw;
400 	scb_o->gg14 = scb_s->gg14;
401 	scb_o->gg15 = scb_s->gg15;
402 	memcpy(scb_o->gcr, scb_s->gcr, 128);
403 	scb_o->pp = scb_s->pp;
404 
405 	/* branch prediction */
406 	if (test_kvm_facility(vcpu->kvm, 82)) {
407 		scb_o->fpf &= ~FPF_BPBC;
408 		scb_o->fpf |= scb_s->fpf & FPF_BPBC;
409 	}
410 
411 	/* interrupt intercept */
412 	switch (scb_s->icptcode) {
413 	case ICPT_PROGI:
414 	case ICPT_INSTPROGI:
415 	case ICPT_EXTINT:
416 		memcpy((void *)((u64)scb_o + 0xc0),
417 		       (void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
418 		break;
419 	case ICPT_PARTEXEC:
420 		/* MVPG only */
421 		memcpy((void *)((u64)scb_o + 0xc0),
422 		       (void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
423 		break;
424 	}
425 
426 	if (scb_s->ihcpu != 0xffffU)
427 		scb_o->ihcpu = scb_s->ihcpu;
428 }
429 
430 /*
431  * Setup the shadow scb by copying and checking the relevant parts of the g2
432  * provided scb.
433  *
434  * Returns: - 0 if the scb has been shadowed
435  *          - > 0 if control has to be given to guest 2
436  */
437 static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
438 {
439 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
440 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
441 	/* READ_ONCE does not work on bitfields - use a temporary variable */
442 	const uint32_t __new_prefix = scb_o->prefix;
443 	const uint32_t new_prefix = READ_ONCE(__new_prefix);
444 	const bool wants_tx = READ_ONCE(scb_o->ecb) & ECB_TE;
445 	bool had_tx = scb_s->ecb & ECB_TE;
446 	unsigned long new_mso = 0;
447 	int rc;
448 
449 	/* make sure we don't have any leftovers when reusing the scb */
450 	scb_s->icptcode = 0;
451 	scb_s->eca = 0;
452 	scb_s->ecb = 0;
453 	scb_s->ecb2 = 0;
454 	scb_s->ecb3 = 0;
455 	scb_s->ecd = 0;
456 	scb_s->fac = 0;
457 	scb_s->fpf = 0;
458 
459 	rc = prepare_cpuflags(vcpu, vsie_page);
460 	if (rc)
461 		goto out;
462 
463 	/* timer */
464 	scb_s->cputm = scb_o->cputm;
465 	scb_s->ckc = scb_o->ckc;
466 	scb_s->todpr = scb_o->todpr;
467 	scb_s->epoch = scb_o->epoch;
468 
469 	/* guest state */
470 	scb_s->gpsw = scb_o->gpsw;
471 	scb_s->gg14 = scb_o->gg14;
472 	scb_s->gg15 = scb_o->gg15;
473 	memcpy(scb_s->gcr, scb_o->gcr, 128);
474 	scb_s->pp = scb_o->pp;
475 
476 	/* interception / execution handling */
477 	scb_s->gbea = scb_o->gbea;
478 	scb_s->lctl = scb_o->lctl;
479 	scb_s->svcc = scb_o->svcc;
480 	scb_s->ictl = scb_o->ictl;
481 	/*
482 	 * SKEY handling functions can't deal with false setting of PTE invalid
483 	 * bits. Therefore we cannot provide interpretation and would later
484 	 * have to provide own emulation handlers.
485 	 */
486 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_KSS))
487 		scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
488 
489 	scb_s->icpua = scb_o->icpua;
490 
491 	if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
492 		new_mso = READ_ONCE(scb_o->mso) & 0xfffffffffff00000UL;
493 	/* if the hva of the prefix changes, we have to remap the prefix */
494 	if (scb_s->mso != new_mso || scb_s->prefix != new_prefix)
495 		prefix_unmapped(vsie_page);
496 	 /* SIE will do mso/msl validity and exception checks for us */
497 	scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
498 	scb_s->mso = new_mso;
499 	scb_s->prefix = new_prefix;
500 
501 	/* We have to definetly flush the tlb if this scb never ran */
502 	if (scb_s->ihcpu != 0xffffU)
503 		scb_s->ihcpu = scb_o->ihcpu;
504 
505 	/* MVPG and Protection Exception Interpretation are always available */
506 	scb_s->eca |= scb_o->eca & (ECA_MVPGI | ECA_PROTEXCI);
507 	/* Host-protection-interruption introduced with ESOP */
508 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
509 		scb_s->ecb |= scb_o->ecb & ECB_HOSTPROTINT;
510 	/* transactional execution */
511 	if (test_kvm_facility(vcpu->kvm, 73) && wants_tx) {
512 		/* remap the prefix is tx is toggled on */
513 		if (!had_tx)
514 			prefix_unmapped(vsie_page);
515 		scb_s->ecb |= ECB_TE;
516 	}
517 	/* branch prediction */
518 	if (test_kvm_facility(vcpu->kvm, 82))
519 		scb_s->fpf |= scb_o->fpf & FPF_BPBC;
520 	/* SIMD */
521 	if (test_kvm_facility(vcpu->kvm, 129)) {
522 		scb_s->eca |= scb_o->eca & ECA_VX;
523 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
524 	}
525 	/* Run-time-Instrumentation */
526 	if (test_kvm_facility(vcpu->kvm, 64))
527 		scb_s->ecb3 |= scb_o->ecb3 & ECB3_RI;
528 	/* Instruction Execution Prevention */
529 	if (test_kvm_facility(vcpu->kvm, 130))
530 		scb_s->ecb2 |= scb_o->ecb2 & ECB2_IEP;
531 	/* Guarded Storage */
532 	if (test_kvm_facility(vcpu->kvm, 133)) {
533 		scb_s->ecb |= scb_o->ecb & ECB_GS;
534 		scb_s->ecd |= scb_o->ecd & ECD_HOSTREGMGMT;
535 	}
536 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
537 		scb_s->eca |= scb_o->eca & ECA_SII;
538 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
539 		scb_s->eca |= scb_o->eca & ECA_IB;
540 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
541 		scb_s->eca |= scb_o->eca & ECA_CEI;
542 	/* Epoch Extension */
543 	if (test_kvm_facility(vcpu->kvm, 139))
544 		scb_s->ecd |= scb_o->ecd & ECD_MEF;
545 
546 	/* etoken */
547 	if (test_kvm_facility(vcpu->kvm, 156))
548 		scb_s->ecd |= scb_o->ecd & ECD_ETOKENF;
549 
550 	scb_s->hpid = HPID_VSIE;
551 
552 	prepare_ibc(vcpu, vsie_page);
553 	rc = shadow_crycb(vcpu, vsie_page);
554 out:
555 	if (rc)
556 		unshadow_scb(vcpu, vsie_page);
557 	return rc;
558 }
559 
560 void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
561 				 unsigned long end)
562 {
563 	struct kvm *kvm = gmap->private;
564 	struct vsie_page *cur;
565 	unsigned long prefix;
566 	struct page *page;
567 	int i;
568 
569 	if (!gmap_is_shadow(gmap))
570 		return;
571 	if (start >= 1UL << 31)
572 		/* We are only interested in prefix pages */
573 		return;
574 
575 	/*
576 	 * Only new shadow blocks are added to the list during runtime,
577 	 * therefore we can safely reference them all the time.
578 	 */
579 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
580 		page = READ_ONCE(kvm->arch.vsie.pages[i]);
581 		if (!page)
582 			continue;
583 		cur = page_to_virt(page);
584 		if (READ_ONCE(cur->gmap) != gmap)
585 			continue;
586 		prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
587 		/* with mso/msl, the prefix lies at an offset */
588 		prefix += cur->scb_s.mso;
589 		if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
590 			prefix_unmapped_sync(cur);
591 	}
592 }
593 
594 /*
595  * Map the first prefix page and if tx is enabled also the second prefix page.
596  *
597  * The prefix will be protected, a gmap notifier will inform about unmaps.
598  * The shadow scb must not be executed until the prefix is remapped, this is
599  * guaranteed by properly handling PROG_REQUEST.
600  *
601  * Returns: - 0 on if successfully mapped or already mapped
602  *          - > 0 if control has to be given to guest 2
603  *          - -EAGAIN if the caller can retry immediately
604  *          - -ENOMEM if out of memory
605  */
606 static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
607 {
608 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
609 	u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
610 	int rc;
611 
612 	if (prefix_is_mapped(vsie_page))
613 		return 0;
614 
615 	/* mark it as mapped so we can catch any concurrent unmappers */
616 	prefix_mapped(vsie_page);
617 
618 	/* with mso/msl, the prefix lies at offset *mso* */
619 	prefix += scb_s->mso;
620 
621 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
622 	if (!rc && (scb_s->ecb & ECB_TE))
623 		rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
624 					   prefix + PAGE_SIZE);
625 	/*
626 	 * We don't have to mprotect, we will be called for all unshadows.
627 	 * SIE will detect if protection applies and trigger a validity.
628 	 */
629 	if (rc)
630 		prefix_unmapped(vsie_page);
631 	if (rc > 0 || rc == -EFAULT)
632 		rc = set_validity_icpt(scb_s, 0x0037U);
633 	return rc;
634 }
635 
636 /*
637  * Pin the guest page given by gpa and set hpa to the pinned host address.
638  * Will always be pinned writable.
639  *
640  * Returns: - 0 on success
641  *          - -EINVAL if the gpa is not valid guest storage
642  */
643 static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
644 {
645 	struct page *page;
646 
647 	page = gfn_to_page(kvm, gpa_to_gfn(gpa));
648 	if (is_error_page(page))
649 		return -EINVAL;
650 	*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
651 	return 0;
652 }
653 
654 /* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
655 static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
656 {
657 	kvm_release_pfn_dirty(hpa >> PAGE_SHIFT);
658 	/* mark the page always as dirty for migration */
659 	mark_page_dirty(kvm, gpa_to_gfn(gpa));
660 }
661 
662 /* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
663 static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
664 {
665 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
666 	hpa_t hpa;
667 
668 	hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
669 	if (hpa) {
670 		unpin_guest_page(vcpu->kvm, vsie_page->sca_gpa, hpa);
671 		vsie_page->sca_gpa = 0;
672 		scb_s->scaol = 0;
673 		scb_s->scaoh = 0;
674 	}
675 
676 	hpa = scb_s->itdba;
677 	if (hpa) {
678 		unpin_guest_page(vcpu->kvm, vsie_page->itdba_gpa, hpa);
679 		vsie_page->itdba_gpa = 0;
680 		scb_s->itdba = 0;
681 	}
682 
683 	hpa = scb_s->gvrd;
684 	if (hpa) {
685 		unpin_guest_page(vcpu->kvm, vsie_page->gvrd_gpa, hpa);
686 		vsie_page->gvrd_gpa = 0;
687 		scb_s->gvrd = 0;
688 	}
689 
690 	hpa = scb_s->riccbd;
691 	if (hpa) {
692 		unpin_guest_page(vcpu->kvm, vsie_page->riccbd_gpa, hpa);
693 		vsie_page->riccbd_gpa = 0;
694 		scb_s->riccbd = 0;
695 	}
696 
697 	hpa = scb_s->sdnxo;
698 	if (hpa) {
699 		unpin_guest_page(vcpu->kvm, vsie_page->sdnx_gpa, hpa);
700 		vsie_page->sdnx_gpa = 0;
701 		scb_s->sdnxo = 0;
702 	}
703 }
704 
705 /*
706  * Instead of shadowing some blocks, we can simply forward them because the
707  * addresses in the scb are 64 bit long.
708  *
709  * This works as long as the data lies in one page. If blocks ever exceed one
710  * page, we have to fall back to shadowing.
711  *
712  * As we reuse the sca, the vcpu pointers contained in it are invalid. We must
713  * therefore not enable any facilities that access these pointers (e.g. SIGPIF).
714  *
715  * Returns: - 0 if all blocks were pinned.
716  *          - > 0 if control has to be given to guest 2
717  *          - -ENOMEM if out of memory
718  */
719 static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
720 {
721 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
722 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
723 	hpa_t hpa;
724 	gpa_t gpa;
725 	int rc = 0;
726 
727 	gpa = READ_ONCE(scb_o->scaol) & ~0xfUL;
728 	if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
729 		gpa |= (u64) READ_ONCE(scb_o->scaoh) << 32;
730 	if (gpa) {
731 		if (gpa < 2 * PAGE_SIZE)
732 			rc = set_validity_icpt(scb_s, 0x0038U);
733 		else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
734 			rc = set_validity_icpt(scb_s, 0x0011U);
735 		else if ((gpa & PAGE_MASK) !=
736 			 ((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
737 			rc = set_validity_icpt(scb_s, 0x003bU);
738 		if (!rc) {
739 			rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
740 			if (rc)
741 				rc = set_validity_icpt(scb_s, 0x0034U);
742 		}
743 		if (rc)
744 			goto unpin;
745 		vsie_page->sca_gpa = gpa;
746 		scb_s->scaoh = (u32)((u64)hpa >> 32);
747 		scb_s->scaol = (u32)(u64)hpa;
748 	}
749 
750 	gpa = READ_ONCE(scb_o->itdba) & ~0xffUL;
751 	if (gpa && (scb_s->ecb & ECB_TE)) {
752 		if (gpa < 2 * PAGE_SIZE) {
753 			rc = set_validity_icpt(scb_s, 0x0080U);
754 			goto unpin;
755 		}
756 		/* 256 bytes cannot cross page boundaries */
757 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
758 		if (rc) {
759 			rc = set_validity_icpt(scb_s, 0x0080U);
760 			goto unpin;
761 		}
762 		vsie_page->itdba_gpa = gpa;
763 		scb_s->itdba = hpa;
764 	}
765 
766 	gpa = READ_ONCE(scb_o->gvrd) & ~0x1ffUL;
767 	if (gpa && (scb_s->eca & ECA_VX) && !(scb_s->ecd & ECD_HOSTREGMGMT)) {
768 		if (gpa < 2 * PAGE_SIZE) {
769 			rc = set_validity_icpt(scb_s, 0x1310U);
770 			goto unpin;
771 		}
772 		/*
773 		 * 512 bytes vector registers cannot cross page boundaries
774 		 * if this block gets bigger, we have to shadow it.
775 		 */
776 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
777 		if (rc) {
778 			rc = set_validity_icpt(scb_s, 0x1310U);
779 			goto unpin;
780 		}
781 		vsie_page->gvrd_gpa = gpa;
782 		scb_s->gvrd = hpa;
783 	}
784 
785 	gpa = READ_ONCE(scb_o->riccbd) & ~0x3fUL;
786 	if (gpa && (scb_s->ecb3 & ECB3_RI)) {
787 		if (gpa < 2 * PAGE_SIZE) {
788 			rc = set_validity_icpt(scb_s, 0x0043U);
789 			goto unpin;
790 		}
791 		/* 64 bytes cannot cross page boundaries */
792 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
793 		if (rc) {
794 			rc = set_validity_icpt(scb_s, 0x0043U);
795 			goto unpin;
796 		}
797 		/* Validity 0x0044 will be checked by SIE */
798 		vsie_page->riccbd_gpa = gpa;
799 		scb_s->riccbd = hpa;
800 	}
801 	if (((scb_s->ecb & ECB_GS) && !(scb_s->ecd & ECD_HOSTREGMGMT)) ||
802 	    (scb_s->ecd & ECD_ETOKENF)) {
803 		unsigned long sdnxc;
804 
805 		gpa = READ_ONCE(scb_o->sdnxo) & ~0xfUL;
806 		sdnxc = READ_ONCE(scb_o->sdnxo) & 0xfUL;
807 		if (!gpa || gpa < 2 * PAGE_SIZE) {
808 			rc = set_validity_icpt(scb_s, 0x10b0U);
809 			goto unpin;
810 		}
811 		if (sdnxc < 6 || sdnxc > 12) {
812 			rc = set_validity_icpt(scb_s, 0x10b1U);
813 			goto unpin;
814 		}
815 		if (gpa & ((1 << sdnxc) - 1)) {
816 			rc = set_validity_icpt(scb_s, 0x10b2U);
817 			goto unpin;
818 		}
819 		/* Due to alignment rules (checked above) this cannot
820 		 * cross page boundaries
821 		 */
822 		rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
823 		if (rc) {
824 			rc = set_validity_icpt(scb_s, 0x10b0U);
825 			goto unpin;
826 		}
827 		vsie_page->sdnx_gpa = gpa;
828 		scb_s->sdnxo = hpa | sdnxc;
829 	}
830 	return 0;
831 unpin:
832 	unpin_blocks(vcpu, vsie_page);
833 	return rc;
834 }
835 
836 /* unpin the scb provided by guest 2, marking it as dirty */
837 static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
838 		      gpa_t gpa)
839 {
840 	hpa_t hpa = (hpa_t) vsie_page->scb_o;
841 
842 	if (hpa)
843 		unpin_guest_page(vcpu->kvm, gpa, hpa);
844 	vsie_page->scb_o = NULL;
845 }
846 
847 /*
848  * Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
849  *
850  * Returns: - 0 if the scb was pinned.
851  *          - > 0 if control has to be given to guest 2
852  */
853 static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
854 		   gpa_t gpa)
855 {
856 	hpa_t hpa;
857 	int rc;
858 
859 	rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
860 	if (rc) {
861 		rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
862 		WARN_ON_ONCE(rc);
863 		return 1;
864 	}
865 	vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
866 	return 0;
867 }
868 
869 /*
870  * Inject a fault into guest 2.
871  *
872  * Returns: - > 0 if control has to be given to guest 2
873  *            < 0 if an error occurred during injection.
874  */
875 static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
876 			bool write_flag)
877 {
878 	struct kvm_s390_pgm_info pgm = {
879 		.code = code,
880 		.trans_exc_code =
881 			/* 0-51: virtual address */
882 			(vaddr & 0xfffffffffffff000UL) |
883 			/* 52-53: store / fetch */
884 			(((unsigned int) !write_flag) + 1) << 10,
885 			/* 62-63: asce id (alway primary == 0) */
886 		.exc_access_id = 0, /* always primary */
887 		.op_access_id = 0, /* not MVPG */
888 	};
889 	int rc;
890 
891 	if (code == PGM_PROTECTION)
892 		pgm.trans_exc_code |= 0x4UL;
893 
894 	rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
895 	return rc ? rc : 1;
896 }
897 
898 /*
899  * Handle a fault during vsie execution on a gmap shadow.
900  *
901  * Returns: - 0 if the fault was resolved
902  *          - > 0 if control has to be given to guest 2
903  *          - < 0 if an error occurred
904  */
905 static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
906 {
907 	int rc;
908 
909 	if (current->thread.gmap_int_code == PGM_PROTECTION)
910 		/* we can directly forward all protection exceptions */
911 		return inject_fault(vcpu, PGM_PROTECTION,
912 				    current->thread.gmap_addr, 1);
913 
914 	rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
915 				   current->thread.gmap_addr);
916 	if (rc > 0) {
917 		rc = inject_fault(vcpu, rc,
918 				  current->thread.gmap_addr,
919 				  current->thread.gmap_write_flag);
920 		if (rc >= 0)
921 			vsie_page->fault_addr = current->thread.gmap_addr;
922 	}
923 	return rc;
924 }
925 
926 /*
927  * Retry the previous fault that required guest 2 intervention. This avoids
928  * one superfluous SIE re-entry and direct exit.
929  *
930  * Will ignore any errors. The next SIE fault will do proper fault handling.
931  */
932 static void handle_last_fault(struct kvm_vcpu *vcpu,
933 			      struct vsie_page *vsie_page)
934 {
935 	if (vsie_page->fault_addr)
936 		kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
937 				      vsie_page->fault_addr);
938 	vsie_page->fault_addr = 0;
939 }
940 
941 static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
942 {
943 	vsie_page->scb_s.icptcode = 0;
944 }
945 
946 /* rewind the psw and clear the vsie icpt, so we can retry execution */
947 static void retry_vsie_icpt(struct vsie_page *vsie_page)
948 {
949 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
950 	int ilen = insn_length(scb_s->ipa >> 8);
951 
952 	/* take care of EXECUTE instructions */
953 	if (scb_s->icptstatus & 1) {
954 		ilen = (scb_s->icptstatus >> 4) & 0x6;
955 		if (!ilen)
956 			ilen = 4;
957 	}
958 	scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
959 	clear_vsie_icpt(vsie_page);
960 }
961 
962 /*
963  * Try to shadow + enable the guest 2 provided facility list.
964  * Retry instruction execution if enabled for and provided by guest 2.
965  *
966  * Returns: - 0 if handled (retry or guest 2 icpt)
967  *          - > 0 if control has to be given to guest 2
968  */
969 static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
970 {
971 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
972 	__u32 fac = READ_ONCE(vsie_page->scb_o->fac) & 0x7ffffff8U;
973 
974 	if (fac && test_kvm_facility(vcpu->kvm, 7)) {
975 		retry_vsie_icpt(vsie_page);
976 		if (read_guest_real(vcpu, fac, &vsie_page->fac,
977 				    sizeof(vsie_page->fac)))
978 			return set_validity_icpt(scb_s, 0x1090U);
979 		scb_s->fac = (__u32)(__u64) &vsie_page->fac;
980 	}
981 	return 0;
982 }
983 
984 /*
985  * Run the vsie on a shadow scb and a shadow gmap, without any further
986  * sanity checks, handling SIE faults.
987  *
988  * Returns: - 0 everything went fine
989  *          - > 0 if control has to be given to guest 2
990  *          - < 0 if an error occurred
991  */
992 static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
993 	__releases(vcpu->kvm->srcu)
994 	__acquires(vcpu->kvm->srcu)
995 {
996 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
997 	struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
998 	int guest_bp_isolation;
999 	int rc = 0;
1000 
1001 	handle_last_fault(vcpu, vsie_page);
1002 
1003 	if (need_resched())
1004 		schedule();
1005 	if (test_cpu_flag(CIF_MCCK_PENDING))
1006 		s390_handle_mcck();
1007 
1008 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1009 
1010 	/* save current guest state of bp isolation override */
1011 	guest_bp_isolation = test_thread_flag(TIF_ISOLATE_BP_GUEST);
1012 
1013 	/*
1014 	 * The guest is running with BPBC, so we have to force it on for our
1015 	 * nested guest. This is done by enabling BPBC globally, so the BPBC
1016 	 * control in the SCB (which the nested guest can modify) is simply
1017 	 * ignored.
1018 	 */
1019 	if (test_kvm_facility(vcpu->kvm, 82) &&
1020 	    vcpu->arch.sie_block->fpf & FPF_BPBC)
1021 		set_thread_flag(TIF_ISOLATE_BP_GUEST);
1022 
1023 	local_irq_disable();
1024 	guest_enter_irqoff();
1025 	local_irq_enable();
1026 
1027 	/*
1028 	 * Simulate a SIE entry of the VCPU (see sie64a), so VCPU blocking
1029 	 * and VCPU requests also hinder the vSIE from running and lead
1030 	 * to an immediate exit. kvm_s390_vsie_kick() has to be used to
1031 	 * also kick the vSIE.
1032 	 */
1033 	vcpu->arch.sie_block->prog0c |= PROG_IN_SIE;
1034 	barrier();
1035 	if (!kvm_s390_vcpu_sie_inhibited(vcpu))
1036 		rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
1037 	barrier();
1038 	vcpu->arch.sie_block->prog0c &= ~PROG_IN_SIE;
1039 
1040 	local_irq_disable();
1041 	guest_exit_irqoff();
1042 	local_irq_enable();
1043 
1044 	/* restore guest state for bp isolation override */
1045 	if (!guest_bp_isolation)
1046 		clear_thread_flag(TIF_ISOLATE_BP_GUEST);
1047 
1048 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1049 
1050 	if (rc == -EINTR) {
1051 		VCPU_EVENT(vcpu, 3, "%s", "machine check");
1052 		kvm_s390_reinject_machine_check(vcpu, &vsie_page->mcck_info);
1053 		return 0;
1054 	}
1055 
1056 	if (rc > 0)
1057 		rc = 0; /* we could still have an icpt */
1058 	else if (rc == -EFAULT)
1059 		return handle_fault(vcpu, vsie_page);
1060 
1061 	switch (scb_s->icptcode) {
1062 	case ICPT_INST:
1063 		if (scb_s->ipa == 0xb2b0)
1064 			rc = handle_stfle(vcpu, vsie_page);
1065 		break;
1066 	case ICPT_STOP:
1067 		/* stop not requested by g2 - must have been a kick */
1068 		if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
1069 			clear_vsie_icpt(vsie_page);
1070 		break;
1071 	case ICPT_VALIDITY:
1072 		if ((scb_s->ipa & 0xf000) != 0xf000)
1073 			scb_s->ipa += 0x1000;
1074 		break;
1075 	}
1076 	return rc;
1077 }
1078 
1079 static void release_gmap_shadow(struct vsie_page *vsie_page)
1080 {
1081 	if (vsie_page->gmap)
1082 		gmap_put(vsie_page->gmap);
1083 	WRITE_ONCE(vsie_page->gmap, NULL);
1084 	prefix_unmapped(vsie_page);
1085 }
1086 
1087 static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
1088 			       struct vsie_page *vsie_page)
1089 {
1090 	unsigned long asce;
1091 	union ctlreg0 cr0;
1092 	struct gmap *gmap;
1093 	int edat;
1094 
1095 	asce = vcpu->arch.sie_block->gcr[1];
1096 	cr0.val = vcpu->arch.sie_block->gcr[0];
1097 	edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
1098 	edat += edat && test_kvm_facility(vcpu->kvm, 78);
1099 
1100 	/*
1101 	 * ASCE or EDAT could have changed since last icpt, or the gmap
1102 	 * we're holding has been unshadowed. If the gmap is still valid,
1103 	 * we can safely reuse it.
1104 	 */
1105 	if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
1106 		return 0;
1107 
1108 	/* release the old shadow - if any, and mark the prefix as unmapped */
1109 	release_gmap_shadow(vsie_page);
1110 	gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
1111 	if (IS_ERR(gmap))
1112 		return PTR_ERR(gmap);
1113 	gmap->private = vcpu->kvm;
1114 	WRITE_ONCE(vsie_page->gmap, gmap);
1115 	return 0;
1116 }
1117 
1118 /*
1119  * Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
1120  */
1121 static void register_shadow_scb(struct kvm_vcpu *vcpu,
1122 				struct vsie_page *vsie_page)
1123 {
1124 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1125 
1126 	WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
1127 	/*
1128 	 * External calls have to lead to a kick of the vcpu and
1129 	 * therefore the vsie -> Simulate Wait state.
1130 	 */
1131 	kvm_s390_set_cpuflags(vcpu, CPUSTAT_WAIT);
1132 	/*
1133 	 * We have to adjust the g3 epoch by the g2 epoch. The epoch will
1134 	 * automatically be adjusted on tod clock changes via kvm_sync_clock.
1135 	 */
1136 	preempt_disable();
1137 	scb_s->epoch += vcpu->kvm->arch.epoch;
1138 
1139 	if (scb_s->ecd & ECD_MEF) {
1140 		scb_s->epdx += vcpu->kvm->arch.epdx;
1141 		if (scb_s->epoch < vcpu->kvm->arch.epoch)
1142 			scb_s->epdx += 1;
1143 	}
1144 
1145 	preempt_enable();
1146 }
1147 
1148 /*
1149  * Unregister a shadow scb from a VCPU.
1150  */
1151 static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
1152 {
1153 	kvm_s390_clear_cpuflags(vcpu, CPUSTAT_WAIT);
1154 	WRITE_ONCE(vcpu->arch.vsie_block, NULL);
1155 }
1156 
1157 /*
1158  * Run the vsie on a shadowed scb, managing the gmap shadow, handling
1159  * prefix pages and faults.
1160  *
1161  * Returns: - 0 if no errors occurred
1162  *          - > 0 if control has to be given to guest 2
1163  *          - -ENOMEM if out of memory
1164  */
1165 static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
1166 {
1167 	struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
1168 	int rc = 0;
1169 
1170 	while (1) {
1171 		rc = acquire_gmap_shadow(vcpu, vsie_page);
1172 		if (!rc)
1173 			rc = map_prefix(vcpu, vsie_page);
1174 		if (!rc) {
1175 			gmap_enable(vsie_page->gmap);
1176 			update_intervention_requests(vsie_page);
1177 			rc = do_vsie_run(vcpu, vsie_page);
1178 			gmap_enable(vcpu->arch.gmap);
1179 		}
1180 		atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
1181 
1182 		if (rc == -EAGAIN)
1183 			rc = 0;
1184 		if (rc || scb_s->icptcode || signal_pending(current) ||
1185 		    kvm_s390_vcpu_has_irq(vcpu, 0) ||
1186 		    kvm_s390_vcpu_sie_inhibited(vcpu))
1187 			break;
1188 	}
1189 
1190 	if (rc == -EFAULT) {
1191 		/*
1192 		 * Addressing exceptions are always presentes as intercepts.
1193 		 * As addressing exceptions are suppressing and our guest 3 PSW
1194 		 * points at the responsible instruction, we have to
1195 		 * forward the PSW and set the ilc. If we can't read guest 3
1196 		 * instruction, we can use an arbitrary ilc. Let's always use
1197 		 * ilen = 4 for now, so we can avoid reading in guest 3 virtual
1198 		 * memory. (we could also fake the shadow so the hardware
1199 		 * handles it).
1200 		 */
1201 		scb_s->icptcode = ICPT_PROGI;
1202 		scb_s->iprcc = PGM_ADDRESSING;
1203 		scb_s->pgmilc = 4;
1204 		scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
1205 	}
1206 	return rc;
1207 }
1208 
1209 /*
1210  * Get or create a vsie page for a scb address.
1211  *
1212  * Returns: - address of a vsie page (cached or new one)
1213  *          - NULL if the same scb address is already used by another VCPU
1214  *          - ERR_PTR(-ENOMEM) if out of memory
1215  */
1216 static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
1217 {
1218 	struct vsie_page *vsie_page;
1219 	struct page *page;
1220 	int nr_vcpus;
1221 
1222 	rcu_read_lock();
1223 	page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
1224 	rcu_read_unlock();
1225 	if (page) {
1226 		if (page_ref_inc_return(page) == 2)
1227 			return page_to_virt(page);
1228 		page_ref_dec(page);
1229 	}
1230 
1231 	/*
1232 	 * We want at least #online_vcpus shadows, so every VCPU can execute
1233 	 * the VSIE in parallel.
1234 	 */
1235 	nr_vcpus = atomic_read(&kvm->online_vcpus);
1236 
1237 	mutex_lock(&kvm->arch.vsie.mutex);
1238 	if (kvm->arch.vsie.page_count < nr_vcpus) {
1239 		page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA);
1240 		if (!page) {
1241 			mutex_unlock(&kvm->arch.vsie.mutex);
1242 			return ERR_PTR(-ENOMEM);
1243 		}
1244 		page_ref_inc(page);
1245 		kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
1246 		kvm->arch.vsie.page_count++;
1247 	} else {
1248 		/* reuse an existing entry that belongs to nobody */
1249 		while (true) {
1250 			page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
1251 			if (page_ref_inc_return(page) == 2)
1252 				break;
1253 			page_ref_dec(page);
1254 			kvm->arch.vsie.next++;
1255 			kvm->arch.vsie.next %= nr_vcpus;
1256 		}
1257 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1258 	}
1259 	page->index = addr;
1260 	/* double use of the same address */
1261 	if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
1262 		page_ref_dec(page);
1263 		mutex_unlock(&kvm->arch.vsie.mutex);
1264 		return NULL;
1265 	}
1266 	mutex_unlock(&kvm->arch.vsie.mutex);
1267 
1268 	vsie_page = page_to_virt(page);
1269 	memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
1270 	release_gmap_shadow(vsie_page);
1271 	vsie_page->fault_addr = 0;
1272 	vsie_page->scb_s.ihcpu = 0xffffU;
1273 	return vsie_page;
1274 }
1275 
1276 /* put a vsie page acquired via get_vsie_page */
1277 static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
1278 {
1279 	struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
1280 
1281 	page_ref_dec(page);
1282 }
1283 
1284 int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
1285 {
1286 	struct vsie_page *vsie_page;
1287 	unsigned long scb_addr;
1288 	int rc;
1289 
1290 	vcpu->stat.instruction_sie++;
1291 	if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
1292 		return -EOPNOTSUPP;
1293 	if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
1294 		return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
1295 
1296 	BUILD_BUG_ON(sizeof(struct vsie_page) != PAGE_SIZE);
1297 	scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
1298 
1299 	/* 512 byte alignment */
1300 	if (unlikely(scb_addr & 0x1ffUL))
1301 		return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
1302 
1303 	if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0) ||
1304 	    kvm_s390_vcpu_sie_inhibited(vcpu))
1305 		return 0;
1306 
1307 	vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
1308 	if (IS_ERR(vsie_page))
1309 		return PTR_ERR(vsie_page);
1310 	else if (!vsie_page)
1311 		/* double use of sie control block - simply do nothing */
1312 		return 0;
1313 
1314 	rc = pin_scb(vcpu, vsie_page, scb_addr);
1315 	if (rc)
1316 		goto out_put;
1317 	rc = shadow_scb(vcpu, vsie_page);
1318 	if (rc)
1319 		goto out_unpin_scb;
1320 	rc = pin_blocks(vcpu, vsie_page);
1321 	if (rc)
1322 		goto out_unshadow;
1323 	register_shadow_scb(vcpu, vsie_page);
1324 	rc = vsie_run(vcpu, vsie_page);
1325 	unregister_shadow_scb(vcpu);
1326 	unpin_blocks(vcpu, vsie_page);
1327 out_unshadow:
1328 	unshadow_scb(vcpu, vsie_page);
1329 out_unpin_scb:
1330 	unpin_scb(vcpu, vsie_page, scb_addr);
1331 out_put:
1332 	put_vsie_page(vcpu->kvm, vsie_page);
1333 
1334 	return rc < 0 ? rc : 0;
1335 }
1336 
1337 /* Init the vsie data structures. To be called when a vm is initialized. */
1338 void kvm_s390_vsie_init(struct kvm *kvm)
1339 {
1340 	mutex_init(&kvm->arch.vsie.mutex);
1341 	INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL);
1342 }
1343 
1344 /* Destroy the vsie data structures. To be called when a vm is destroyed. */
1345 void kvm_s390_vsie_destroy(struct kvm *kvm)
1346 {
1347 	struct vsie_page *vsie_page;
1348 	struct page *page;
1349 	int i;
1350 
1351 	mutex_lock(&kvm->arch.vsie.mutex);
1352 	for (i = 0; i < kvm->arch.vsie.page_count; i++) {
1353 		page = kvm->arch.vsie.pages[i];
1354 		kvm->arch.vsie.pages[i] = NULL;
1355 		vsie_page = page_to_virt(page);
1356 		release_gmap_shadow(vsie_page);
1357 		/* free the radix tree entry */
1358 		radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
1359 		__free_page(page);
1360 	}
1361 	kvm->arch.vsie.page_count = 0;
1362 	mutex_unlock(&kvm->arch.vsie.mutex);
1363 }
1364 
1365 void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
1366 {
1367 	struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
1368 
1369 	/*
1370 	 * Even if the VCPU lets go of the shadow sie block reference, it is
1371 	 * still valid in the cache. So we can safely kick it.
1372 	 */
1373 	if (scb) {
1374 		atomic_or(PROG_BLOCK_SIE, &scb->prog20);
1375 		if (scb->prog0c & PROG_IN_SIE)
1376 			atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
1377 	}
1378 }
1379