1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Hosting Protected Virtual Machines 4 * 5 * Copyright IBM Corp. 2019, 2020 6 * Author(s): Janosch Frank <frankja@linux.ibm.com> 7 */ 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/minmax.h> 11 #include <linux/pagemap.h> 12 #include <linux/sched/signal.h> 13 #include <asm/gmap.h> 14 #include <asm/uv.h> 15 #include <asm/mman.h> 16 #include <linux/pagewalk.h> 17 #include <linux/sched/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include "kvm-s390.h" 20 21 bool kvm_s390_pv_is_protected(struct kvm *kvm) 22 { 23 lockdep_assert_held(&kvm->lock); 24 return !!kvm_s390_pv_get_handle(kvm); 25 } 26 EXPORT_SYMBOL_GPL(kvm_s390_pv_is_protected); 27 28 bool kvm_s390_pv_cpu_is_protected(struct kvm_vcpu *vcpu) 29 { 30 lockdep_assert_held(&vcpu->mutex); 31 return !!kvm_s390_pv_cpu_get_handle(vcpu); 32 } 33 EXPORT_SYMBOL_GPL(kvm_s390_pv_cpu_is_protected); 34 35 /** 36 * struct pv_vm_to_be_destroyed - Represents a protected VM that needs to 37 * be destroyed 38 * 39 * @list: list head for the list of leftover VMs 40 * @old_gmap_table: the gmap table of the leftover protected VM 41 * @handle: the handle of the leftover protected VM 42 * @stor_var: pointer to the variable storage of the leftover protected VM 43 * @stor_base: address of the base storage of the leftover protected VM 44 * 45 * Represents a protected VM that is still registered with the Ultravisor, 46 * but which does not correspond any longer to an active KVM VM. It should 47 * be destroyed at some point later, either asynchronously or when the 48 * process terminates. 49 */ 50 struct pv_vm_to_be_destroyed { 51 struct list_head list; 52 unsigned long old_gmap_table; 53 u64 handle; 54 void *stor_var; 55 unsigned long stor_base; 56 }; 57 58 static void kvm_s390_clear_pv_state(struct kvm *kvm) 59 { 60 kvm->arch.pv.handle = 0; 61 kvm->arch.pv.guest_len = 0; 62 kvm->arch.pv.stor_base = 0; 63 kvm->arch.pv.stor_var = NULL; 64 } 65 66 int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 67 { 68 int cc; 69 70 if (!kvm_s390_pv_cpu_get_handle(vcpu)) 71 return 0; 72 73 cc = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_DESTROY_SEC_CPU, rc, rrc); 74 75 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT DESTROY VCPU %d: rc %x rrc %x", 76 vcpu->vcpu_id, *rc, *rrc); 77 WARN_ONCE(cc, "protvirt destroy cpu failed rc %x rrc %x", *rc, *rrc); 78 79 /* Intended memory leak for something that should never happen. */ 80 if (!cc) 81 free_pages(vcpu->arch.pv.stor_base, 82 get_order(uv_info.guest_cpu_stor_len)); 83 84 free_page((unsigned long)sida_addr(vcpu->arch.sie_block)); 85 vcpu->arch.sie_block->pv_handle_cpu = 0; 86 vcpu->arch.sie_block->pv_handle_config = 0; 87 memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv)); 88 vcpu->arch.sie_block->sdf = 0; 89 /* 90 * The sidad field (for sdf == 2) is now the gbea field (for sdf == 0). 91 * Use the reset value of gbea to avoid leaking the kernel pointer of 92 * the just freed sida. 93 */ 94 vcpu->arch.sie_block->gbea = 1; 95 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 96 97 return cc ? EIO : 0; 98 } 99 100 int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 101 { 102 struct uv_cb_csc uvcb = { 103 .header.cmd = UVC_CMD_CREATE_SEC_CPU, 104 .header.len = sizeof(uvcb), 105 }; 106 void *sida_addr; 107 int cc; 108 109 if (kvm_s390_pv_cpu_get_handle(vcpu)) 110 return -EINVAL; 111 112 vcpu->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, 113 get_order(uv_info.guest_cpu_stor_len)); 114 if (!vcpu->arch.pv.stor_base) 115 return -ENOMEM; 116 117 /* Input */ 118 uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm); 119 uvcb.num = vcpu->arch.sie_block->icpua; 120 uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block); 121 uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base); 122 123 /* Alloc Secure Instruction Data Area Designation */ 124 sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 125 if (!sida_addr) { 126 free_pages(vcpu->arch.pv.stor_base, 127 get_order(uv_info.guest_cpu_stor_len)); 128 return -ENOMEM; 129 } 130 vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr); 131 132 cc = uv_call(0, (u64)&uvcb); 133 *rc = uvcb.header.rc; 134 *rrc = uvcb.header.rrc; 135 KVM_UV_EVENT(vcpu->kvm, 3, 136 "PROTVIRT CREATE VCPU: cpu %d handle %llx rc %x rrc %x", 137 vcpu->vcpu_id, uvcb.cpu_handle, uvcb.header.rc, 138 uvcb.header.rrc); 139 140 if (cc) { 141 u16 dummy; 142 143 kvm_s390_pv_destroy_cpu(vcpu, &dummy, &dummy); 144 return -EIO; 145 } 146 147 /* Output */ 148 vcpu->arch.pv.handle = uvcb.cpu_handle; 149 vcpu->arch.sie_block->pv_handle_cpu = uvcb.cpu_handle; 150 vcpu->arch.sie_block->pv_handle_config = kvm_s390_pv_get_handle(vcpu->kvm); 151 vcpu->arch.sie_block->sdf = 2; 152 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 153 return 0; 154 } 155 156 /* only free resources when the destroy was successful */ 157 static void kvm_s390_pv_dealloc_vm(struct kvm *kvm) 158 { 159 vfree(kvm->arch.pv.stor_var); 160 free_pages(kvm->arch.pv.stor_base, 161 get_order(uv_info.guest_base_stor_len)); 162 kvm_s390_clear_pv_state(kvm); 163 } 164 165 static int kvm_s390_pv_alloc_vm(struct kvm *kvm) 166 { 167 unsigned long base = uv_info.guest_base_stor_len; 168 unsigned long virt = uv_info.guest_virt_var_stor_len; 169 unsigned long npages = 0, vlen = 0; 170 171 kvm->arch.pv.stor_var = NULL; 172 kvm->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(base)); 173 if (!kvm->arch.pv.stor_base) 174 return -ENOMEM; 175 176 /* 177 * Calculate current guest storage for allocation of the 178 * variable storage, which is based on the length in MB. 179 * 180 * Slots are sorted by GFN 181 */ 182 mutex_lock(&kvm->slots_lock); 183 npages = kvm_s390_get_gfn_end(kvm_memslots(kvm)); 184 mutex_unlock(&kvm->slots_lock); 185 186 kvm->arch.pv.guest_len = npages * PAGE_SIZE; 187 188 /* Allocate variable storage */ 189 vlen = ALIGN(virt * ((npages * PAGE_SIZE) / HPAGE_SIZE), PAGE_SIZE); 190 vlen += uv_info.guest_virt_base_stor_len; 191 kvm->arch.pv.stor_var = vzalloc(vlen); 192 if (!kvm->arch.pv.stor_var) 193 goto out_err; 194 return 0; 195 196 out_err: 197 kvm_s390_pv_dealloc_vm(kvm); 198 return -ENOMEM; 199 } 200 201 /** 202 * kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM. 203 * @kvm: the KVM that was associated with this leftover protected VM 204 * @leftover: details about the leftover protected VM that needs a clean up 205 * @rc: the RC code of the Destroy Secure Configuration UVC 206 * @rrc: the RRC code of the Destroy Secure Configuration UVC 207 * 208 * Destroy one leftover protected VM. 209 * On success, kvm->mm->context.protected_count will be decremented atomically 210 * and all other resources used by the VM will be freed. 211 * 212 * Return: 0 in case of success, otherwise 1 213 */ 214 static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm, 215 struct pv_vm_to_be_destroyed *leftover, 216 u16 *rc, u16 *rrc) 217 { 218 int cc; 219 220 /* It used the destroy-fast UVC, nothing left to do here */ 221 if (!leftover->handle) 222 goto done_fast; 223 cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 224 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc); 225 WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc); 226 if (cc) 227 return cc; 228 /* 229 * Intentionally leak unusable memory. If the UVC fails, the memory 230 * used for the VM and its metadata is permanently unusable. 231 * This can only happen in case of a serious KVM or hardware bug; it 232 * is not expected to happen in normal operation. 233 */ 234 free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len)); 235 free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER); 236 vfree(leftover->stor_var); 237 done_fast: 238 atomic_dec(&kvm->mm->context.protected_count); 239 return 0; 240 } 241 242 /** 243 * kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory. 244 * @kvm: the VM whose memory is to be cleared. 245 * 246 * Destroy the first 2GB of guest memory, to avoid prefix issues after reboot. 247 * The CPUs of the protected VM need to be destroyed beforehand. 248 */ 249 static void kvm_s390_destroy_lower_2g(struct kvm *kvm) 250 { 251 const unsigned long pages_2g = SZ_2G / PAGE_SIZE; 252 struct kvm_memory_slot *slot; 253 unsigned long len; 254 int srcu_idx; 255 256 srcu_idx = srcu_read_lock(&kvm->srcu); 257 258 /* Take the memslot containing guest absolute address 0 */ 259 slot = gfn_to_memslot(kvm, 0); 260 /* Clear all slots or parts thereof that are below 2GB */ 261 while (slot && slot->base_gfn < pages_2g) { 262 len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE; 263 s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len); 264 /* Take the next memslot */ 265 slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages); 266 } 267 268 srcu_read_unlock(&kvm->srcu, srcu_idx); 269 } 270 271 static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc) 272 { 273 struct uv_cb_destroy_fast uvcb = { 274 .header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST, 275 .header.len = sizeof(uvcb), 276 .handle = kvm_s390_pv_get_handle(kvm), 277 }; 278 int cc; 279 280 cc = uv_call_sched(0, (u64)&uvcb); 281 if (rc) 282 *rc = uvcb.header.rc; 283 if (rrc) 284 *rrc = uvcb.header.rrc; 285 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 286 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x", 287 uvcb.header.rc, uvcb.header.rrc); 288 WARN_ONCE(cc, "protvirt destroy vm fast failed handle %llx rc %x rrc %x", 289 kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc); 290 /* Intended memory leak on "impossible" error */ 291 if (!cc) 292 kvm_s390_pv_dealloc_vm(kvm); 293 return cc ? -EIO : 0; 294 } 295 296 static inline bool is_destroy_fast_available(void) 297 { 298 return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list); 299 } 300 301 /** 302 * kvm_s390_pv_set_aside - Set aside a protected VM for later teardown. 303 * @kvm: the VM 304 * @rc: return value for the RC field of the UVCB 305 * @rrc: return value for the RRC field of the UVCB 306 * 307 * Set aside the protected VM for a subsequent teardown. The VM will be able 308 * to continue immediately as a non-secure VM, and the information needed to 309 * properly tear down the protected VM is set aside. If another protected VM 310 * was already set aside without starting its teardown, this function will 311 * fail. 312 * The CPUs of the protected VM need to be destroyed beforehand. 313 * 314 * Context: kvm->lock needs to be held 315 * 316 * Return: 0 in case of success, -EINVAL if another protected VM was already set 317 * aside, -ENOMEM if the system ran out of memory. 318 */ 319 int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc) 320 { 321 struct pv_vm_to_be_destroyed *priv; 322 int res = 0; 323 324 lockdep_assert_held(&kvm->lock); 325 /* 326 * If another protected VM was already prepared for teardown, refuse. 327 * A normal deinitialization has to be performed instead. 328 */ 329 if (kvm->arch.pv.set_aside) 330 return -EINVAL; 331 332 /* Guest with segment type ASCE, refuse to destroy asynchronously */ 333 if ((kvm->arch.gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT) 334 return -EINVAL; 335 336 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 337 if (!priv) 338 return -ENOMEM; 339 340 if (is_destroy_fast_available()) { 341 res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc); 342 } else { 343 priv->stor_var = kvm->arch.pv.stor_var; 344 priv->stor_base = kvm->arch.pv.stor_base; 345 priv->handle = kvm_s390_pv_get_handle(kvm); 346 priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table; 347 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 348 if (s390_replace_asce(kvm->arch.gmap)) 349 res = -ENOMEM; 350 } 351 352 if (res) { 353 kfree(priv); 354 return res; 355 } 356 357 kvm_s390_destroy_lower_2g(kvm); 358 kvm_s390_clear_pv_state(kvm); 359 kvm->arch.pv.set_aside = priv; 360 361 *rc = UVC_RC_EXECUTED; 362 *rrc = 42; 363 return 0; 364 } 365 366 /** 367 * kvm_s390_pv_deinit_vm - Deinitialize the current protected VM 368 * @kvm: the KVM whose protected VM needs to be deinitialized 369 * @rc: the RC code of the UVC 370 * @rrc: the RRC code of the UVC 371 * 372 * Deinitialize the current protected VM. This function will destroy and 373 * cleanup the current protected VM, but it will not cleanup the guest 374 * memory. This function should only be called when the protected VM has 375 * just been created and therefore does not have any guest memory, or when 376 * the caller cleans up the guest memory separately. 377 * 378 * This function should not fail, but if it does, the donated memory must 379 * not be freed. 380 * 381 * Context: kvm->lock needs to be held 382 * 383 * Return: 0 in case of success, otherwise -EIO 384 */ 385 int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 386 { 387 int cc; 388 389 cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 390 UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 391 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 392 if (!cc) { 393 atomic_dec(&kvm->mm->context.protected_count); 394 kvm_s390_pv_dealloc_vm(kvm); 395 } else { 396 /* Intended memory leak on "impossible" error */ 397 s390_replace_asce(kvm->arch.gmap); 398 } 399 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM: rc %x rrc %x", *rc, *rrc); 400 WARN_ONCE(cc, "protvirt destroy vm failed rc %x rrc %x", *rc, *rrc); 401 402 return cc ? -EIO : 0; 403 } 404 405 /** 406 * kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated 407 * with a specific KVM. 408 * @kvm: the KVM to be cleaned up 409 * @rc: the RC code of the first failing UVC 410 * @rrc: the RRC code of the first failing UVC 411 * 412 * This function will clean up all protected VMs associated with a KVM. 413 * This includes the active one, the one prepared for deinitialization with 414 * kvm_s390_pv_set_aside, and any still pending in the need_cleanup list. 415 * 416 * Context: kvm->lock needs to be held unless being called from 417 * kvm_arch_destroy_vm. 418 * 419 * Return: 0 if all VMs are successfully cleaned up, otherwise -EIO 420 */ 421 int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc) 422 { 423 struct pv_vm_to_be_destroyed *cur; 424 bool need_zap = false; 425 u16 _rc, _rrc; 426 int cc = 0; 427 428 /* 429 * Nothing to do if the counter was already 0. Otherwise make sure 430 * the counter does not reach 0 before calling s390_uv_destroy_range. 431 */ 432 if (!atomic_inc_not_zero(&kvm->mm->context.protected_count)) 433 return 0; 434 435 *rc = 1; 436 /* If the current VM is protected, destroy it */ 437 if (kvm_s390_pv_get_handle(kvm)) { 438 cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc); 439 need_zap = true; 440 } 441 442 /* If a previous protected VM was set aside, put it in the need_cleanup list */ 443 if (kvm->arch.pv.set_aside) { 444 list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup); 445 kvm->arch.pv.set_aside = NULL; 446 } 447 448 /* Cleanup all protected VMs in the need_cleanup list */ 449 while (!list_empty(&kvm->arch.pv.need_cleanup)) { 450 cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list); 451 need_zap = true; 452 if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) { 453 cc = 1; 454 /* 455 * Only return the first error rc and rrc, so make 456 * sure it is not overwritten. All destroys will 457 * additionally be reported via KVM_UV_EVENT(). 458 */ 459 if (*rc == UVC_RC_EXECUTED) { 460 *rc = _rc; 461 *rrc = _rrc; 462 } 463 } 464 list_del(&cur->list); 465 kfree(cur); 466 } 467 468 /* 469 * If the mm still has a mapping, try to mark all its pages as 470 * accessible. The counter should not reach zero before this 471 * cleanup has been performed. 472 */ 473 if (need_zap && mmget_not_zero(kvm->mm)) { 474 s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE); 475 mmput(kvm->mm); 476 } 477 478 /* Now the counter can safely reach 0 */ 479 atomic_dec(&kvm->mm->context.protected_count); 480 return cc ? -EIO : 0; 481 } 482 483 /** 484 * kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM. 485 * @kvm: the VM previously associated with the protected VM 486 * @rc: return value for the RC field of the UVCB 487 * @rrc: return value for the RRC field of the UVCB 488 * 489 * Tear down the protected VM that had been previously prepared for teardown 490 * using kvm_s390_pv_set_aside_vm. Ideally this should be called by 491 * userspace asynchronously from a separate thread. 492 * 493 * Context: kvm->lock must not be held. 494 * 495 * Return: 0 in case of success, -EINVAL if no protected VM had been 496 * prepared for asynchronous teardowm, -EIO in case of other errors. 497 */ 498 int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 499 { 500 struct pv_vm_to_be_destroyed *p; 501 int ret = 0; 502 503 lockdep_assert_not_held(&kvm->lock); 504 mutex_lock(&kvm->lock); 505 p = kvm->arch.pv.set_aside; 506 kvm->arch.pv.set_aside = NULL; 507 mutex_unlock(&kvm->lock); 508 if (!p) 509 return -EINVAL; 510 511 /* When a fatal signal is received, stop immediately */ 512 if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX)) 513 goto done; 514 if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc)) 515 ret = -EIO; 516 kfree(p); 517 p = NULL; 518 done: 519 /* 520 * p is not NULL if we aborted because of a fatal signal, in which 521 * case queue the leftover for later cleanup. 522 */ 523 if (p) { 524 mutex_lock(&kvm->lock); 525 list_add(&p->list, &kvm->arch.pv.need_cleanup); 526 mutex_unlock(&kvm->lock); 527 /* Did not finish, but pretend things went well */ 528 *rc = UVC_RC_EXECUTED; 529 *rrc = 42; 530 } 531 return ret; 532 } 533 534 static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription, 535 struct mm_struct *mm) 536 { 537 struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier); 538 u16 dummy; 539 int r; 540 541 /* 542 * No locking is needed since this is the last thread of the last user of this 543 * struct mm. 544 * When the struct kvm gets deinitialized, this notifier is also 545 * unregistered. This means that if this notifier runs, then the 546 * struct kvm is still valid. 547 */ 548 r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 549 if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm)) 550 kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy); 551 } 552 553 static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = { 554 .release = kvm_s390_pv_mmu_notifier_release, 555 }; 556 557 int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 558 { 559 struct uv_cb_cgc uvcb = { 560 .header.cmd = UVC_CMD_CREATE_SEC_CONF, 561 .header.len = sizeof(uvcb) 562 }; 563 int cc, ret; 564 u16 dummy; 565 566 ret = kvm_s390_pv_alloc_vm(kvm); 567 if (ret) 568 return ret; 569 570 /* Inputs */ 571 uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */ 572 uvcb.guest_stor_len = kvm->arch.pv.guest_len; 573 uvcb.guest_asce = kvm->arch.gmap->asce; 574 uvcb.guest_sca = virt_to_phys(kvm->arch.sca); 575 uvcb.conf_base_stor_origin = 576 virt_to_phys((void *)kvm->arch.pv.stor_base); 577 uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var; 578 579 cc = uv_call_sched(0, (u64)&uvcb); 580 *rc = uvcb.header.rc; 581 *rrc = uvcb.header.rrc; 582 KVM_UV_EVENT(kvm, 3, "PROTVIRT CREATE VM: handle %llx len %llx rc %x rrc %x", 583 uvcb.guest_handle, uvcb.guest_stor_len, *rc, *rrc); 584 585 /* Outputs */ 586 kvm->arch.pv.handle = uvcb.guest_handle; 587 588 atomic_inc(&kvm->mm->context.protected_count); 589 if (cc) { 590 if (uvcb.header.rc & UVC_RC_NEED_DESTROY) { 591 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 592 } else { 593 atomic_dec(&kvm->mm->context.protected_count); 594 kvm_s390_pv_dealloc_vm(kvm); 595 } 596 return -EIO; 597 } 598 kvm->arch.gmap->guest_handle = uvcb.guest_handle; 599 /* Add the notifier only once. No races because we hold kvm->lock */ 600 if (kvm->arch.pv.mmu_notifier.ops != &kvm_s390_pv_mmu_notifier_ops) { 601 kvm->arch.pv.mmu_notifier.ops = &kvm_s390_pv_mmu_notifier_ops; 602 mmu_notifier_register(&kvm->arch.pv.mmu_notifier, kvm->mm); 603 } 604 return 0; 605 } 606 607 int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc, 608 u16 *rrc) 609 { 610 struct uv_cb_ssc uvcb = { 611 .header.cmd = UVC_CMD_SET_SEC_CONF_PARAMS, 612 .header.len = sizeof(uvcb), 613 .sec_header_origin = (u64)hdr, 614 .sec_header_len = length, 615 .guest_handle = kvm_s390_pv_get_handle(kvm), 616 }; 617 int cc = uv_call(0, (u64)&uvcb); 618 619 *rc = uvcb.header.rc; 620 *rrc = uvcb.header.rrc; 621 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM SET PARMS: rc %x rrc %x", 622 *rc, *rrc); 623 return cc ? -EINVAL : 0; 624 } 625 626 static int unpack_one(struct kvm *kvm, unsigned long addr, u64 tweak, 627 u64 offset, u16 *rc, u16 *rrc) 628 { 629 struct uv_cb_unp uvcb = { 630 .header.cmd = UVC_CMD_UNPACK_IMG, 631 .header.len = sizeof(uvcb), 632 .guest_handle = kvm_s390_pv_get_handle(kvm), 633 .gaddr = addr, 634 .tweak[0] = tweak, 635 .tweak[1] = offset, 636 }; 637 int ret = gmap_make_secure(kvm->arch.gmap, addr, &uvcb); 638 639 *rc = uvcb.header.rc; 640 *rrc = uvcb.header.rrc; 641 642 if (ret && ret != -EAGAIN) 643 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: failed addr %llx with rc %x rrc %x", 644 uvcb.gaddr, *rc, *rrc); 645 return ret; 646 } 647 648 int kvm_s390_pv_unpack(struct kvm *kvm, unsigned long addr, unsigned long size, 649 unsigned long tweak, u16 *rc, u16 *rrc) 650 { 651 u64 offset = 0; 652 int ret = 0; 653 654 if (addr & ~PAGE_MASK || !size || size & ~PAGE_MASK) 655 return -EINVAL; 656 657 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: start addr %lx size %lx", 658 addr, size); 659 660 while (offset < size) { 661 ret = unpack_one(kvm, addr, tweak, offset, rc, rrc); 662 if (ret == -EAGAIN) { 663 cond_resched(); 664 if (fatal_signal_pending(current)) 665 break; 666 continue; 667 } 668 if (ret) 669 break; 670 addr += PAGE_SIZE; 671 offset += PAGE_SIZE; 672 } 673 if (!ret) 674 KVM_UV_EVENT(kvm, 3, "%s", "PROTVIRT VM UNPACK: successful"); 675 return ret; 676 } 677 678 int kvm_s390_pv_set_cpu_state(struct kvm_vcpu *vcpu, u8 state) 679 { 680 struct uv_cb_cpu_set_state uvcb = { 681 .header.cmd = UVC_CMD_CPU_SET_STATE, 682 .header.len = sizeof(uvcb), 683 .cpu_handle = kvm_s390_pv_cpu_get_handle(vcpu), 684 .state = state, 685 }; 686 int cc; 687 688 cc = uv_call(0, (u64)&uvcb); 689 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT SET CPU %d STATE %d rc %x rrc %x", 690 vcpu->vcpu_id, state, uvcb.header.rc, uvcb.header.rrc); 691 if (cc) 692 return -EINVAL; 693 return 0; 694 } 695 696 int kvm_s390_pv_dump_cpu(struct kvm_vcpu *vcpu, void *buff, u16 *rc, u16 *rrc) 697 { 698 struct uv_cb_dump_cpu uvcb = { 699 .header.cmd = UVC_CMD_DUMP_CPU, 700 .header.len = sizeof(uvcb), 701 .cpu_handle = vcpu->arch.pv.handle, 702 .dump_area_origin = (u64)buff, 703 }; 704 int cc; 705 706 cc = uv_call_sched(0, (u64)&uvcb); 707 *rc = uvcb.header.rc; 708 *rrc = uvcb.header.rrc; 709 return cc; 710 } 711 712 /* Size of the cache for the storage state dump data. 1MB for now */ 713 #define DUMP_BUFF_LEN HPAGE_SIZE 714 715 /** 716 * kvm_s390_pv_dump_stor_state 717 * 718 * @kvm: pointer to the guest's KVM struct 719 * @buff_user: Userspace pointer where we will write the results to 720 * @gaddr: Starting absolute guest address for which the storage state 721 * is requested. 722 * @buff_user_len: Length of the buff_user buffer 723 * @rc: Pointer to where the uvcb return code is stored 724 * @rrc: Pointer to where the uvcb return reason code is stored 725 * 726 * Stores buff_len bytes of tweak component values to buff_user 727 * starting with the 1MB block specified by the absolute guest address 728 * (gaddr). The gaddr pointer will be updated with the last address 729 * for which data was written when returning to userspace. buff_user 730 * might be written to even if an error rc is returned. For instance 731 * if we encounter a fault after writing the first page of data. 732 * 733 * Context: kvm->lock needs to be held 734 * 735 * Return: 736 * 0 on success 737 * -ENOMEM if allocating the cache fails 738 * -EINVAL if gaddr is not aligned to 1MB 739 * -EINVAL if buff_user_len is not aligned to uv_info.conf_dump_storage_state_len 740 * -EINVAL if the UV call fails, rc and rrc will be set in this case 741 * -EFAULT if copying the result to buff_user failed 742 */ 743 int kvm_s390_pv_dump_stor_state(struct kvm *kvm, void __user *buff_user, 744 u64 *gaddr, u64 buff_user_len, u16 *rc, u16 *rrc) 745 { 746 struct uv_cb_dump_stor_state uvcb = { 747 .header.cmd = UVC_CMD_DUMP_CONF_STOR_STATE, 748 .header.len = sizeof(uvcb), 749 .config_handle = kvm->arch.pv.handle, 750 .gaddr = *gaddr, 751 .dump_area_origin = 0, 752 }; 753 const u64 increment_len = uv_info.conf_dump_storage_state_len; 754 size_t buff_kvm_size; 755 size_t size_done = 0; 756 u8 *buff_kvm = NULL; 757 int cc, ret; 758 759 ret = -EINVAL; 760 /* UV call processes 1MB guest storage chunks at a time */ 761 if (!IS_ALIGNED(*gaddr, HPAGE_SIZE)) 762 goto out; 763 764 /* 765 * We provide the storage state for 1MB chunks of guest 766 * storage. The buffer will need to be aligned to 767 * conf_dump_storage_state_len so we don't end on a partial 768 * chunk. 769 */ 770 if (!buff_user_len || 771 !IS_ALIGNED(buff_user_len, increment_len)) 772 goto out; 773 774 /* 775 * Allocate a buffer from which we will later copy to the user 776 * process. We don't want userspace to dictate our buffer size 777 * so we limit it to DUMP_BUFF_LEN. 778 */ 779 ret = -ENOMEM; 780 buff_kvm_size = min_t(u64, buff_user_len, DUMP_BUFF_LEN); 781 buff_kvm = vzalloc(buff_kvm_size); 782 if (!buff_kvm) 783 goto out; 784 785 ret = 0; 786 uvcb.dump_area_origin = (u64)buff_kvm; 787 /* We will loop until the user buffer is filled or an error occurs */ 788 do { 789 /* Get 1MB worth of guest storage state data */ 790 cc = uv_call_sched(0, (u64)&uvcb); 791 792 /* All or nothing */ 793 if (cc) { 794 ret = -EINVAL; 795 break; 796 } 797 798 size_done += increment_len; 799 uvcb.dump_area_origin += increment_len; 800 buff_user_len -= increment_len; 801 uvcb.gaddr += HPAGE_SIZE; 802 803 /* KVM Buffer full, time to copy to the process */ 804 if (!buff_user_len || size_done == DUMP_BUFF_LEN) { 805 if (copy_to_user(buff_user, buff_kvm, size_done)) { 806 ret = -EFAULT; 807 break; 808 } 809 810 buff_user += size_done; 811 size_done = 0; 812 uvcb.dump_area_origin = (u64)buff_kvm; 813 } 814 } while (buff_user_len); 815 816 /* Report back where we ended dumping */ 817 *gaddr = uvcb.gaddr; 818 819 /* Lets only log errors, we don't want to spam */ 820 out: 821 if (ret) 822 KVM_UV_EVENT(kvm, 3, 823 "PROTVIRT DUMP STORAGE STATE: addr %llx ret %d, uvcb rc %x rrc %x", 824 uvcb.gaddr, ret, uvcb.header.rc, uvcb.header.rrc); 825 *rc = uvcb.header.rc; 826 *rrc = uvcb.header.rrc; 827 vfree(buff_kvm); 828 829 return ret; 830 } 831 832 /** 833 * kvm_s390_pv_dump_complete 834 * 835 * @kvm: pointer to the guest's KVM struct 836 * @buff_user: Userspace pointer where we will write the results to 837 * @rc: Pointer to where the uvcb return code is stored 838 * @rrc: Pointer to where the uvcb return reason code is stored 839 * 840 * Completes the dumping operation and writes the completion data to 841 * user space. 842 * 843 * Context: kvm->lock needs to be held 844 * 845 * Return: 846 * 0 on success 847 * -ENOMEM if allocating the completion buffer fails 848 * -EINVAL if the UV call fails, rc and rrc will be set in this case 849 * -EFAULT if copying the result to buff_user failed 850 */ 851 int kvm_s390_pv_dump_complete(struct kvm *kvm, void __user *buff_user, 852 u16 *rc, u16 *rrc) 853 { 854 struct uv_cb_dump_complete complete = { 855 .header.len = sizeof(complete), 856 .header.cmd = UVC_CMD_DUMP_COMPLETE, 857 .config_handle = kvm_s390_pv_get_handle(kvm), 858 }; 859 u64 *compl_data; 860 int ret; 861 862 /* Allocate dump area */ 863 compl_data = vzalloc(uv_info.conf_dump_finalize_len); 864 if (!compl_data) 865 return -ENOMEM; 866 complete.dump_area_origin = (u64)compl_data; 867 868 ret = uv_call_sched(0, (u64)&complete); 869 *rc = complete.header.rc; 870 *rrc = complete.header.rrc; 871 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP COMPLETE: rc %x rrc %x", 872 complete.header.rc, complete.header.rrc); 873 874 if (!ret) { 875 /* 876 * kvm_s390_pv_dealloc_vm() will also (mem)set 877 * this to false on a reboot or other destroy 878 * operation for this vm. 879 */ 880 kvm->arch.pv.dumping = false; 881 kvm_s390_vcpu_unblock_all(kvm); 882 ret = copy_to_user(buff_user, compl_data, uv_info.conf_dump_finalize_len); 883 if (ret) 884 ret = -EFAULT; 885 } 886 vfree(compl_data); 887 /* If the UVC returned an error, translate it to -EINVAL */ 888 if (ret > 0) 889 ret = -EINVAL; 890 return ret; 891 } 892