1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Hosting Protected Virtual Machines 4 * 5 * Copyright IBM Corp. 2019, 2020 6 * Author(s): Janosch Frank <frankja@linux.ibm.com> 7 */ 8 #include <linux/kvm.h> 9 #include <linux/kvm_host.h> 10 #include <linux/minmax.h> 11 #include <linux/pagemap.h> 12 #include <linux/sched/signal.h> 13 #include <asm/gmap.h> 14 #include <asm/uv.h> 15 #include <asm/mman.h> 16 #include <linux/pagewalk.h> 17 #include <linux/sched/mm.h> 18 #include <linux/mmu_notifier.h> 19 #include "kvm-s390.h" 20 21 /** 22 * struct pv_vm_to_be_destroyed - Represents a protected VM that needs to 23 * be destroyed 24 * 25 * @list: list head for the list of leftover VMs 26 * @old_gmap_table: the gmap table of the leftover protected VM 27 * @handle: the handle of the leftover protected VM 28 * @stor_var: pointer to the variable storage of the leftover protected VM 29 * @stor_base: address of the base storage of the leftover protected VM 30 * 31 * Represents a protected VM that is still registered with the Ultravisor, 32 * but which does not correspond any longer to an active KVM VM. It should 33 * be destroyed at some point later, either asynchronously or when the 34 * process terminates. 35 */ 36 struct pv_vm_to_be_destroyed { 37 struct list_head list; 38 unsigned long old_gmap_table; 39 u64 handle; 40 void *stor_var; 41 unsigned long stor_base; 42 }; 43 44 static void kvm_s390_clear_pv_state(struct kvm *kvm) 45 { 46 kvm->arch.pv.handle = 0; 47 kvm->arch.pv.guest_len = 0; 48 kvm->arch.pv.stor_base = 0; 49 kvm->arch.pv.stor_var = NULL; 50 } 51 52 int kvm_s390_pv_destroy_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 53 { 54 int cc; 55 56 if (!kvm_s390_pv_cpu_get_handle(vcpu)) 57 return 0; 58 59 cc = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), UVC_CMD_DESTROY_SEC_CPU, rc, rrc); 60 61 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT DESTROY VCPU %d: rc %x rrc %x", 62 vcpu->vcpu_id, *rc, *rrc); 63 WARN_ONCE(cc, "protvirt destroy cpu failed rc %x rrc %x", *rc, *rrc); 64 65 /* Intended memory leak for something that should never happen. */ 66 if (!cc) 67 free_pages(vcpu->arch.pv.stor_base, 68 get_order(uv_info.guest_cpu_stor_len)); 69 70 free_page((unsigned long)sida_addr(vcpu->arch.sie_block)); 71 vcpu->arch.sie_block->pv_handle_cpu = 0; 72 vcpu->arch.sie_block->pv_handle_config = 0; 73 memset(&vcpu->arch.pv, 0, sizeof(vcpu->arch.pv)); 74 vcpu->arch.sie_block->sdf = 0; 75 /* 76 * The sidad field (for sdf == 2) is now the gbea field (for sdf == 0). 77 * Use the reset value of gbea to avoid leaking the kernel pointer of 78 * the just freed sida. 79 */ 80 vcpu->arch.sie_block->gbea = 1; 81 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 82 83 return cc ? EIO : 0; 84 } 85 86 int kvm_s390_pv_create_cpu(struct kvm_vcpu *vcpu, u16 *rc, u16 *rrc) 87 { 88 struct uv_cb_csc uvcb = { 89 .header.cmd = UVC_CMD_CREATE_SEC_CPU, 90 .header.len = sizeof(uvcb), 91 }; 92 void *sida_addr; 93 int cc; 94 95 if (kvm_s390_pv_cpu_get_handle(vcpu)) 96 return -EINVAL; 97 98 vcpu->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, 99 get_order(uv_info.guest_cpu_stor_len)); 100 if (!vcpu->arch.pv.stor_base) 101 return -ENOMEM; 102 103 /* Input */ 104 uvcb.guest_handle = kvm_s390_pv_get_handle(vcpu->kvm); 105 uvcb.num = vcpu->arch.sie_block->icpua; 106 uvcb.state_origin = virt_to_phys(vcpu->arch.sie_block); 107 uvcb.stor_origin = virt_to_phys((void *)vcpu->arch.pv.stor_base); 108 109 /* Alloc Secure Instruction Data Area Designation */ 110 sida_addr = (void *)__get_free_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 111 if (!sida_addr) { 112 free_pages(vcpu->arch.pv.stor_base, 113 get_order(uv_info.guest_cpu_stor_len)); 114 return -ENOMEM; 115 } 116 vcpu->arch.sie_block->sidad = virt_to_phys(sida_addr); 117 118 cc = uv_call(0, (u64)&uvcb); 119 *rc = uvcb.header.rc; 120 *rrc = uvcb.header.rrc; 121 KVM_UV_EVENT(vcpu->kvm, 3, 122 "PROTVIRT CREATE VCPU: cpu %d handle %llx rc %x rrc %x", 123 vcpu->vcpu_id, uvcb.cpu_handle, uvcb.header.rc, 124 uvcb.header.rrc); 125 126 if (cc) { 127 u16 dummy; 128 129 kvm_s390_pv_destroy_cpu(vcpu, &dummy, &dummy); 130 return -EIO; 131 } 132 133 /* Output */ 134 vcpu->arch.pv.handle = uvcb.cpu_handle; 135 vcpu->arch.sie_block->pv_handle_cpu = uvcb.cpu_handle; 136 vcpu->arch.sie_block->pv_handle_config = kvm_s390_pv_get_handle(vcpu->kvm); 137 vcpu->arch.sie_block->sdf = 2; 138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 139 return 0; 140 } 141 142 /* only free resources when the destroy was successful */ 143 static void kvm_s390_pv_dealloc_vm(struct kvm *kvm) 144 { 145 vfree(kvm->arch.pv.stor_var); 146 free_pages(kvm->arch.pv.stor_base, 147 get_order(uv_info.guest_base_stor_len)); 148 kvm_s390_clear_pv_state(kvm); 149 } 150 151 static int kvm_s390_pv_alloc_vm(struct kvm *kvm) 152 { 153 unsigned long base = uv_info.guest_base_stor_len; 154 unsigned long virt = uv_info.guest_virt_var_stor_len; 155 unsigned long npages = 0, vlen = 0; 156 157 kvm->arch.pv.stor_var = NULL; 158 kvm->arch.pv.stor_base = __get_free_pages(GFP_KERNEL_ACCOUNT, get_order(base)); 159 if (!kvm->arch.pv.stor_base) 160 return -ENOMEM; 161 162 /* 163 * Calculate current guest storage for allocation of the 164 * variable storage, which is based on the length in MB. 165 * 166 * Slots are sorted by GFN 167 */ 168 mutex_lock(&kvm->slots_lock); 169 npages = kvm_s390_get_gfn_end(kvm_memslots(kvm)); 170 mutex_unlock(&kvm->slots_lock); 171 172 kvm->arch.pv.guest_len = npages * PAGE_SIZE; 173 174 /* Allocate variable storage */ 175 vlen = ALIGN(virt * ((npages * PAGE_SIZE) / HPAGE_SIZE), PAGE_SIZE); 176 vlen += uv_info.guest_virt_base_stor_len; 177 kvm->arch.pv.stor_var = vzalloc(vlen); 178 if (!kvm->arch.pv.stor_var) 179 goto out_err; 180 return 0; 181 182 out_err: 183 kvm_s390_pv_dealloc_vm(kvm); 184 return -ENOMEM; 185 } 186 187 /** 188 * kvm_s390_pv_dispose_one_leftover - Clean up one leftover protected VM. 189 * @kvm: the KVM that was associated with this leftover protected VM 190 * @leftover: details about the leftover protected VM that needs a clean up 191 * @rc: the RC code of the Destroy Secure Configuration UVC 192 * @rrc: the RRC code of the Destroy Secure Configuration UVC 193 * 194 * Destroy one leftover protected VM. 195 * On success, kvm->mm->context.protected_count will be decremented atomically 196 * and all other resources used by the VM will be freed. 197 * 198 * Return: 0 in case of success, otherwise 1 199 */ 200 static int kvm_s390_pv_dispose_one_leftover(struct kvm *kvm, 201 struct pv_vm_to_be_destroyed *leftover, 202 u16 *rc, u16 *rrc) 203 { 204 int cc; 205 206 /* It used the destroy-fast UVC, nothing left to do here */ 207 if (!leftover->handle) 208 goto done_fast; 209 cc = uv_cmd_nodata(leftover->handle, UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 210 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY LEFTOVER VM: rc %x rrc %x", *rc, *rrc); 211 WARN_ONCE(cc, "protvirt destroy leftover vm failed rc %x rrc %x", *rc, *rrc); 212 if (cc) 213 return cc; 214 /* 215 * Intentionally leak unusable memory. If the UVC fails, the memory 216 * used for the VM and its metadata is permanently unusable. 217 * This can only happen in case of a serious KVM or hardware bug; it 218 * is not expected to happen in normal operation. 219 */ 220 free_pages(leftover->stor_base, get_order(uv_info.guest_base_stor_len)); 221 free_pages(leftover->old_gmap_table, CRST_ALLOC_ORDER); 222 vfree(leftover->stor_var); 223 done_fast: 224 atomic_dec(&kvm->mm->context.protected_count); 225 return 0; 226 } 227 228 /** 229 * kvm_s390_destroy_lower_2g - Destroy the first 2GB of protected guest memory. 230 * @kvm: the VM whose memory is to be cleared. 231 * 232 * Destroy the first 2GB of guest memory, to avoid prefix issues after reboot. 233 * The CPUs of the protected VM need to be destroyed beforehand. 234 */ 235 static void kvm_s390_destroy_lower_2g(struct kvm *kvm) 236 { 237 const unsigned long pages_2g = SZ_2G / PAGE_SIZE; 238 struct kvm_memory_slot *slot; 239 unsigned long len; 240 int srcu_idx; 241 242 srcu_idx = srcu_read_lock(&kvm->srcu); 243 244 /* Take the memslot containing guest absolute address 0 */ 245 slot = gfn_to_memslot(kvm, 0); 246 /* Clear all slots or parts thereof that are below 2GB */ 247 while (slot && slot->base_gfn < pages_2g) { 248 len = min_t(u64, slot->npages, pages_2g - slot->base_gfn) * PAGE_SIZE; 249 s390_uv_destroy_range(kvm->mm, slot->userspace_addr, slot->userspace_addr + len); 250 /* Take the next memslot */ 251 slot = gfn_to_memslot(kvm, slot->base_gfn + slot->npages); 252 } 253 254 srcu_read_unlock(&kvm->srcu, srcu_idx); 255 } 256 257 static int kvm_s390_pv_deinit_vm_fast(struct kvm *kvm, u16 *rc, u16 *rrc) 258 { 259 struct uv_cb_destroy_fast uvcb = { 260 .header.cmd = UVC_CMD_DESTROY_SEC_CONF_FAST, 261 .header.len = sizeof(uvcb), 262 .handle = kvm_s390_pv_get_handle(kvm), 263 }; 264 int cc; 265 266 cc = uv_call_sched(0, (u64)&uvcb); 267 if (rc) 268 *rc = uvcb.header.rc; 269 if (rrc) 270 *rrc = uvcb.header.rrc; 271 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 272 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM FAST: rc %x rrc %x", 273 uvcb.header.rc, uvcb.header.rrc); 274 WARN_ONCE(cc, "protvirt destroy vm fast failed handle %llx rc %x rrc %x", 275 kvm_s390_pv_get_handle(kvm), uvcb.header.rc, uvcb.header.rrc); 276 /* Inteded memory leak on "impossible" error */ 277 if (!cc) 278 kvm_s390_pv_dealloc_vm(kvm); 279 return cc ? -EIO : 0; 280 } 281 282 static inline bool is_destroy_fast_available(void) 283 { 284 return test_bit_inv(BIT_UVC_CMD_DESTROY_SEC_CONF_FAST, uv_info.inst_calls_list); 285 } 286 287 /** 288 * kvm_s390_pv_set_aside - Set aside a protected VM for later teardown. 289 * @kvm: the VM 290 * @rc: return value for the RC field of the UVCB 291 * @rrc: return value for the RRC field of the UVCB 292 * 293 * Set aside the protected VM for a subsequent teardown. The VM will be able 294 * to continue immediately as a non-secure VM, and the information needed to 295 * properly tear down the protected VM is set aside. If another protected VM 296 * was already set aside without starting its teardown, this function will 297 * fail. 298 * The CPUs of the protected VM need to be destroyed beforehand. 299 * 300 * Context: kvm->lock needs to be held 301 * 302 * Return: 0 in case of success, -EINVAL if another protected VM was already set 303 * aside, -ENOMEM if the system ran out of memory. 304 */ 305 int kvm_s390_pv_set_aside(struct kvm *kvm, u16 *rc, u16 *rrc) 306 { 307 struct pv_vm_to_be_destroyed *priv; 308 int res = 0; 309 310 lockdep_assert_held(&kvm->lock); 311 /* 312 * If another protected VM was already prepared for teardown, refuse. 313 * A normal deinitialization has to be performed instead. 314 */ 315 if (kvm->arch.pv.set_aside) 316 return -EINVAL; 317 318 /* Guest with segment type ASCE, refuse to destroy asynchronously */ 319 if ((kvm->arch.gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT) 320 return -EINVAL; 321 322 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 323 if (!priv) 324 return -ENOMEM; 325 326 if (is_destroy_fast_available()) { 327 res = kvm_s390_pv_deinit_vm_fast(kvm, rc, rrc); 328 } else { 329 priv->stor_var = kvm->arch.pv.stor_var; 330 priv->stor_base = kvm->arch.pv.stor_base; 331 priv->handle = kvm_s390_pv_get_handle(kvm); 332 priv->old_gmap_table = (unsigned long)kvm->arch.gmap->table; 333 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 334 if (s390_replace_asce(kvm->arch.gmap)) 335 res = -ENOMEM; 336 } 337 338 if (res) { 339 kfree(priv); 340 return res; 341 } 342 343 kvm_s390_destroy_lower_2g(kvm); 344 kvm_s390_clear_pv_state(kvm); 345 kvm->arch.pv.set_aside = priv; 346 347 *rc = UVC_RC_EXECUTED; 348 *rrc = 42; 349 return 0; 350 } 351 352 /** 353 * kvm_s390_pv_deinit_vm - Deinitialize the current protected VM 354 * @kvm: the KVM whose protected VM needs to be deinitialized 355 * @rc: the RC code of the UVC 356 * @rrc: the RRC code of the UVC 357 * 358 * Deinitialize the current protected VM. This function will destroy and 359 * cleanup the current protected VM, but it will not cleanup the guest 360 * memory. This function should only be called when the protected VM has 361 * just been created and therefore does not have any guest memory, or when 362 * the caller cleans up the guest memory separately. 363 * 364 * This function should not fail, but if it does, the donated memory must 365 * not be freed. 366 * 367 * Context: kvm->lock needs to be held 368 * 369 * Return: 0 in case of success, otherwise -EIO 370 */ 371 int kvm_s390_pv_deinit_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 372 { 373 int cc; 374 375 cc = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 376 UVC_CMD_DESTROY_SEC_CONF, rc, rrc); 377 WRITE_ONCE(kvm->arch.gmap->guest_handle, 0); 378 if (!cc) { 379 atomic_dec(&kvm->mm->context.protected_count); 380 kvm_s390_pv_dealloc_vm(kvm); 381 } else { 382 /* Intended memory leak on "impossible" error */ 383 s390_replace_asce(kvm->arch.gmap); 384 } 385 KVM_UV_EVENT(kvm, 3, "PROTVIRT DESTROY VM: rc %x rrc %x", *rc, *rrc); 386 WARN_ONCE(cc, "protvirt destroy vm failed rc %x rrc %x", *rc, *rrc); 387 388 return cc ? -EIO : 0; 389 } 390 391 /** 392 * kvm_s390_pv_deinit_cleanup_all - Clean up all protected VMs associated 393 * with a specific KVM. 394 * @kvm: the KVM to be cleaned up 395 * @rc: the RC code of the first failing UVC 396 * @rrc: the RRC code of the first failing UVC 397 * 398 * This function will clean up all protected VMs associated with a KVM. 399 * This includes the active one, the one prepared for deinitialization with 400 * kvm_s390_pv_set_aside, and any still pending in the need_cleanup list. 401 * 402 * Context: kvm->lock needs to be held unless being called from 403 * kvm_arch_destroy_vm. 404 * 405 * Return: 0 if all VMs are successfully cleaned up, otherwise -EIO 406 */ 407 int kvm_s390_pv_deinit_cleanup_all(struct kvm *kvm, u16 *rc, u16 *rrc) 408 { 409 struct pv_vm_to_be_destroyed *cur; 410 bool need_zap = false; 411 u16 _rc, _rrc; 412 int cc = 0; 413 414 /* Make sure the counter does not reach 0 before calling s390_uv_destroy_range */ 415 atomic_inc(&kvm->mm->context.protected_count); 416 417 *rc = 1; 418 /* If the current VM is protected, destroy it */ 419 if (kvm_s390_pv_get_handle(kvm)) { 420 cc = kvm_s390_pv_deinit_vm(kvm, rc, rrc); 421 need_zap = true; 422 } 423 424 /* If a previous protected VM was set aside, put it in the need_cleanup list */ 425 if (kvm->arch.pv.set_aside) { 426 list_add(kvm->arch.pv.set_aside, &kvm->arch.pv.need_cleanup); 427 kvm->arch.pv.set_aside = NULL; 428 } 429 430 /* Cleanup all protected VMs in the need_cleanup list */ 431 while (!list_empty(&kvm->arch.pv.need_cleanup)) { 432 cur = list_first_entry(&kvm->arch.pv.need_cleanup, typeof(*cur), list); 433 need_zap = true; 434 if (kvm_s390_pv_dispose_one_leftover(kvm, cur, &_rc, &_rrc)) { 435 cc = 1; 436 /* 437 * Only return the first error rc and rrc, so make 438 * sure it is not overwritten. All destroys will 439 * additionally be reported via KVM_UV_EVENT(). 440 */ 441 if (*rc == UVC_RC_EXECUTED) { 442 *rc = _rc; 443 *rrc = _rrc; 444 } 445 } 446 list_del(&cur->list); 447 kfree(cur); 448 } 449 450 /* 451 * If the mm still has a mapping, try to mark all its pages as 452 * accessible. The counter should not reach zero before this 453 * cleanup has been performed. 454 */ 455 if (need_zap && mmget_not_zero(kvm->mm)) { 456 s390_uv_destroy_range(kvm->mm, 0, TASK_SIZE); 457 mmput(kvm->mm); 458 } 459 460 /* Now the counter can safely reach 0 */ 461 atomic_dec(&kvm->mm->context.protected_count); 462 return cc ? -EIO : 0; 463 } 464 465 /** 466 * kvm_s390_pv_deinit_aside_vm - Teardown a previously set aside protected VM. 467 * @kvm: the VM previously associated with the protected VM 468 * @rc: return value for the RC field of the UVCB 469 * @rrc: return value for the RRC field of the UVCB 470 * 471 * Tear down the protected VM that had been previously prepared for teardown 472 * using kvm_s390_pv_set_aside_vm. Ideally this should be called by 473 * userspace asynchronously from a separate thread. 474 * 475 * Context: kvm->lock must not be held. 476 * 477 * Return: 0 in case of success, -EINVAL if no protected VM had been 478 * prepared for asynchronous teardowm, -EIO in case of other errors. 479 */ 480 int kvm_s390_pv_deinit_aside_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 481 { 482 struct pv_vm_to_be_destroyed *p; 483 int ret = 0; 484 485 lockdep_assert_not_held(&kvm->lock); 486 mutex_lock(&kvm->lock); 487 p = kvm->arch.pv.set_aside; 488 kvm->arch.pv.set_aside = NULL; 489 mutex_unlock(&kvm->lock); 490 if (!p) 491 return -EINVAL; 492 493 /* When a fatal signal is received, stop immediately */ 494 if (s390_uv_destroy_range_interruptible(kvm->mm, 0, TASK_SIZE_MAX)) 495 goto done; 496 if (kvm_s390_pv_dispose_one_leftover(kvm, p, rc, rrc)) 497 ret = -EIO; 498 kfree(p); 499 p = NULL; 500 done: 501 /* 502 * p is not NULL if we aborted because of a fatal signal, in which 503 * case queue the leftover for later cleanup. 504 */ 505 if (p) { 506 mutex_lock(&kvm->lock); 507 list_add(&p->list, &kvm->arch.pv.need_cleanup); 508 mutex_unlock(&kvm->lock); 509 /* Did not finish, but pretend things went well */ 510 *rc = UVC_RC_EXECUTED; 511 *rrc = 42; 512 } 513 return ret; 514 } 515 516 static void kvm_s390_pv_mmu_notifier_release(struct mmu_notifier *subscription, 517 struct mm_struct *mm) 518 { 519 struct kvm *kvm = container_of(subscription, struct kvm, arch.pv.mmu_notifier); 520 u16 dummy; 521 int r; 522 523 /* 524 * No locking is needed since this is the last thread of the last user of this 525 * struct mm. 526 * When the struct kvm gets deinitialized, this notifier is also 527 * unregistered. This means that if this notifier runs, then the 528 * struct kvm is still valid. 529 */ 530 r = kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 531 if (!r && is_destroy_fast_available() && kvm_s390_pv_get_handle(kvm)) 532 kvm_s390_pv_deinit_vm_fast(kvm, &dummy, &dummy); 533 } 534 535 static const struct mmu_notifier_ops kvm_s390_pv_mmu_notifier_ops = { 536 .release = kvm_s390_pv_mmu_notifier_release, 537 }; 538 539 int kvm_s390_pv_init_vm(struct kvm *kvm, u16 *rc, u16 *rrc) 540 { 541 struct uv_cb_cgc uvcb = { 542 .header.cmd = UVC_CMD_CREATE_SEC_CONF, 543 .header.len = sizeof(uvcb) 544 }; 545 int cc, ret; 546 u16 dummy; 547 548 ret = kvm_s390_pv_alloc_vm(kvm); 549 if (ret) 550 return ret; 551 552 /* Inputs */ 553 uvcb.guest_stor_origin = 0; /* MSO is 0 for KVM */ 554 uvcb.guest_stor_len = kvm->arch.pv.guest_len; 555 uvcb.guest_asce = kvm->arch.gmap->asce; 556 uvcb.guest_sca = virt_to_phys(kvm->arch.sca); 557 uvcb.conf_base_stor_origin = 558 virt_to_phys((void *)kvm->arch.pv.stor_base); 559 uvcb.conf_virt_stor_origin = (u64)kvm->arch.pv.stor_var; 560 561 cc = uv_call_sched(0, (u64)&uvcb); 562 *rc = uvcb.header.rc; 563 *rrc = uvcb.header.rrc; 564 KVM_UV_EVENT(kvm, 3, "PROTVIRT CREATE VM: handle %llx len %llx rc %x rrc %x", 565 uvcb.guest_handle, uvcb.guest_stor_len, *rc, *rrc); 566 567 /* Outputs */ 568 kvm->arch.pv.handle = uvcb.guest_handle; 569 570 atomic_inc(&kvm->mm->context.protected_count); 571 if (cc) { 572 if (uvcb.header.rc & UVC_RC_NEED_DESTROY) { 573 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 574 } else { 575 atomic_dec(&kvm->mm->context.protected_count); 576 kvm_s390_pv_dealloc_vm(kvm); 577 } 578 return -EIO; 579 } 580 kvm->arch.gmap->guest_handle = uvcb.guest_handle; 581 /* Add the notifier only once. No races because we hold kvm->lock */ 582 if (kvm->arch.pv.mmu_notifier.ops != &kvm_s390_pv_mmu_notifier_ops) { 583 kvm->arch.pv.mmu_notifier.ops = &kvm_s390_pv_mmu_notifier_ops; 584 mmu_notifier_register(&kvm->arch.pv.mmu_notifier, kvm->mm); 585 } 586 return 0; 587 } 588 589 int kvm_s390_pv_set_sec_parms(struct kvm *kvm, void *hdr, u64 length, u16 *rc, 590 u16 *rrc) 591 { 592 struct uv_cb_ssc uvcb = { 593 .header.cmd = UVC_CMD_SET_SEC_CONF_PARAMS, 594 .header.len = sizeof(uvcb), 595 .sec_header_origin = (u64)hdr, 596 .sec_header_len = length, 597 .guest_handle = kvm_s390_pv_get_handle(kvm), 598 }; 599 int cc = uv_call(0, (u64)&uvcb); 600 601 *rc = uvcb.header.rc; 602 *rrc = uvcb.header.rrc; 603 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM SET PARMS: rc %x rrc %x", 604 *rc, *rrc); 605 return cc ? -EINVAL : 0; 606 } 607 608 static int unpack_one(struct kvm *kvm, unsigned long addr, u64 tweak, 609 u64 offset, u16 *rc, u16 *rrc) 610 { 611 struct uv_cb_unp uvcb = { 612 .header.cmd = UVC_CMD_UNPACK_IMG, 613 .header.len = sizeof(uvcb), 614 .guest_handle = kvm_s390_pv_get_handle(kvm), 615 .gaddr = addr, 616 .tweak[0] = tweak, 617 .tweak[1] = offset, 618 }; 619 int ret = gmap_make_secure(kvm->arch.gmap, addr, &uvcb); 620 621 *rc = uvcb.header.rc; 622 *rrc = uvcb.header.rrc; 623 624 if (ret && ret != -EAGAIN) 625 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: failed addr %llx with rc %x rrc %x", 626 uvcb.gaddr, *rc, *rrc); 627 return ret; 628 } 629 630 int kvm_s390_pv_unpack(struct kvm *kvm, unsigned long addr, unsigned long size, 631 unsigned long tweak, u16 *rc, u16 *rrc) 632 { 633 u64 offset = 0; 634 int ret = 0; 635 636 if (addr & ~PAGE_MASK || !size || size & ~PAGE_MASK) 637 return -EINVAL; 638 639 KVM_UV_EVENT(kvm, 3, "PROTVIRT VM UNPACK: start addr %lx size %lx", 640 addr, size); 641 642 while (offset < size) { 643 ret = unpack_one(kvm, addr, tweak, offset, rc, rrc); 644 if (ret == -EAGAIN) { 645 cond_resched(); 646 if (fatal_signal_pending(current)) 647 break; 648 continue; 649 } 650 if (ret) 651 break; 652 addr += PAGE_SIZE; 653 offset += PAGE_SIZE; 654 } 655 if (!ret) 656 KVM_UV_EVENT(kvm, 3, "%s", "PROTVIRT VM UNPACK: successful"); 657 return ret; 658 } 659 660 int kvm_s390_pv_set_cpu_state(struct kvm_vcpu *vcpu, u8 state) 661 { 662 struct uv_cb_cpu_set_state uvcb = { 663 .header.cmd = UVC_CMD_CPU_SET_STATE, 664 .header.len = sizeof(uvcb), 665 .cpu_handle = kvm_s390_pv_cpu_get_handle(vcpu), 666 .state = state, 667 }; 668 int cc; 669 670 cc = uv_call(0, (u64)&uvcb); 671 KVM_UV_EVENT(vcpu->kvm, 3, "PROTVIRT SET CPU %d STATE %d rc %x rrc %x", 672 vcpu->vcpu_id, state, uvcb.header.rc, uvcb.header.rrc); 673 if (cc) 674 return -EINVAL; 675 return 0; 676 } 677 678 int kvm_s390_pv_dump_cpu(struct kvm_vcpu *vcpu, void *buff, u16 *rc, u16 *rrc) 679 { 680 struct uv_cb_dump_cpu uvcb = { 681 .header.cmd = UVC_CMD_DUMP_CPU, 682 .header.len = sizeof(uvcb), 683 .cpu_handle = vcpu->arch.pv.handle, 684 .dump_area_origin = (u64)buff, 685 }; 686 int cc; 687 688 cc = uv_call_sched(0, (u64)&uvcb); 689 *rc = uvcb.header.rc; 690 *rrc = uvcb.header.rrc; 691 return cc; 692 } 693 694 /* Size of the cache for the storage state dump data. 1MB for now */ 695 #define DUMP_BUFF_LEN HPAGE_SIZE 696 697 /** 698 * kvm_s390_pv_dump_stor_state 699 * 700 * @kvm: pointer to the guest's KVM struct 701 * @buff_user: Userspace pointer where we will write the results to 702 * @gaddr: Starting absolute guest address for which the storage state 703 * is requested. 704 * @buff_user_len: Length of the buff_user buffer 705 * @rc: Pointer to where the uvcb return code is stored 706 * @rrc: Pointer to where the uvcb return reason code is stored 707 * 708 * Stores buff_len bytes of tweak component values to buff_user 709 * starting with the 1MB block specified by the absolute guest address 710 * (gaddr). The gaddr pointer will be updated with the last address 711 * for which data was written when returning to userspace. buff_user 712 * might be written to even if an error rc is returned. For instance 713 * if we encounter a fault after writing the first page of data. 714 * 715 * Context: kvm->lock needs to be held 716 * 717 * Return: 718 * 0 on success 719 * -ENOMEM if allocating the cache fails 720 * -EINVAL if gaddr is not aligned to 1MB 721 * -EINVAL if buff_user_len is not aligned to uv_info.conf_dump_storage_state_len 722 * -EINVAL if the UV call fails, rc and rrc will be set in this case 723 * -EFAULT if copying the result to buff_user failed 724 */ 725 int kvm_s390_pv_dump_stor_state(struct kvm *kvm, void __user *buff_user, 726 u64 *gaddr, u64 buff_user_len, u16 *rc, u16 *rrc) 727 { 728 struct uv_cb_dump_stor_state uvcb = { 729 .header.cmd = UVC_CMD_DUMP_CONF_STOR_STATE, 730 .header.len = sizeof(uvcb), 731 .config_handle = kvm->arch.pv.handle, 732 .gaddr = *gaddr, 733 .dump_area_origin = 0, 734 }; 735 const u64 increment_len = uv_info.conf_dump_storage_state_len; 736 size_t buff_kvm_size; 737 size_t size_done = 0; 738 u8 *buff_kvm = NULL; 739 int cc, ret; 740 741 ret = -EINVAL; 742 /* UV call processes 1MB guest storage chunks at a time */ 743 if (!IS_ALIGNED(*gaddr, HPAGE_SIZE)) 744 goto out; 745 746 /* 747 * We provide the storage state for 1MB chunks of guest 748 * storage. The buffer will need to be aligned to 749 * conf_dump_storage_state_len so we don't end on a partial 750 * chunk. 751 */ 752 if (!buff_user_len || 753 !IS_ALIGNED(buff_user_len, increment_len)) 754 goto out; 755 756 /* 757 * Allocate a buffer from which we will later copy to the user 758 * process. We don't want userspace to dictate our buffer size 759 * so we limit it to DUMP_BUFF_LEN. 760 */ 761 ret = -ENOMEM; 762 buff_kvm_size = min_t(u64, buff_user_len, DUMP_BUFF_LEN); 763 buff_kvm = vzalloc(buff_kvm_size); 764 if (!buff_kvm) 765 goto out; 766 767 ret = 0; 768 uvcb.dump_area_origin = (u64)buff_kvm; 769 /* We will loop until the user buffer is filled or an error occurs */ 770 do { 771 /* Get 1MB worth of guest storage state data */ 772 cc = uv_call_sched(0, (u64)&uvcb); 773 774 /* All or nothing */ 775 if (cc) { 776 ret = -EINVAL; 777 break; 778 } 779 780 size_done += increment_len; 781 uvcb.dump_area_origin += increment_len; 782 buff_user_len -= increment_len; 783 uvcb.gaddr += HPAGE_SIZE; 784 785 /* KVM Buffer full, time to copy to the process */ 786 if (!buff_user_len || size_done == DUMP_BUFF_LEN) { 787 if (copy_to_user(buff_user, buff_kvm, size_done)) { 788 ret = -EFAULT; 789 break; 790 } 791 792 buff_user += size_done; 793 size_done = 0; 794 uvcb.dump_area_origin = (u64)buff_kvm; 795 } 796 } while (buff_user_len); 797 798 /* Report back where we ended dumping */ 799 *gaddr = uvcb.gaddr; 800 801 /* Lets only log errors, we don't want to spam */ 802 out: 803 if (ret) 804 KVM_UV_EVENT(kvm, 3, 805 "PROTVIRT DUMP STORAGE STATE: addr %llx ret %d, uvcb rc %x rrc %x", 806 uvcb.gaddr, ret, uvcb.header.rc, uvcb.header.rrc); 807 *rc = uvcb.header.rc; 808 *rrc = uvcb.header.rrc; 809 vfree(buff_kvm); 810 811 return ret; 812 } 813 814 /** 815 * kvm_s390_pv_dump_complete 816 * 817 * @kvm: pointer to the guest's KVM struct 818 * @buff_user: Userspace pointer where we will write the results to 819 * @rc: Pointer to where the uvcb return code is stored 820 * @rrc: Pointer to where the uvcb return reason code is stored 821 * 822 * Completes the dumping operation and writes the completion data to 823 * user space. 824 * 825 * Context: kvm->lock needs to be held 826 * 827 * Return: 828 * 0 on success 829 * -ENOMEM if allocating the completion buffer fails 830 * -EINVAL if the UV call fails, rc and rrc will be set in this case 831 * -EFAULT if copying the result to buff_user failed 832 */ 833 int kvm_s390_pv_dump_complete(struct kvm *kvm, void __user *buff_user, 834 u16 *rc, u16 *rrc) 835 { 836 struct uv_cb_dump_complete complete = { 837 .header.len = sizeof(complete), 838 .header.cmd = UVC_CMD_DUMP_COMPLETE, 839 .config_handle = kvm_s390_pv_get_handle(kvm), 840 }; 841 u64 *compl_data; 842 int ret; 843 844 /* Allocate dump area */ 845 compl_data = vzalloc(uv_info.conf_dump_finalize_len); 846 if (!compl_data) 847 return -ENOMEM; 848 complete.dump_area_origin = (u64)compl_data; 849 850 ret = uv_call_sched(0, (u64)&complete); 851 *rc = complete.header.rc; 852 *rrc = complete.header.rrc; 853 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP COMPLETE: rc %x rrc %x", 854 complete.header.rc, complete.header.rrc); 855 856 if (!ret) { 857 /* 858 * kvm_s390_pv_dealloc_vm() will also (mem)set 859 * this to false on a reboot or other destroy 860 * operation for this vm. 861 */ 862 kvm->arch.pv.dumping = false; 863 kvm_s390_vcpu_unblock_all(kvm); 864 ret = copy_to_user(buff_user, compl_data, uv_info.conf_dump_finalize_len); 865 if (ret) 866 ret = -EFAULT; 867 } 868 vfree(compl_data); 869 /* If the UVC returned an error, translate it to -EINVAL */ 870 if (ret > 0) 871 ret = -EINVAL; 872 return ret; 873 } 874