1 /* 2 * hosting zSeries kernel virtual machines 3 * 4 * Copyright IBM Corp. 2008, 2009 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License (version 2 only) 8 * as published by the Free Software Foundation. 9 * 10 * Author(s): Carsten Otte <cotte@de.ibm.com> 11 * Christian Borntraeger <borntraeger@de.ibm.com> 12 * Heiko Carstens <heiko.carstens@de.ibm.com> 13 * Christian Ehrhardt <ehrhardt@de.ibm.com> 14 * Jason J. Herne <jjherne@us.ibm.com> 15 */ 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 34 #include <asm/asm-offsets.h> 35 #include <asm/lowcore.h> 36 #include <asm/stp.h> 37 #include <asm/pgtable.h> 38 #include <asm/gmap.h> 39 #include <asm/nmi.h> 40 #include <asm/switch_to.h> 41 #include <asm/isc.h> 42 #include <asm/sclp.h> 43 #include <asm/cpacf.h> 44 #include <asm/timex.h> 45 #include "kvm-s390.h" 46 #include "gaccess.h" 47 48 #define KMSG_COMPONENT "kvm-s390" 49 #undef pr_fmt 50 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 51 52 #define CREATE_TRACE_POINTS 53 #include "trace.h" 54 #include "trace-s390.h" 55 56 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 57 #define LOCAL_IRQS 32 58 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 59 (KVM_MAX_VCPUS + LOCAL_IRQS)) 60 61 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 62 63 struct kvm_stats_debugfs_item debugfs_entries[] = { 64 { "userspace_handled", VCPU_STAT(exit_userspace) }, 65 { "exit_null", VCPU_STAT(exit_null) }, 66 { "exit_validity", VCPU_STAT(exit_validity) }, 67 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 68 { "exit_external_request", VCPU_STAT(exit_external_request) }, 69 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 70 { "exit_instruction", VCPU_STAT(exit_instruction) }, 71 { "exit_pei", VCPU_STAT(exit_pei) }, 72 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 73 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 74 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, 75 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 76 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 77 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 78 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 79 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 80 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 81 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 82 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 83 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 84 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 85 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 86 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) }, 87 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 88 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 89 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 90 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) }, 91 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 92 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 93 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 94 { "instruction_spx", VCPU_STAT(instruction_spx) }, 95 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 96 { "instruction_stap", VCPU_STAT(instruction_stap) }, 97 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) }, 98 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 99 { "instruction_stsch", VCPU_STAT(instruction_stsch) }, 100 { "instruction_chsc", VCPU_STAT(instruction_chsc) }, 101 { "instruction_essa", VCPU_STAT(instruction_essa) }, 102 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 103 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 104 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 105 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, 106 { "instruction_sie", VCPU_STAT(instruction_sie) }, 107 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 108 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 109 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 110 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 111 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 112 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 113 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 114 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 115 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 116 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 117 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 118 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 119 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 120 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 121 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 122 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 123 { "diagnose_10", VCPU_STAT(diagnose_10) }, 124 { "diagnose_44", VCPU_STAT(diagnose_44) }, 125 { "diagnose_9c", VCPU_STAT(diagnose_9c) }, 126 { "diagnose_258", VCPU_STAT(diagnose_258) }, 127 { "diagnose_308", VCPU_STAT(diagnose_308) }, 128 { "diagnose_500", VCPU_STAT(diagnose_500) }, 129 { NULL } 130 }; 131 132 /* allow nested virtualization in KVM (if enabled by user space) */ 133 static int nested; 134 module_param(nested, int, S_IRUGO); 135 MODULE_PARM_DESC(nested, "Nested virtualization support"); 136 137 /* upper facilities limit for kvm */ 138 unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM }; 139 140 unsigned long kvm_s390_fac_list_mask_size(void) 141 { 142 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64); 143 return ARRAY_SIZE(kvm_s390_fac_list_mask); 144 } 145 146 /* available cpu features supported by kvm */ 147 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 148 /* available subfunctions indicated via query / "test bit" */ 149 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 150 151 static struct gmap_notifier gmap_notifier; 152 static struct gmap_notifier vsie_gmap_notifier; 153 debug_info_t *kvm_s390_dbf; 154 155 /* Section: not file related */ 156 int kvm_arch_hardware_enable(void) 157 { 158 /* every s390 is virtualization enabled ;-) */ 159 return 0; 160 } 161 162 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 163 unsigned long end); 164 165 /* 166 * This callback is executed during stop_machine(). All CPUs are therefore 167 * temporarily stopped. In order not to change guest behavior, we have to 168 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 169 * so a CPU won't be stopped while calculating with the epoch. 170 */ 171 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 172 void *v) 173 { 174 struct kvm *kvm; 175 struct kvm_vcpu *vcpu; 176 int i; 177 unsigned long long *delta = v; 178 179 list_for_each_entry(kvm, &vm_list, vm_list) { 180 kvm->arch.epoch -= *delta; 181 kvm_for_each_vcpu(i, vcpu, kvm) { 182 vcpu->arch.sie_block->epoch -= *delta; 183 if (vcpu->arch.cputm_enabled) 184 vcpu->arch.cputm_start += *delta; 185 if (vcpu->arch.vsie_block) 186 vcpu->arch.vsie_block->epoch -= *delta; 187 } 188 } 189 return NOTIFY_OK; 190 } 191 192 static struct notifier_block kvm_clock_notifier = { 193 .notifier_call = kvm_clock_sync, 194 }; 195 196 int kvm_arch_hardware_setup(void) 197 { 198 gmap_notifier.notifier_call = kvm_gmap_notifier; 199 gmap_register_pte_notifier(&gmap_notifier); 200 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 201 gmap_register_pte_notifier(&vsie_gmap_notifier); 202 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 203 &kvm_clock_notifier); 204 return 0; 205 } 206 207 void kvm_arch_hardware_unsetup(void) 208 { 209 gmap_unregister_pte_notifier(&gmap_notifier); 210 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 211 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 212 &kvm_clock_notifier); 213 } 214 215 static void allow_cpu_feat(unsigned long nr) 216 { 217 set_bit_inv(nr, kvm_s390_available_cpu_feat); 218 } 219 220 static inline int plo_test_bit(unsigned char nr) 221 { 222 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; 223 int cc; 224 225 asm volatile( 226 /* Parameter registers are ignored for "test bit" */ 227 " plo 0,0,0,0(0)\n" 228 " ipm %0\n" 229 " srl %0,28\n" 230 : "=d" (cc) 231 : "d" (r0) 232 : "cc"); 233 return cc == 0; 234 } 235 236 static void kvm_s390_cpu_feat_init(void) 237 { 238 int i; 239 240 for (i = 0; i < 256; ++i) { 241 if (plo_test_bit(i)) 242 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 243 } 244 245 if (test_facility(28)) /* TOD-clock steering */ 246 ptff(kvm_s390_available_subfunc.ptff, 247 sizeof(kvm_s390_available_subfunc.ptff), 248 PTFF_QAF); 249 250 if (test_facility(17)) { /* MSA */ 251 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 252 kvm_s390_available_subfunc.kmac); 253 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 254 kvm_s390_available_subfunc.kmc); 255 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 256 kvm_s390_available_subfunc.km); 257 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 258 kvm_s390_available_subfunc.kimd); 259 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 260 kvm_s390_available_subfunc.klmd); 261 } 262 if (test_facility(76)) /* MSA3 */ 263 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 264 kvm_s390_available_subfunc.pckmo); 265 if (test_facility(77)) { /* MSA4 */ 266 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 267 kvm_s390_available_subfunc.kmctr); 268 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 269 kvm_s390_available_subfunc.kmf); 270 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 271 kvm_s390_available_subfunc.kmo); 272 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 273 kvm_s390_available_subfunc.pcc); 274 } 275 if (test_facility(57)) /* MSA5 */ 276 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 277 kvm_s390_available_subfunc.ppno); 278 279 if (test_facility(146)) /* MSA8 */ 280 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 281 kvm_s390_available_subfunc.kma); 282 283 if (MACHINE_HAS_ESOP) 284 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 285 /* 286 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 287 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 288 */ 289 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 290 !test_facility(3) || !nested) 291 return; 292 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 293 if (sclp.has_64bscao) 294 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 295 if (sclp.has_siif) 296 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 297 if (sclp.has_gpere) 298 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 299 if (sclp.has_gsls) 300 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 301 if (sclp.has_ib) 302 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 303 if (sclp.has_cei) 304 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 305 if (sclp.has_ibs) 306 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 307 if (sclp.has_kss) 308 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 309 /* 310 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 311 * all skey handling functions read/set the skey from the PGSTE 312 * instead of the real storage key. 313 * 314 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 315 * pages being detected as preserved although they are resident. 316 * 317 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 318 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 319 * 320 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 321 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 322 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 323 * 324 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 325 * cannot easily shadow the SCA because of the ipte lock. 326 */ 327 } 328 329 int kvm_arch_init(void *opaque) 330 { 331 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 332 if (!kvm_s390_dbf) 333 return -ENOMEM; 334 335 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { 336 debug_unregister(kvm_s390_dbf); 337 return -ENOMEM; 338 } 339 340 kvm_s390_cpu_feat_init(); 341 342 /* Register floating interrupt controller interface. */ 343 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 344 } 345 346 void kvm_arch_exit(void) 347 { 348 debug_unregister(kvm_s390_dbf); 349 } 350 351 /* Section: device related */ 352 long kvm_arch_dev_ioctl(struct file *filp, 353 unsigned int ioctl, unsigned long arg) 354 { 355 if (ioctl == KVM_S390_ENABLE_SIE) 356 return s390_enable_sie(); 357 return -EINVAL; 358 } 359 360 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 361 { 362 int r; 363 364 switch (ext) { 365 case KVM_CAP_S390_PSW: 366 case KVM_CAP_S390_GMAP: 367 case KVM_CAP_SYNC_MMU: 368 #ifdef CONFIG_KVM_S390_UCONTROL 369 case KVM_CAP_S390_UCONTROL: 370 #endif 371 case KVM_CAP_ASYNC_PF: 372 case KVM_CAP_SYNC_REGS: 373 case KVM_CAP_ONE_REG: 374 case KVM_CAP_ENABLE_CAP: 375 case KVM_CAP_S390_CSS_SUPPORT: 376 case KVM_CAP_IOEVENTFD: 377 case KVM_CAP_DEVICE_CTRL: 378 case KVM_CAP_ENABLE_CAP_VM: 379 case KVM_CAP_S390_IRQCHIP: 380 case KVM_CAP_VM_ATTRIBUTES: 381 case KVM_CAP_MP_STATE: 382 case KVM_CAP_IMMEDIATE_EXIT: 383 case KVM_CAP_S390_INJECT_IRQ: 384 case KVM_CAP_S390_USER_SIGP: 385 case KVM_CAP_S390_USER_STSI: 386 case KVM_CAP_S390_SKEYS: 387 case KVM_CAP_S390_IRQ_STATE: 388 case KVM_CAP_S390_USER_INSTR0: 389 case KVM_CAP_S390_AIS: 390 r = 1; 391 break; 392 case KVM_CAP_S390_MEM_OP: 393 r = MEM_OP_MAX_SIZE; 394 break; 395 case KVM_CAP_NR_VCPUS: 396 case KVM_CAP_MAX_VCPUS: 397 r = KVM_S390_BSCA_CPU_SLOTS; 398 if (!kvm_s390_use_sca_entries()) 399 r = KVM_MAX_VCPUS; 400 else if (sclp.has_esca && sclp.has_64bscao) 401 r = KVM_S390_ESCA_CPU_SLOTS; 402 break; 403 case KVM_CAP_NR_MEMSLOTS: 404 r = KVM_USER_MEM_SLOTS; 405 break; 406 case KVM_CAP_S390_COW: 407 r = MACHINE_HAS_ESOP; 408 break; 409 case KVM_CAP_S390_VECTOR_REGISTERS: 410 r = MACHINE_HAS_VX; 411 break; 412 case KVM_CAP_S390_RI: 413 r = test_facility(64); 414 break; 415 case KVM_CAP_S390_GS: 416 r = test_facility(133); 417 break; 418 default: 419 r = 0; 420 } 421 return r; 422 } 423 424 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 425 struct kvm_memory_slot *memslot) 426 { 427 gfn_t cur_gfn, last_gfn; 428 unsigned long address; 429 struct gmap *gmap = kvm->arch.gmap; 430 431 /* Loop over all guest pages */ 432 last_gfn = memslot->base_gfn + memslot->npages; 433 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) { 434 address = gfn_to_hva_memslot(memslot, cur_gfn); 435 436 if (test_and_clear_guest_dirty(gmap->mm, address)) 437 mark_page_dirty(kvm, cur_gfn); 438 if (fatal_signal_pending(current)) 439 return; 440 cond_resched(); 441 } 442 } 443 444 /* Section: vm related */ 445 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 446 447 /* 448 * Get (and clear) the dirty memory log for a memory slot. 449 */ 450 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 451 struct kvm_dirty_log *log) 452 { 453 int r; 454 unsigned long n; 455 struct kvm_memslots *slots; 456 struct kvm_memory_slot *memslot; 457 int is_dirty = 0; 458 459 if (kvm_is_ucontrol(kvm)) 460 return -EINVAL; 461 462 mutex_lock(&kvm->slots_lock); 463 464 r = -EINVAL; 465 if (log->slot >= KVM_USER_MEM_SLOTS) 466 goto out; 467 468 slots = kvm_memslots(kvm); 469 memslot = id_to_memslot(slots, log->slot); 470 r = -ENOENT; 471 if (!memslot->dirty_bitmap) 472 goto out; 473 474 kvm_s390_sync_dirty_log(kvm, memslot); 475 r = kvm_get_dirty_log(kvm, log, &is_dirty); 476 if (r) 477 goto out; 478 479 /* Clear the dirty log */ 480 if (is_dirty) { 481 n = kvm_dirty_bitmap_bytes(memslot); 482 memset(memslot->dirty_bitmap, 0, n); 483 } 484 r = 0; 485 out: 486 mutex_unlock(&kvm->slots_lock); 487 return r; 488 } 489 490 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 491 { 492 unsigned int i; 493 struct kvm_vcpu *vcpu; 494 495 kvm_for_each_vcpu(i, vcpu, kvm) { 496 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 497 } 498 } 499 500 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 501 { 502 int r; 503 504 if (cap->flags) 505 return -EINVAL; 506 507 switch (cap->cap) { 508 case KVM_CAP_S390_IRQCHIP: 509 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 510 kvm->arch.use_irqchip = 1; 511 r = 0; 512 break; 513 case KVM_CAP_S390_USER_SIGP: 514 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 515 kvm->arch.user_sigp = 1; 516 r = 0; 517 break; 518 case KVM_CAP_S390_VECTOR_REGISTERS: 519 mutex_lock(&kvm->lock); 520 if (kvm->created_vcpus) { 521 r = -EBUSY; 522 } else if (MACHINE_HAS_VX) { 523 set_kvm_facility(kvm->arch.model.fac_mask, 129); 524 set_kvm_facility(kvm->arch.model.fac_list, 129); 525 if (test_facility(134)) { 526 set_kvm_facility(kvm->arch.model.fac_mask, 134); 527 set_kvm_facility(kvm->arch.model.fac_list, 134); 528 } 529 if (test_facility(135)) { 530 set_kvm_facility(kvm->arch.model.fac_mask, 135); 531 set_kvm_facility(kvm->arch.model.fac_list, 135); 532 } 533 r = 0; 534 } else 535 r = -EINVAL; 536 mutex_unlock(&kvm->lock); 537 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 538 r ? "(not available)" : "(success)"); 539 break; 540 case KVM_CAP_S390_RI: 541 r = -EINVAL; 542 mutex_lock(&kvm->lock); 543 if (kvm->created_vcpus) { 544 r = -EBUSY; 545 } else if (test_facility(64)) { 546 set_kvm_facility(kvm->arch.model.fac_mask, 64); 547 set_kvm_facility(kvm->arch.model.fac_list, 64); 548 r = 0; 549 } 550 mutex_unlock(&kvm->lock); 551 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 552 r ? "(not available)" : "(success)"); 553 break; 554 case KVM_CAP_S390_AIS: 555 mutex_lock(&kvm->lock); 556 if (kvm->created_vcpus) { 557 r = -EBUSY; 558 } else { 559 set_kvm_facility(kvm->arch.model.fac_mask, 72); 560 set_kvm_facility(kvm->arch.model.fac_list, 72); 561 r = 0; 562 } 563 mutex_unlock(&kvm->lock); 564 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 565 r ? "(not available)" : "(success)"); 566 break; 567 case KVM_CAP_S390_GS: 568 r = -EINVAL; 569 mutex_lock(&kvm->lock); 570 if (atomic_read(&kvm->online_vcpus)) { 571 r = -EBUSY; 572 } else if (test_facility(133)) { 573 set_kvm_facility(kvm->arch.model.fac_mask, 133); 574 set_kvm_facility(kvm->arch.model.fac_list, 133); 575 r = 0; 576 } 577 mutex_unlock(&kvm->lock); 578 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 579 r ? "(not available)" : "(success)"); 580 break; 581 case KVM_CAP_S390_USER_STSI: 582 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 583 kvm->arch.user_stsi = 1; 584 r = 0; 585 break; 586 case KVM_CAP_S390_USER_INSTR0: 587 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 588 kvm->arch.user_instr0 = 1; 589 icpt_operexc_on_all_vcpus(kvm); 590 r = 0; 591 break; 592 default: 593 r = -EINVAL; 594 break; 595 } 596 return r; 597 } 598 599 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 600 { 601 int ret; 602 603 switch (attr->attr) { 604 case KVM_S390_VM_MEM_LIMIT_SIZE: 605 ret = 0; 606 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 607 kvm->arch.mem_limit); 608 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 609 ret = -EFAULT; 610 break; 611 default: 612 ret = -ENXIO; 613 break; 614 } 615 return ret; 616 } 617 618 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 619 { 620 int ret; 621 unsigned int idx; 622 switch (attr->attr) { 623 case KVM_S390_VM_MEM_ENABLE_CMMA: 624 ret = -ENXIO; 625 if (!sclp.has_cmma) 626 break; 627 628 ret = -EBUSY; 629 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 630 mutex_lock(&kvm->lock); 631 if (!kvm->created_vcpus) { 632 kvm->arch.use_cmma = 1; 633 ret = 0; 634 } 635 mutex_unlock(&kvm->lock); 636 break; 637 case KVM_S390_VM_MEM_CLR_CMMA: 638 ret = -ENXIO; 639 if (!sclp.has_cmma) 640 break; 641 ret = -EINVAL; 642 if (!kvm->arch.use_cmma) 643 break; 644 645 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 646 mutex_lock(&kvm->lock); 647 idx = srcu_read_lock(&kvm->srcu); 648 s390_reset_cmma(kvm->arch.gmap->mm); 649 srcu_read_unlock(&kvm->srcu, idx); 650 mutex_unlock(&kvm->lock); 651 ret = 0; 652 break; 653 case KVM_S390_VM_MEM_LIMIT_SIZE: { 654 unsigned long new_limit; 655 656 if (kvm_is_ucontrol(kvm)) 657 return -EINVAL; 658 659 if (get_user(new_limit, (u64 __user *)attr->addr)) 660 return -EFAULT; 661 662 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 663 new_limit > kvm->arch.mem_limit) 664 return -E2BIG; 665 666 if (!new_limit) 667 return -EINVAL; 668 669 /* gmap_create takes last usable address */ 670 if (new_limit != KVM_S390_NO_MEM_LIMIT) 671 new_limit -= 1; 672 673 ret = -EBUSY; 674 mutex_lock(&kvm->lock); 675 if (!kvm->created_vcpus) { 676 /* gmap_create will round the limit up */ 677 struct gmap *new = gmap_create(current->mm, new_limit); 678 679 if (!new) { 680 ret = -ENOMEM; 681 } else { 682 gmap_remove(kvm->arch.gmap); 683 new->private = kvm; 684 kvm->arch.gmap = new; 685 ret = 0; 686 } 687 } 688 mutex_unlock(&kvm->lock); 689 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 690 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 691 (void *) kvm->arch.gmap->asce); 692 break; 693 } 694 default: 695 ret = -ENXIO; 696 break; 697 } 698 return ret; 699 } 700 701 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 702 703 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 704 { 705 struct kvm_vcpu *vcpu; 706 int i; 707 708 if (!test_kvm_facility(kvm, 76)) 709 return -EINVAL; 710 711 mutex_lock(&kvm->lock); 712 switch (attr->attr) { 713 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 714 get_random_bytes( 715 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 716 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 717 kvm->arch.crypto.aes_kw = 1; 718 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 719 break; 720 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 721 get_random_bytes( 722 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 723 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 724 kvm->arch.crypto.dea_kw = 1; 725 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 726 break; 727 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 728 kvm->arch.crypto.aes_kw = 0; 729 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 730 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 731 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 732 break; 733 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 734 kvm->arch.crypto.dea_kw = 0; 735 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 736 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 737 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 738 break; 739 default: 740 mutex_unlock(&kvm->lock); 741 return -ENXIO; 742 } 743 744 kvm_for_each_vcpu(i, vcpu, kvm) { 745 kvm_s390_vcpu_crypto_setup(vcpu); 746 exit_sie(vcpu); 747 } 748 mutex_unlock(&kvm->lock); 749 return 0; 750 } 751 752 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 753 { 754 u8 gtod_high; 755 756 if (copy_from_user(>od_high, (void __user *)attr->addr, 757 sizeof(gtod_high))) 758 return -EFAULT; 759 760 if (gtod_high != 0) 761 return -EINVAL; 762 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 763 764 return 0; 765 } 766 767 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 768 { 769 u64 gtod; 770 771 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 772 return -EFAULT; 773 774 kvm_s390_set_tod_clock(kvm, gtod); 775 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod); 776 return 0; 777 } 778 779 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 780 { 781 int ret; 782 783 if (attr->flags) 784 return -EINVAL; 785 786 switch (attr->attr) { 787 case KVM_S390_VM_TOD_HIGH: 788 ret = kvm_s390_set_tod_high(kvm, attr); 789 break; 790 case KVM_S390_VM_TOD_LOW: 791 ret = kvm_s390_set_tod_low(kvm, attr); 792 break; 793 default: 794 ret = -ENXIO; 795 break; 796 } 797 return ret; 798 } 799 800 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 801 { 802 u8 gtod_high = 0; 803 804 if (copy_to_user((void __user *)attr->addr, >od_high, 805 sizeof(gtod_high))) 806 return -EFAULT; 807 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 808 809 return 0; 810 } 811 812 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 813 { 814 u64 gtod; 815 816 gtod = kvm_s390_get_tod_clock_fast(kvm); 817 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 818 return -EFAULT; 819 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 820 821 return 0; 822 } 823 824 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 825 { 826 int ret; 827 828 if (attr->flags) 829 return -EINVAL; 830 831 switch (attr->attr) { 832 case KVM_S390_VM_TOD_HIGH: 833 ret = kvm_s390_get_tod_high(kvm, attr); 834 break; 835 case KVM_S390_VM_TOD_LOW: 836 ret = kvm_s390_get_tod_low(kvm, attr); 837 break; 838 default: 839 ret = -ENXIO; 840 break; 841 } 842 return ret; 843 } 844 845 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 846 { 847 struct kvm_s390_vm_cpu_processor *proc; 848 u16 lowest_ibc, unblocked_ibc; 849 int ret = 0; 850 851 mutex_lock(&kvm->lock); 852 if (kvm->created_vcpus) { 853 ret = -EBUSY; 854 goto out; 855 } 856 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 857 if (!proc) { 858 ret = -ENOMEM; 859 goto out; 860 } 861 if (!copy_from_user(proc, (void __user *)attr->addr, 862 sizeof(*proc))) { 863 kvm->arch.model.cpuid = proc->cpuid; 864 lowest_ibc = sclp.ibc >> 16 & 0xfff; 865 unblocked_ibc = sclp.ibc & 0xfff; 866 if (lowest_ibc && proc->ibc) { 867 if (proc->ibc > unblocked_ibc) 868 kvm->arch.model.ibc = unblocked_ibc; 869 else if (proc->ibc < lowest_ibc) 870 kvm->arch.model.ibc = lowest_ibc; 871 else 872 kvm->arch.model.ibc = proc->ibc; 873 } 874 memcpy(kvm->arch.model.fac_list, proc->fac_list, 875 S390_ARCH_FAC_LIST_SIZE_BYTE); 876 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 877 kvm->arch.model.ibc, 878 kvm->arch.model.cpuid); 879 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 880 kvm->arch.model.fac_list[0], 881 kvm->arch.model.fac_list[1], 882 kvm->arch.model.fac_list[2]); 883 } else 884 ret = -EFAULT; 885 kfree(proc); 886 out: 887 mutex_unlock(&kvm->lock); 888 return ret; 889 } 890 891 static int kvm_s390_set_processor_feat(struct kvm *kvm, 892 struct kvm_device_attr *attr) 893 { 894 struct kvm_s390_vm_cpu_feat data; 895 int ret = -EBUSY; 896 897 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 898 return -EFAULT; 899 if (!bitmap_subset((unsigned long *) data.feat, 900 kvm_s390_available_cpu_feat, 901 KVM_S390_VM_CPU_FEAT_NR_BITS)) 902 return -EINVAL; 903 904 mutex_lock(&kvm->lock); 905 if (!atomic_read(&kvm->online_vcpus)) { 906 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 907 KVM_S390_VM_CPU_FEAT_NR_BITS); 908 ret = 0; 909 } 910 mutex_unlock(&kvm->lock); 911 return ret; 912 } 913 914 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 915 struct kvm_device_attr *attr) 916 { 917 /* 918 * Once supported by kernel + hw, we have to store the subfunctions 919 * in kvm->arch and remember that user space configured them. 920 */ 921 return -ENXIO; 922 } 923 924 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 925 { 926 int ret = -ENXIO; 927 928 switch (attr->attr) { 929 case KVM_S390_VM_CPU_PROCESSOR: 930 ret = kvm_s390_set_processor(kvm, attr); 931 break; 932 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 933 ret = kvm_s390_set_processor_feat(kvm, attr); 934 break; 935 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 936 ret = kvm_s390_set_processor_subfunc(kvm, attr); 937 break; 938 } 939 return ret; 940 } 941 942 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 943 { 944 struct kvm_s390_vm_cpu_processor *proc; 945 int ret = 0; 946 947 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 948 if (!proc) { 949 ret = -ENOMEM; 950 goto out; 951 } 952 proc->cpuid = kvm->arch.model.cpuid; 953 proc->ibc = kvm->arch.model.ibc; 954 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 955 S390_ARCH_FAC_LIST_SIZE_BYTE); 956 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 957 kvm->arch.model.ibc, 958 kvm->arch.model.cpuid); 959 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 960 kvm->arch.model.fac_list[0], 961 kvm->arch.model.fac_list[1], 962 kvm->arch.model.fac_list[2]); 963 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 964 ret = -EFAULT; 965 kfree(proc); 966 out: 967 return ret; 968 } 969 970 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 971 { 972 struct kvm_s390_vm_cpu_machine *mach; 973 int ret = 0; 974 975 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 976 if (!mach) { 977 ret = -ENOMEM; 978 goto out; 979 } 980 get_cpu_id((struct cpuid *) &mach->cpuid); 981 mach->ibc = sclp.ibc; 982 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 983 S390_ARCH_FAC_LIST_SIZE_BYTE); 984 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 985 sizeof(S390_lowcore.stfle_fac_list)); 986 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 987 kvm->arch.model.ibc, 988 kvm->arch.model.cpuid); 989 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 990 mach->fac_mask[0], 991 mach->fac_mask[1], 992 mach->fac_mask[2]); 993 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 994 mach->fac_list[0], 995 mach->fac_list[1], 996 mach->fac_list[2]); 997 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 998 ret = -EFAULT; 999 kfree(mach); 1000 out: 1001 return ret; 1002 } 1003 1004 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1005 struct kvm_device_attr *attr) 1006 { 1007 struct kvm_s390_vm_cpu_feat data; 1008 1009 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 1010 KVM_S390_VM_CPU_FEAT_NR_BITS); 1011 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1012 return -EFAULT; 1013 return 0; 1014 } 1015 1016 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1017 struct kvm_device_attr *attr) 1018 { 1019 struct kvm_s390_vm_cpu_feat data; 1020 1021 bitmap_copy((unsigned long *) data.feat, 1022 kvm_s390_available_cpu_feat, 1023 KVM_S390_VM_CPU_FEAT_NR_BITS); 1024 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1025 return -EFAULT; 1026 return 0; 1027 } 1028 1029 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1030 struct kvm_device_attr *attr) 1031 { 1032 /* 1033 * Once we can actually configure subfunctions (kernel + hw support), 1034 * we have to check if they were already set by user space, if so copy 1035 * them from kvm->arch. 1036 */ 1037 return -ENXIO; 1038 } 1039 1040 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1041 struct kvm_device_attr *attr) 1042 { 1043 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1044 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1045 return -EFAULT; 1046 return 0; 1047 } 1048 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1049 { 1050 int ret = -ENXIO; 1051 1052 switch (attr->attr) { 1053 case KVM_S390_VM_CPU_PROCESSOR: 1054 ret = kvm_s390_get_processor(kvm, attr); 1055 break; 1056 case KVM_S390_VM_CPU_MACHINE: 1057 ret = kvm_s390_get_machine(kvm, attr); 1058 break; 1059 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1060 ret = kvm_s390_get_processor_feat(kvm, attr); 1061 break; 1062 case KVM_S390_VM_CPU_MACHINE_FEAT: 1063 ret = kvm_s390_get_machine_feat(kvm, attr); 1064 break; 1065 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1066 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1067 break; 1068 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1069 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1070 break; 1071 } 1072 return ret; 1073 } 1074 1075 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1076 { 1077 int ret; 1078 1079 switch (attr->group) { 1080 case KVM_S390_VM_MEM_CTRL: 1081 ret = kvm_s390_set_mem_control(kvm, attr); 1082 break; 1083 case KVM_S390_VM_TOD: 1084 ret = kvm_s390_set_tod(kvm, attr); 1085 break; 1086 case KVM_S390_VM_CPU_MODEL: 1087 ret = kvm_s390_set_cpu_model(kvm, attr); 1088 break; 1089 case KVM_S390_VM_CRYPTO: 1090 ret = kvm_s390_vm_set_crypto(kvm, attr); 1091 break; 1092 default: 1093 ret = -ENXIO; 1094 break; 1095 } 1096 1097 return ret; 1098 } 1099 1100 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1101 { 1102 int ret; 1103 1104 switch (attr->group) { 1105 case KVM_S390_VM_MEM_CTRL: 1106 ret = kvm_s390_get_mem_control(kvm, attr); 1107 break; 1108 case KVM_S390_VM_TOD: 1109 ret = kvm_s390_get_tod(kvm, attr); 1110 break; 1111 case KVM_S390_VM_CPU_MODEL: 1112 ret = kvm_s390_get_cpu_model(kvm, attr); 1113 break; 1114 default: 1115 ret = -ENXIO; 1116 break; 1117 } 1118 1119 return ret; 1120 } 1121 1122 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1123 { 1124 int ret; 1125 1126 switch (attr->group) { 1127 case KVM_S390_VM_MEM_CTRL: 1128 switch (attr->attr) { 1129 case KVM_S390_VM_MEM_ENABLE_CMMA: 1130 case KVM_S390_VM_MEM_CLR_CMMA: 1131 ret = sclp.has_cmma ? 0 : -ENXIO; 1132 break; 1133 case KVM_S390_VM_MEM_LIMIT_SIZE: 1134 ret = 0; 1135 break; 1136 default: 1137 ret = -ENXIO; 1138 break; 1139 } 1140 break; 1141 case KVM_S390_VM_TOD: 1142 switch (attr->attr) { 1143 case KVM_S390_VM_TOD_LOW: 1144 case KVM_S390_VM_TOD_HIGH: 1145 ret = 0; 1146 break; 1147 default: 1148 ret = -ENXIO; 1149 break; 1150 } 1151 break; 1152 case KVM_S390_VM_CPU_MODEL: 1153 switch (attr->attr) { 1154 case KVM_S390_VM_CPU_PROCESSOR: 1155 case KVM_S390_VM_CPU_MACHINE: 1156 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1157 case KVM_S390_VM_CPU_MACHINE_FEAT: 1158 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1159 ret = 0; 1160 break; 1161 /* configuring subfunctions is not supported yet */ 1162 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1163 default: 1164 ret = -ENXIO; 1165 break; 1166 } 1167 break; 1168 case KVM_S390_VM_CRYPTO: 1169 switch (attr->attr) { 1170 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1171 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1172 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1173 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1174 ret = 0; 1175 break; 1176 default: 1177 ret = -ENXIO; 1178 break; 1179 } 1180 break; 1181 default: 1182 ret = -ENXIO; 1183 break; 1184 } 1185 1186 return ret; 1187 } 1188 1189 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1190 { 1191 uint8_t *keys; 1192 uint64_t hva; 1193 int i, r = 0; 1194 1195 if (args->flags != 0) 1196 return -EINVAL; 1197 1198 /* Is this guest using storage keys? */ 1199 if (!mm_use_skey(current->mm)) 1200 return KVM_S390_GET_SKEYS_NONE; 1201 1202 /* Enforce sane limit on memory allocation */ 1203 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1204 return -EINVAL; 1205 1206 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1207 if (!keys) 1208 return -ENOMEM; 1209 1210 down_read(¤t->mm->mmap_sem); 1211 for (i = 0; i < args->count; i++) { 1212 hva = gfn_to_hva(kvm, args->start_gfn + i); 1213 if (kvm_is_error_hva(hva)) { 1214 r = -EFAULT; 1215 break; 1216 } 1217 1218 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1219 if (r) 1220 break; 1221 } 1222 up_read(¤t->mm->mmap_sem); 1223 1224 if (!r) { 1225 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1226 sizeof(uint8_t) * args->count); 1227 if (r) 1228 r = -EFAULT; 1229 } 1230 1231 kvfree(keys); 1232 return r; 1233 } 1234 1235 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1236 { 1237 uint8_t *keys; 1238 uint64_t hva; 1239 int i, r = 0; 1240 1241 if (args->flags != 0) 1242 return -EINVAL; 1243 1244 /* Enforce sane limit on memory allocation */ 1245 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1246 return -EINVAL; 1247 1248 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1249 if (!keys) 1250 return -ENOMEM; 1251 1252 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1253 sizeof(uint8_t) * args->count); 1254 if (r) { 1255 r = -EFAULT; 1256 goto out; 1257 } 1258 1259 /* Enable storage key handling for the guest */ 1260 r = s390_enable_skey(); 1261 if (r) 1262 goto out; 1263 1264 down_read(¤t->mm->mmap_sem); 1265 for (i = 0; i < args->count; i++) { 1266 hva = gfn_to_hva(kvm, args->start_gfn + i); 1267 if (kvm_is_error_hva(hva)) { 1268 r = -EFAULT; 1269 break; 1270 } 1271 1272 /* Lowest order bit is reserved */ 1273 if (keys[i] & 0x01) { 1274 r = -EINVAL; 1275 break; 1276 } 1277 1278 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1279 if (r) 1280 break; 1281 } 1282 up_read(¤t->mm->mmap_sem); 1283 out: 1284 kvfree(keys); 1285 return r; 1286 } 1287 1288 long kvm_arch_vm_ioctl(struct file *filp, 1289 unsigned int ioctl, unsigned long arg) 1290 { 1291 struct kvm *kvm = filp->private_data; 1292 void __user *argp = (void __user *)arg; 1293 struct kvm_device_attr attr; 1294 int r; 1295 1296 switch (ioctl) { 1297 case KVM_S390_INTERRUPT: { 1298 struct kvm_s390_interrupt s390int; 1299 1300 r = -EFAULT; 1301 if (copy_from_user(&s390int, argp, sizeof(s390int))) 1302 break; 1303 r = kvm_s390_inject_vm(kvm, &s390int); 1304 break; 1305 } 1306 case KVM_ENABLE_CAP: { 1307 struct kvm_enable_cap cap; 1308 r = -EFAULT; 1309 if (copy_from_user(&cap, argp, sizeof(cap))) 1310 break; 1311 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1312 break; 1313 } 1314 case KVM_CREATE_IRQCHIP: { 1315 struct kvm_irq_routing_entry routing; 1316 1317 r = -EINVAL; 1318 if (kvm->arch.use_irqchip) { 1319 /* Set up dummy routing. */ 1320 memset(&routing, 0, sizeof(routing)); 1321 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 1322 } 1323 break; 1324 } 1325 case KVM_SET_DEVICE_ATTR: { 1326 r = -EFAULT; 1327 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1328 break; 1329 r = kvm_s390_vm_set_attr(kvm, &attr); 1330 break; 1331 } 1332 case KVM_GET_DEVICE_ATTR: { 1333 r = -EFAULT; 1334 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1335 break; 1336 r = kvm_s390_vm_get_attr(kvm, &attr); 1337 break; 1338 } 1339 case KVM_HAS_DEVICE_ATTR: { 1340 r = -EFAULT; 1341 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1342 break; 1343 r = kvm_s390_vm_has_attr(kvm, &attr); 1344 break; 1345 } 1346 case KVM_S390_GET_SKEYS: { 1347 struct kvm_s390_skeys args; 1348 1349 r = -EFAULT; 1350 if (copy_from_user(&args, argp, 1351 sizeof(struct kvm_s390_skeys))) 1352 break; 1353 r = kvm_s390_get_skeys(kvm, &args); 1354 break; 1355 } 1356 case KVM_S390_SET_SKEYS: { 1357 struct kvm_s390_skeys args; 1358 1359 r = -EFAULT; 1360 if (copy_from_user(&args, argp, 1361 sizeof(struct kvm_s390_skeys))) 1362 break; 1363 r = kvm_s390_set_skeys(kvm, &args); 1364 break; 1365 } 1366 default: 1367 r = -ENOTTY; 1368 } 1369 1370 return r; 1371 } 1372 1373 static int kvm_s390_query_ap_config(u8 *config) 1374 { 1375 u32 fcn_code = 0x04000000UL; 1376 u32 cc = 0; 1377 1378 memset(config, 0, 128); 1379 asm volatile( 1380 "lgr 0,%1\n" 1381 "lgr 2,%2\n" 1382 ".long 0xb2af0000\n" /* PQAP(QCI) */ 1383 "0: ipm %0\n" 1384 "srl %0,28\n" 1385 "1:\n" 1386 EX_TABLE(0b, 1b) 1387 : "+r" (cc) 1388 : "r" (fcn_code), "r" (config) 1389 : "cc", "0", "2", "memory" 1390 ); 1391 1392 return cc; 1393 } 1394 1395 static int kvm_s390_apxa_installed(void) 1396 { 1397 u8 config[128]; 1398 int cc; 1399 1400 if (test_facility(12)) { 1401 cc = kvm_s390_query_ap_config(config); 1402 1403 if (cc) 1404 pr_err("PQAP(QCI) failed with cc=%d", cc); 1405 else 1406 return config[0] & 0x40; 1407 } 1408 1409 return 0; 1410 } 1411 1412 static void kvm_s390_set_crycb_format(struct kvm *kvm) 1413 { 1414 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 1415 1416 if (kvm_s390_apxa_installed()) 1417 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 1418 else 1419 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 1420 } 1421 1422 static u64 kvm_s390_get_initial_cpuid(void) 1423 { 1424 struct cpuid cpuid; 1425 1426 get_cpu_id(&cpuid); 1427 cpuid.version = 0xff; 1428 return *((u64 *) &cpuid); 1429 } 1430 1431 static void kvm_s390_crypto_init(struct kvm *kvm) 1432 { 1433 if (!test_kvm_facility(kvm, 76)) 1434 return; 1435 1436 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 1437 kvm_s390_set_crycb_format(kvm); 1438 1439 /* Enable AES/DEA protected key functions by default */ 1440 kvm->arch.crypto.aes_kw = 1; 1441 kvm->arch.crypto.dea_kw = 1; 1442 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1443 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1444 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1445 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1446 } 1447 1448 static void sca_dispose(struct kvm *kvm) 1449 { 1450 if (kvm->arch.use_esca) 1451 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 1452 else 1453 free_page((unsigned long)(kvm->arch.sca)); 1454 kvm->arch.sca = NULL; 1455 } 1456 1457 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 1458 { 1459 gfp_t alloc_flags = GFP_KERNEL; 1460 int i, rc; 1461 char debug_name[16]; 1462 static unsigned long sca_offset; 1463 1464 rc = -EINVAL; 1465 #ifdef CONFIG_KVM_S390_UCONTROL 1466 if (type & ~KVM_VM_S390_UCONTROL) 1467 goto out_err; 1468 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 1469 goto out_err; 1470 #else 1471 if (type) 1472 goto out_err; 1473 #endif 1474 1475 rc = s390_enable_sie(); 1476 if (rc) 1477 goto out_err; 1478 1479 rc = -ENOMEM; 1480 1481 ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500); 1482 1483 kvm->arch.use_esca = 0; /* start with basic SCA */ 1484 if (!sclp.has_64bscao) 1485 alloc_flags |= GFP_DMA; 1486 rwlock_init(&kvm->arch.sca_lock); 1487 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 1488 if (!kvm->arch.sca) 1489 goto out_err; 1490 spin_lock(&kvm_lock); 1491 sca_offset += 16; 1492 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 1493 sca_offset = 0; 1494 kvm->arch.sca = (struct bsca_block *) 1495 ((char *) kvm->arch.sca + sca_offset); 1496 spin_unlock(&kvm_lock); 1497 1498 sprintf(debug_name, "kvm-%u", current->pid); 1499 1500 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 1501 if (!kvm->arch.dbf) 1502 goto out_err; 1503 1504 kvm->arch.sie_page2 = 1505 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 1506 if (!kvm->arch.sie_page2) 1507 goto out_err; 1508 1509 /* Populate the facility mask initially. */ 1510 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list, 1511 sizeof(S390_lowcore.stfle_fac_list)); 1512 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) { 1513 if (i < kvm_s390_fac_list_mask_size()) 1514 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i]; 1515 else 1516 kvm->arch.model.fac_mask[i] = 0UL; 1517 } 1518 1519 /* Populate the facility list initially. */ 1520 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 1521 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask, 1522 S390_ARCH_FAC_LIST_SIZE_BYTE); 1523 1524 set_kvm_facility(kvm->arch.model.fac_mask, 74); 1525 set_kvm_facility(kvm->arch.model.fac_list, 74); 1526 1527 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 1528 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 1529 1530 kvm_s390_crypto_init(kvm); 1531 1532 mutex_init(&kvm->arch.float_int.ais_lock); 1533 kvm->arch.float_int.simm = 0; 1534 kvm->arch.float_int.nimm = 0; 1535 spin_lock_init(&kvm->arch.float_int.lock); 1536 for (i = 0; i < FIRQ_LIST_COUNT; i++) 1537 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 1538 init_waitqueue_head(&kvm->arch.ipte_wq); 1539 mutex_init(&kvm->arch.ipte_mutex); 1540 1541 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 1542 VM_EVENT(kvm, 3, "vm created with type %lu", type); 1543 1544 if (type & KVM_VM_S390_UCONTROL) { 1545 kvm->arch.gmap = NULL; 1546 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 1547 } else { 1548 if (sclp.hamax == U64_MAX) 1549 kvm->arch.mem_limit = TASK_SIZE_MAX; 1550 else 1551 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 1552 sclp.hamax + 1); 1553 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 1554 if (!kvm->arch.gmap) 1555 goto out_err; 1556 kvm->arch.gmap->private = kvm; 1557 kvm->arch.gmap->pfault_enabled = 0; 1558 } 1559 1560 kvm->arch.css_support = 0; 1561 kvm->arch.use_irqchip = 0; 1562 kvm->arch.epoch = 0; 1563 1564 spin_lock_init(&kvm->arch.start_stop_lock); 1565 kvm_s390_vsie_init(kvm); 1566 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 1567 1568 return 0; 1569 out_err: 1570 free_page((unsigned long)kvm->arch.sie_page2); 1571 debug_unregister(kvm->arch.dbf); 1572 sca_dispose(kvm); 1573 KVM_EVENT(3, "creation of vm failed: %d", rc); 1574 return rc; 1575 } 1576 1577 bool kvm_arch_has_vcpu_debugfs(void) 1578 { 1579 return false; 1580 } 1581 1582 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 1583 { 1584 return 0; 1585 } 1586 1587 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 1588 { 1589 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 1590 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 1591 kvm_s390_clear_local_irqs(vcpu); 1592 kvm_clear_async_pf_completion_queue(vcpu); 1593 if (!kvm_is_ucontrol(vcpu->kvm)) 1594 sca_del_vcpu(vcpu); 1595 1596 if (kvm_is_ucontrol(vcpu->kvm)) 1597 gmap_remove(vcpu->arch.gmap); 1598 1599 if (vcpu->kvm->arch.use_cmma) 1600 kvm_s390_vcpu_unsetup_cmma(vcpu); 1601 free_page((unsigned long)(vcpu->arch.sie_block)); 1602 1603 kvm_vcpu_uninit(vcpu); 1604 kmem_cache_free(kvm_vcpu_cache, vcpu); 1605 } 1606 1607 static void kvm_free_vcpus(struct kvm *kvm) 1608 { 1609 unsigned int i; 1610 struct kvm_vcpu *vcpu; 1611 1612 kvm_for_each_vcpu(i, vcpu, kvm) 1613 kvm_arch_vcpu_destroy(vcpu); 1614 1615 mutex_lock(&kvm->lock); 1616 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 1617 kvm->vcpus[i] = NULL; 1618 1619 atomic_set(&kvm->online_vcpus, 0); 1620 mutex_unlock(&kvm->lock); 1621 } 1622 1623 void kvm_arch_destroy_vm(struct kvm *kvm) 1624 { 1625 kvm_free_vcpus(kvm); 1626 sca_dispose(kvm); 1627 debug_unregister(kvm->arch.dbf); 1628 free_page((unsigned long)kvm->arch.sie_page2); 1629 if (!kvm_is_ucontrol(kvm)) 1630 gmap_remove(kvm->arch.gmap); 1631 kvm_s390_destroy_adapters(kvm); 1632 kvm_s390_clear_float_irqs(kvm); 1633 kvm_s390_vsie_destroy(kvm); 1634 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 1635 } 1636 1637 /* Section: vcpu related */ 1638 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 1639 { 1640 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 1641 if (!vcpu->arch.gmap) 1642 return -ENOMEM; 1643 vcpu->arch.gmap->private = vcpu->kvm; 1644 1645 return 0; 1646 } 1647 1648 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 1649 { 1650 if (!kvm_s390_use_sca_entries()) 1651 return; 1652 read_lock(&vcpu->kvm->arch.sca_lock); 1653 if (vcpu->kvm->arch.use_esca) { 1654 struct esca_block *sca = vcpu->kvm->arch.sca; 1655 1656 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1657 sca->cpu[vcpu->vcpu_id].sda = 0; 1658 } else { 1659 struct bsca_block *sca = vcpu->kvm->arch.sca; 1660 1661 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1662 sca->cpu[vcpu->vcpu_id].sda = 0; 1663 } 1664 read_unlock(&vcpu->kvm->arch.sca_lock); 1665 } 1666 1667 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 1668 { 1669 if (!kvm_s390_use_sca_entries()) { 1670 struct bsca_block *sca = vcpu->kvm->arch.sca; 1671 1672 /* we still need the basic sca for the ipte control */ 1673 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1674 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1675 } 1676 read_lock(&vcpu->kvm->arch.sca_lock); 1677 if (vcpu->kvm->arch.use_esca) { 1678 struct esca_block *sca = vcpu->kvm->arch.sca; 1679 1680 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1681 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1682 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 1683 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 1684 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 1685 } else { 1686 struct bsca_block *sca = vcpu->kvm->arch.sca; 1687 1688 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 1689 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 1690 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 1691 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 1692 } 1693 read_unlock(&vcpu->kvm->arch.sca_lock); 1694 } 1695 1696 /* Basic SCA to Extended SCA data copy routines */ 1697 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 1698 { 1699 d->sda = s->sda; 1700 d->sigp_ctrl.c = s->sigp_ctrl.c; 1701 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 1702 } 1703 1704 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 1705 { 1706 int i; 1707 1708 d->ipte_control = s->ipte_control; 1709 d->mcn[0] = s->mcn; 1710 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 1711 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 1712 } 1713 1714 static int sca_switch_to_extended(struct kvm *kvm) 1715 { 1716 struct bsca_block *old_sca = kvm->arch.sca; 1717 struct esca_block *new_sca; 1718 struct kvm_vcpu *vcpu; 1719 unsigned int vcpu_idx; 1720 u32 scaol, scaoh; 1721 1722 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); 1723 if (!new_sca) 1724 return -ENOMEM; 1725 1726 scaoh = (u32)((u64)(new_sca) >> 32); 1727 scaol = (u32)(u64)(new_sca) & ~0x3fU; 1728 1729 kvm_s390_vcpu_block_all(kvm); 1730 write_lock(&kvm->arch.sca_lock); 1731 1732 sca_copy_b_to_e(new_sca, old_sca); 1733 1734 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 1735 vcpu->arch.sie_block->scaoh = scaoh; 1736 vcpu->arch.sie_block->scaol = scaol; 1737 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 1738 } 1739 kvm->arch.sca = new_sca; 1740 kvm->arch.use_esca = 1; 1741 1742 write_unlock(&kvm->arch.sca_lock); 1743 kvm_s390_vcpu_unblock_all(kvm); 1744 1745 free_page((unsigned long)old_sca); 1746 1747 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 1748 old_sca, kvm->arch.sca); 1749 return 0; 1750 } 1751 1752 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 1753 { 1754 int rc; 1755 1756 if (!kvm_s390_use_sca_entries()) { 1757 if (id < KVM_MAX_VCPUS) 1758 return true; 1759 return false; 1760 } 1761 if (id < KVM_S390_BSCA_CPU_SLOTS) 1762 return true; 1763 if (!sclp.has_esca || !sclp.has_64bscao) 1764 return false; 1765 1766 mutex_lock(&kvm->lock); 1767 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 1768 mutex_unlock(&kvm->lock); 1769 1770 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 1771 } 1772 1773 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 1774 { 1775 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1776 kvm_clear_async_pf_completion_queue(vcpu); 1777 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 1778 KVM_SYNC_GPRS | 1779 KVM_SYNC_ACRS | 1780 KVM_SYNC_CRS | 1781 KVM_SYNC_ARCH0 | 1782 KVM_SYNC_PFAULT; 1783 kvm_s390_set_prefix(vcpu, 0); 1784 if (test_kvm_facility(vcpu->kvm, 64)) 1785 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 1786 if (test_kvm_facility(vcpu->kvm, 133)) 1787 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 1788 /* fprs can be synchronized via vrs, even if the guest has no vx. With 1789 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 1790 */ 1791 if (MACHINE_HAS_VX) 1792 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 1793 else 1794 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 1795 1796 if (kvm_is_ucontrol(vcpu->kvm)) 1797 return __kvm_ucontrol_vcpu_init(vcpu); 1798 1799 return 0; 1800 } 1801 1802 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1803 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1804 { 1805 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 1806 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1807 vcpu->arch.cputm_start = get_tod_clock_fast(); 1808 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1809 } 1810 1811 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1812 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1813 { 1814 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 1815 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1816 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1817 vcpu->arch.cputm_start = 0; 1818 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1819 } 1820 1821 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1822 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1823 { 1824 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 1825 vcpu->arch.cputm_enabled = true; 1826 __start_cpu_timer_accounting(vcpu); 1827 } 1828 1829 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 1830 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1831 { 1832 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 1833 __stop_cpu_timer_accounting(vcpu); 1834 vcpu->arch.cputm_enabled = false; 1835 } 1836 1837 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1838 { 1839 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1840 __enable_cpu_timer_accounting(vcpu); 1841 preempt_enable(); 1842 } 1843 1844 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 1845 { 1846 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1847 __disable_cpu_timer_accounting(vcpu); 1848 preempt_enable(); 1849 } 1850 1851 /* set the cpu timer - may only be called from the VCPU thread itself */ 1852 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 1853 { 1854 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1855 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 1856 if (vcpu->arch.cputm_enabled) 1857 vcpu->arch.cputm_start = get_tod_clock_fast(); 1858 vcpu->arch.sie_block->cputm = cputm; 1859 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 1860 preempt_enable(); 1861 } 1862 1863 /* update and get the cpu timer - can also be called from other VCPU threads */ 1864 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 1865 { 1866 unsigned int seq; 1867 __u64 value; 1868 1869 if (unlikely(!vcpu->arch.cputm_enabled)) 1870 return vcpu->arch.sie_block->cputm; 1871 1872 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 1873 do { 1874 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 1875 /* 1876 * If the writer would ever execute a read in the critical 1877 * section, e.g. in irq context, we have a deadlock. 1878 */ 1879 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 1880 value = vcpu->arch.sie_block->cputm; 1881 /* if cputm_start is 0, accounting is being started/stopped */ 1882 if (likely(vcpu->arch.cputm_start)) 1883 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 1884 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 1885 preempt_enable(); 1886 return value; 1887 } 1888 1889 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1890 { 1891 1892 gmap_enable(vcpu->arch.enabled_gmap); 1893 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1894 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1895 __start_cpu_timer_accounting(vcpu); 1896 vcpu->cpu = cpu; 1897 } 1898 1899 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 1900 { 1901 vcpu->cpu = -1; 1902 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 1903 __stop_cpu_timer_accounting(vcpu); 1904 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); 1905 vcpu->arch.enabled_gmap = gmap_get_enabled(); 1906 gmap_disable(vcpu->arch.enabled_gmap); 1907 1908 } 1909 1910 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 1911 { 1912 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 1913 vcpu->arch.sie_block->gpsw.mask = 0UL; 1914 vcpu->arch.sie_block->gpsw.addr = 0UL; 1915 kvm_s390_set_prefix(vcpu, 0); 1916 kvm_s390_set_cpu_timer(vcpu, 0); 1917 vcpu->arch.sie_block->ckc = 0UL; 1918 vcpu->arch.sie_block->todpr = 0; 1919 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 1920 vcpu->arch.sie_block->gcr[0] = 0xE0UL; 1921 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL; 1922 /* make sure the new fpc will be lazily loaded */ 1923 save_fpu_regs(); 1924 current->thread.fpu.fpc = 0; 1925 vcpu->arch.sie_block->gbea = 1; 1926 vcpu->arch.sie_block->pp = 0; 1927 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 1928 kvm_clear_async_pf_completion_queue(vcpu); 1929 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 1930 kvm_s390_vcpu_stop(vcpu); 1931 kvm_s390_clear_local_irqs(vcpu); 1932 } 1933 1934 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 1935 { 1936 mutex_lock(&vcpu->kvm->lock); 1937 preempt_disable(); 1938 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 1939 preempt_enable(); 1940 mutex_unlock(&vcpu->kvm->lock); 1941 if (!kvm_is_ucontrol(vcpu->kvm)) { 1942 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 1943 sca_add_vcpu(vcpu); 1944 } 1945 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 1946 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 1947 /* make vcpu_load load the right gmap on the first trigger */ 1948 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 1949 } 1950 1951 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 1952 { 1953 if (!test_kvm_facility(vcpu->kvm, 76)) 1954 return; 1955 1956 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 1957 1958 if (vcpu->kvm->arch.crypto.aes_kw) 1959 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 1960 if (vcpu->kvm->arch.crypto.dea_kw) 1961 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 1962 1963 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 1964 } 1965 1966 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 1967 { 1968 free_page(vcpu->arch.sie_block->cbrlo); 1969 vcpu->arch.sie_block->cbrlo = 0; 1970 } 1971 1972 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 1973 { 1974 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 1975 if (!vcpu->arch.sie_block->cbrlo) 1976 return -ENOMEM; 1977 1978 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 1979 vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI; 1980 return 0; 1981 } 1982 1983 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 1984 { 1985 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 1986 1987 vcpu->arch.sie_block->ibc = model->ibc; 1988 if (test_kvm_facility(vcpu->kvm, 7)) 1989 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 1990 } 1991 1992 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 1993 { 1994 int rc = 0; 1995 1996 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 1997 CPUSTAT_SM | 1998 CPUSTAT_STOPPED); 1999 2000 if (test_kvm_facility(vcpu->kvm, 78)) 2001 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags); 2002 else if (test_kvm_facility(vcpu->kvm, 8)) 2003 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags); 2004 2005 kvm_s390_vcpu_setup_model(vcpu); 2006 2007 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 2008 if (MACHINE_HAS_ESOP) 2009 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 2010 if (test_kvm_facility(vcpu->kvm, 9)) 2011 vcpu->arch.sie_block->ecb |= ECB_SRSI; 2012 if (test_kvm_facility(vcpu->kvm, 73)) 2013 vcpu->arch.sie_block->ecb |= ECB_TE; 2014 2015 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi) 2016 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 2017 if (test_kvm_facility(vcpu->kvm, 130)) 2018 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 2019 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 2020 if (sclp.has_cei) 2021 vcpu->arch.sie_block->eca |= ECA_CEI; 2022 if (sclp.has_ib) 2023 vcpu->arch.sie_block->eca |= ECA_IB; 2024 if (sclp.has_siif) 2025 vcpu->arch.sie_block->eca |= ECA_SII; 2026 if (sclp.has_sigpif) 2027 vcpu->arch.sie_block->eca |= ECA_SIGPI; 2028 if (test_kvm_facility(vcpu->kvm, 129)) { 2029 vcpu->arch.sie_block->eca |= ECA_VX; 2030 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 2031 } 2032 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) 2033 | SDNXC; 2034 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 2035 2036 if (sclp.has_kss) 2037 atomic_or(CPUSTAT_KSS, &vcpu->arch.sie_block->cpuflags); 2038 else 2039 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 2040 2041 if (vcpu->kvm->arch.use_cmma) { 2042 rc = kvm_s390_vcpu_setup_cmma(vcpu); 2043 if (rc) 2044 return rc; 2045 } 2046 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2047 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 2048 2049 kvm_s390_vcpu_crypto_setup(vcpu); 2050 2051 return rc; 2052 } 2053 2054 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 2055 unsigned int id) 2056 { 2057 struct kvm_vcpu *vcpu; 2058 struct sie_page *sie_page; 2059 int rc = -EINVAL; 2060 2061 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 2062 goto out; 2063 2064 rc = -ENOMEM; 2065 2066 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2067 if (!vcpu) 2068 goto out; 2069 2070 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 2071 if (!sie_page) 2072 goto out_free_cpu; 2073 2074 vcpu->arch.sie_block = &sie_page->sie_block; 2075 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 2076 2077 /* the real guest size will always be smaller than msl */ 2078 vcpu->arch.sie_block->mso = 0; 2079 vcpu->arch.sie_block->msl = sclp.hamax; 2080 2081 vcpu->arch.sie_block->icpua = id; 2082 spin_lock_init(&vcpu->arch.local_int.lock); 2083 vcpu->arch.local_int.float_int = &kvm->arch.float_int; 2084 vcpu->arch.local_int.wq = &vcpu->wq; 2085 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags; 2086 seqcount_init(&vcpu->arch.cputm_seqcount); 2087 2088 rc = kvm_vcpu_init(vcpu, kvm, id); 2089 if (rc) 2090 goto out_free_sie_block; 2091 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, 2092 vcpu->arch.sie_block); 2093 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 2094 2095 return vcpu; 2096 out_free_sie_block: 2097 free_page((unsigned long)(vcpu->arch.sie_block)); 2098 out_free_cpu: 2099 kmem_cache_free(kvm_vcpu_cache, vcpu); 2100 out: 2101 return ERR_PTR(rc); 2102 } 2103 2104 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 2105 { 2106 return kvm_s390_vcpu_has_irq(vcpu, 0); 2107 } 2108 2109 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 2110 { 2111 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2112 exit_sie(vcpu); 2113 } 2114 2115 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 2116 { 2117 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2118 } 2119 2120 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 2121 { 2122 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2123 exit_sie(vcpu); 2124 } 2125 2126 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 2127 { 2128 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2129 } 2130 2131 /* 2132 * Kick a guest cpu out of SIE and wait until SIE is not running. 2133 * If the CPU is not running (e.g. waiting as idle) the function will 2134 * return immediately. */ 2135 void exit_sie(struct kvm_vcpu *vcpu) 2136 { 2137 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags); 2138 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 2139 cpu_relax(); 2140 } 2141 2142 /* Kick a guest cpu out of SIE to process a request synchronously */ 2143 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 2144 { 2145 kvm_make_request(req, vcpu); 2146 kvm_s390_vcpu_request(vcpu); 2147 } 2148 2149 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 2150 unsigned long end) 2151 { 2152 struct kvm *kvm = gmap->private; 2153 struct kvm_vcpu *vcpu; 2154 unsigned long prefix; 2155 int i; 2156 2157 if (gmap_is_shadow(gmap)) 2158 return; 2159 if (start >= 1UL << 31) 2160 /* We are only interested in prefix pages */ 2161 return; 2162 kvm_for_each_vcpu(i, vcpu, kvm) { 2163 /* match against both prefix pages */ 2164 prefix = kvm_s390_get_prefix(vcpu); 2165 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 2166 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 2167 start, end); 2168 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 2169 } 2170 } 2171 } 2172 2173 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 2174 { 2175 /* kvm common code refers to this, but never calls it */ 2176 BUG(); 2177 return 0; 2178 } 2179 2180 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 2181 struct kvm_one_reg *reg) 2182 { 2183 int r = -EINVAL; 2184 2185 switch (reg->id) { 2186 case KVM_REG_S390_TODPR: 2187 r = put_user(vcpu->arch.sie_block->todpr, 2188 (u32 __user *)reg->addr); 2189 break; 2190 case KVM_REG_S390_EPOCHDIFF: 2191 r = put_user(vcpu->arch.sie_block->epoch, 2192 (u64 __user *)reg->addr); 2193 break; 2194 case KVM_REG_S390_CPU_TIMER: 2195 r = put_user(kvm_s390_get_cpu_timer(vcpu), 2196 (u64 __user *)reg->addr); 2197 break; 2198 case KVM_REG_S390_CLOCK_COMP: 2199 r = put_user(vcpu->arch.sie_block->ckc, 2200 (u64 __user *)reg->addr); 2201 break; 2202 case KVM_REG_S390_PFTOKEN: 2203 r = put_user(vcpu->arch.pfault_token, 2204 (u64 __user *)reg->addr); 2205 break; 2206 case KVM_REG_S390_PFCOMPARE: 2207 r = put_user(vcpu->arch.pfault_compare, 2208 (u64 __user *)reg->addr); 2209 break; 2210 case KVM_REG_S390_PFSELECT: 2211 r = put_user(vcpu->arch.pfault_select, 2212 (u64 __user *)reg->addr); 2213 break; 2214 case KVM_REG_S390_PP: 2215 r = put_user(vcpu->arch.sie_block->pp, 2216 (u64 __user *)reg->addr); 2217 break; 2218 case KVM_REG_S390_GBEA: 2219 r = put_user(vcpu->arch.sie_block->gbea, 2220 (u64 __user *)reg->addr); 2221 break; 2222 default: 2223 break; 2224 } 2225 2226 return r; 2227 } 2228 2229 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 2230 struct kvm_one_reg *reg) 2231 { 2232 int r = -EINVAL; 2233 __u64 val; 2234 2235 switch (reg->id) { 2236 case KVM_REG_S390_TODPR: 2237 r = get_user(vcpu->arch.sie_block->todpr, 2238 (u32 __user *)reg->addr); 2239 break; 2240 case KVM_REG_S390_EPOCHDIFF: 2241 r = get_user(vcpu->arch.sie_block->epoch, 2242 (u64 __user *)reg->addr); 2243 break; 2244 case KVM_REG_S390_CPU_TIMER: 2245 r = get_user(val, (u64 __user *)reg->addr); 2246 if (!r) 2247 kvm_s390_set_cpu_timer(vcpu, val); 2248 break; 2249 case KVM_REG_S390_CLOCK_COMP: 2250 r = get_user(vcpu->arch.sie_block->ckc, 2251 (u64 __user *)reg->addr); 2252 break; 2253 case KVM_REG_S390_PFTOKEN: 2254 r = get_user(vcpu->arch.pfault_token, 2255 (u64 __user *)reg->addr); 2256 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2257 kvm_clear_async_pf_completion_queue(vcpu); 2258 break; 2259 case KVM_REG_S390_PFCOMPARE: 2260 r = get_user(vcpu->arch.pfault_compare, 2261 (u64 __user *)reg->addr); 2262 break; 2263 case KVM_REG_S390_PFSELECT: 2264 r = get_user(vcpu->arch.pfault_select, 2265 (u64 __user *)reg->addr); 2266 break; 2267 case KVM_REG_S390_PP: 2268 r = get_user(vcpu->arch.sie_block->pp, 2269 (u64 __user *)reg->addr); 2270 break; 2271 case KVM_REG_S390_GBEA: 2272 r = get_user(vcpu->arch.sie_block->gbea, 2273 (u64 __user *)reg->addr); 2274 break; 2275 default: 2276 break; 2277 } 2278 2279 return r; 2280 } 2281 2282 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 2283 { 2284 kvm_s390_vcpu_initial_reset(vcpu); 2285 return 0; 2286 } 2287 2288 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2289 { 2290 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 2291 return 0; 2292 } 2293 2294 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2295 { 2296 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 2297 return 0; 2298 } 2299 2300 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 2301 struct kvm_sregs *sregs) 2302 { 2303 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 2304 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 2305 return 0; 2306 } 2307 2308 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 2309 struct kvm_sregs *sregs) 2310 { 2311 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 2312 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 2313 return 0; 2314 } 2315 2316 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2317 { 2318 if (test_fp_ctl(fpu->fpc)) 2319 return -EINVAL; 2320 vcpu->run->s.regs.fpc = fpu->fpc; 2321 if (MACHINE_HAS_VX) 2322 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 2323 (freg_t *) fpu->fprs); 2324 else 2325 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 2326 return 0; 2327 } 2328 2329 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2330 { 2331 /* make sure we have the latest values */ 2332 save_fpu_regs(); 2333 if (MACHINE_HAS_VX) 2334 convert_vx_to_fp((freg_t *) fpu->fprs, 2335 (__vector128 *) vcpu->run->s.regs.vrs); 2336 else 2337 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 2338 fpu->fpc = vcpu->run->s.regs.fpc; 2339 return 0; 2340 } 2341 2342 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 2343 { 2344 int rc = 0; 2345 2346 if (!is_vcpu_stopped(vcpu)) 2347 rc = -EBUSY; 2348 else { 2349 vcpu->run->psw_mask = psw.mask; 2350 vcpu->run->psw_addr = psw.addr; 2351 } 2352 return rc; 2353 } 2354 2355 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 2356 struct kvm_translation *tr) 2357 { 2358 return -EINVAL; /* not implemented yet */ 2359 } 2360 2361 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 2362 KVM_GUESTDBG_USE_HW_BP | \ 2363 KVM_GUESTDBG_ENABLE) 2364 2365 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 2366 struct kvm_guest_debug *dbg) 2367 { 2368 int rc = 0; 2369 2370 vcpu->guest_debug = 0; 2371 kvm_s390_clear_bp_data(vcpu); 2372 2373 if (dbg->control & ~VALID_GUESTDBG_FLAGS) 2374 return -EINVAL; 2375 if (!sclp.has_gpere) 2376 return -EINVAL; 2377 2378 if (dbg->control & KVM_GUESTDBG_ENABLE) { 2379 vcpu->guest_debug = dbg->control; 2380 /* enforce guest PER */ 2381 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2382 2383 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 2384 rc = kvm_s390_import_bp_data(vcpu, dbg); 2385 } else { 2386 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2387 vcpu->arch.guestdbg.last_bp = 0; 2388 } 2389 2390 if (rc) { 2391 vcpu->guest_debug = 0; 2392 kvm_s390_clear_bp_data(vcpu); 2393 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags); 2394 } 2395 2396 return rc; 2397 } 2398 2399 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2400 struct kvm_mp_state *mp_state) 2401 { 2402 /* CHECK_STOP and LOAD are not supported yet */ 2403 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 2404 KVM_MP_STATE_OPERATING; 2405 } 2406 2407 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2408 struct kvm_mp_state *mp_state) 2409 { 2410 int rc = 0; 2411 2412 /* user space knows about this interface - let it control the state */ 2413 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 2414 2415 switch (mp_state->mp_state) { 2416 case KVM_MP_STATE_STOPPED: 2417 kvm_s390_vcpu_stop(vcpu); 2418 break; 2419 case KVM_MP_STATE_OPERATING: 2420 kvm_s390_vcpu_start(vcpu); 2421 break; 2422 case KVM_MP_STATE_LOAD: 2423 case KVM_MP_STATE_CHECK_STOP: 2424 /* fall through - CHECK_STOP and LOAD are not supported yet */ 2425 default: 2426 rc = -ENXIO; 2427 } 2428 2429 return rc; 2430 } 2431 2432 static bool ibs_enabled(struct kvm_vcpu *vcpu) 2433 { 2434 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS; 2435 } 2436 2437 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 2438 { 2439 retry: 2440 kvm_s390_vcpu_request_handled(vcpu); 2441 if (!vcpu->requests) 2442 return 0; 2443 /* 2444 * We use MMU_RELOAD just to re-arm the ipte notifier for the 2445 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 2446 * This ensures that the ipte instruction for this request has 2447 * already finished. We might race against a second unmapper that 2448 * wants to set the blocking bit. Lets just retry the request loop. 2449 */ 2450 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 2451 int rc; 2452 rc = gmap_mprotect_notify(vcpu->arch.gmap, 2453 kvm_s390_get_prefix(vcpu), 2454 PAGE_SIZE * 2, PROT_WRITE); 2455 if (rc) { 2456 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 2457 return rc; 2458 } 2459 goto retry; 2460 } 2461 2462 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 2463 vcpu->arch.sie_block->ihcpu = 0xffff; 2464 goto retry; 2465 } 2466 2467 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 2468 if (!ibs_enabled(vcpu)) { 2469 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 2470 atomic_or(CPUSTAT_IBS, 2471 &vcpu->arch.sie_block->cpuflags); 2472 } 2473 goto retry; 2474 } 2475 2476 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 2477 if (ibs_enabled(vcpu)) { 2478 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 2479 atomic_andnot(CPUSTAT_IBS, 2480 &vcpu->arch.sie_block->cpuflags); 2481 } 2482 goto retry; 2483 } 2484 2485 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 2486 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 2487 goto retry; 2488 } 2489 2490 /* nothing to do, just clear the request */ 2491 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 2492 2493 return 0; 2494 } 2495 2496 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod) 2497 { 2498 struct kvm_vcpu *vcpu; 2499 int i; 2500 2501 mutex_lock(&kvm->lock); 2502 preempt_disable(); 2503 kvm->arch.epoch = tod - get_tod_clock(); 2504 kvm_s390_vcpu_block_all(kvm); 2505 kvm_for_each_vcpu(i, vcpu, kvm) 2506 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 2507 kvm_s390_vcpu_unblock_all(kvm); 2508 preempt_enable(); 2509 mutex_unlock(&kvm->lock); 2510 } 2511 2512 /** 2513 * kvm_arch_fault_in_page - fault-in guest page if necessary 2514 * @vcpu: The corresponding virtual cpu 2515 * @gpa: Guest physical address 2516 * @writable: Whether the page should be writable or not 2517 * 2518 * Make sure that a guest page has been faulted-in on the host. 2519 * 2520 * Return: Zero on success, negative error code otherwise. 2521 */ 2522 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 2523 { 2524 return gmap_fault(vcpu->arch.gmap, gpa, 2525 writable ? FAULT_FLAG_WRITE : 0); 2526 } 2527 2528 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 2529 unsigned long token) 2530 { 2531 struct kvm_s390_interrupt inti; 2532 struct kvm_s390_irq irq; 2533 2534 if (start_token) { 2535 irq.u.ext.ext_params2 = token; 2536 irq.type = KVM_S390_INT_PFAULT_INIT; 2537 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 2538 } else { 2539 inti.type = KVM_S390_INT_PFAULT_DONE; 2540 inti.parm64 = token; 2541 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 2542 } 2543 } 2544 2545 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 2546 struct kvm_async_pf *work) 2547 { 2548 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 2549 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 2550 } 2551 2552 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 2553 struct kvm_async_pf *work) 2554 { 2555 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 2556 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 2557 } 2558 2559 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 2560 struct kvm_async_pf *work) 2561 { 2562 /* s390 will always inject the page directly */ 2563 } 2564 2565 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 2566 { 2567 /* 2568 * s390 will always inject the page directly, 2569 * but we still want check_async_completion to cleanup 2570 */ 2571 return true; 2572 } 2573 2574 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 2575 { 2576 hva_t hva; 2577 struct kvm_arch_async_pf arch; 2578 int rc; 2579 2580 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2581 return 0; 2582 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 2583 vcpu->arch.pfault_compare) 2584 return 0; 2585 if (psw_extint_disabled(vcpu)) 2586 return 0; 2587 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 2588 return 0; 2589 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul)) 2590 return 0; 2591 if (!vcpu->arch.gmap->pfault_enabled) 2592 return 0; 2593 2594 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 2595 hva += current->thread.gmap_addr & ~PAGE_MASK; 2596 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 2597 return 0; 2598 2599 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 2600 return rc; 2601 } 2602 2603 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 2604 { 2605 int rc, cpuflags; 2606 2607 /* 2608 * On s390 notifications for arriving pages will be delivered directly 2609 * to the guest but the house keeping for completed pfaults is 2610 * handled outside the worker. 2611 */ 2612 kvm_check_async_pf_completion(vcpu); 2613 2614 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 2615 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 2616 2617 if (need_resched()) 2618 schedule(); 2619 2620 if (test_cpu_flag(CIF_MCCK_PENDING)) 2621 s390_handle_mcck(); 2622 2623 if (!kvm_is_ucontrol(vcpu->kvm)) { 2624 rc = kvm_s390_deliver_pending_interrupts(vcpu); 2625 if (rc) 2626 return rc; 2627 } 2628 2629 rc = kvm_s390_handle_requests(vcpu); 2630 if (rc) 2631 return rc; 2632 2633 if (guestdbg_enabled(vcpu)) { 2634 kvm_s390_backup_guest_per_regs(vcpu); 2635 kvm_s390_patch_guest_per_regs(vcpu); 2636 } 2637 2638 vcpu->arch.sie_block->icptcode = 0; 2639 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 2640 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 2641 trace_kvm_s390_sie_enter(vcpu, cpuflags); 2642 2643 return 0; 2644 } 2645 2646 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 2647 { 2648 struct kvm_s390_pgm_info pgm_info = { 2649 .code = PGM_ADDRESSING, 2650 }; 2651 u8 opcode, ilen; 2652 int rc; 2653 2654 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 2655 trace_kvm_s390_sie_fault(vcpu); 2656 2657 /* 2658 * We want to inject an addressing exception, which is defined as a 2659 * suppressing or terminating exception. However, since we came here 2660 * by a DAT access exception, the PSW still points to the faulting 2661 * instruction since DAT exceptions are nullifying. So we've got 2662 * to look up the current opcode to get the length of the instruction 2663 * to be able to forward the PSW. 2664 */ 2665 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 2666 ilen = insn_length(opcode); 2667 if (rc < 0) { 2668 return rc; 2669 } else if (rc) { 2670 /* Instruction-Fetching Exceptions - we can't detect the ilen. 2671 * Forward by arbitrary ilc, injection will take care of 2672 * nullification if necessary. 2673 */ 2674 pgm_info = vcpu->arch.pgm; 2675 ilen = 4; 2676 } 2677 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 2678 kvm_s390_forward_psw(vcpu, ilen); 2679 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 2680 } 2681 2682 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 2683 { 2684 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 2685 vcpu->arch.sie_block->icptcode); 2686 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 2687 2688 if (guestdbg_enabled(vcpu)) 2689 kvm_s390_restore_guest_per_regs(vcpu); 2690 2691 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 2692 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 2693 2694 if (vcpu->arch.sie_block->icptcode > 0) { 2695 int rc = kvm_handle_sie_intercept(vcpu); 2696 2697 if (rc != -EOPNOTSUPP) 2698 return rc; 2699 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 2700 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 2701 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 2702 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 2703 return -EREMOTE; 2704 } else if (exit_reason != -EFAULT) { 2705 vcpu->stat.exit_null++; 2706 return 0; 2707 } else if (kvm_is_ucontrol(vcpu->kvm)) { 2708 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 2709 vcpu->run->s390_ucontrol.trans_exc_code = 2710 current->thread.gmap_addr; 2711 vcpu->run->s390_ucontrol.pgm_code = 0x10; 2712 return -EREMOTE; 2713 } else if (current->thread.gmap_pfault) { 2714 trace_kvm_s390_major_guest_pfault(vcpu); 2715 current->thread.gmap_pfault = 0; 2716 if (kvm_arch_setup_async_pf(vcpu)) 2717 return 0; 2718 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 2719 } 2720 return vcpu_post_run_fault_in_sie(vcpu); 2721 } 2722 2723 static int __vcpu_run(struct kvm_vcpu *vcpu) 2724 { 2725 int rc, exit_reason; 2726 2727 /* 2728 * We try to hold kvm->srcu during most of vcpu_run (except when run- 2729 * ning the guest), so that memslots (and other stuff) are protected 2730 */ 2731 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2732 2733 do { 2734 rc = vcpu_pre_run(vcpu); 2735 if (rc) 2736 break; 2737 2738 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2739 /* 2740 * As PF_VCPU will be used in fault handler, between 2741 * guest_enter and guest_exit should be no uaccess. 2742 */ 2743 local_irq_disable(); 2744 guest_enter_irqoff(); 2745 __disable_cpu_timer_accounting(vcpu); 2746 local_irq_enable(); 2747 exit_reason = sie64a(vcpu->arch.sie_block, 2748 vcpu->run->s.regs.gprs); 2749 local_irq_disable(); 2750 __enable_cpu_timer_accounting(vcpu); 2751 guest_exit_irqoff(); 2752 local_irq_enable(); 2753 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 2754 2755 rc = vcpu_post_run(vcpu, exit_reason); 2756 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 2757 2758 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 2759 return rc; 2760 } 2761 2762 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2763 { 2764 struct runtime_instr_cb *riccb; 2765 struct gs_cb *gscb; 2766 2767 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 2768 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 2769 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 2770 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 2771 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 2772 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 2773 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 2774 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 2775 /* some control register changes require a tlb flush */ 2776 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 2777 } 2778 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 2779 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 2780 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 2781 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 2782 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 2783 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 2784 } 2785 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 2786 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 2787 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 2788 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 2789 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2790 kvm_clear_async_pf_completion_queue(vcpu); 2791 } 2792 /* 2793 * If userspace sets the riccb (e.g. after migration) to a valid state, 2794 * we should enable RI here instead of doing the lazy enablement. 2795 */ 2796 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 2797 test_kvm_facility(vcpu->kvm, 64) && 2798 riccb->valid && 2799 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 2800 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 2801 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 2802 } 2803 /* 2804 * If userspace sets the gscb (e.g. after migration) to non-zero, 2805 * we should enable GS here instead of doing the lazy enablement. 2806 */ 2807 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 2808 test_kvm_facility(vcpu->kvm, 133) && 2809 gscb->gssm && 2810 !vcpu->arch.gs_enabled) { 2811 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 2812 vcpu->arch.sie_block->ecb |= ECB_GS; 2813 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 2814 vcpu->arch.gs_enabled = 1; 2815 } 2816 save_access_regs(vcpu->arch.host_acrs); 2817 restore_access_regs(vcpu->run->s.regs.acrs); 2818 /* save host (userspace) fprs/vrs */ 2819 save_fpu_regs(); 2820 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 2821 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 2822 if (MACHINE_HAS_VX) 2823 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 2824 else 2825 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 2826 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 2827 if (test_fp_ctl(current->thread.fpu.fpc)) 2828 /* User space provided an invalid FPC, let's clear it */ 2829 current->thread.fpu.fpc = 0; 2830 if (MACHINE_HAS_GS) { 2831 preempt_disable(); 2832 __ctl_set_bit(2, 4); 2833 if (current->thread.gs_cb) { 2834 vcpu->arch.host_gscb = current->thread.gs_cb; 2835 save_gs_cb(vcpu->arch.host_gscb); 2836 } 2837 if (vcpu->arch.gs_enabled) { 2838 current->thread.gs_cb = (struct gs_cb *) 2839 &vcpu->run->s.regs.gscb; 2840 restore_gs_cb(current->thread.gs_cb); 2841 } 2842 preempt_enable(); 2843 } 2844 2845 kvm_run->kvm_dirty_regs = 0; 2846 } 2847 2848 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2849 { 2850 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 2851 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 2852 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 2853 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 2854 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 2855 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 2856 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 2857 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 2858 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 2859 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 2860 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 2861 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 2862 save_access_regs(vcpu->run->s.regs.acrs); 2863 restore_access_regs(vcpu->arch.host_acrs); 2864 /* Save guest register state */ 2865 save_fpu_regs(); 2866 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 2867 /* Restore will be done lazily at return */ 2868 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 2869 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 2870 if (MACHINE_HAS_GS) { 2871 __ctl_set_bit(2, 4); 2872 if (vcpu->arch.gs_enabled) 2873 save_gs_cb(current->thread.gs_cb); 2874 preempt_disable(); 2875 current->thread.gs_cb = vcpu->arch.host_gscb; 2876 restore_gs_cb(vcpu->arch.host_gscb); 2877 preempt_enable(); 2878 if (!vcpu->arch.host_gscb) 2879 __ctl_clear_bit(2, 4); 2880 vcpu->arch.host_gscb = NULL; 2881 } 2882 2883 } 2884 2885 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 2886 { 2887 int rc; 2888 sigset_t sigsaved; 2889 2890 if (kvm_run->immediate_exit) 2891 return -EINTR; 2892 2893 if (guestdbg_exit_pending(vcpu)) { 2894 kvm_s390_prepare_debug_exit(vcpu); 2895 return 0; 2896 } 2897 2898 if (vcpu->sigset_active) 2899 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); 2900 2901 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 2902 kvm_s390_vcpu_start(vcpu); 2903 } else if (is_vcpu_stopped(vcpu)) { 2904 pr_err_ratelimited("can't run stopped vcpu %d\n", 2905 vcpu->vcpu_id); 2906 return -EINVAL; 2907 } 2908 2909 sync_regs(vcpu, kvm_run); 2910 enable_cpu_timer_accounting(vcpu); 2911 2912 might_fault(); 2913 rc = __vcpu_run(vcpu); 2914 2915 if (signal_pending(current) && !rc) { 2916 kvm_run->exit_reason = KVM_EXIT_INTR; 2917 rc = -EINTR; 2918 } 2919 2920 if (guestdbg_exit_pending(vcpu) && !rc) { 2921 kvm_s390_prepare_debug_exit(vcpu); 2922 rc = 0; 2923 } 2924 2925 if (rc == -EREMOTE) { 2926 /* userspace support is needed, kvm_run has been prepared */ 2927 rc = 0; 2928 } 2929 2930 disable_cpu_timer_accounting(vcpu); 2931 store_regs(vcpu, kvm_run); 2932 2933 if (vcpu->sigset_active) 2934 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2935 2936 vcpu->stat.exit_userspace++; 2937 return rc; 2938 } 2939 2940 /* 2941 * store status at address 2942 * we use have two special cases: 2943 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 2944 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 2945 */ 2946 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 2947 { 2948 unsigned char archmode = 1; 2949 freg_t fprs[NUM_FPRS]; 2950 unsigned int px; 2951 u64 clkcomp, cputm; 2952 int rc; 2953 2954 px = kvm_s390_get_prefix(vcpu); 2955 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 2956 if (write_guest_abs(vcpu, 163, &archmode, 1)) 2957 return -EFAULT; 2958 gpa = 0; 2959 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 2960 if (write_guest_real(vcpu, 163, &archmode, 1)) 2961 return -EFAULT; 2962 gpa = px; 2963 } else 2964 gpa -= __LC_FPREGS_SAVE_AREA; 2965 2966 /* manually convert vector registers if necessary */ 2967 if (MACHINE_HAS_VX) { 2968 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 2969 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2970 fprs, 128); 2971 } else { 2972 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 2973 vcpu->run->s.regs.fprs, 128); 2974 } 2975 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 2976 vcpu->run->s.regs.gprs, 128); 2977 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 2978 &vcpu->arch.sie_block->gpsw, 16); 2979 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 2980 &px, 4); 2981 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 2982 &vcpu->run->s.regs.fpc, 4); 2983 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 2984 &vcpu->arch.sie_block->todpr, 4); 2985 cputm = kvm_s390_get_cpu_timer(vcpu); 2986 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 2987 &cputm, 8); 2988 clkcomp = vcpu->arch.sie_block->ckc >> 8; 2989 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 2990 &clkcomp, 8); 2991 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 2992 &vcpu->run->s.regs.acrs, 64); 2993 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 2994 &vcpu->arch.sie_block->gcr, 128); 2995 return rc ? -EFAULT : 0; 2996 } 2997 2998 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 2999 { 3000 /* 3001 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 3002 * switch in the run ioctl. Let's update our copies before we save 3003 * it into the save area 3004 */ 3005 save_fpu_regs(); 3006 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 3007 save_access_regs(vcpu->run->s.regs.acrs); 3008 3009 return kvm_s390_store_status_unloaded(vcpu, addr); 3010 } 3011 3012 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3013 { 3014 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 3015 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 3016 } 3017 3018 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 3019 { 3020 unsigned int i; 3021 struct kvm_vcpu *vcpu; 3022 3023 kvm_for_each_vcpu(i, vcpu, kvm) { 3024 __disable_ibs_on_vcpu(vcpu); 3025 } 3026 } 3027 3028 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3029 { 3030 if (!sclp.has_ibs) 3031 return; 3032 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 3033 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 3034 } 3035 3036 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 3037 { 3038 int i, online_vcpus, started_vcpus = 0; 3039 3040 if (!is_vcpu_stopped(vcpu)) 3041 return; 3042 3043 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 3044 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3045 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3046 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3047 3048 for (i = 0; i < online_vcpus; i++) { 3049 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 3050 started_vcpus++; 3051 } 3052 3053 if (started_vcpus == 0) { 3054 /* we're the only active VCPU -> speed it up */ 3055 __enable_ibs_on_vcpu(vcpu); 3056 } else if (started_vcpus == 1) { 3057 /* 3058 * As we are starting a second VCPU, we have to disable 3059 * the IBS facility on all VCPUs to remove potentially 3060 * oustanding ENABLE requests. 3061 */ 3062 __disable_ibs_on_all_vcpus(vcpu->kvm); 3063 } 3064 3065 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 3066 /* 3067 * Another VCPU might have used IBS while we were offline. 3068 * Let's play safe and flush the VCPU at startup. 3069 */ 3070 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3071 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3072 return; 3073 } 3074 3075 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 3076 { 3077 int i, online_vcpus, started_vcpus = 0; 3078 struct kvm_vcpu *started_vcpu = NULL; 3079 3080 if (is_vcpu_stopped(vcpu)) 3081 return; 3082 3083 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 3084 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3085 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3086 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3087 3088 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 3089 kvm_s390_clear_stop_irq(vcpu); 3090 3091 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags); 3092 __disable_ibs_on_vcpu(vcpu); 3093 3094 for (i = 0; i < online_vcpus; i++) { 3095 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 3096 started_vcpus++; 3097 started_vcpu = vcpu->kvm->vcpus[i]; 3098 } 3099 } 3100 3101 if (started_vcpus == 1) { 3102 /* 3103 * As we only have one VCPU left, we want to enable the 3104 * IBS facility for that VCPU to speed it up. 3105 */ 3106 __enable_ibs_on_vcpu(started_vcpu); 3107 } 3108 3109 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3110 return; 3111 } 3112 3113 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3114 struct kvm_enable_cap *cap) 3115 { 3116 int r; 3117 3118 if (cap->flags) 3119 return -EINVAL; 3120 3121 switch (cap->cap) { 3122 case KVM_CAP_S390_CSS_SUPPORT: 3123 if (!vcpu->kvm->arch.css_support) { 3124 vcpu->kvm->arch.css_support = 1; 3125 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 3126 trace_kvm_s390_enable_css(vcpu->kvm); 3127 } 3128 r = 0; 3129 break; 3130 default: 3131 r = -EINVAL; 3132 break; 3133 } 3134 return r; 3135 } 3136 3137 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 3138 struct kvm_s390_mem_op *mop) 3139 { 3140 void __user *uaddr = (void __user *)mop->buf; 3141 void *tmpbuf = NULL; 3142 int r, srcu_idx; 3143 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 3144 | KVM_S390_MEMOP_F_CHECK_ONLY; 3145 3146 if (mop->flags & ~supported_flags) 3147 return -EINVAL; 3148 3149 if (mop->size > MEM_OP_MAX_SIZE) 3150 return -E2BIG; 3151 3152 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 3153 tmpbuf = vmalloc(mop->size); 3154 if (!tmpbuf) 3155 return -ENOMEM; 3156 } 3157 3158 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3159 3160 switch (mop->op) { 3161 case KVM_S390_MEMOP_LOGICAL_READ: 3162 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3163 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3164 mop->size, GACC_FETCH); 3165 break; 3166 } 3167 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3168 if (r == 0) { 3169 if (copy_to_user(uaddr, tmpbuf, mop->size)) 3170 r = -EFAULT; 3171 } 3172 break; 3173 case KVM_S390_MEMOP_LOGICAL_WRITE: 3174 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3175 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3176 mop->size, GACC_STORE); 3177 break; 3178 } 3179 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 3180 r = -EFAULT; 3181 break; 3182 } 3183 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3184 break; 3185 default: 3186 r = -EINVAL; 3187 } 3188 3189 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 3190 3191 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 3192 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 3193 3194 vfree(tmpbuf); 3195 return r; 3196 } 3197 3198 long kvm_arch_vcpu_ioctl(struct file *filp, 3199 unsigned int ioctl, unsigned long arg) 3200 { 3201 struct kvm_vcpu *vcpu = filp->private_data; 3202 void __user *argp = (void __user *)arg; 3203 int idx; 3204 long r; 3205 3206 switch (ioctl) { 3207 case KVM_S390_IRQ: { 3208 struct kvm_s390_irq s390irq; 3209 3210 r = -EFAULT; 3211 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 3212 break; 3213 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3214 break; 3215 } 3216 case KVM_S390_INTERRUPT: { 3217 struct kvm_s390_interrupt s390int; 3218 struct kvm_s390_irq s390irq; 3219 3220 r = -EFAULT; 3221 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3222 break; 3223 if (s390int_to_s390irq(&s390int, &s390irq)) 3224 return -EINVAL; 3225 r = kvm_s390_inject_vcpu(vcpu, &s390irq); 3226 break; 3227 } 3228 case KVM_S390_STORE_STATUS: 3229 idx = srcu_read_lock(&vcpu->kvm->srcu); 3230 r = kvm_s390_vcpu_store_status(vcpu, arg); 3231 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3232 break; 3233 case KVM_S390_SET_INITIAL_PSW: { 3234 psw_t psw; 3235 3236 r = -EFAULT; 3237 if (copy_from_user(&psw, argp, sizeof(psw))) 3238 break; 3239 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 3240 break; 3241 } 3242 case KVM_S390_INITIAL_RESET: 3243 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 3244 break; 3245 case KVM_SET_ONE_REG: 3246 case KVM_GET_ONE_REG: { 3247 struct kvm_one_reg reg; 3248 r = -EFAULT; 3249 if (copy_from_user(®, argp, sizeof(reg))) 3250 break; 3251 if (ioctl == KVM_SET_ONE_REG) 3252 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 3253 else 3254 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 3255 break; 3256 } 3257 #ifdef CONFIG_KVM_S390_UCONTROL 3258 case KVM_S390_UCAS_MAP: { 3259 struct kvm_s390_ucas_mapping ucasmap; 3260 3261 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3262 r = -EFAULT; 3263 break; 3264 } 3265 3266 if (!kvm_is_ucontrol(vcpu->kvm)) { 3267 r = -EINVAL; 3268 break; 3269 } 3270 3271 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 3272 ucasmap.vcpu_addr, ucasmap.length); 3273 break; 3274 } 3275 case KVM_S390_UCAS_UNMAP: { 3276 struct kvm_s390_ucas_mapping ucasmap; 3277 3278 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3279 r = -EFAULT; 3280 break; 3281 } 3282 3283 if (!kvm_is_ucontrol(vcpu->kvm)) { 3284 r = -EINVAL; 3285 break; 3286 } 3287 3288 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 3289 ucasmap.length); 3290 break; 3291 } 3292 #endif 3293 case KVM_S390_VCPU_FAULT: { 3294 r = gmap_fault(vcpu->arch.gmap, arg, 0); 3295 break; 3296 } 3297 case KVM_ENABLE_CAP: 3298 { 3299 struct kvm_enable_cap cap; 3300 r = -EFAULT; 3301 if (copy_from_user(&cap, argp, sizeof(cap))) 3302 break; 3303 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3304 break; 3305 } 3306 case KVM_S390_MEM_OP: { 3307 struct kvm_s390_mem_op mem_op; 3308 3309 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3310 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 3311 else 3312 r = -EFAULT; 3313 break; 3314 } 3315 case KVM_S390_SET_IRQ_STATE: { 3316 struct kvm_s390_irq_state irq_state; 3317 3318 r = -EFAULT; 3319 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3320 break; 3321 if (irq_state.len > VCPU_IRQS_MAX_BUF || 3322 irq_state.len == 0 || 3323 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 3324 r = -EINVAL; 3325 break; 3326 } 3327 r = kvm_s390_set_irq_state(vcpu, 3328 (void __user *) irq_state.buf, 3329 irq_state.len); 3330 break; 3331 } 3332 case KVM_S390_GET_IRQ_STATE: { 3333 struct kvm_s390_irq_state irq_state; 3334 3335 r = -EFAULT; 3336 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3337 break; 3338 if (irq_state.len == 0) { 3339 r = -EINVAL; 3340 break; 3341 } 3342 r = kvm_s390_get_irq_state(vcpu, 3343 (__u8 __user *) irq_state.buf, 3344 irq_state.len); 3345 break; 3346 } 3347 default: 3348 r = -ENOTTY; 3349 } 3350 return r; 3351 } 3352 3353 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3354 { 3355 #ifdef CONFIG_KVM_S390_UCONTROL 3356 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 3357 && (kvm_is_ucontrol(vcpu->kvm))) { 3358 vmf->page = virt_to_page(vcpu->arch.sie_block); 3359 get_page(vmf->page); 3360 return 0; 3361 } 3362 #endif 3363 return VM_FAULT_SIGBUS; 3364 } 3365 3366 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 3367 unsigned long npages) 3368 { 3369 return 0; 3370 } 3371 3372 /* Section: memory related */ 3373 int kvm_arch_prepare_memory_region(struct kvm *kvm, 3374 struct kvm_memory_slot *memslot, 3375 const struct kvm_userspace_memory_region *mem, 3376 enum kvm_mr_change change) 3377 { 3378 /* A few sanity checks. We can have memory slots which have to be 3379 located/ended at a segment boundary (1MB). The memory in userland is 3380 ok to be fragmented into various different vmas. It is okay to mmap() 3381 and munmap() stuff in this slot after doing this call at any time */ 3382 3383 if (mem->userspace_addr & 0xffffful) 3384 return -EINVAL; 3385 3386 if (mem->memory_size & 0xffffful) 3387 return -EINVAL; 3388 3389 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 3390 return -EINVAL; 3391 3392 return 0; 3393 } 3394 3395 void kvm_arch_commit_memory_region(struct kvm *kvm, 3396 const struct kvm_userspace_memory_region *mem, 3397 const struct kvm_memory_slot *old, 3398 const struct kvm_memory_slot *new, 3399 enum kvm_mr_change change) 3400 { 3401 int rc; 3402 3403 /* If the basics of the memslot do not change, we do not want 3404 * to update the gmap. Every update causes several unnecessary 3405 * segment translation exceptions. This is usually handled just 3406 * fine by the normal fault handler + gmap, but it will also 3407 * cause faults on the prefix page of running guest CPUs. 3408 */ 3409 if (old->userspace_addr == mem->userspace_addr && 3410 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && 3411 old->npages * PAGE_SIZE == mem->memory_size) 3412 return; 3413 3414 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 3415 mem->guest_phys_addr, mem->memory_size); 3416 if (rc) 3417 pr_warn("failed to commit memory region\n"); 3418 return; 3419 } 3420 3421 static inline unsigned long nonhyp_mask(int i) 3422 { 3423 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 3424 3425 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 3426 } 3427 3428 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 3429 { 3430 vcpu->valid_wakeup = false; 3431 } 3432 3433 static int __init kvm_s390_init(void) 3434 { 3435 int i; 3436 3437 if (!sclp.has_sief2) { 3438 pr_info("SIE not available\n"); 3439 return -ENODEV; 3440 } 3441 3442 for (i = 0; i < 16; i++) 3443 kvm_s390_fac_list_mask[i] |= 3444 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); 3445 3446 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 3447 } 3448 3449 static void __exit kvm_s390_exit(void) 3450 { 3451 kvm_exit(); 3452 } 3453 3454 module_init(kvm_s390_init); 3455 module_exit(kvm_s390_exit); 3456 3457 /* 3458 * Enable autoloading of the kvm module. 3459 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 3460 * since x86 takes a different approach. 3461 */ 3462 #include <linux/miscdevice.h> 3463 MODULE_ALIAS_MISCDEV(KVM_MINOR); 3464 MODULE_ALIAS("devname:kvm"); 3465