1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Heiko Carstens <heiko.carstens@de.ibm.com> 10 * Christian Ehrhardt <ehrhardt@de.ibm.com> 11 * Jason J. Herne <jjherne@us.ibm.com> 12 */ 13 14 #define KMSG_COMPONENT "kvm-s390" 15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 16 17 #include <linux/compiler.h> 18 #include <linux/err.h> 19 #include <linux/fs.h> 20 #include <linux/hrtimer.h> 21 #include <linux/init.h> 22 #include <linux/kvm.h> 23 #include <linux/kvm_host.h> 24 #include <linux/mman.h> 25 #include <linux/module.h> 26 #include <linux/moduleparam.h> 27 #include <linux/random.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/vmalloc.h> 31 #include <linux/bitmap.h> 32 #include <linux/sched/signal.h> 33 #include <linux/string.h> 34 #include <linux/pgtable.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 52 #define CREATE_TRACE_POINTS 53 #include "trace.h" 54 #include "trace-s390.h" 55 56 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 57 #define LOCAL_IRQS 32 58 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 59 (KVM_MAX_VCPUS + LOCAL_IRQS)) 60 61 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 62 KVM_GENERIC_VM_STATS(), 63 STATS_DESC_COUNTER(VM, inject_io), 64 STATS_DESC_COUNTER(VM, inject_float_mchk), 65 STATS_DESC_COUNTER(VM, inject_pfault_done), 66 STATS_DESC_COUNTER(VM, inject_service_signal), 67 STATS_DESC_COUNTER(VM, inject_virtio) 68 }; 69 static_assert(ARRAY_SIZE(kvm_vm_stats_desc) == 70 sizeof(struct kvm_vm_stat) / sizeof(u64)); 71 72 const struct kvm_stats_header kvm_vm_stats_header = { 73 .name_size = KVM_STATS_NAME_SIZE, 74 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 75 .id_offset = sizeof(struct kvm_stats_header), 76 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 77 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 78 sizeof(kvm_vm_stats_desc), 79 }; 80 81 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 82 KVM_GENERIC_VCPU_STATS(), 83 STATS_DESC_COUNTER(VCPU, exit_userspace), 84 STATS_DESC_COUNTER(VCPU, exit_null), 85 STATS_DESC_COUNTER(VCPU, exit_external_request), 86 STATS_DESC_COUNTER(VCPU, exit_io_request), 87 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 88 STATS_DESC_COUNTER(VCPU, exit_stop_request), 89 STATS_DESC_COUNTER(VCPU, exit_validity), 90 STATS_DESC_COUNTER(VCPU, exit_instruction), 91 STATS_DESC_COUNTER(VCPU, exit_pei), 92 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 93 STATS_DESC_COUNTER(VCPU, instruction_lctl), 94 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 95 STATS_DESC_COUNTER(VCPU, instruction_stctl), 96 STATS_DESC_COUNTER(VCPU, instruction_stctg), 97 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 98 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 99 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 100 STATS_DESC_COUNTER(VCPU, deliver_ckc), 101 STATS_DESC_COUNTER(VCPU, deliver_cputm), 102 STATS_DESC_COUNTER(VCPU, deliver_external_call), 103 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 104 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 105 STATS_DESC_COUNTER(VCPU, deliver_virtio), 106 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 107 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 108 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 109 STATS_DESC_COUNTER(VCPU, deliver_program), 110 STATS_DESC_COUNTER(VCPU, deliver_io), 111 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 112 STATS_DESC_COUNTER(VCPU, exit_wait_state), 113 STATS_DESC_COUNTER(VCPU, inject_ckc), 114 STATS_DESC_COUNTER(VCPU, inject_cputm), 115 STATS_DESC_COUNTER(VCPU, inject_external_call), 116 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 117 STATS_DESC_COUNTER(VCPU, inject_mchk), 118 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 119 STATS_DESC_COUNTER(VCPU, inject_program), 120 STATS_DESC_COUNTER(VCPU, inject_restart), 121 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 122 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 123 STATS_DESC_COUNTER(VCPU, instruction_epsw), 124 STATS_DESC_COUNTER(VCPU, instruction_gs), 125 STATS_DESC_COUNTER(VCPU, instruction_io_other), 126 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 127 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 128 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 129 STATS_DESC_COUNTER(VCPU, instruction_ptff), 130 STATS_DESC_COUNTER(VCPU, instruction_sck), 131 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 132 STATS_DESC_COUNTER(VCPU, instruction_stidp), 133 STATS_DESC_COUNTER(VCPU, instruction_spx), 134 STATS_DESC_COUNTER(VCPU, instruction_stpx), 135 STATS_DESC_COUNTER(VCPU, instruction_stap), 136 STATS_DESC_COUNTER(VCPU, instruction_iske), 137 STATS_DESC_COUNTER(VCPU, instruction_ri), 138 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 139 STATS_DESC_COUNTER(VCPU, instruction_sske), 140 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 141 STATS_DESC_COUNTER(VCPU, instruction_stsi), 142 STATS_DESC_COUNTER(VCPU, instruction_stfl), 143 STATS_DESC_COUNTER(VCPU, instruction_tb), 144 STATS_DESC_COUNTER(VCPU, instruction_tpi), 145 STATS_DESC_COUNTER(VCPU, instruction_tprot), 146 STATS_DESC_COUNTER(VCPU, instruction_tsch), 147 STATS_DESC_COUNTER(VCPU, instruction_sie), 148 STATS_DESC_COUNTER(VCPU, instruction_essa), 149 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 150 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 151 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 152 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 153 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 154 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 155 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 156 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 157 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 166 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 167 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 168 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 169 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 170 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 171 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 172 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 175 STATS_DESC_COUNTER(VCPU, pfault_sync) 176 }; 177 static_assert(ARRAY_SIZE(kvm_vcpu_stats_desc) == 178 sizeof(struct kvm_vcpu_stat) / sizeof(u64)); 179 180 const struct kvm_stats_header kvm_vcpu_stats_header = { 181 .name_size = KVM_STATS_NAME_SIZE, 182 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 183 .id_offset = sizeof(struct kvm_stats_header), 184 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 185 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 186 sizeof(kvm_vcpu_stats_desc), 187 }; 188 189 /* allow nested virtualization in KVM (if enabled by user space) */ 190 static int nested; 191 module_param(nested, int, S_IRUGO); 192 MODULE_PARM_DESC(nested, "Nested virtualization support"); 193 194 /* allow 1m huge page guest backing, if !nested */ 195 static int hpage; 196 module_param(hpage, int, 0444); 197 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 198 199 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 200 static u8 halt_poll_max_steal = 10; 201 module_param(halt_poll_max_steal, byte, 0644); 202 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 203 204 /* if set to true, the GISA will be initialized and used if available */ 205 static bool use_gisa = true; 206 module_param(use_gisa, bool, 0644); 207 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 208 209 /* maximum diag9c forwarding per second */ 210 unsigned int diag9c_forwarding_hz; 211 module_param(diag9c_forwarding_hz, uint, 0644); 212 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 213 214 /* 215 * For now we handle at most 16 double words as this is what the s390 base 216 * kernel handles and stores in the prefix page. If we ever need to go beyond 217 * this, this requires changes to code, but the external uapi can stay. 218 */ 219 #define SIZE_INTERNAL 16 220 221 /* 222 * Base feature mask that defines default mask for facilities. Consists of the 223 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 224 */ 225 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 226 /* 227 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 228 * and defines the facilities that can be enabled via a cpu model. 229 */ 230 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 231 232 static unsigned long kvm_s390_fac_size(void) 233 { 234 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 235 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 236 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 237 sizeof(stfle_fac_list)); 238 239 return SIZE_INTERNAL; 240 } 241 242 /* available cpu features supported by kvm */ 243 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 244 /* available subfunctions indicated via query / "test bit" */ 245 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 246 247 static struct gmap_notifier gmap_notifier; 248 static struct gmap_notifier vsie_gmap_notifier; 249 debug_info_t *kvm_s390_dbf; 250 debug_info_t *kvm_s390_dbf_uv; 251 252 /* Section: not file related */ 253 int kvm_arch_hardware_enable(void) 254 { 255 /* every s390 is virtualization enabled ;-) */ 256 return 0; 257 } 258 259 int kvm_arch_check_processor_compat(void *opaque) 260 { 261 return 0; 262 } 263 264 /* forward declarations */ 265 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 266 unsigned long end); 267 static int sca_switch_to_extended(struct kvm *kvm); 268 269 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 270 { 271 u8 delta_idx = 0; 272 273 /* 274 * The TOD jumps by delta, we have to compensate this by adding 275 * -delta to the epoch. 276 */ 277 delta = -delta; 278 279 /* sign-extension - we're adding to signed values below */ 280 if ((s64)delta < 0) 281 delta_idx = -1; 282 283 scb->epoch += delta; 284 if (scb->ecd & ECD_MEF) { 285 scb->epdx += delta_idx; 286 if (scb->epoch < delta) 287 scb->epdx += 1; 288 } 289 } 290 291 /* 292 * This callback is executed during stop_machine(). All CPUs are therefore 293 * temporarily stopped. In order not to change guest behavior, we have to 294 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 295 * so a CPU won't be stopped while calculating with the epoch. 296 */ 297 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 298 void *v) 299 { 300 struct kvm *kvm; 301 struct kvm_vcpu *vcpu; 302 int i; 303 unsigned long long *delta = v; 304 305 list_for_each_entry(kvm, &vm_list, vm_list) { 306 kvm_for_each_vcpu(i, vcpu, kvm) { 307 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 308 if (i == 0) { 309 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 310 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 311 } 312 if (vcpu->arch.cputm_enabled) 313 vcpu->arch.cputm_start += *delta; 314 if (vcpu->arch.vsie_block) 315 kvm_clock_sync_scb(vcpu->arch.vsie_block, 316 *delta); 317 } 318 } 319 return NOTIFY_OK; 320 } 321 322 static struct notifier_block kvm_clock_notifier = { 323 .notifier_call = kvm_clock_sync, 324 }; 325 326 int kvm_arch_hardware_setup(void *opaque) 327 { 328 gmap_notifier.notifier_call = kvm_gmap_notifier; 329 gmap_register_pte_notifier(&gmap_notifier); 330 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 331 gmap_register_pte_notifier(&vsie_gmap_notifier); 332 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 333 &kvm_clock_notifier); 334 return 0; 335 } 336 337 void kvm_arch_hardware_unsetup(void) 338 { 339 gmap_unregister_pte_notifier(&gmap_notifier); 340 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 341 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 342 &kvm_clock_notifier); 343 } 344 345 static void allow_cpu_feat(unsigned long nr) 346 { 347 set_bit_inv(nr, kvm_s390_available_cpu_feat); 348 } 349 350 static inline int plo_test_bit(unsigned char nr) 351 { 352 unsigned long function = (unsigned long)nr | 0x100; 353 int cc; 354 355 asm volatile( 356 " lgr 0,%[function]\n" 357 /* Parameter registers are ignored for "test bit" */ 358 " plo 0,0,0,0(0)\n" 359 " ipm %0\n" 360 " srl %0,28\n" 361 : "=d" (cc) 362 : [function] "d" (function) 363 : "cc", "0"); 364 return cc == 0; 365 } 366 367 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 368 { 369 asm volatile( 370 " lghi 0,0\n" 371 " lgr 1,%[query]\n" 372 /* Parameter registers are ignored */ 373 " .insn rrf,%[opc] << 16,2,4,6,0\n" 374 : 375 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 376 : "cc", "memory", "0", "1"); 377 } 378 379 #define INSN_SORTL 0xb938 380 #define INSN_DFLTCC 0xb939 381 382 static void kvm_s390_cpu_feat_init(void) 383 { 384 int i; 385 386 for (i = 0; i < 256; ++i) { 387 if (plo_test_bit(i)) 388 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 389 } 390 391 if (test_facility(28)) /* TOD-clock steering */ 392 ptff(kvm_s390_available_subfunc.ptff, 393 sizeof(kvm_s390_available_subfunc.ptff), 394 PTFF_QAF); 395 396 if (test_facility(17)) { /* MSA */ 397 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 398 kvm_s390_available_subfunc.kmac); 399 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 400 kvm_s390_available_subfunc.kmc); 401 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 402 kvm_s390_available_subfunc.km); 403 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 404 kvm_s390_available_subfunc.kimd); 405 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.klmd); 407 } 408 if (test_facility(76)) /* MSA3 */ 409 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.pckmo); 411 if (test_facility(77)) { /* MSA4 */ 412 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 413 kvm_s390_available_subfunc.kmctr); 414 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 415 kvm_s390_available_subfunc.kmf); 416 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 417 kvm_s390_available_subfunc.kmo); 418 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 419 kvm_s390_available_subfunc.pcc); 420 } 421 if (test_facility(57)) /* MSA5 */ 422 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 423 kvm_s390_available_subfunc.ppno); 424 425 if (test_facility(146)) /* MSA8 */ 426 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 427 kvm_s390_available_subfunc.kma); 428 429 if (test_facility(155)) /* MSA9 */ 430 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 431 kvm_s390_available_subfunc.kdsa); 432 433 if (test_facility(150)) /* SORTL */ 434 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 435 436 if (test_facility(151)) /* DFLTCC */ 437 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 438 439 if (MACHINE_HAS_ESOP) 440 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 441 /* 442 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 443 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 444 */ 445 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 446 !test_facility(3) || !nested) 447 return; 448 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 449 if (sclp.has_64bscao) 450 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 451 if (sclp.has_siif) 452 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 453 if (sclp.has_gpere) 454 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 455 if (sclp.has_gsls) 456 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 457 if (sclp.has_ib) 458 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 459 if (sclp.has_cei) 460 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 461 if (sclp.has_ibs) 462 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 463 if (sclp.has_kss) 464 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 465 /* 466 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 467 * all skey handling functions read/set the skey from the PGSTE 468 * instead of the real storage key. 469 * 470 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 471 * pages being detected as preserved although they are resident. 472 * 473 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 474 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 475 * 476 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 477 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 478 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 479 * 480 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 481 * cannot easily shadow the SCA because of the ipte lock. 482 */ 483 } 484 485 int kvm_arch_init(void *opaque) 486 { 487 int rc = -ENOMEM; 488 489 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 490 if (!kvm_s390_dbf) 491 return -ENOMEM; 492 493 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 494 if (!kvm_s390_dbf_uv) 495 goto out; 496 497 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 498 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 499 goto out; 500 501 kvm_s390_cpu_feat_init(); 502 503 /* Register floating interrupt controller interface. */ 504 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 505 if (rc) { 506 pr_err("A FLIC registration call failed with rc=%d\n", rc); 507 goto out; 508 } 509 510 rc = kvm_s390_gib_init(GAL_ISC); 511 if (rc) 512 goto out; 513 514 return 0; 515 516 out: 517 kvm_arch_exit(); 518 return rc; 519 } 520 521 void kvm_arch_exit(void) 522 { 523 kvm_s390_gib_destroy(); 524 debug_unregister(kvm_s390_dbf); 525 debug_unregister(kvm_s390_dbf_uv); 526 } 527 528 /* Section: device related */ 529 long kvm_arch_dev_ioctl(struct file *filp, 530 unsigned int ioctl, unsigned long arg) 531 { 532 if (ioctl == KVM_S390_ENABLE_SIE) 533 return s390_enable_sie(); 534 return -EINVAL; 535 } 536 537 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 538 { 539 int r; 540 541 switch (ext) { 542 case KVM_CAP_S390_PSW: 543 case KVM_CAP_S390_GMAP: 544 case KVM_CAP_SYNC_MMU: 545 #ifdef CONFIG_KVM_S390_UCONTROL 546 case KVM_CAP_S390_UCONTROL: 547 #endif 548 case KVM_CAP_ASYNC_PF: 549 case KVM_CAP_SYNC_REGS: 550 case KVM_CAP_ONE_REG: 551 case KVM_CAP_ENABLE_CAP: 552 case KVM_CAP_S390_CSS_SUPPORT: 553 case KVM_CAP_IOEVENTFD: 554 case KVM_CAP_DEVICE_CTRL: 555 case KVM_CAP_S390_IRQCHIP: 556 case KVM_CAP_VM_ATTRIBUTES: 557 case KVM_CAP_MP_STATE: 558 case KVM_CAP_IMMEDIATE_EXIT: 559 case KVM_CAP_S390_INJECT_IRQ: 560 case KVM_CAP_S390_USER_SIGP: 561 case KVM_CAP_S390_USER_STSI: 562 case KVM_CAP_S390_SKEYS: 563 case KVM_CAP_S390_IRQ_STATE: 564 case KVM_CAP_S390_USER_INSTR0: 565 case KVM_CAP_S390_CMMA_MIGRATION: 566 case KVM_CAP_S390_AIS: 567 case KVM_CAP_S390_AIS_MIGRATION: 568 case KVM_CAP_S390_VCPU_RESETS: 569 case KVM_CAP_SET_GUEST_DEBUG: 570 case KVM_CAP_S390_DIAG318: 571 r = 1; 572 break; 573 case KVM_CAP_SET_GUEST_DEBUG2: 574 r = KVM_GUESTDBG_VALID_MASK; 575 break; 576 case KVM_CAP_S390_HPAGE_1M: 577 r = 0; 578 if (hpage && !kvm_is_ucontrol(kvm)) 579 r = 1; 580 break; 581 case KVM_CAP_S390_MEM_OP: 582 r = MEM_OP_MAX_SIZE; 583 break; 584 case KVM_CAP_NR_VCPUS: 585 case KVM_CAP_MAX_VCPUS: 586 case KVM_CAP_MAX_VCPU_ID: 587 r = KVM_S390_BSCA_CPU_SLOTS; 588 if (!kvm_s390_use_sca_entries()) 589 r = KVM_MAX_VCPUS; 590 else if (sclp.has_esca && sclp.has_64bscao) 591 r = KVM_S390_ESCA_CPU_SLOTS; 592 break; 593 case KVM_CAP_S390_COW: 594 r = MACHINE_HAS_ESOP; 595 break; 596 case KVM_CAP_S390_VECTOR_REGISTERS: 597 r = MACHINE_HAS_VX; 598 break; 599 case KVM_CAP_S390_RI: 600 r = test_facility(64); 601 break; 602 case KVM_CAP_S390_GS: 603 r = test_facility(133); 604 break; 605 case KVM_CAP_S390_BPB: 606 r = test_facility(82); 607 break; 608 case KVM_CAP_S390_PROTECTED: 609 r = is_prot_virt_host(); 610 break; 611 default: 612 r = 0; 613 } 614 return r; 615 } 616 617 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 618 { 619 int i; 620 gfn_t cur_gfn, last_gfn; 621 unsigned long gaddr, vmaddr; 622 struct gmap *gmap = kvm->arch.gmap; 623 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 624 625 /* Loop over all guest segments */ 626 cur_gfn = memslot->base_gfn; 627 last_gfn = memslot->base_gfn + memslot->npages; 628 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 629 gaddr = gfn_to_gpa(cur_gfn); 630 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 631 if (kvm_is_error_hva(vmaddr)) 632 continue; 633 634 bitmap_zero(bitmap, _PAGE_ENTRIES); 635 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 636 for (i = 0; i < _PAGE_ENTRIES; i++) { 637 if (test_bit(i, bitmap)) 638 mark_page_dirty(kvm, cur_gfn + i); 639 } 640 641 if (fatal_signal_pending(current)) 642 return; 643 cond_resched(); 644 } 645 } 646 647 /* Section: vm related */ 648 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 649 650 /* 651 * Get (and clear) the dirty memory log for a memory slot. 652 */ 653 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 654 struct kvm_dirty_log *log) 655 { 656 int r; 657 unsigned long n; 658 struct kvm_memory_slot *memslot; 659 int is_dirty; 660 661 if (kvm_is_ucontrol(kvm)) 662 return -EINVAL; 663 664 mutex_lock(&kvm->slots_lock); 665 666 r = -EINVAL; 667 if (log->slot >= KVM_USER_MEM_SLOTS) 668 goto out; 669 670 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 671 if (r) 672 goto out; 673 674 /* Clear the dirty log */ 675 if (is_dirty) { 676 n = kvm_dirty_bitmap_bytes(memslot); 677 memset(memslot->dirty_bitmap, 0, n); 678 } 679 r = 0; 680 out: 681 mutex_unlock(&kvm->slots_lock); 682 return r; 683 } 684 685 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 686 { 687 unsigned int i; 688 struct kvm_vcpu *vcpu; 689 690 kvm_for_each_vcpu(i, vcpu, kvm) { 691 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 692 } 693 } 694 695 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 696 { 697 int r; 698 699 if (cap->flags) 700 return -EINVAL; 701 702 switch (cap->cap) { 703 case KVM_CAP_S390_IRQCHIP: 704 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 705 kvm->arch.use_irqchip = 1; 706 r = 0; 707 break; 708 case KVM_CAP_S390_USER_SIGP: 709 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 710 kvm->arch.user_sigp = 1; 711 r = 0; 712 break; 713 case KVM_CAP_S390_VECTOR_REGISTERS: 714 mutex_lock(&kvm->lock); 715 if (kvm->created_vcpus) { 716 r = -EBUSY; 717 } else if (MACHINE_HAS_VX) { 718 set_kvm_facility(kvm->arch.model.fac_mask, 129); 719 set_kvm_facility(kvm->arch.model.fac_list, 129); 720 if (test_facility(134)) { 721 set_kvm_facility(kvm->arch.model.fac_mask, 134); 722 set_kvm_facility(kvm->arch.model.fac_list, 134); 723 } 724 if (test_facility(135)) { 725 set_kvm_facility(kvm->arch.model.fac_mask, 135); 726 set_kvm_facility(kvm->arch.model.fac_list, 135); 727 } 728 if (test_facility(148)) { 729 set_kvm_facility(kvm->arch.model.fac_mask, 148); 730 set_kvm_facility(kvm->arch.model.fac_list, 148); 731 } 732 if (test_facility(152)) { 733 set_kvm_facility(kvm->arch.model.fac_mask, 152); 734 set_kvm_facility(kvm->arch.model.fac_list, 152); 735 } 736 if (test_facility(192)) { 737 set_kvm_facility(kvm->arch.model.fac_mask, 192); 738 set_kvm_facility(kvm->arch.model.fac_list, 192); 739 } 740 r = 0; 741 } else 742 r = -EINVAL; 743 mutex_unlock(&kvm->lock); 744 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 745 r ? "(not available)" : "(success)"); 746 break; 747 case KVM_CAP_S390_RI: 748 r = -EINVAL; 749 mutex_lock(&kvm->lock); 750 if (kvm->created_vcpus) { 751 r = -EBUSY; 752 } else if (test_facility(64)) { 753 set_kvm_facility(kvm->arch.model.fac_mask, 64); 754 set_kvm_facility(kvm->arch.model.fac_list, 64); 755 r = 0; 756 } 757 mutex_unlock(&kvm->lock); 758 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 759 r ? "(not available)" : "(success)"); 760 break; 761 case KVM_CAP_S390_AIS: 762 mutex_lock(&kvm->lock); 763 if (kvm->created_vcpus) { 764 r = -EBUSY; 765 } else { 766 set_kvm_facility(kvm->arch.model.fac_mask, 72); 767 set_kvm_facility(kvm->arch.model.fac_list, 72); 768 r = 0; 769 } 770 mutex_unlock(&kvm->lock); 771 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 772 r ? "(not available)" : "(success)"); 773 break; 774 case KVM_CAP_S390_GS: 775 r = -EINVAL; 776 mutex_lock(&kvm->lock); 777 if (kvm->created_vcpus) { 778 r = -EBUSY; 779 } else if (test_facility(133)) { 780 set_kvm_facility(kvm->arch.model.fac_mask, 133); 781 set_kvm_facility(kvm->arch.model.fac_list, 133); 782 r = 0; 783 } 784 mutex_unlock(&kvm->lock); 785 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 786 r ? "(not available)" : "(success)"); 787 break; 788 case KVM_CAP_S390_HPAGE_1M: 789 mutex_lock(&kvm->lock); 790 if (kvm->created_vcpus) 791 r = -EBUSY; 792 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 793 r = -EINVAL; 794 else { 795 r = 0; 796 mmap_write_lock(kvm->mm); 797 kvm->mm->context.allow_gmap_hpage_1m = 1; 798 mmap_write_unlock(kvm->mm); 799 /* 800 * We might have to create fake 4k page 801 * tables. To avoid that the hardware works on 802 * stale PGSTEs, we emulate these instructions. 803 */ 804 kvm->arch.use_skf = 0; 805 kvm->arch.use_pfmfi = 0; 806 } 807 mutex_unlock(&kvm->lock); 808 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 809 r ? "(not available)" : "(success)"); 810 break; 811 case KVM_CAP_S390_USER_STSI: 812 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 813 kvm->arch.user_stsi = 1; 814 r = 0; 815 break; 816 case KVM_CAP_S390_USER_INSTR0: 817 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 818 kvm->arch.user_instr0 = 1; 819 icpt_operexc_on_all_vcpus(kvm); 820 r = 0; 821 break; 822 default: 823 r = -EINVAL; 824 break; 825 } 826 return r; 827 } 828 829 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 830 { 831 int ret; 832 833 switch (attr->attr) { 834 case KVM_S390_VM_MEM_LIMIT_SIZE: 835 ret = 0; 836 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 837 kvm->arch.mem_limit); 838 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 839 ret = -EFAULT; 840 break; 841 default: 842 ret = -ENXIO; 843 break; 844 } 845 return ret; 846 } 847 848 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 849 { 850 int ret; 851 unsigned int idx; 852 switch (attr->attr) { 853 case KVM_S390_VM_MEM_ENABLE_CMMA: 854 ret = -ENXIO; 855 if (!sclp.has_cmma) 856 break; 857 858 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 859 mutex_lock(&kvm->lock); 860 if (kvm->created_vcpus) 861 ret = -EBUSY; 862 else if (kvm->mm->context.allow_gmap_hpage_1m) 863 ret = -EINVAL; 864 else { 865 kvm->arch.use_cmma = 1; 866 /* Not compatible with cmma. */ 867 kvm->arch.use_pfmfi = 0; 868 ret = 0; 869 } 870 mutex_unlock(&kvm->lock); 871 break; 872 case KVM_S390_VM_MEM_CLR_CMMA: 873 ret = -ENXIO; 874 if (!sclp.has_cmma) 875 break; 876 ret = -EINVAL; 877 if (!kvm->arch.use_cmma) 878 break; 879 880 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 881 mutex_lock(&kvm->lock); 882 idx = srcu_read_lock(&kvm->srcu); 883 s390_reset_cmma(kvm->arch.gmap->mm); 884 srcu_read_unlock(&kvm->srcu, idx); 885 mutex_unlock(&kvm->lock); 886 ret = 0; 887 break; 888 case KVM_S390_VM_MEM_LIMIT_SIZE: { 889 unsigned long new_limit; 890 891 if (kvm_is_ucontrol(kvm)) 892 return -EINVAL; 893 894 if (get_user(new_limit, (u64 __user *)attr->addr)) 895 return -EFAULT; 896 897 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 898 new_limit > kvm->arch.mem_limit) 899 return -E2BIG; 900 901 if (!new_limit) 902 return -EINVAL; 903 904 /* gmap_create takes last usable address */ 905 if (new_limit != KVM_S390_NO_MEM_LIMIT) 906 new_limit -= 1; 907 908 ret = -EBUSY; 909 mutex_lock(&kvm->lock); 910 if (!kvm->created_vcpus) { 911 /* gmap_create will round the limit up */ 912 struct gmap *new = gmap_create(current->mm, new_limit); 913 914 if (!new) { 915 ret = -ENOMEM; 916 } else { 917 gmap_remove(kvm->arch.gmap); 918 new->private = kvm; 919 kvm->arch.gmap = new; 920 ret = 0; 921 } 922 } 923 mutex_unlock(&kvm->lock); 924 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 925 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 926 (void *) kvm->arch.gmap->asce); 927 break; 928 } 929 default: 930 ret = -ENXIO; 931 break; 932 } 933 return ret; 934 } 935 936 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 937 938 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 939 { 940 struct kvm_vcpu *vcpu; 941 int i; 942 943 kvm_s390_vcpu_block_all(kvm); 944 945 kvm_for_each_vcpu(i, vcpu, kvm) { 946 kvm_s390_vcpu_crypto_setup(vcpu); 947 /* recreate the shadow crycb by leaving the VSIE handler */ 948 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 949 } 950 951 kvm_s390_vcpu_unblock_all(kvm); 952 } 953 954 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 955 { 956 mutex_lock(&kvm->lock); 957 switch (attr->attr) { 958 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 959 if (!test_kvm_facility(kvm, 76)) { 960 mutex_unlock(&kvm->lock); 961 return -EINVAL; 962 } 963 get_random_bytes( 964 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 965 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 966 kvm->arch.crypto.aes_kw = 1; 967 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 968 break; 969 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 970 if (!test_kvm_facility(kvm, 76)) { 971 mutex_unlock(&kvm->lock); 972 return -EINVAL; 973 } 974 get_random_bytes( 975 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 976 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 977 kvm->arch.crypto.dea_kw = 1; 978 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 979 break; 980 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 981 if (!test_kvm_facility(kvm, 76)) { 982 mutex_unlock(&kvm->lock); 983 return -EINVAL; 984 } 985 kvm->arch.crypto.aes_kw = 0; 986 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 987 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 988 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 989 break; 990 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 991 if (!test_kvm_facility(kvm, 76)) { 992 mutex_unlock(&kvm->lock); 993 return -EINVAL; 994 } 995 kvm->arch.crypto.dea_kw = 0; 996 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 997 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 998 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 999 break; 1000 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1001 if (!ap_instructions_available()) { 1002 mutex_unlock(&kvm->lock); 1003 return -EOPNOTSUPP; 1004 } 1005 kvm->arch.crypto.apie = 1; 1006 break; 1007 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1008 if (!ap_instructions_available()) { 1009 mutex_unlock(&kvm->lock); 1010 return -EOPNOTSUPP; 1011 } 1012 kvm->arch.crypto.apie = 0; 1013 break; 1014 default: 1015 mutex_unlock(&kvm->lock); 1016 return -ENXIO; 1017 } 1018 1019 kvm_s390_vcpu_crypto_reset_all(kvm); 1020 mutex_unlock(&kvm->lock); 1021 return 0; 1022 } 1023 1024 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1025 { 1026 int cx; 1027 struct kvm_vcpu *vcpu; 1028 1029 kvm_for_each_vcpu(cx, vcpu, kvm) 1030 kvm_s390_sync_request(req, vcpu); 1031 } 1032 1033 /* 1034 * Must be called with kvm->srcu held to avoid races on memslots, and with 1035 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1036 */ 1037 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1038 { 1039 struct kvm_memory_slot *ms; 1040 struct kvm_memslots *slots; 1041 unsigned long ram_pages = 0; 1042 int slotnr; 1043 1044 /* migration mode already enabled */ 1045 if (kvm->arch.migration_mode) 1046 return 0; 1047 slots = kvm_memslots(kvm); 1048 if (!slots || !slots->used_slots) 1049 return -EINVAL; 1050 1051 if (!kvm->arch.use_cmma) { 1052 kvm->arch.migration_mode = 1; 1053 return 0; 1054 } 1055 /* mark all the pages in active slots as dirty */ 1056 for (slotnr = 0; slotnr < slots->used_slots; slotnr++) { 1057 ms = slots->memslots + slotnr; 1058 if (!ms->dirty_bitmap) 1059 return -EINVAL; 1060 /* 1061 * The second half of the bitmap is only used on x86, 1062 * and would be wasted otherwise, so we put it to good 1063 * use here to keep track of the state of the storage 1064 * attributes. 1065 */ 1066 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1067 ram_pages += ms->npages; 1068 } 1069 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1070 kvm->arch.migration_mode = 1; 1071 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1072 return 0; 1073 } 1074 1075 /* 1076 * Must be called with kvm->slots_lock to avoid races with ourselves and 1077 * kvm_s390_vm_start_migration. 1078 */ 1079 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1080 { 1081 /* migration mode already disabled */ 1082 if (!kvm->arch.migration_mode) 1083 return 0; 1084 kvm->arch.migration_mode = 0; 1085 if (kvm->arch.use_cmma) 1086 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1087 return 0; 1088 } 1089 1090 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1091 struct kvm_device_attr *attr) 1092 { 1093 int res = -ENXIO; 1094 1095 mutex_lock(&kvm->slots_lock); 1096 switch (attr->attr) { 1097 case KVM_S390_VM_MIGRATION_START: 1098 res = kvm_s390_vm_start_migration(kvm); 1099 break; 1100 case KVM_S390_VM_MIGRATION_STOP: 1101 res = kvm_s390_vm_stop_migration(kvm); 1102 break; 1103 default: 1104 break; 1105 } 1106 mutex_unlock(&kvm->slots_lock); 1107 1108 return res; 1109 } 1110 1111 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1112 struct kvm_device_attr *attr) 1113 { 1114 u64 mig = kvm->arch.migration_mode; 1115 1116 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1117 return -ENXIO; 1118 1119 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1120 return -EFAULT; 1121 return 0; 1122 } 1123 1124 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1125 { 1126 struct kvm_s390_vm_tod_clock gtod; 1127 1128 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1129 return -EFAULT; 1130 1131 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1132 return -EINVAL; 1133 kvm_s390_set_tod_clock(kvm, >od); 1134 1135 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1136 gtod.epoch_idx, gtod.tod); 1137 1138 return 0; 1139 } 1140 1141 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1142 { 1143 u8 gtod_high; 1144 1145 if (copy_from_user(>od_high, (void __user *)attr->addr, 1146 sizeof(gtod_high))) 1147 return -EFAULT; 1148 1149 if (gtod_high != 0) 1150 return -EINVAL; 1151 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1152 1153 return 0; 1154 } 1155 1156 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1157 { 1158 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1159 1160 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1161 sizeof(gtod.tod))) 1162 return -EFAULT; 1163 1164 kvm_s390_set_tod_clock(kvm, >od); 1165 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1166 return 0; 1167 } 1168 1169 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1170 { 1171 int ret; 1172 1173 if (attr->flags) 1174 return -EINVAL; 1175 1176 switch (attr->attr) { 1177 case KVM_S390_VM_TOD_EXT: 1178 ret = kvm_s390_set_tod_ext(kvm, attr); 1179 break; 1180 case KVM_S390_VM_TOD_HIGH: 1181 ret = kvm_s390_set_tod_high(kvm, attr); 1182 break; 1183 case KVM_S390_VM_TOD_LOW: 1184 ret = kvm_s390_set_tod_low(kvm, attr); 1185 break; 1186 default: 1187 ret = -ENXIO; 1188 break; 1189 } 1190 return ret; 1191 } 1192 1193 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1194 struct kvm_s390_vm_tod_clock *gtod) 1195 { 1196 union tod_clock clk; 1197 1198 preempt_disable(); 1199 1200 store_tod_clock_ext(&clk); 1201 1202 gtod->tod = clk.tod + kvm->arch.epoch; 1203 gtod->epoch_idx = 0; 1204 if (test_kvm_facility(kvm, 139)) { 1205 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1206 if (gtod->tod < clk.tod) 1207 gtod->epoch_idx += 1; 1208 } 1209 1210 preempt_enable(); 1211 } 1212 1213 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1214 { 1215 struct kvm_s390_vm_tod_clock gtod; 1216 1217 memset(>od, 0, sizeof(gtod)); 1218 kvm_s390_get_tod_clock(kvm, >od); 1219 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1220 return -EFAULT; 1221 1222 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1223 gtod.epoch_idx, gtod.tod); 1224 return 0; 1225 } 1226 1227 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1228 { 1229 u8 gtod_high = 0; 1230 1231 if (copy_to_user((void __user *)attr->addr, >od_high, 1232 sizeof(gtod_high))) 1233 return -EFAULT; 1234 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1235 1236 return 0; 1237 } 1238 1239 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1240 { 1241 u64 gtod; 1242 1243 gtod = kvm_s390_get_tod_clock_fast(kvm); 1244 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1245 return -EFAULT; 1246 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1247 1248 return 0; 1249 } 1250 1251 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1252 { 1253 int ret; 1254 1255 if (attr->flags) 1256 return -EINVAL; 1257 1258 switch (attr->attr) { 1259 case KVM_S390_VM_TOD_EXT: 1260 ret = kvm_s390_get_tod_ext(kvm, attr); 1261 break; 1262 case KVM_S390_VM_TOD_HIGH: 1263 ret = kvm_s390_get_tod_high(kvm, attr); 1264 break; 1265 case KVM_S390_VM_TOD_LOW: 1266 ret = kvm_s390_get_tod_low(kvm, attr); 1267 break; 1268 default: 1269 ret = -ENXIO; 1270 break; 1271 } 1272 return ret; 1273 } 1274 1275 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1276 { 1277 struct kvm_s390_vm_cpu_processor *proc; 1278 u16 lowest_ibc, unblocked_ibc; 1279 int ret = 0; 1280 1281 mutex_lock(&kvm->lock); 1282 if (kvm->created_vcpus) { 1283 ret = -EBUSY; 1284 goto out; 1285 } 1286 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1287 if (!proc) { 1288 ret = -ENOMEM; 1289 goto out; 1290 } 1291 if (!copy_from_user(proc, (void __user *)attr->addr, 1292 sizeof(*proc))) { 1293 kvm->arch.model.cpuid = proc->cpuid; 1294 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1295 unblocked_ibc = sclp.ibc & 0xfff; 1296 if (lowest_ibc && proc->ibc) { 1297 if (proc->ibc > unblocked_ibc) 1298 kvm->arch.model.ibc = unblocked_ibc; 1299 else if (proc->ibc < lowest_ibc) 1300 kvm->arch.model.ibc = lowest_ibc; 1301 else 1302 kvm->arch.model.ibc = proc->ibc; 1303 } 1304 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1305 S390_ARCH_FAC_LIST_SIZE_BYTE); 1306 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1307 kvm->arch.model.ibc, 1308 kvm->arch.model.cpuid); 1309 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1310 kvm->arch.model.fac_list[0], 1311 kvm->arch.model.fac_list[1], 1312 kvm->arch.model.fac_list[2]); 1313 } else 1314 ret = -EFAULT; 1315 kfree(proc); 1316 out: 1317 mutex_unlock(&kvm->lock); 1318 return ret; 1319 } 1320 1321 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1322 struct kvm_device_attr *attr) 1323 { 1324 struct kvm_s390_vm_cpu_feat data; 1325 1326 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1327 return -EFAULT; 1328 if (!bitmap_subset((unsigned long *) data.feat, 1329 kvm_s390_available_cpu_feat, 1330 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1331 return -EINVAL; 1332 1333 mutex_lock(&kvm->lock); 1334 if (kvm->created_vcpus) { 1335 mutex_unlock(&kvm->lock); 1336 return -EBUSY; 1337 } 1338 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 1339 KVM_S390_VM_CPU_FEAT_NR_BITS); 1340 mutex_unlock(&kvm->lock); 1341 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1342 data.feat[0], 1343 data.feat[1], 1344 data.feat[2]); 1345 return 0; 1346 } 1347 1348 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1349 struct kvm_device_attr *attr) 1350 { 1351 mutex_lock(&kvm->lock); 1352 if (kvm->created_vcpus) { 1353 mutex_unlock(&kvm->lock); 1354 return -EBUSY; 1355 } 1356 1357 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1358 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1359 mutex_unlock(&kvm->lock); 1360 return -EFAULT; 1361 } 1362 mutex_unlock(&kvm->lock); 1363 1364 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1365 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1366 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1367 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1368 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1369 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1370 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1371 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1372 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1373 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1374 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1375 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1376 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1377 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1378 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1379 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1380 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1381 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1382 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1383 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1384 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1385 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1386 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1387 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1388 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1389 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1390 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1391 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1392 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1393 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1394 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1395 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1396 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1397 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1398 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1399 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1400 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1401 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1402 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1403 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1404 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1405 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1406 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1407 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1408 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1409 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1410 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1411 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1412 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1413 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1414 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1415 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1416 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1417 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1418 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1419 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1420 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1421 1422 return 0; 1423 } 1424 1425 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1426 { 1427 int ret = -ENXIO; 1428 1429 switch (attr->attr) { 1430 case KVM_S390_VM_CPU_PROCESSOR: 1431 ret = kvm_s390_set_processor(kvm, attr); 1432 break; 1433 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1434 ret = kvm_s390_set_processor_feat(kvm, attr); 1435 break; 1436 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1437 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1438 break; 1439 } 1440 return ret; 1441 } 1442 1443 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1444 { 1445 struct kvm_s390_vm_cpu_processor *proc; 1446 int ret = 0; 1447 1448 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1449 if (!proc) { 1450 ret = -ENOMEM; 1451 goto out; 1452 } 1453 proc->cpuid = kvm->arch.model.cpuid; 1454 proc->ibc = kvm->arch.model.ibc; 1455 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1456 S390_ARCH_FAC_LIST_SIZE_BYTE); 1457 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1458 kvm->arch.model.ibc, 1459 kvm->arch.model.cpuid); 1460 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1461 kvm->arch.model.fac_list[0], 1462 kvm->arch.model.fac_list[1], 1463 kvm->arch.model.fac_list[2]); 1464 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1465 ret = -EFAULT; 1466 kfree(proc); 1467 out: 1468 return ret; 1469 } 1470 1471 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1472 { 1473 struct kvm_s390_vm_cpu_machine *mach; 1474 int ret = 0; 1475 1476 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1477 if (!mach) { 1478 ret = -ENOMEM; 1479 goto out; 1480 } 1481 get_cpu_id((struct cpuid *) &mach->cpuid); 1482 mach->ibc = sclp.ibc; 1483 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1484 S390_ARCH_FAC_LIST_SIZE_BYTE); 1485 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1486 sizeof(stfle_fac_list)); 1487 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1488 kvm->arch.model.ibc, 1489 kvm->arch.model.cpuid); 1490 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1491 mach->fac_mask[0], 1492 mach->fac_mask[1], 1493 mach->fac_mask[2]); 1494 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1495 mach->fac_list[0], 1496 mach->fac_list[1], 1497 mach->fac_list[2]); 1498 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1499 ret = -EFAULT; 1500 kfree(mach); 1501 out: 1502 return ret; 1503 } 1504 1505 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1506 struct kvm_device_attr *attr) 1507 { 1508 struct kvm_s390_vm_cpu_feat data; 1509 1510 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 1511 KVM_S390_VM_CPU_FEAT_NR_BITS); 1512 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1513 return -EFAULT; 1514 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1515 data.feat[0], 1516 data.feat[1], 1517 data.feat[2]); 1518 return 0; 1519 } 1520 1521 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1522 struct kvm_device_attr *attr) 1523 { 1524 struct kvm_s390_vm_cpu_feat data; 1525 1526 bitmap_copy((unsigned long *) data.feat, 1527 kvm_s390_available_cpu_feat, 1528 KVM_S390_VM_CPU_FEAT_NR_BITS); 1529 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1530 return -EFAULT; 1531 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1532 data.feat[0], 1533 data.feat[1], 1534 data.feat[2]); 1535 return 0; 1536 } 1537 1538 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1539 struct kvm_device_attr *attr) 1540 { 1541 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1542 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1543 return -EFAULT; 1544 1545 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1546 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1547 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1548 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1549 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1550 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1551 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1552 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1553 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1554 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1555 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1556 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1557 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1558 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1559 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1560 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1561 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1562 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1563 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1564 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1565 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1566 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1567 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1568 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1569 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1570 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1571 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1572 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1573 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1574 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1575 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1576 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1577 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1578 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1579 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1580 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1581 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1582 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1583 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1584 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1585 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1586 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1587 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1588 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1589 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1590 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1591 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1592 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1593 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1594 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1595 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1596 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1597 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1598 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1599 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1600 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1601 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1602 1603 return 0; 1604 } 1605 1606 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1607 struct kvm_device_attr *attr) 1608 { 1609 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1610 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1611 return -EFAULT; 1612 1613 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1614 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1615 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1616 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1617 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1618 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1619 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1620 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1621 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1622 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1623 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1624 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1625 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1626 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1627 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1628 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1629 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1630 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1631 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1632 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1633 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1634 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1635 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1636 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1637 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1638 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1639 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1640 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1641 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1642 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1643 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1644 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1645 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1646 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1647 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1648 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1649 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1650 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1651 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1652 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1653 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1654 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1655 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1656 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1657 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1658 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1659 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1660 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1661 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1662 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1663 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1664 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1665 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1666 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1667 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1668 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1669 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1670 1671 return 0; 1672 } 1673 1674 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1675 { 1676 int ret = -ENXIO; 1677 1678 switch (attr->attr) { 1679 case KVM_S390_VM_CPU_PROCESSOR: 1680 ret = kvm_s390_get_processor(kvm, attr); 1681 break; 1682 case KVM_S390_VM_CPU_MACHINE: 1683 ret = kvm_s390_get_machine(kvm, attr); 1684 break; 1685 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1686 ret = kvm_s390_get_processor_feat(kvm, attr); 1687 break; 1688 case KVM_S390_VM_CPU_MACHINE_FEAT: 1689 ret = kvm_s390_get_machine_feat(kvm, attr); 1690 break; 1691 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1692 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1693 break; 1694 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1695 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1696 break; 1697 } 1698 return ret; 1699 } 1700 1701 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1702 { 1703 int ret; 1704 1705 switch (attr->group) { 1706 case KVM_S390_VM_MEM_CTRL: 1707 ret = kvm_s390_set_mem_control(kvm, attr); 1708 break; 1709 case KVM_S390_VM_TOD: 1710 ret = kvm_s390_set_tod(kvm, attr); 1711 break; 1712 case KVM_S390_VM_CPU_MODEL: 1713 ret = kvm_s390_set_cpu_model(kvm, attr); 1714 break; 1715 case KVM_S390_VM_CRYPTO: 1716 ret = kvm_s390_vm_set_crypto(kvm, attr); 1717 break; 1718 case KVM_S390_VM_MIGRATION: 1719 ret = kvm_s390_vm_set_migration(kvm, attr); 1720 break; 1721 default: 1722 ret = -ENXIO; 1723 break; 1724 } 1725 1726 return ret; 1727 } 1728 1729 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1730 { 1731 int ret; 1732 1733 switch (attr->group) { 1734 case KVM_S390_VM_MEM_CTRL: 1735 ret = kvm_s390_get_mem_control(kvm, attr); 1736 break; 1737 case KVM_S390_VM_TOD: 1738 ret = kvm_s390_get_tod(kvm, attr); 1739 break; 1740 case KVM_S390_VM_CPU_MODEL: 1741 ret = kvm_s390_get_cpu_model(kvm, attr); 1742 break; 1743 case KVM_S390_VM_MIGRATION: 1744 ret = kvm_s390_vm_get_migration(kvm, attr); 1745 break; 1746 default: 1747 ret = -ENXIO; 1748 break; 1749 } 1750 1751 return ret; 1752 } 1753 1754 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1755 { 1756 int ret; 1757 1758 switch (attr->group) { 1759 case KVM_S390_VM_MEM_CTRL: 1760 switch (attr->attr) { 1761 case KVM_S390_VM_MEM_ENABLE_CMMA: 1762 case KVM_S390_VM_MEM_CLR_CMMA: 1763 ret = sclp.has_cmma ? 0 : -ENXIO; 1764 break; 1765 case KVM_S390_VM_MEM_LIMIT_SIZE: 1766 ret = 0; 1767 break; 1768 default: 1769 ret = -ENXIO; 1770 break; 1771 } 1772 break; 1773 case KVM_S390_VM_TOD: 1774 switch (attr->attr) { 1775 case KVM_S390_VM_TOD_LOW: 1776 case KVM_S390_VM_TOD_HIGH: 1777 ret = 0; 1778 break; 1779 default: 1780 ret = -ENXIO; 1781 break; 1782 } 1783 break; 1784 case KVM_S390_VM_CPU_MODEL: 1785 switch (attr->attr) { 1786 case KVM_S390_VM_CPU_PROCESSOR: 1787 case KVM_S390_VM_CPU_MACHINE: 1788 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1789 case KVM_S390_VM_CPU_MACHINE_FEAT: 1790 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1791 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1792 ret = 0; 1793 break; 1794 default: 1795 ret = -ENXIO; 1796 break; 1797 } 1798 break; 1799 case KVM_S390_VM_CRYPTO: 1800 switch (attr->attr) { 1801 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1802 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1803 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1804 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1805 ret = 0; 1806 break; 1807 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1808 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1809 ret = ap_instructions_available() ? 0 : -ENXIO; 1810 break; 1811 default: 1812 ret = -ENXIO; 1813 break; 1814 } 1815 break; 1816 case KVM_S390_VM_MIGRATION: 1817 ret = 0; 1818 break; 1819 default: 1820 ret = -ENXIO; 1821 break; 1822 } 1823 1824 return ret; 1825 } 1826 1827 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1828 { 1829 uint8_t *keys; 1830 uint64_t hva; 1831 int srcu_idx, i, r = 0; 1832 1833 if (args->flags != 0) 1834 return -EINVAL; 1835 1836 /* Is this guest using storage keys? */ 1837 if (!mm_uses_skeys(current->mm)) 1838 return KVM_S390_GET_SKEYS_NONE; 1839 1840 /* Enforce sane limit on memory allocation */ 1841 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1842 return -EINVAL; 1843 1844 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 1845 if (!keys) 1846 return -ENOMEM; 1847 1848 mmap_read_lock(current->mm); 1849 srcu_idx = srcu_read_lock(&kvm->srcu); 1850 for (i = 0; i < args->count; i++) { 1851 hva = gfn_to_hva(kvm, args->start_gfn + i); 1852 if (kvm_is_error_hva(hva)) { 1853 r = -EFAULT; 1854 break; 1855 } 1856 1857 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1858 if (r) 1859 break; 1860 } 1861 srcu_read_unlock(&kvm->srcu, srcu_idx); 1862 mmap_read_unlock(current->mm); 1863 1864 if (!r) { 1865 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1866 sizeof(uint8_t) * args->count); 1867 if (r) 1868 r = -EFAULT; 1869 } 1870 1871 kvfree(keys); 1872 return r; 1873 } 1874 1875 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1876 { 1877 uint8_t *keys; 1878 uint64_t hva; 1879 int srcu_idx, i, r = 0; 1880 bool unlocked; 1881 1882 if (args->flags != 0) 1883 return -EINVAL; 1884 1885 /* Enforce sane limit on memory allocation */ 1886 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1887 return -EINVAL; 1888 1889 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 1890 if (!keys) 1891 return -ENOMEM; 1892 1893 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1894 sizeof(uint8_t) * args->count); 1895 if (r) { 1896 r = -EFAULT; 1897 goto out; 1898 } 1899 1900 /* Enable storage key handling for the guest */ 1901 r = s390_enable_skey(); 1902 if (r) 1903 goto out; 1904 1905 i = 0; 1906 mmap_read_lock(current->mm); 1907 srcu_idx = srcu_read_lock(&kvm->srcu); 1908 while (i < args->count) { 1909 unlocked = false; 1910 hva = gfn_to_hva(kvm, args->start_gfn + i); 1911 if (kvm_is_error_hva(hva)) { 1912 r = -EFAULT; 1913 break; 1914 } 1915 1916 /* Lowest order bit is reserved */ 1917 if (keys[i] & 0x01) { 1918 r = -EINVAL; 1919 break; 1920 } 1921 1922 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1923 if (r) { 1924 r = fixup_user_fault(current->mm, hva, 1925 FAULT_FLAG_WRITE, &unlocked); 1926 if (r) 1927 break; 1928 } 1929 if (!r) 1930 i++; 1931 } 1932 srcu_read_unlock(&kvm->srcu, srcu_idx); 1933 mmap_read_unlock(current->mm); 1934 out: 1935 kvfree(keys); 1936 return r; 1937 } 1938 1939 /* 1940 * Base address and length must be sent at the start of each block, therefore 1941 * it's cheaper to send some clean data, as long as it's less than the size of 1942 * two longs. 1943 */ 1944 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 1945 /* for consistency */ 1946 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 1947 1948 /* 1949 * Similar to gfn_to_memslot, but returns the index of a memslot also when the 1950 * address falls in a hole. In that case the index of one of the memslots 1951 * bordering the hole is returned. 1952 */ 1953 static int gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn) 1954 { 1955 int start = 0, end = slots->used_slots; 1956 int slot = atomic_read(&slots->lru_slot); 1957 struct kvm_memory_slot *memslots = slots->memslots; 1958 1959 if (gfn >= memslots[slot].base_gfn && 1960 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1961 return slot; 1962 1963 while (start < end) { 1964 slot = start + (end - start) / 2; 1965 1966 if (gfn >= memslots[slot].base_gfn) 1967 end = slot; 1968 else 1969 start = slot + 1; 1970 } 1971 1972 if (start >= slots->used_slots) 1973 return slots->used_slots - 1; 1974 1975 if (gfn >= memslots[start].base_gfn && 1976 gfn < memslots[start].base_gfn + memslots[start].npages) { 1977 atomic_set(&slots->lru_slot, start); 1978 } 1979 1980 return start; 1981 } 1982 1983 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 1984 u8 *res, unsigned long bufsize) 1985 { 1986 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 1987 1988 args->count = 0; 1989 while (args->count < bufsize) { 1990 hva = gfn_to_hva(kvm, cur_gfn); 1991 /* 1992 * We return an error if the first value was invalid, but we 1993 * return successfully if at least one value was copied. 1994 */ 1995 if (kvm_is_error_hva(hva)) 1996 return args->count ? 0 : -EFAULT; 1997 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 1998 pgstev = 0; 1999 res[args->count++] = (pgstev >> 24) & 0x43; 2000 cur_gfn++; 2001 } 2002 2003 return 0; 2004 } 2005 2006 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2007 unsigned long cur_gfn) 2008 { 2009 int slotidx = gfn_to_memslot_approx(slots, cur_gfn); 2010 struct kvm_memory_slot *ms = slots->memslots + slotidx; 2011 unsigned long ofs = cur_gfn - ms->base_gfn; 2012 2013 if (ms->base_gfn + ms->npages <= cur_gfn) { 2014 slotidx--; 2015 /* If we are above the highest slot, wrap around */ 2016 if (slotidx < 0) 2017 slotidx = slots->used_slots - 1; 2018 2019 ms = slots->memslots + slotidx; 2020 ofs = 0; 2021 } 2022 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2023 while ((slotidx > 0) && (ofs >= ms->npages)) { 2024 slotidx--; 2025 ms = slots->memslots + slotidx; 2026 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, 0); 2027 } 2028 return ms->base_gfn + ofs; 2029 } 2030 2031 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2032 u8 *res, unsigned long bufsize) 2033 { 2034 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2035 struct kvm_memslots *slots = kvm_memslots(kvm); 2036 struct kvm_memory_slot *ms; 2037 2038 if (unlikely(!slots->used_slots)) 2039 return 0; 2040 2041 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2042 ms = gfn_to_memslot(kvm, cur_gfn); 2043 args->count = 0; 2044 args->start_gfn = cur_gfn; 2045 if (!ms) 2046 return 0; 2047 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2048 mem_end = slots->memslots[0].base_gfn + slots->memslots[0].npages; 2049 2050 while (args->count < bufsize) { 2051 hva = gfn_to_hva(kvm, cur_gfn); 2052 if (kvm_is_error_hva(hva)) 2053 return 0; 2054 /* Decrement only if we actually flipped the bit to 0 */ 2055 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2056 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2057 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2058 pgstev = 0; 2059 /* Save the value */ 2060 res[args->count++] = (pgstev >> 24) & 0x43; 2061 /* If the next bit is too far away, stop. */ 2062 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2063 return 0; 2064 /* If we reached the previous "next", find the next one */ 2065 if (cur_gfn == next_gfn) 2066 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2067 /* Reached the end of memory or of the buffer, stop */ 2068 if ((next_gfn >= mem_end) || 2069 (next_gfn - args->start_gfn >= bufsize)) 2070 return 0; 2071 cur_gfn++; 2072 /* Reached the end of the current memslot, take the next one. */ 2073 if (cur_gfn - ms->base_gfn >= ms->npages) { 2074 ms = gfn_to_memslot(kvm, cur_gfn); 2075 if (!ms) 2076 return 0; 2077 } 2078 } 2079 return 0; 2080 } 2081 2082 /* 2083 * This function searches for the next page with dirty CMMA attributes, and 2084 * saves the attributes in the buffer up to either the end of the buffer or 2085 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2086 * no trailing clean bytes are saved. 2087 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2088 * output buffer will indicate 0 as length. 2089 */ 2090 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2091 struct kvm_s390_cmma_log *args) 2092 { 2093 unsigned long bufsize; 2094 int srcu_idx, peek, ret; 2095 u8 *values; 2096 2097 if (!kvm->arch.use_cmma) 2098 return -ENXIO; 2099 /* Invalid/unsupported flags were specified */ 2100 if (args->flags & ~KVM_S390_CMMA_PEEK) 2101 return -EINVAL; 2102 /* Migration mode query, and we are not doing a migration */ 2103 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2104 if (!peek && !kvm->arch.migration_mode) 2105 return -EINVAL; 2106 /* CMMA is disabled or was not used, or the buffer has length zero */ 2107 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2108 if (!bufsize || !kvm->mm->context.uses_cmm) { 2109 memset(args, 0, sizeof(*args)); 2110 return 0; 2111 } 2112 /* We are not peeking, and there are no dirty pages */ 2113 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2114 memset(args, 0, sizeof(*args)); 2115 return 0; 2116 } 2117 2118 values = vmalloc(bufsize); 2119 if (!values) 2120 return -ENOMEM; 2121 2122 mmap_read_lock(kvm->mm); 2123 srcu_idx = srcu_read_lock(&kvm->srcu); 2124 if (peek) 2125 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2126 else 2127 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2128 srcu_read_unlock(&kvm->srcu, srcu_idx); 2129 mmap_read_unlock(kvm->mm); 2130 2131 if (kvm->arch.migration_mode) 2132 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2133 else 2134 args->remaining = 0; 2135 2136 if (copy_to_user((void __user *)args->values, values, args->count)) 2137 ret = -EFAULT; 2138 2139 vfree(values); 2140 return ret; 2141 } 2142 2143 /* 2144 * This function sets the CMMA attributes for the given pages. If the input 2145 * buffer has zero length, no action is taken, otherwise the attributes are 2146 * set and the mm->context.uses_cmm flag is set. 2147 */ 2148 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2149 const struct kvm_s390_cmma_log *args) 2150 { 2151 unsigned long hva, mask, pgstev, i; 2152 uint8_t *bits; 2153 int srcu_idx, r = 0; 2154 2155 mask = args->mask; 2156 2157 if (!kvm->arch.use_cmma) 2158 return -ENXIO; 2159 /* invalid/unsupported flags */ 2160 if (args->flags != 0) 2161 return -EINVAL; 2162 /* Enforce sane limit on memory allocation */ 2163 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2164 return -EINVAL; 2165 /* Nothing to do */ 2166 if (args->count == 0) 2167 return 0; 2168 2169 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2170 if (!bits) 2171 return -ENOMEM; 2172 2173 r = copy_from_user(bits, (void __user *)args->values, args->count); 2174 if (r) { 2175 r = -EFAULT; 2176 goto out; 2177 } 2178 2179 mmap_read_lock(kvm->mm); 2180 srcu_idx = srcu_read_lock(&kvm->srcu); 2181 for (i = 0; i < args->count; i++) { 2182 hva = gfn_to_hva(kvm, args->start_gfn + i); 2183 if (kvm_is_error_hva(hva)) { 2184 r = -EFAULT; 2185 break; 2186 } 2187 2188 pgstev = bits[i]; 2189 pgstev = pgstev << 24; 2190 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2191 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2192 } 2193 srcu_read_unlock(&kvm->srcu, srcu_idx); 2194 mmap_read_unlock(kvm->mm); 2195 2196 if (!kvm->mm->context.uses_cmm) { 2197 mmap_write_lock(kvm->mm); 2198 kvm->mm->context.uses_cmm = 1; 2199 mmap_write_unlock(kvm->mm); 2200 } 2201 out: 2202 vfree(bits); 2203 return r; 2204 } 2205 2206 static int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rcp, u16 *rrcp) 2207 { 2208 struct kvm_vcpu *vcpu; 2209 u16 rc, rrc; 2210 int ret = 0; 2211 int i; 2212 2213 /* 2214 * We ignore failures and try to destroy as many CPUs as possible. 2215 * At the same time we must not free the assigned resources when 2216 * this fails, as the ultravisor has still access to that memory. 2217 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2218 * behind. 2219 * We want to return the first failure rc and rrc, though. 2220 */ 2221 kvm_for_each_vcpu(i, vcpu, kvm) { 2222 mutex_lock(&vcpu->mutex); 2223 if (kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc) && !ret) { 2224 *rcp = rc; 2225 *rrcp = rrc; 2226 ret = -EIO; 2227 } 2228 mutex_unlock(&vcpu->mutex); 2229 } 2230 return ret; 2231 } 2232 2233 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2234 { 2235 int i, r = 0; 2236 u16 dummy; 2237 2238 struct kvm_vcpu *vcpu; 2239 2240 kvm_for_each_vcpu(i, vcpu, kvm) { 2241 mutex_lock(&vcpu->mutex); 2242 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2243 mutex_unlock(&vcpu->mutex); 2244 if (r) 2245 break; 2246 } 2247 if (r) 2248 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2249 return r; 2250 } 2251 2252 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2253 { 2254 int r = 0; 2255 u16 dummy; 2256 void __user *argp = (void __user *)cmd->data; 2257 2258 switch (cmd->cmd) { 2259 case KVM_PV_ENABLE: { 2260 r = -EINVAL; 2261 if (kvm_s390_pv_is_protected(kvm)) 2262 break; 2263 2264 /* 2265 * FMT 4 SIE needs esca. As we never switch back to bsca from 2266 * esca, we need no cleanup in the error cases below 2267 */ 2268 r = sca_switch_to_extended(kvm); 2269 if (r) 2270 break; 2271 2272 mmap_write_lock(current->mm); 2273 r = gmap_mark_unmergeable(); 2274 mmap_write_unlock(current->mm); 2275 if (r) 2276 break; 2277 2278 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2279 if (r) 2280 break; 2281 2282 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2283 if (r) 2284 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2285 2286 /* we need to block service interrupts from now on */ 2287 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2288 break; 2289 } 2290 case KVM_PV_DISABLE: { 2291 r = -EINVAL; 2292 if (!kvm_s390_pv_is_protected(kvm)) 2293 break; 2294 2295 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2296 /* 2297 * If a CPU could not be destroyed, destroy VM will also fail. 2298 * There is no point in trying to destroy it. Instead return 2299 * the rc and rrc from the first CPU that failed destroying. 2300 */ 2301 if (r) 2302 break; 2303 r = kvm_s390_pv_deinit_vm(kvm, &cmd->rc, &cmd->rrc); 2304 2305 /* no need to block service interrupts any more */ 2306 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2307 break; 2308 } 2309 case KVM_PV_SET_SEC_PARMS: { 2310 struct kvm_s390_pv_sec_parm parms = {}; 2311 void *hdr; 2312 2313 r = -EINVAL; 2314 if (!kvm_s390_pv_is_protected(kvm)) 2315 break; 2316 2317 r = -EFAULT; 2318 if (copy_from_user(&parms, argp, sizeof(parms))) 2319 break; 2320 2321 /* Currently restricted to 8KB */ 2322 r = -EINVAL; 2323 if (parms.length > PAGE_SIZE * 2) 2324 break; 2325 2326 r = -ENOMEM; 2327 hdr = vmalloc(parms.length); 2328 if (!hdr) 2329 break; 2330 2331 r = -EFAULT; 2332 if (!copy_from_user(hdr, (void __user *)parms.origin, 2333 parms.length)) 2334 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2335 &cmd->rc, &cmd->rrc); 2336 2337 vfree(hdr); 2338 break; 2339 } 2340 case KVM_PV_UNPACK: { 2341 struct kvm_s390_pv_unp unp = {}; 2342 2343 r = -EINVAL; 2344 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2345 break; 2346 2347 r = -EFAULT; 2348 if (copy_from_user(&unp, argp, sizeof(unp))) 2349 break; 2350 2351 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2352 &cmd->rc, &cmd->rrc); 2353 break; 2354 } 2355 case KVM_PV_VERIFY: { 2356 r = -EINVAL; 2357 if (!kvm_s390_pv_is_protected(kvm)) 2358 break; 2359 2360 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2361 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2362 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2363 cmd->rrc); 2364 break; 2365 } 2366 case KVM_PV_PREP_RESET: { 2367 r = -EINVAL; 2368 if (!kvm_s390_pv_is_protected(kvm)) 2369 break; 2370 2371 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2372 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2373 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2374 cmd->rc, cmd->rrc); 2375 break; 2376 } 2377 case KVM_PV_UNSHARE_ALL: { 2378 r = -EINVAL; 2379 if (!kvm_s390_pv_is_protected(kvm)) 2380 break; 2381 2382 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2383 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2384 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2385 cmd->rc, cmd->rrc); 2386 break; 2387 } 2388 default: 2389 r = -ENOTTY; 2390 } 2391 return r; 2392 } 2393 2394 long kvm_arch_vm_ioctl(struct file *filp, 2395 unsigned int ioctl, unsigned long arg) 2396 { 2397 struct kvm *kvm = filp->private_data; 2398 void __user *argp = (void __user *)arg; 2399 struct kvm_device_attr attr; 2400 int r; 2401 2402 switch (ioctl) { 2403 case KVM_S390_INTERRUPT: { 2404 struct kvm_s390_interrupt s390int; 2405 2406 r = -EFAULT; 2407 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2408 break; 2409 r = kvm_s390_inject_vm(kvm, &s390int); 2410 break; 2411 } 2412 case KVM_CREATE_IRQCHIP: { 2413 struct kvm_irq_routing_entry routing; 2414 2415 r = -EINVAL; 2416 if (kvm->arch.use_irqchip) { 2417 /* Set up dummy routing. */ 2418 memset(&routing, 0, sizeof(routing)); 2419 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 2420 } 2421 break; 2422 } 2423 case KVM_SET_DEVICE_ATTR: { 2424 r = -EFAULT; 2425 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2426 break; 2427 r = kvm_s390_vm_set_attr(kvm, &attr); 2428 break; 2429 } 2430 case KVM_GET_DEVICE_ATTR: { 2431 r = -EFAULT; 2432 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2433 break; 2434 r = kvm_s390_vm_get_attr(kvm, &attr); 2435 break; 2436 } 2437 case KVM_HAS_DEVICE_ATTR: { 2438 r = -EFAULT; 2439 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 2440 break; 2441 r = kvm_s390_vm_has_attr(kvm, &attr); 2442 break; 2443 } 2444 case KVM_S390_GET_SKEYS: { 2445 struct kvm_s390_skeys args; 2446 2447 r = -EFAULT; 2448 if (copy_from_user(&args, argp, 2449 sizeof(struct kvm_s390_skeys))) 2450 break; 2451 r = kvm_s390_get_skeys(kvm, &args); 2452 break; 2453 } 2454 case KVM_S390_SET_SKEYS: { 2455 struct kvm_s390_skeys args; 2456 2457 r = -EFAULT; 2458 if (copy_from_user(&args, argp, 2459 sizeof(struct kvm_s390_skeys))) 2460 break; 2461 r = kvm_s390_set_skeys(kvm, &args); 2462 break; 2463 } 2464 case KVM_S390_GET_CMMA_BITS: { 2465 struct kvm_s390_cmma_log args; 2466 2467 r = -EFAULT; 2468 if (copy_from_user(&args, argp, sizeof(args))) 2469 break; 2470 mutex_lock(&kvm->slots_lock); 2471 r = kvm_s390_get_cmma_bits(kvm, &args); 2472 mutex_unlock(&kvm->slots_lock); 2473 if (!r) { 2474 r = copy_to_user(argp, &args, sizeof(args)); 2475 if (r) 2476 r = -EFAULT; 2477 } 2478 break; 2479 } 2480 case KVM_S390_SET_CMMA_BITS: { 2481 struct kvm_s390_cmma_log args; 2482 2483 r = -EFAULT; 2484 if (copy_from_user(&args, argp, sizeof(args))) 2485 break; 2486 mutex_lock(&kvm->slots_lock); 2487 r = kvm_s390_set_cmma_bits(kvm, &args); 2488 mutex_unlock(&kvm->slots_lock); 2489 break; 2490 } 2491 case KVM_S390_PV_COMMAND: { 2492 struct kvm_pv_cmd args; 2493 2494 /* protvirt means user sigp */ 2495 kvm->arch.user_cpu_state_ctrl = 1; 2496 r = 0; 2497 if (!is_prot_virt_host()) { 2498 r = -EINVAL; 2499 break; 2500 } 2501 if (copy_from_user(&args, argp, sizeof(args))) { 2502 r = -EFAULT; 2503 break; 2504 } 2505 if (args.flags) { 2506 r = -EINVAL; 2507 break; 2508 } 2509 mutex_lock(&kvm->lock); 2510 r = kvm_s390_handle_pv(kvm, &args); 2511 mutex_unlock(&kvm->lock); 2512 if (copy_to_user(argp, &args, sizeof(args))) { 2513 r = -EFAULT; 2514 break; 2515 } 2516 break; 2517 } 2518 default: 2519 r = -ENOTTY; 2520 } 2521 2522 return r; 2523 } 2524 2525 static int kvm_s390_apxa_installed(void) 2526 { 2527 struct ap_config_info info; 2528 2529 if (ap_instructions_available()) { 2530 if (ap_qci(&info) == 0) 2531 return info.apxa; 2532 } 2533 2534 return 0; 2535 } 2536 2537 /* 2538 * The format of the crypto control block (CRYCB) is specified in the 3 low 2539 * order bits of the CRYCB designation (CRYCBD) field as follows: 2540 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 2541 * AP extended addressing (APXA) facility are installed. 2542 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 2543 * Format 2: Both the APXA and MSAX3 facilities are installed 2544 */ 2545 static void kvm_s390_set_crycb_format(struct kvm *kvm) 2546 { 2547 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 2548 2549 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 2550 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 2551 2552 /* Check whether MSAX3 is installed */ 2553 if (!test_kvm_facility(kvm, 76)) 2554 return; 2555 2556 if (kvm_s390_apxa_installed()) 2557 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 2558 else 2559 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 2560 } 2561 2562 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 2563 unsigned long *aqm, unsigned long *adm) 2564 { 2565 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 2566 2567 mutex_lock(&kvm->lock); 2568 kvm_s390_vcpu_block_all(kvm); 2569 2570 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 2571 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 2572 memcpy(crycb->apcb1.apm, apm, 32); 2573 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 2574 apm[0], apm[1], apm[2], apm[3]); 2575 memcpy(crycb->apcb1.aqm, aqm, 32); 2576 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 2577 aqm[0], aqm[1], aqm[2], aqm[3]); 2578 memcpy(crycb->apcb1.adm, adm, 32); 2579 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 2580 adm[0], adm[1], adm[2], adm[3]); 2581 break; 2582 case CRYCB_FORMAT1: 2583 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 2584 memcpy(crycb->apcb0.apm, apm, 8); 2585 memcpy(crycb->apcb0.aqm, aqm, 2); 2586 memcpy(crycb->apcb0.adm, adm, 2); 2587 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 2588 apm[0], *((unsigned short *)aqm), 2589 *((unsigned short *)adm)); 2590 break; 2591 default: /* Can not happen */ 2592 break; 2593 } 2594 2595 /* recreate the shadow crycb for each vcpu */ 2596 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 2597 kvm_s390_vcpu_unblock_all(kvm); 2598 mutex_unlock(&kvm->lock); 2599 } 2600 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 2601 2602 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 2603 { 2604 mutex_lock(&kvm->lock); 2605 kvm_s390_vcpu_block_all(kvm); 2606 2607 memset(&kvm->arch.crypto.crycb->apcb0, 0, 2608 sizeof(kvm->arch.crypto.crycb->apcb0)); 2609 memset(&kvm->arch.crypto.crycb->apcb1, 0, 2610 sizeof(kvm->arch.crypto.crycb->apcb1)); 2611 2612 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 2613 /* recreate the shadow crycb for each vcpu */ 2614 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 2615 kvm_s390_vcpu_unblock_all(kvm); 2616 mutex_unlock(&kvm->lock); 2617 } 2618 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 2619 2620 static u64 kvm_s390_get_initial_cpuid(void) 2621 { 2622 struct cpuid cpuid; 2623 2624 get_cpu_id(&cpuid); 2625 cpuid.version = 0xff; 2626 return *((u64 *) &cpuid); 2627 } 2628 2629 static void kvm_s390_crypto_init(struct kvm *kvm) 2630 { 2631 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 2632 kvm_s390_set_crycb_format(kvm); 2633 2634 if (!test_kvm_facility(kvm, 76)) 2635 return; 2636 2637 /* Enable AES/DEA protected key functions by default */ 2638 kvm->arch.crypto.aes_kw = 1; 2639 kvm->arch.crypto.dea_kw = 1; 2640 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 2641 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 2642 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 2643 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 2644 } 2645 2646 static void sca_dispose(struct kvm *kvm) 2647 { 2648 if (kvm->arch.use_esca) 2649 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 2650 else 2651 free_page((unsigned long)(kvm->arch.sca)); 2652 kvm->arch.sca = NULL; 2653 } 2654 2655 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 2656 { 2657 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 2658 int i, rc; 2659 char debug_name[16]; 2660 static unsigned long sca_offset; 2661 2662 rc = -EINVAL; 2663 #ifdef CONFIG_KVM_S390_UCONTROL 2664 if (type & ~KVM_VM_S390_UCONTROL) 2665 goto out_err; 2666 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 2667 goto out_err; 2668 #else 2669 if (type) 2670 goto out_err; 2671 #endif 2672 2673 rc = s390_enable_sie(); 2674 if (rc) 2675 goto out_err; 2676 2677 rc = -ENOMEM; 2678 2679 if (!sclp.has_64bscao) 2680 alloc_flags |= GFP_DMA; 2681 rwlock_init(&kvm->arch.sca_lock); 2682 /* start with basic SCA */ 2683 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 2684 if (!kvm->arch.sca) 2685 goto out_err; 2686 mutex_lock(&kvm_lock); 2687 sca_offset += 16; 2688 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 2689 sca_offset = 0; 2690 kvm->arch.sca = (struct bsca_block *) 2691 ((char *) kvm->arch.sca + sca_offset); 2692 mutex_unlock(&kvm_lock); 2693 2694 sprintf(debug_name, "kvm-%u", current->pid); 2695 2696 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 2697 if (!kvm->arch.dbf) 2698 goto out_err; 2699 2700 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 2701 kvm->arch.sie_page2 = 2702 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 2703 if (!kvm->arch.sie_page2) 2704 goto out_err; 2705 2706 kvm->arch.sie_page2->kvm = kvm; 2707 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 2708 2709 for (i = 0; i < kvm_s390_fac_size(); i++) { 2710 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 2711 (kvm_s390_fac_base[i] | 2712 kvm_s390_fac_ext[i]); 2713 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 2714 kvm_s390_fac_base[i]; 2715 } 2716 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 2717 2718 /* we are always in czam mode - even on pre z14 machines */ 2719 set_kvm_facility(kvm->arch.model.fac_mask, 138); 2720 set_kvm_facility(kvm->arch.model.fac_list, 138); 2721 /* we emulate STHYI in kvm */ 2722 set_kvm_facility(kvm->arch.model.fac_mask, 74); 2723 set_kvm_facility(kvm->arch.model.fac_list, 74); 2724 if (MACHINE_HAS_TLB_GUEST) { 2725 set_kvm_facility(kvm->arch.model.fac_mask, 147); 2726 set_kvm_facility(kvm->arch.model.fac_list, 147); 2727 } 2728 2729 if (css_general_characteristics.aiv && test_facility(65)) 2730 set_kvm_facility(kvm->arch.model.fac_mask, 65); 2731 2732 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 2733 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 2734 2735 kvm_s390_crypto_init(kvm); 2736 2737 mutex_init(&kvm->arch.float_int.ais_lock); 2738 spin_lock_init(&kvm->arch.float_int.lock); 2739 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2740 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 2741 init_waitqueue_head(&kvm->arch.ipte_wq); 2742 mutex_init(&kvm->arch.ipte_mutex); 2743 2744 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 2745 VM_EVENT(kvm, 3, "vm created with type %lu", type); 2746 2747 if (type & KVM_VM_S390_UCONTROL) { 2748 kvm->arch.gmap = NULL; 2749 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 2750 } else { 2751 if (sclp.hamax == U64_MAX) 2752 kvm->arch.mem_limit = TASK_SIZE_MAX; 2753 else 2754 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 2755 sclp.hamax + 1); 2756 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 2757 if (!kvm->arch.gmap) 2758 goto out_err; 2759 kvm->arch.gmap->private = kvm; 2760 kvm->arch.gmap->pfault_enabled = 0; 2761 } 2762 2763 kvm->arch.use_pfmfi = sclp.has_pfmfi; 2764 kvm->arch.use_skf = sclp.has_skey; 2765 spin_lock_init(&kvm->arch.start_stop_lock); 2766 kvm_s390_vsie_init(kvm); 2767 if (use_gisa) 2768 kvm_s390_gisa_init(kvm); 2769 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 2770 2771 return 0; 2772 out_err: 2773 free_page((unsigned long)kvm->arch.sie_page2); 2774 debug_unregister(kvm->arch.dbf); 2775 sca_dispose(kvm); 2776 KVM_EVENT(3, "creation of vm failed: %d", rc); 2777 return rc; 2778 } 2779 2780 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 2781 { 2782 u16 rc, rrc; 2783 2784 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 2785 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 2786 kvm_s390_clear_local_irqs(vcpu); 2787 kvm_clear_async_pf_completion_queue(vcpu); 2788 if (!kvm_is_ucontrol(vcpu->kvm)) 2789 sca_del_vcpu(vcpu); 2790 2791 if (kvm_is_ucontrol(vcpu->kvm)) 2792 gmap_remove(vcpu->arch.gmap); 2793 2794 if (vcpu->kvm->arch.use_cmma) 2795 kvm_s390_vcpu_unsetup_cmma(vcpu); 2796 /* We can not hold the vcpu mutex here, we are already dying */ 2797 if (kvm_s390_pv_cpu_get_handle(vcpu)) 2798 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 2799 free_page((unsigned long)(vcpu->arch.sie_block)); 2800 } 2801 2802 static void kvm_free_vcpus(struct kvm *kvm) 2803 { 2804 unsigned int i; 2805 struct kvm_vcpu *vcpu; 2806 2807 kvm_for_each_vcpu(i, vcpu, kvm) 2808 kvm_vcpu_destroy(vcpu); 2809 2810 mutex_lock(&kvm->lock); 2811 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 2812 kvm->vcpus[i] = NULL; 2813 2814 atomic_set(&kvm->online_vcpus, 0); 2815 mutex_unlock(&kvm->lock); 2816 } 2817 2818 void kvm_arch_destroy_vm(struct kvm *kvm) 2819 { 2820 u16 rc, rrc; 2821 2822 kvm_free_vcpus(kvm); 2823 sca_dispose(kvm); 2824 kvm_s390_gisa_destroy(kvm); 2825 /* 2826 * We are already at the end of life and kvm->lock is not taken. 2827 * This is ok as the file descriptor is closed by now and nobody 2828 * can mess with the pv state. To avoid lockdep_assert_held from 2829 * complaining we do not use kvm_s390_pv_is_protected. 2830 */ 2831 if (kvm_s390_pv_get_handle(kvm)) 2832 kvm_s390_pv_deinit_vm(kvm, &rc, &rrc); 2833 debug_unregister(kvm->arch.dbf); 2834 free_page((unsigned long)kvm->arch.sie_page2); 2835 if (!kvm_is_ucontrol(kvm)) 2836 gmap_remove(kvm->arch.gmap); 2837 kvm_s390_destroy_adapters(kvm); 2838 kvm_s390_clear_float_irqs(kvm); 2839 kvm_s390_vsie_destroy(kvm); 2840 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 2841 } 2842 2843 /* Section: vcpu related */ 2844 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 2845 { 2846 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 2847 if (!vcpu->arch.gmap) 2848 return -ENOMEM; 2849 vcpu->arch.gmap->private = vcpu->kvm; 2850 2851 return 0; 2852 } 2853 2854 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 2855 { 2856 if (!kvm_s390_use_sca_entries()) 2857 return; 2858 read_lock(&vcpu->kvm->arch.sca_lock); 2859 if (vcpu->kvm->arch.use_esca) { 2860 struct esca_block *sca = vcpu->kvm->arch.sca; 2861 2862 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2863 sca->cpu[vcpu->vcpu_id].sda = 0; 2864 } else { 2865 struct bsca_block *sca = vcpu->kvm->arch.sca; 2866 2867 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2868 sca->cpu[vcpu->vcpu_id].sda = 0; 2869 } 2870 read_unlock(&vcpu->kvm->arch.sca_lock); 2871 } 2872 2873 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 2874 { 2875 if (!kvm_s390_use_sca_entries()) { 2876 struct bsca_block *sca = vcpu->kvm->arch.sca; 2877 2878 /* we still need the basic sca for the ipte control */ 2879 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2880 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2881 return; 2882 } 2883 read_lock(&vcpu->kvm->arch.sca_lock); 2884 if (vcpu->kvm->arch.use_esca) { 2885 struct esca_block *sca = vcpu->kvm->arch.sca; 2886 2887 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2888 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2889 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 2890 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2891 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2892 } else { 2893 struct bsca_block *sca = vcpu->kvm->arch.sca; 2894 2895 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2896 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2897 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2898 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2899 } 2900 read_unlock(&vcpu->kvm->arch.sca_lock); 2901 } 2902 2903 /* Basic SCA to Extended SCA data copy routines */ 2904 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 2905 { 2906 d->sda = s->sda; 2907 d->sigp_ctrl.c = s->sigp_ctrl.c; 2908 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 2909 } 2910 2911 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 2912 { 2913 int i; 2914 2915 d->ipte_control = s->ipte_control; 2916 d->mcn[0] = s->mcn; 2917 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 2918 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 2919 } 2920 2921 static int sca_switch_to_extended(struct kvm *kvm) 2922 { 2923 struct bsca_block *old_sca = kvm->arch.sca; 2924 struct esca_block *new_sca; 2925 struct kvm_vcpu *vcpu; 2926 unsigned int vcpu_idx; 2927 u32 scaol, scaoh; 2928 2929 if (kvm->arch.use_esca) 2930 return 0; 2931 2932 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 2933 if (!new_sca) 2934 return -ENOMEM; 2935 2936 scaoh = (u32)((u64)(new_sca) >> 32); 2937 scaol = (u32)(u64)(new_sca) & ~0x3fU; 2938 2939 kvm_s390_vcpu_block_all(kvm); 2940 write_lock(&kvm->arch.sca_lock); 2941 2942 sca_copy_b_to_e(new_sca, old_sca); 2943 2944 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 2945 vcpu->arch.sie_block->scaoh = scaoh; 2946 vcpu->arch.sie_block->scaol = scaol; 2947 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2948 } 2949 kvm->arch.sca = new_sca; 2950 kvm->arch.use_esca = 1; 2951 2952 write_unlock(&kvm->arch.sca_lock); 2953 kvm_s390_vcpu_unblock_all(kvm); 2954 2955 free_page((unsigned long)old_sca); 2956 2957 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 2958 old_sca, kvm->arch.sca); 2959 return 0; 2960 } 2961 2962 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 2963 { 2964 int rc; 2965 2966 if (!kvm_s390_use_sca_entries()) { 2967 if (id < KVM_MAX_VCPUS) 2968 return true; 2969 return false; 2970 } 2971 if (id < KVM_S390_BSCA_CPU_SLOTS) 2972 return true; 2973 if (!sclp.has_esca || !sclp.has_64bscao) 2974 return false; 2975 2976 mutex_lock(&kvm->lock); 2977 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 2978 mutex_unlock(&kvm->lock); 2979 2980 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 2981 } 2982 2983 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2984 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2985 { 2986 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 2987 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2988 vcpu->arch.cputm_start = get_tod_clock_fast(); 2989 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2990 } 2991 2992 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2993 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2994 { 2995 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 2996 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2997 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 2998 vcpu->arch.cputm_start = 0; 2999 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3000 } 3001 3002 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3003 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3004 { 3005 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3006 vcpu->arch.cputm_enabled = true; 3007 __start_cpu_timer_accounting(vcpu); 3008 } 3009 3010 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3011 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3012 { 3013 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3014 __stop_cpu_timer_accounting(vcpu); 3015 vcpu->arch.cputm_enabled = false; 3016 } 3017 3018 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3019 { 3020 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3021 __enable_cpu_timer_accounting(vcpu); 3022 preempt_enable(); 3023 } 3024 3025 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3026 { 3027 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3028 __disable_cpu_timer_accounting(vcpu); 3029 preempt_enable(); 3030 } 3031 3032 /* set the cpu timer - may only be called from the VCPU thread itself */ 3033 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3034 { 3035 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3036 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3037 if (vcpu->arch.cputm_enabled) 3038 vcpu->arch.cputm_start = get_tod_clock_fast(); 3039 vcpu->arch.sie_block->cputm = cputm; 3040 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3041 preempt_enable(); 3042 } 3043 3044 /* update and get the cpu timer - can also be called from other VCPU threads */ 3045 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3046 { 3047 unsigned int seq; 3048 __u64 value; 3049 3050 if (unlikely(!vcpu->arch.cputm_enabled)) 3051 return vcpu->arch.sie_block->cputm; 3052 3053 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3054 do { 3055 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3056 /* 3057 * If the writer would ever execute a read in the critical 3058 * section, e.g. in irq context, we have a deadlock. 3059 */ 3060 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3061 value = vcpu->arch.sie_block->cputm; 3062 /* if cputm_start is 0, accounting is being started/stopped */ 3063 if (likely(vcpu->arch.cputm_start)) 3064 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3065 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3066 preempt_enable(); 3067 return value; 3068 } 3069 3070 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3071 { 3072 3073 gmap_enable(vcpu->arch.enabled_gmap); 3074 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3075 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3076 __start_cpu_timer_accounting(vcpu); 3077 vcpu->cpu = cpu; 3078 } 3079 3080 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3081 { 3082 vcpu->cpu = -1; 3083 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3084 __stop_cpu_timer_accounting(vcpu); 3085 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3086 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3087 gmap_disable(vcpu->arch.enabled_gmap); 3088 3089 } 3090 3091 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3092 { 3093 mutex_lock(&vcpu->kvm->lock); 3094 preempt_disable(); 3095 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3096 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3097 preempt_enable(); 3098 mutex_unlock(&vcpu->kvm->lock); 3099 if (!kvm_is_ucontrol(vcpu->kvm)) { 3100 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3101 sca_add_vcpu(vcpu); 3102 } 3103 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3104 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3105 /* make vcpu_load load the right gmap on the first trigger */ 3106 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3107 } 3108 3109 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3110 { 3111 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3112 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3113 return true; 3114 return false; 3115 } 3116 3117 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3118 { 3119 /* At least one ECC subfunction must be present */ 3120 return kvm_has_pckmo_subfunc(kvm, 32) || 3121 kvm_has_pckmo_subfunc(kvm, 33) || 3122 kvm_has_pckmo_subfunc(kvm, 34) || 3123 kvm_has_pckmo_subfunc(kvm, 40) || 3124 kvm_has_pckmo_subfunc(kvm, 41); 3125 3126 } 3127 3128 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3129 { 3130 /* 3131 * If the AP instructions are not being interpreted and the MSAX3 3132 * facility is not configured for the guest, there is nothing to set up. 3133 */ 3134 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3135 return; 3136 3137 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3138 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3139 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3140 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3141 3142 if (vcpu->kvm->arch.crypto.apie) 3143 vcpu->arch.sie_block->eca |= ECA_APIE; 3144 3145 /* Set up protected key support */ 3146 if (vcpu->kvm->arch.crypto.aes_kw) { 3147 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3148 /* ecc is also wrapped with AES key */ 3149 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3150 vcpu->arch.sie_block->ecd |= ECD_ECC; 3151 } 3152 3153 if (vcpu->kvm->arch.crypto.dea_kw) 3154 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3155 } 3156 3157 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3158 { 3159 free_page(vcpu->arch.sie_block->cbrlo); 3160 vcpu->arch.sie_block->cbrlo = 0; 3161 } 3162 3163 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3164 { 3165 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL_ACCOUNT); 3166 if (!vcpu->arch.sie_block->cbrlo) 3167 return -ENOMEM; 3168 return 0; 3169 } 3170 3171 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3172 { 3173 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3174 3175 vcpu->arch.sie_block->ibc = model->ibc; 3176 if (test_kvm_facility(vcpu->kvm, 7)) 3177 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 3178 } 3179 3180 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3181 { 3182 int rc = 0; 3183 u16 uvrc, uvrrc; 3184 3185 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3186 CPUSTAT_SM | 3187 CPUSTAT_STOPPED); 3188 3189 if (test_kvm_facility(vcpu->kvm, 78)) 3190 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3191 else if (test_kvm_facility(vcpu->kvm, 8)) 3192 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3193 3194 kvm_s390_vcpu_setup_model(vcpu); 3195 3196 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3197 if (MACHINE_HAS_ESOP) 3198 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3199 if (test_kvm_facility(vcpu->kvm, 9)) 3200 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3201 if (test_kvm_facility(vcpu->kvm, 73)) 3202 vcpu->arch.sie_block->ecb |= ECB_TE; 3203 3204 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3205 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3206 if (test_kvm_facility(vcpu->kvm, 130)) 3207 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3208 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3209 if (sclp.has_cei) 3210 vcpu->arch.sie_block->eca |= ECA_CEI; 3211 if (sclp.has_ib) 3212 vcpu->arch.sie_block->eca |= ECA_IB; 3213 if (sclp.has_siif) 3214 vcpu->arch.sie_block->eca |= ECA_SII; 3215 if (sclp.has_sigpif) 3216 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3217 if (test_kvm_facility(vcpu->kvm, 129)) { 3218 vcpu->arch.sie_block->eca |= ECA_VX; 3219 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3220 } 3221 if (test_kvm_facility(vcpu->kvm, 139)) 3222 vcpu->arch.sie_block->ecd |= ECD_MEF; 3223 if (test_kvm_facility(vcpu->kvm, 156)) 3224 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3225 if (vcpu->arch.sie_block->gd) { 3226 vcpu->arch.sie_block->eca |= ECA_AIV; 3227 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3228 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3229 } 3230 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) 3231 | SDNXC; 3232 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 3233 3234 if (sclp.has_kss) 3235 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3236 else 3237 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3238 3239 if (vcpu->kvm->arch.use_cmma) { 3240 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3241 if (rc) 3242 return rc; 3243 } 3244 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3245 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3246 3247 vcpu->arch.sie_block->hpid = HPID_KVM; 3248 3249 kvm_s390_vcpu_crypto_setup(vcpu); 3250 3251 mutex_lock(&vcpu->kvm->lock); 3252 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3253 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3254 if (rc) 3255 kvm_s390_vcpu_unsetup_cmma(vcpu); 3256 } 3257 mutex_unlock(&vcpu->kvm->lock); 3258 3259 return rc; 3260 } 3261 3262 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3263 { 3264 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3265 return -EINVAL; 3266 return 0; 3267 } 3268 3269 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3270 { 3271 struct sie_page *sie_page; 3272 int rc; 3273 3274 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3275 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3276 if (!sie_page) 3277 return -ENOMEM; 3278 3279 vcpu->arch.sie_block = &sie_page->sie_block; 3280 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 3281 3282 /* the real guest size will always be smaller than msl */ 3283 vcpu->arch.sie_block->mso = 0; 3284 vcpu->arch.sie_block->msl = sclp.hamax; 3285 3286 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3287 spin_lock_init(&vcpu->arch.local_int.lock); 3288 vcpu->arch.sie_block->gd = (u32)(u64)vcpu->kvm->arch.gisa_int.origin; 3289 if (vcpu->arch.sie_block->gd && sclp.has_gisaf) 3290 vcpu->arch.sie_block->gd |= GISA_FORMAT1; 3291 seqcount_init(&vcpu->arch.cputm_seqcount); 3292 3293 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3294 kvm_clear_async_pf_completion_queue(vcpu); 3295 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3296 KVM_SYNC_GPRS | 3297 KVM_SYNC_ACRS | 3298 KVM_SYNC_CRS | 3299 KVM_SYNC_ARCH0 | 3300 KVM_SYNC_PFAULT | 3301 KVM_SYNC_DIAG318; 3302 kvm_s390_set_prefix(vcpu, 0); 3303 if (test_kvm_facility(vcpu->kvm, 64)) 3304 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3305 if (test_kvm_facility(vcpu->kvm, 82)) 3306 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3307 if (test_kvm_facility(vcpu->kvm, 133)) 3308 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3309 if (test_kvm_facility(vcpu->kvm, 156)) 3310 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3311 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3312 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 3313 */ 3314 if (MACHINE_HAS_VX) 3315 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3316 else 3317 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3318 3319 if (kvm_is_ucontrol(vcpu->kvm)) { 3320 rc = __kvm_ucontrol_vcpu_init(vcpu); 3321 if (rc) 3322 goto out_free_sie_block; 3323 } 3324 3325 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3326 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3327 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3328 3329 rc = kvm_s390_vcpu_setup(vcpu); 3330 if (rc) 3331 goto out_ucontrol_uninit; 3332 return 0; 3333 3334 out_ucontrol_uninit: 3335 if (kvm_is_ucontrol(vcpu->kvm)) 3336 gmap_remove(vcpu->arch.gmap); 3337 out_free_sie_block: 3338 free_page((unsigned long)(vcpu->arch.sie_block)); 3339 return rc; 3340 } 3341 3342 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3343 { 3344 return kvm_s390_vcpu_has_irq(vcpu, 0); 3345 } 3346 3347 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 3348 { 3349 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 3350 } 3351 3352 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 3353 { 3354 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3355 exit_sie(vcpu); 3356 } 3357 3358 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 3359 { 3360 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 3361 } 3362 3363 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 3364 { 3365 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3366 exit_sie(vcpu); 3367 } 3368 3369 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 3370 { 3371 return atomic_read(&vcpu->arch.sie_block->prog20) & 3372 (PROG_BLOCK_SIE | PROG_REQUEST); 3373 } 3374 3375 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 3376 { 3377 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 3378 } 3379 3380 /* 3381 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 3382 * If the CPU is not running (e.g. waiting as idle) the function will 3383 * return immediately. */ 3384 void exit_sie(struct kvm_vcpu *vcpu) 3385 { 3386 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 3387 kvm_s390_vsie_kick(vcpu); 3388 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 3389 cpu_relax(); 3390 } 3391 3392 /* Kick a guest cpu out of SIE to process a request synchronously */ 3393 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 3394 { 3395 kvm_make_request(req, vcpu); 3396 kvm_s390_vcpu_request(vcpu); 3397 } 3398 3399 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 3400 unsigned long end) 3401 { 3402 struct kvm *kvm = gmap->private; 3403 struct kvm_vcpu *vcpu; 3404 unsigned long prefix; 3405 int i; 3406 3407 if (gmap_is_shadow(gmap)) 3408 return; 3409 if (start >= 1UL << 31) 3410 /* We are only interested in prefix pages */ 3411 return; 3412 kvm_for_each_vcpu(i, vcpu, kvm) { 3413 /* match against both prefix pages */ 3414 prefix = kvm_s390_get_prefix(vcpu); 3415 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 3416 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 3417 start, end); 3418 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 3419 } 3420 } 3421 } 3422 3423 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 3424 { 3425 /* do not poll with more than halt_poll_max_steal percent of steal time */ 3426 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 3427 halt_poll_max_steal) { 3428 vcpu->stat.halt_no_poll_steal++; 3429 return true; 3430 } 3431 return false; 3432 } 3433 3434 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 3435 { 3436 /* kvm common code refers to this, but never calls it */ 3437 BUG(); 3438 return 0; 3439 } 3440 3441 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 3442 struct kvm_one_reg *reg) 3443 { 3444 int r = -EINVAL; 3445 3446 switch (reg->id) { 3447 case KVM_REG_S390_TODPR: 3448 r = put_user(vcpu->arch.sie_block->todpr, 3449 (u32 __user *)reg->addr); 3450 break; 3451 case KVM_REG_S390_EPOCHDIFF: 3452 r = put_user(vcpu->arch.sie_block->epoch, 3453 (u64 __user *)reg->addr); 3454 break; 3455 case KVM_REG_S390_CPU_TIMER: 3456 r = put_user(kvm_s390_get_cpu_timer(vcpu), 3457 (u64 __user *)reg->addr); 3458 break; 3459 case KVM_REG_S390_CLOCK_COMP: 3460 r = put_user(vcpu->arch.sie_block->ckc, 3461 (u64 __user *)reg->addr); 3462 break; 3463 case KVM_REG_S390_PFTOKEN: 3464 r = put_user(vcpu->arch.pfault_token, 3465 (u64 __user *)reg->addr); 3466 break; 3467 case KVM_REG_S390_PFCOMPARE: 3468 r = put_user(vcpu->arch.pfault_compare, 3469 (u64 __user *)reg->addr); 3470 break; 3471 case KVM_REG_S390_PFSELECT: 3472 r = put_user(vcpu->arch.pfault_select, 3473 (u64 __user *)reg->addr); 3474 break; 3475 case KVM_REG_S390_PP: 3476 r = put_user(vcpu->arch.sie_block->pp, 3477 (u64 __user *)reg->addr); 3478 break; 3479 case KVM_REG_S390_GBEA: 3480 r = put_user(vcpu->arch.sie_block->gbea, 3481 (u64 __user *)reg->addr); 3482 break; 3483 default: 3484 break; 3485 } 3486 3487 return r; 3488 } 3489 3490 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 3491 struct kvm_one_reg *reg) 3492 { 3493 int r = -EINVAL; 3494 __u64 val; 3495 3496 switch (reg->id) { 3497 case KVM_REG_S390_TODPR: 3498 r = get_user(vcpu->arch.sie_block->todpr, 3499 (u32 __user *)reg->addr); 3500 break; 3501 case KVM_REG_S390_EPOCHDIFF: 3502 r = get_user(vcpu->arch.sie_block->epoch, 3503 (u64 __user *)reg->addr); 3504 break; 3505 case KVM_REG_S390_CPU_TIMER: 3506 r = get_user(val, (u64 __user *)reg->addr); 3507 if (!r) 3508 kvm_s390_set_cpu_timer(vcpu, val); 3509 break; 3510 case KVM_REG_S390_CLOCK_COMP: 3511 r = get_user(vcpu->arch.sie_block->ckc, 3512 (u64 __user *)reg->addr); 3513 break; 3514 case KVM_REG_S390_PFTOKEN: 3515 r = get_user(vcpu->arch.pfault_token, 3516 (u64 __user *)reg->addr); 3517 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3518 kvm_clear_async_pf_completion_queue(vcpu); 3519 break; 3520 case KVM_REG_S390_PFCOMPARE: 3521 r = get_user(vcpu->arch.pfault_compare, 3522 (u64 __user *)reg->addr); 3523 break; 3524 case KVM_REG_S390_PFSELECT: 3525 r = get_user(vcpu->arch.pfault_select, 3526 (u64 __user *)reg->addr); 3527 break; 3528 case KVM_REG_S390_PP: 3529 r = get_user(vcpu->arch.sie_block->pp, 3530 (u64 __user *)reg->addr); 3531 break; 3532 case KVM_REG_S390_GBEA: 3533 r = get_user(vcpu->arch.sie_block->gbea, 3534 (u64 __user *)reg->addr); 3535 break; 3536 default: 3537 break; 3538 } 3539 3540 return r; 3541 } 3542 3543 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 3544 { 3545 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 3546 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3547 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 3548 3549 kvm_clear_async_pf_completion_queue(vcpu); 3550 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 3551 kvm_s390_vcpu_stop(vcpu); 3552 kvm_s390_clear_local_irqs(vcpu); 3553 } 3554 3555 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 3556 { 3557 /* Initial reset is a superset of the normal reset */ 3558 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 3559 3560 /* 3561 * This equals initial cpu reset in pop, but we don't switch to ESA. 3562 * We do not only reset the internal data, but also ... 3563 */ 3564 vcpu->arch.sie_block->gpsw.mask = 0; 3565 vcpu->arch.sie_block->gpsw.addr = 0; 3566 kvm_s390_set_prefix(vcpu, 0); 3567 kvm_s390_set_cpu_timer(vcpu, 0); 3568 vcpu->arch.sie_block->ckc = 0; 3569 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 3570 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 3571 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 3572 3573 /* ... the data in sync regs */ 3574 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 3575 vcpu->run->s.regs.ckc = 0; 3576 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 3577 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 3578 vcpu->run->psw_addr = 0; 3579 vcpu->run->psw_mask = 0; 3580 vcpu->run->s.regs.todpr = 0; 3581 vcpu->run->s.regs.cputm = 0; 3582 vcpu->run->s.regs.ckc = 0; 3583 vcpu->run->s.regs.pp = 0; 3584 vcpu->run->s.regs.gbea = 1; 3585 vcpu->run->s.regs.fpc = 0; 3586 /* 3587 * Do not reset these registers in the protected case, as some of 3588 * them are overlayed and they are not accessible in this case 3589 * anyway. 3590 */ 3591 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 3592 vcpu->arch.sie_block->gbea = 1; 3593 vcpu->arch.sie_block->pp = 0; 3594 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 3595 vcpu->arch.sie_block->todpr = 0; 3596 } 3597 } 3598 3599 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 3600 { 3601 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 3602 3603 /* Clear reset is a superset of the initial reset */ 3604 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 3605 3606 memset(®s->gprs, 0, sizeof(regs->gprs)); 3607 memset(®s->vrs, 0, sizeof(regs->vrs)); 3608 memset(®s->acrs, 0, sizeof(regs->acrs)); 3609 memset(®s->gscb, 0, sizeof(regs->gscb)); 3610 3611 regs->etoken = 0; 3612 regs->etoken_extension = 0; 3613 } 3614 3615 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 3616 { 3617 vcpu_load(vcpu); 3618 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 3619 vcpu_put(vcpu); 3620 return 0; 3621 } 3622 3623 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 3624 { 3625 vcpu_load(vcpu); 3626 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 3627 vcpu_put(vcpu); 3628 return 0; 3629 } 3630 3631 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 3632 struct kvm_sregs *sregs) 3633 { 3634 vcpu_load(vcpu); 3635 3636 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 3637 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 3638 3639 vcpu_put(vcpu); 3640 return 0; 3641 } 3642 3643 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 3644 struct kvm_sregs *sregs) 3645 { 3646 vcpu_load(vcpu); 3647 3648 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 3649 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 3650 3651 vcpu_put(vcpu); 3652 return 0; 3653 } 3654 3655 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 3656 { 3657 int ret = 0; 3658 3659 vcpu_load(vcpu); 3660 3661 if (test_fp_ctl(fpu->fpc)) { 3662 ret = -EINVAL; 3663 goto out; 3664 } 3665 vcpu->run->s.regs.fpc = fpu->fpc; 3666 if (MACHINE_HAS_VX) 3667 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 3668 (freg_t *) fpu->fprs); 3669 else 3670 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 3671 3672 out: 3673 vcpu_put(vcpu); 3674 return ret; 3675 } 3676 3677 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 3678 { 3679 vcpu_load(vcpu); 3680 3681 /* make sure we have the latest values */ 3682 save_fpu_regs(); 3683 if (MACHINE_HAS_VX) 3684 convert_vx_to_fp((freg_t *) fpu->fprs, 3685 (__vector128 *) vcpu->run->s.regs.vrs); 3686 else 3687 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 3688 fpu->fpc = vcpu->run->s.regs.fpc; 3689 3690 vcpu_put(vcpu); 3691 return 0; 3692 } 3693 3694 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 3695 { 3696 int rc = 0; 3697 3698 if (!is_vcpu_stopped(vcpu)) 3699 rc = -EBUSY; 3700 else { 3701 vcpu->run->psw_mask = psw.mask; 3702 vcpu->run->psw_addr = psw.addr; 3703 } 3704 return rc; 3705 } 3706 3707 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 3708 struct kvm_translation *tr) 3709 { 3710 return -EINVAL; /* not implemented yet */ 3711 } 3712 3713 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 3714 KVM_GUESTDBG_USE_HW_BP | \ 3715 KVM_GUESTDBG_ENABLE) 3716 3717 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 3718 struct kvm_guest_debug *dbg) 3719 { 3720 int rc = 0; 3721 3722 vcpu_load(vcpu); 3723 3724 vcpu->guest_debug = 0; 3725 kvm_s390_clear_bp_data(vcpu); 3726 3727 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 3728 rc = -EINVAL; 3729 goto out; 3730 } 3731 if (!sclp.has_gpere) { 3732 rc = -EINVAL; 3733 goto out; 3734 } 3735 3736 if (dbg->control & KVM_GUESTDBG_ENABLE) { 3737 vcpu->guest_debug = dbg->control; 3738 /* enforce guest PER */ 3739 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 3740 3741 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 3742 rc = kvm_s390_import_bp_data(vcpu, dbg); 3743 } else { 3744 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 3745 vcpu->arch.guestdbg.last_bp = 0; 3746 } 3747 3748 if (rc) { 3749 vcpu->guest_debug = 0; 3750 kvm_s390_clear_bp_data(vcpu); 3751 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 3752 } 3753 3754 out: 3755 vcpu_put(vcpu); 3756 return rc; 3757 } 3758 3759 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 3760 struct kvm_mp_state *mp_state) 3761 { 3762 int ret; 3763 3764 vcpu_load(vcpu); 3765 3766 /* CHECK_STOP and LOAD are not supported yet */ 3767 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 3768 KVM_MP_STATE_OPERATING; 3769 3770 vcpu_put(vcpu); 3771 return ret; 3772 } 3773 3774 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 3775 struct kvm_mp_state *mp_state) 3776 { 3777 int rc = 0; 3778 3779 vcpu_load(vcpu); 3780 3781 /* user space knows about this interface - let it control the state */ 3782 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 3783 3784 switch (mp_state->mp_state) { 3785 case KVM_MP_STATE_STOPPED: 3786 rc = kvm_s390_vcpu_stop(vcpu); 3787 break; 3788 case KVM_MP_STATE_OPERATING: 3789 rc = kvm_s390_vcpu_start(vcpu); 3790 break; 3791 case KVM_MP_STATE_LOAD: 3792 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 3793 rc = -ENXIO; 3794 break; 3795 } 3796 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 3797 break; 3798 case KVM_MP_STATE_CHECK_STOP: 3799 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 3800 default: 3801 rc = -ENXIO; 3802 } 3803 3804 vcpu_put(vcpu); 3805 return rc; 3806 } 3807 3808 static bool ibs_enabled(struct kvm_vcpu *vcpu) 3809 { 3810 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 3811 } 3812 3813 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 3814 { 3815 retry: 3816 kvm_s390_vcpu_request_handled(vcpu); 3817 if (!kvm_request_pending(vcpu)) 3818 return 0; 3819 /* 3820 * We use MMU_RELOAD just to re-arm the ipte notifier for the 3821 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 3822 * This ensures that the ipte instruction for this request has 3823 * already finished. We might race against a second unmapper that 3824 * wants to set the blocking bit. Lets just retry the request loop. 3825 */ 3826 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 3827 int rc; 3828 rc = gmap_mprotect_notify(vcpu->arch.gmap, 3829 kvm_s390_get_prefix(vcpu), 3830 PAGE_SIZE * 2, PROT_WRITE); 3831 if (rc) { 3832 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 3833 return rc; 3834 } 3835 goto retry; 3836 } 3837 3838 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 3839 vcpu->arch.sie_block->ihcpu = 0xffff; 3840 goto retry; 3841 } 3842 3843 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 3844 if (!ibs_enabled(vcpu)) { 3845 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 3846 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 3847 } 3848 goto retry; 3849 } 3850 3851 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 3852 if (ibs_enabled(vcpu)) { 3853 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 3854 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 3855 } 3856 goto retry; 3857 } 3858 3859 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 3860 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3861 goto retry; 3862 } 3863 3864 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 3865 /* 3866 * Disable CMM virtualization; we will emulate the ESSA 3867 * instruction manually, in order to provide additional 3868 * functionalities needed for live migration. 3869 */ 3870 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 3871 goto retry; 3872 } 3873 3874 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 3875 /* 3876 * Re-enable CMM virtualization if CMMA is available and 3877 * CMM has been used. 3878 */ 3879 if ((vcpu->kvm->arch.use_cmma) && 3880 (vcpu->kvm->mm->context.uses_cmm)) 3881 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 3882 goto retry; 3883 } 3884 3885 /* nothing to do, just clear the request */ 3886 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 3887 /* we left the vsie handler, nothing to do, just clear the request */ 3888 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 3889 3890 return 0; 3891 } 3892 3893 void kvm_s390_set_tod_clock(struct kvm *kvm, 3894 const struct kvm_s390_vm_tod_clock *gtod) 3895 { 3896 struct kvm_vcpu *vcpu; 3897 union tod_clock clk; 3898 int i; 3899 3900 mutex_lock(&kvm->lock); 3901 preempt_disable(); 3902 3903 store_tod_clock_ext(&clk); 3904 3905 kvm->arch.epoch = gtod->tod - clk.tod; 3906 kvm->arch.epdx = 0; 3907 if (test_kvm_facility(kvm, 139)) { 3908 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 3909 if (kvm->arch.epoch > gtod->tod) 3910 kvm->arch.epdx -= 1; 3911 } 3912 3913 kvm_s390_vcpu_block_all(kvm); 3914 kvm_for_each_vcpu(i, vcpu, kvm) { 3915 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 3916 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 3917 } 3918 3919 kvm_s390_vcpu_unblock_all(kvm); 3920 preempt_enable(); 3921 mutex_unlock(&kvm->lock); 3922 } 3923 3924 /** 3925 * kvm_arch_fault_in_page - fault-in guest page if necessary 3926 * @vcpu: The corresponding virtual cpu 3927 * @gpa: Guest physical address 3928 * @writable: Whether the page should be writable or not 3929 * 3930 * Make sure that a guest page has been faulted-in on the host. 3931 * 3932 * Return: Zero on success, negative error code otherwise. 3933 */ 3934 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 3935 { 3936 return gmap_fault(vcpu->arch.gmap, gpa, 3937 writable ? FAULT_FLAG_WRITE : 0); 3938 } 3939 3940 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 3941 unsigned long token) 3942 { 3943 struct kvm_s390_interrupt inti; 3944 struct kvm_s390_irq irq; 3945 3946 if (start_token) { 3947 irq.u.ext.ext_params2 = token; 3948 irq.type = KVM_S390_INT_PFAULT_INIT; 3949 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 3950 } else { 3951 inti.type = KVM_S390_INT_PFAULT_DONE; 3952 inti.parm64 = token; 3953 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 3954 } 3955 } 3956 3957 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 3958 struct kvm_async_pf *work) 3959 { 3960 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 3961 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 3962 3963 return true; 3964 } 3965 3966 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 3967 struct kvm_async_pf *work) 3968 { 3969 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 3970 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 3971 } 3972 3973 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 3974 struct kvm_async_pf *work) 3975 { 3976 /* s390 will always inject the page directly */ 3977 } 3978 3979 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 3980 { 3981 /* 3982 * s390 will always inject the page directly, 3983 * but we still want check_async_completion to cleanup 3984 */ 3985 return true; 3986 } 3987 3988 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 3989 { 3990 hva_t hva; 3991 struct kvm_arch_async_pf arch; 3992 3993 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3994 return false; 3995 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 3996 vcpu->arch.pfault_compare) 3997 return false; 3998 if (psw_extint_disabled(vcpu)) 3999 return false; 4000 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4001 return false; 4002 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4003 return false; 4004 if (!vcpu->arch.gmap->pfault_enabled) 4005 return false; 4006 4007 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4008 hva += current->thread.gmap_addr & ~PAGE_MASK; 4009 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4010 return false; 4011 4012 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4013 } 4014 4015 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4016 { 4017 int rc, cpuflags; 4018 4019 /* 4020 * On s390 notifications for arriving pages will be delivered directly 4021 * to the guest but the house keeping for completed pfaults is 4022 * handled outside the worker. 4023 */ 4024 kvm_check_async_pf_completion(vcpu); 4025 4026 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4027 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4028 4029 if (need_resched()) 4030 schedule(); 4031 4032 if (!kvm_is_ucontrol(vcpu->kvm)) { 4033 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4034 if (rc) 4035 return rc; 4036 } 4037 4038 rc = kvm_s390_handle_requests(vcpu); 4039 if (rc) 4040 return rc; 4041 4042 if (guestdbg_enabled(vcpu)) { 4043 kvm_s390_backup_guest_per_regs(vcpu); 4044 kvm_s390_patch_guest_per_regs(vcpu); 4045 } 4046 4047 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.gisa_int.kicked_mask); 4048 4049 vcpu->arch.sie_block->icptcode = 0; 4050 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4051 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4052 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4053 4054 return 0; 4055 } 4056 4057 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4058 { 4059 struct kvm_s390_pgm_info pgm_info = { 4060 .code = PGM_ADDRESSING, 4061 }; 4062 u8 opcode, ilen; 4063 int rc; 4064 4065 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4066 trace_kvm_s390_sie_fault(vcpu); 4067 4068 /* 4069 * We want to inject an addressing exception, which is defined as a 4070 * suppressing or terminating exception. However, since we came here 4071 * by a DAT access exception, the PSW still points to the faulting 4072 * instruction since DAT exceptions are nullifying. So we've got 4073 * to look up the current opcode to get the length of the instruction 4074 * to be able to forward the PSW. 4075 */ 4076 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4077 ilen = insn_length(opcode); 4078 if (rc < 0) { 4079 return rc; 4080 } else if (rc) { 4081 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4082 * Forward by arbitrary ilc, injection will take care of 4083 * nullification if necessary. 4084 */ 4085 pgm_info = vcpu->arch.pgm; 4086 ilen = 4; 4087 } 4088 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4089 kvm_s390_forward_psw(vcpu, ilen); 4090 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4091 } 4092 4093 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4094 { 4095 struct mcck_volatile_info *mcck_info; 4096 struct sie_page *sie_page; 4097 4098 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4099 vcpu->arch.sie_block->icptcode); 4100 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4101 4102 if (guestdbg_enabled(vcpu)) 4103 kvm_s390_restore_guest_per_regs(vcpu); 4104 4105 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4106 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4107 4108 if (exit_reason == -EINTR) { 4109 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4110 sie_page = container_of(vcpu->arch.sie_block, 4111 struct sie_page, sie_block); 4112 mcck_info = &sie_page->mcck_info; 4113 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4114 return 0; 4115 } 4116 4117 if (vcpu->arch.sie_block->icptcode > 0) { 4118 int rc = kvm_handle_sie_intercept(vcpu); 4119 4120 if (rc != -EOPNOTSUPP) 4121 return rc; 4122 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4123 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4124 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4125 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4126 return -EREMOTE; 4127 } else if (exit_reason != -EFAULT) { 4128 vcpu->stat.exit_null++; 4129 return 0; 4130 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4131 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4132 vcpu->run->s390_ucontrol.trans_exc_code = 4133 current->thread.gmap_addr; 4134 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4135 return -EREMOTE; 4136 } else if (current->thread.gmap_pfault) { 4137 trace_kvm_s390_major_guest_pfault(vcpu); 4138 current->thread.gmap_pfault = 0; 4139 if (kvm_arch_setup_async_pf(vcpu)) 4140 return 0; 4141 vcpu->stat.pfault_sync++; 4142 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4143 } 4144 return vcpu_post_run_fault_in_sie(vcpu); 4145 } 4146 4147 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4148 static int __vcpu_run(struct kvm_vcpu *vcpu) 4149 { 4150 int rc, exit_reason; 4151 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4152 4153 /* 4154 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4155 * ning the guest), so that memslots (and other stuff) are protected 4156 */ 4157 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 4158 4159 do { 4160 rc = vcpu_pre_run(vcpu); 4161 if (rc) 4162 break; 4163 4164 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 4165 /* 4166 * As PF_VCPU will be used in fault handler, between 4167 * guest_enter and guest_exit should be no uaccess. 4168 */ 4169 local_irq_disable(); 4170 guest_enter_irqoff(); 4171 __disable_cpu_timer_accounting(vcpu); 4172 local_irq_enable(); 4173 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4174 memcpy(sie_page->pv_grregs, 4175 vcpu->run->s.regs.gprs, 4176 sizeof(sie_page->pv_grregs)); 4177 } 4178 if (test_cpu_flag(CIF_FPU)) 4179 load_fpu_regs(); 4180 exit_reason = sie64a(vcpu->arch.sie_block, 4181 vcpu->run->s.regs.gprs); 4182 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4183 memcpy(vcpu->run->s.regs.gprs, 4184 sie_page->pv_grregs, 4185 sizeof(sie_page->pv_grregs)); 4186 /* 4187 * We're not allowed to inject interrupts on intercepts 4188 * that leave the guest state in an "in-between" state 4189 * where the next SIE entry will do a continuation. 4190 * Fence interrupts in our "internal" PSW. 4191 */ 4192 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4193 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4194 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4195 } 4196 } 4197 local_irq_disable(); 4198 __enable_cpu_timer_accounting(vcpu); 4199 guest_exit_irqoff(); 4200 local_irq_enable(); 4201 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 4202 4203 rc = vcpu_post_run(vcpu, exit_reason); 4204 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4205 4206 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 4207 return rc; 4208 } 4209 4210 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4211 { 4212 struct kvm_run *kvm_run = vcpu->run; 4213 struct runtime_instr_cb *riccb; 4214 struct gs_cb *gscb; 4215 4216 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4217 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4218 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4219 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4220 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4221 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4222 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4223 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4224 } 4225 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4226 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4227 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4228 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4229 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4230 kvm_clear_async_pf_completion_queue(vcpu); 4231 } 4232 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4233 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4234 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4235 } 4236 /* 4237 * If userspace sets the riccb (e.g. after migration) to a valid state, 4238 * we should enable RI here instead of doing the lazy enablement. 4239 */ 4240 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4241 test_kvm_facility(vcpu->kvm, 64) && 4242 riccb->v && 4243 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4244 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4245 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4246 } 4247 /* 4248 * If userspace sets the gscb (e.g. after migration) to non-zero, 4249 * we should enable GS here instead of doing the lazy enablement. 4250 */ 4251 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4252 test_kvm_facility(vcpu->kvm, 133) && 4253 gscb->gssm && 4254 !vcpu->arch.gs_enabled) { 4255 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4256 vcpu->arch.sie_block->ecb |= ECB_GS; 4257 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4258 vcpu->arch.gs_enabled = 1; 4259 } 4260 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4261 test_kvm_facility(vcpu->kvm, 82)) { 4262 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4263 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4264 } 4265 if (MACHINE_HAS_GS) { 4266 preempt_disable(); 4267 __ctl_set_bit(2, 4); 4268 if (current->thread.gs_cb) { 4269 vcpu->arch.host_gscb = current->thread.gs_cb; 4270 save_gs_cb(vcpu->arch.host_gscb); 4271 } 4272 if (vcpu->arch.gs_enabled) { 4273 current->thread.gs_cb = (struct gs_cb *) 4274 &vcpu->run->s.regs.gscb; 4275 restore_gs_cb(current->thread.gs_cb); 4276 } 4277 preempt_enable(); 4278 } 4279 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4280 } 4281 4282 static void sync_regs(struct kvm_vcpu *vcpu) 4283 { 4284 struct kvm_run *kvm_run = vcpu->run; 4285 4286 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4287 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4288 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4289 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4290 /* some control register changes require a tlb flush */ 4291 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4292 } 4293 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4294 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4295 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4296 } 4297 save_access_regs(vcpu->arch.host_acrs); 4298 restore_access_regs(vcpu->run->s.regs.acrs); 4299 /* save host (userspace) fprs/vrs */ 4300 save_fpu_regs(); 4301 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4302 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4303 if (MACHINE_HAS_VX) 4304 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4305 else 4306 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4307 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4308 if (test_fp_ctl(current->thread.fpu.fpc)) 4309 /* User space provided an invalid FPC, let's clear it */ 4310 current->thread.fpu.fpc = 0; 4311 4312 /* Sync fmt2 only data */ 4313 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4314 sync_regs_fmt2(vcpu); 4315 } else { 4316 /* 4317 * In several places we have to modify our internal view to 4318 * not do things that are disallowed by the ultravisor. For 4319 * example we must not inject interrupts after specific exits 4320 * (e.g. 112 prefix page not secure). We do this by turning 4321 * off the machine check, external and I/O interrupt bits 4322 * of our PSW copy. To avoid getting validity intercepts, we 4323 * do only accept the condition code from userspace. 4324 */ 4325 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4326 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4327 PSW_MASK_CC; 4328 } 4329 4330 kvm_run->kvm_dirty_regs = 0; 4331 } 4332 4333 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4334 { 4335 struct kvm_run *kvm_run = vcpu->run; 4336 4337 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4338 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4339 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4340 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4341 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4342 if (MACHINE_HAS_GS) { 4343 preempt_disable(); 4344 __ctl_set_bit(2, 4); 4345 if (vcpu->arch.gs_enabled) 4346 save_gs_cb(current->thread.gs_cb); 4347 current->thread.gs_cb = vcpu->arch.host_gscb; 4348 restore_gs_cb(vcpu->arch.host_gscb); 4349 if (!vcpu->arch.host_gscb) 4350 __ctl_clear_bit(2, 4); 4351 vcpu->arch.host_gscb = NULL; 4352 preempt_enable(); 4353 } 4354 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 4355 } 4356 4357 static void store_regs(struct kvm_vcpu *vcpu) 4358 { 4359 struct kvm_run *kvm_run = vcpu->run; 4360 4361 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 4362 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 4363 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 4364 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 4365 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 4366 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 4367 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 4368 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 4369 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 4370 save_access_regs(vcpu->run->s.regs.acrs); 4371 restore_access_regs(vcpu->arch.host_acrs); 4372 /* Save guest register state */ 4373 save_fpu_regs(); 4374 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 4375 /* Restore will be done lazily at return */ 4376 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 4377 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 4378 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 4379 store_regs_fmt2(vcpu); 4380 } 4381 4382 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 4383 { 4384 struct kvm_run *kvm_run = vcpu->run; 4385 int rc; 4386 4387 if (kvm_run->immediate_exit) 4388 return -EINTR; 4389 4390 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 4391 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 4392 return -EINVAL; 4393 4394 vcpu_load(vcpu); 4395 4396 if (guestdbg_exit_pending(vcpu)) { 4397 kvm_s390_prepare_debug_exit(vcpu); 4398 rc = 0; 4399 goto out; 4400 } 4401 4402 kvm_sigset_activate(vcpu); 4403 4404 /* 4405 * no need to check the return value of vcpu_start as it can only have 4406 * an error for protvirt, but protvirt means user cpu state 4407 */ 4408 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 4409 kvm_s390_vcpu_start(vcpu); 4410 } else if (is_vcpu_stopped(vcpu)) { 4411 pr_err_ratelimited("can't run stopped vcpu %d\n", 4412 vcpu->vcpu_id); 4413 rc = -EINVAL; 4414 goto out; 4415 } 4416 4417 sync_regs(vcpu); 4418 enable_cpu_timer_accounting(vcpu); 4419 4420 might_fault(); 4421 rc = __vcpu_run(vcpu); 4422 4423 if (signal_pending(current) && !rc) { 4424 kvm_run->exit_reason = KVM_EXIT_INTR; 4425 rc = -EINTR; 4426 } 4427 4428 if (guestdbg_exit_pending(vcpu) && !rc) { 4429 kvm_s390_prepare_debug_exit(vcpu); 4430 rc = 0; 4431 } 4432 4433 if (rc == -EREMOTE) { 4434 /* userspace support is needed, kvm_run has been prepared */ 4435 rc = 0; 4436 } 4437 4438 disable_cpu_timer_accounting(vcpu); 4439 store_regs(vcpu); 4440 4441 kvm_sigset_deactivate(vcpu); 4442 4443 vcpu->stat.exit_userspace++; 4444 out: 4445 vcpu_put(vcpu); 4446 return rc; 4447 } 4448 4449 /* 4450 * store status at address 4451 * we use have two special cases: 4452 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 4453 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 4454 */ 4455 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 4456 { 4457 unsigned char archmode = 1; 4458 freg_t fprs[NUM_FPRS]; 4459 unsigned int px; 4460 u64 clkcomp, cputm; 4461 int rc; 4462 4463 px = kvm_s390_get_prefix(vcpu); 4464 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 4465 if (write_guest_abs(vcpu, 163, &archmode, 1)) 4466 return -EFAULT; 4467 gpa = 0; 4468 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 4469 if (write_guest_real(vcpu, 163, &archmode, 1)) 4470 return -EFAULT; 4471 gpa = px; 4472 } else 4473 gpa -= __LC_FPREGS_SAVE_AREA; 4474 4475 /* manually convert vector registers if necessary */ 4476 if (MACHINE_HAS_VX) { 4477 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 4478 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 4479 fprs, 128); 4480 } else { 4481 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 4482 vcpu->run->s.regs.fprs, 128); 4483 } 4484 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 4485 vcpu->run->s.regs.gprs, 128); 4486 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 4487 &vcpu->arch.sie_block->gpsw, 16); 4488 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 4489 &px, 4); 4490 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 4491 &vcpu->run->s.regs.fpc, 4); 4492 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 4493 &vcpu->arch.sie_block->todpr, 4); 4494 cputm = kvm_s390_get_cpu_timer(vcpu); 4495 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 4496 &cputm, 8); 4497 clkcomp = vcpu->arch.sie_block->ckc >> 8; 4498 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 4499 &clkcomp, 8); 4500 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 4501 &vcpu->run->s.regs.acrs, 64); 4502 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 4503 &vcpu->arch.sie_block->gcr, 128); 4504 return rc ? -EFAULT : 0; 4505 } 4506 4507 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 4508 { 4509 /* 4510 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 4511 * switch in the run ioctl. Let's update our copies before we save 4512 * it into the save area 4513 */ 4514 save_fpu_regs(); 4515 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 4516 save_access_regs(vcpu->run->s.regs.acrs); 4517 4518 return kvm_s390_store_status_unloaded(vcpu, addr); 4519 } 4520 4521 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 4522 { 4523 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 4524 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 4525 } 4526 4527 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 4528 { 4529 unsigned int i; 4530 struct kvm_vcpu *vcpu; 4531 4532 kvm_for_each_vcpu(i, vcpu, kvm) { 4533 __disable_ibs_on_vcpu(vcpu); 4534 } 4535 } 4536 4537 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 4538 { 4539 if (!sclp.has_ibs) 4540 return; 4541 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 4542 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 4543 } 4544 4545 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 4546 { 4547 int i, online_vcpus, r = 0, started_vcpus = 0; 4548 4549 if (!is_vcpu_stopped(vcpu)) 4550 return 0; 4551 4552 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 4553 /* Only one cpu at a time may enter/leave the STOPPED state. */ 4554 spin_lock(&vcpu->kvm->arch.start_stop_lock); 4555 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 4556 4557 /* Let's tell the UV that we want to change into the operating state */ 4558 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4559 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 4560 if (r) { 4561 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4562 return r; 4563 } 4564 } 4565 4566 for (i = 0; i < online_vcpus; i++) { 4567 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 4568 started_vcpus++; 4569 } 4570 4571 if (started_vcpus == 0) { 4572 /* we're the only active VCPU -> speed it up */ 4573 __enable_ibs_on_vcpu(vcpu); 4574 } else if (started_vcpus == 1) { 4575 /* 4576 * As we are starting a second VCPU, we have to disable 4577 * the IBS facility on all VCPUs to remove potentially 4578 * outstanding ENABLE requests. 4579 */ 4580 __disable_ibs_on_all_vcpus(vcpu->kvm); 4581 } 4582 4583 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 4584 /* 4585 * The real PSW might have changed due to a RESTART interpreted by the 4586 * ultravisor. We block all interrupts and let the next sie exit 4587 * refresh our view. 4588 */ 4589 if (kvm_s390_pv_cpu_is_protected(vcpu)) 4590 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4591 /* 4592 * Another VCPU might have used IBS while we were offline. 4593 * Let's play safe and flush the VCPU at startup. 4594 */ 4595 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4596 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4597 return 0; 4598 } 4599 4600 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 4601 { 4602 int i, online_vcpus, r = 0, started_vcpus = 0; 4603 struct kvm_vcpu *started_vcpu = NULL; 4604 4605 if (is_vcpu_stopped(vcpu)) 4606 return 0; 4607 4608 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 4609 /* Only one cpu at a time may enter/leave the STOPPED state. */ 4610 spin_lock(&vcpu->kvm->arch.start_stop_lock); 4611 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 4612 4613 /* Let's tell the UV that we want to change into the stopped state */ 4614 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4615 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 4616 if (r) { 4617 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4618 return r; 4619 } 4620 } 4621 4622 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 4623 kvm_s390_clear_stop_irq(vcpu); 4624 4625 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 4626 __disable_ibs_on_vcpu(vcpu); 4627 4628 for (i = 0; i < online_vcpus; i++) { 4629 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 4630 started_vcpus++; 4631 started_vcpu = vcpu->kvm->vcpus[i]; 4632 } 4633 } 4634 4635 if (started_vcpus == 1) { 4636 /* 4637 * As we only have one VCPU left, we want to enable the 4638 * IBS facility for that VCPU to speed it up. 4639 */ 4640 __enable_ibs_on_vcpu(started_vcpu); 4641 } 4642 4643 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 4644 return 0; 4645 } 4646 4647 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 4648 struct kvm_enable_cap *cap) 4649 { 4650 int r; 4651 4652 if (cap->flags) 4653 return -EINVAL; 4654 4655 switch (cap->cap) { 4656 case KVM_CAP_S390_CSS_SUPPORT: 4657 if (!vcpu->kvm->arch.css_support) { 4658 vcpu->kvm->arch.css_support = 1; 4659 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 4660 trace_kvm_s390_enable_css(vcpu->kvm); 4661 } 4662 r = 0; 4663 break; 4664 default: 4665 r = -EINVAL; 4666 break; 4667 } 4668 return r; 4669 } 4670 4671 static long kvm_s390_guest_sida_op(struct kvm_vcpu *vcpu, 4672 struct kvm_s390_mem_op *mop) 4673 { 4674 void __user *uaddr = (void __user *)mop->buf; 4675 int r = 0; 4676 4677 if (mop->flags || !mop->size) 4678 return -EINVAL; 4679 if (mop->size + mop->sida_offset < mop->size) 4680 return -EINVAL; 4681 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 4682 return -E2BIG; 4683 4684 switch (mop->op) { 4685 case KVM_S390_MEMOP_SIDA_READ: 4686 if (copy_to_user(uaddr, (void *)(sida_origin(vcpu->arch.sie_block) + 4687 mop->sida_offset), mop->size)) 4688 r = -EFAULT; 4689 4690 break; 4691 case KVM_S390_MEMOP_SIDA_WRITE: 4692 if (copy_from_user((void *)(sida_origin(vcpu->arch.sie_block) + 4693 mop->sida_offset), uaddr, mop->size)) 4694 r = -EFAULT; 4695 break; 4696 } 4697 return r; 4698 } 4699 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 4700 struct kvm_s390_mem_op *mop) 4701 { 4702 void __user *uaddr = (void __user *)mop->buf; 4703 void *tmpbuf = NULL; 4704 int r = 0; 4705 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 4706 | KVM_S390_MEMOP_F_CHECK_ONLY; 4707 4708 if (mop->flags & ~supported_flags || mop->ar >= NUM_ACRS || !mop->size) 4709 return -EINVAL; 4710 4711 if (mop->size > MEM_OP_MAX_SIZE) 4712 return -E2BIG; 4713 4714 if (kvm_s390_pv_cpu_is_protected(vcpu)) 4715 return -EINVAL; 4716 4717 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 4718 tmpbuf = vmalloc(mop->size); 4719 if (!tmpbuf) 4720 return -ENOMEM; 4721 } 4722 4723 switch (mop->op) { 4724 case KVM_S390_MEMOP_LOGICAL_READ: 4725 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 4726 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 4727 mop->size, GACC_FETCH); 4728 break; 4729 } 4730 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 4731 if (r == 0) { 4732 if (copy_to_user(uaddr, tmpbuf, mop->size)) 4733 r = -EFAULT; 4734 } 4735 break; 4736 case KVM_S390_MEMOP_LOGICAL_WRITE: 4737 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 4738 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 4739 mop->size, GACC_STORE); 4740 break; 4741 } 4742 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 4743 r = -EFAULT; 4744 break; 4745 } 4746 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 4747 break; 4748 } 4749 4750 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 4751 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 4752 4753 vfree(tmpbuf); 4754 return r; 4755 } 4756 4757 static long kvm_s390_guest_memsida_op(struct kvm_vcpu *vcpu, 4758 struct kvm_s390_mem_op *mop) 4759 { 4760 int r, srcu_idx; 4761 4762 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 4763 4764 switch (mop->op) { 4765 case KVM_S390_MEMOP_LOGICAL_READ: 4766 case KVM_S390_MEMOP_LOGICAL_WRITE: 4767 r = kvm_s390_guest_mem_op(vcpu, mop); 4768 break; 4769 case KVM_S390_MEMOP_SIDA_READ: 4770 case KVM_S390_MEMOP_SIDA_WRITE: 4771 /* we are locked against sida going away by the vcpu->mutex */ 4772 r = kvm_s390_guest_sida_op(vcpu, mop); 4773 break; 4774 default: 4775 r = -EINVAL; 4776 } 4777 4778 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 4779 return r; 4780 } 4781 4782 long kvm_arch_vcpu_async_ioctl(struct file *filp, 4783 unsigned int ioctl, unsigned long arg) 4784 { 4785 struct kvm_vcpu *vcpu = filp->private_data; 4786 void __user *argp = (void __user *)arg; 4787 4788 switch (ioctl) { 4789 case KVM_S390_IRQ: { 4790 struct kvm_s390_irq s390irq; 4791 4792 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 4793 return -EFAULT; 4794 return kvm_s390_inject_vcpu(vcpu, &s390irq); 4795 } 4796 case KVM_S390_INTERRUPT: { 4797 struct kvm_s390_interrupt s390int; 4798 struct kvm_s390_irq s390irq = {}; 4799 4800 if (copy_from_user(&s390int, argp, sizeof(s390int))) 4801 return -EFAULT; 4802 if (s390int_to_s390irq(&s390int, &s390irq)) 4803 return -EINVAL; 4804 return kvm_s390_inject_vcpu(vcpu, &s390irq); 4805 } 4806 } 4807 return -ENOIOCTLCMD; 4808 } 4809 4810 long kvm_arch_vcpu_ioctl(struct file *filp, 4811 unsigned int ioctl, unsigned long arg) 4812 { 4813 struct kvm_vcpu *vcpu = filp->private_data; 4814 void __user *argp = (void __user *)arg; 4815 int idx; 4816 long r; 4817 u16 rc, rrc; 4818 4819 vcpu_load(vcpu); 4820 4821 switch (ioctl) { 4822 case KVM_S390_STORE_STATUS: 4823 idx = srcu_read_lock(&vcpu->kvm->srcu); 4824 r = kvm_s390_store_status_unloaded(vcpu, arg); 4825 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4826 break; 4827 case KVM_S390_SET_INITIAL_PSW: { 4828 psw_t psw; 4829 4830 r = -EFAULT; 4831 if (copy_from_user(&psw, argp, sizeof(psw))) 4832 break; 4833 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 4834 break; 4835 } 4836 case KVM_S390_CLEAR_RESET: 4837 r = 0; 4838 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 4839 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4840 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 4841 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 4842 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 4843 rc, rrc); 4844 } 4845 break; 4846 case KVM_S390_INITIAL_RESET: 4847 r = 0; 4848 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4849 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4850 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 4851 UVC_CMD_CPU_RESET_INITIAL, 4852 &rc, &rrc); 4853 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 4854 rc, rrc); 4855 } 4856 break; 4857 case KVM_S390_NORMAL_RESET: 4858 r = 0; 4859 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4860 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4861 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 4862 UVC_CMD_CPU_RESET, &rc, &rrc); 4863 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 4864 rc, rrc); 4865 } 4866 break; 4867 case KVM_SET_ONE_REG: 4868 case KVM_GET_ONE_REG: { 4869 struct kvm_one_reg reg; 4870 r = -EINVAL; 4871 if (kvm_s390_pv_cpu_is_protected(vcpu)) 4872 break; 4873 r = -EFAULT; 4874 if (copy_from_user(®, argp, sizeof(reg))) 4875 break; 4876 if (ioctl == KVM_SET_ONE_REG) 4877 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 4878 else 4879 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 4880 break; 4881 } 4882 #ifdef CONFIG_KVM_S390_UCONTROL 4883 case KVM_S390_UCAS_MAP: { 4884 struct kvm_s390_ucas_mapping ucasmap; 4885 4886 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 4887 r = -EFAULT; 4888 break; 4889 } 4890 4891 if (!kvm_is_ucontrol(vcpu->kvm)) { 4892 r = -EINVAL; 4893 break; 4894 } 4895 4896 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 4897 ucasmap.vcpu_addr, ucasmap.length); 4898 break; 4899 } 4900 case KVM_S390_UCAS_UNMAP: { 4901 struct kvm_s390_ucas_mapping ucasmap; 4902 4903 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 4904 r = -EFAULT; 4905 break; 4906 } 4907 4908 if (!kvm_is_ucontrol(vcpu->kvm)) { 4909 r = -EINVAL; 4910 break; 4911 } 4912 4913 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 4914 ucasmap.length); 4915 break; 4916 } 4917 #endif 4918 case KVM_S390_VCPU_FAULT: { 4919 r = gmap_fault(vcpu->arch.gmap, arg, 0); 4920 break; 4921 } 4922 case KVM_ENABLE_CAP: 4923 { 4924 struct kvm_enable_cap cap; 4925 r = -EFAULT; 4926 if (copy_from_user(&cap, argp, sizeof(cap))) 4927 break; 4928 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 4929 break; 4930 } 4931 case KVM_S390_MEM_OP: { 4932 struct kvm_s390_mem_op mem_op; 4933 4934 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 4935 r = kvm_s390_guest_memsida_op(vcpu, &mem_op); 4936 else 4937 r = -EFAULT; 4938 break; 4939 } 4940 case KVM_S390_SET_IRQ_STATE: { 4941 struct kvm_s390_irq_state irq_state; 4942 4943 r = -EFAULT; 4944 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 4945 break; 4946 if (irq_state.len > VCPU_IRQS_MAX_BUF || 4947 irq_state.len == 0 || 4948 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 4949 r = -EINVAL; 4950 break; 4951 } 4952 /* do not use irq_state.flags, it will break old QEMUs */ 4953 r = kvm_s390_set_irq_state(vcpu, 4954 (void __user *) irq_state.buf, 4955 irq_state.len); 4956 break; 4957 } 4958 case KVM_S390_GET_IRQ_STATE: { 4959 struct kvm_s390_irq_state irq_state; 4960 4961 r = -EFAULT; 4962 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 4963 break; 4964 if (irq_state.len == 0) { 4965 r = -EINVAL; 4966 break; 4967 } 4968 /* do not use irq_state.flags, it will break old QEMUs */ 4969 r = kvm_s390_get_irq_state(vcpu, 4970 (__u8 __user *) irq_state.buf, 4971 irq_state.len); 4972 break; 4973 } 4974 default: 4975 r = -ENOTTY; 4976 } 4977 4978 vcpu_put(vcpu); 4979 return r; 4980 } 4981 4982 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 4983 { 4984 #ifdef CONFIG_KVM_S390_UCONTROL 4985 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 4986 && (kvm_is_ucontrol(vcpu->kvm))) { 4987 vmf->page = virt_to_page(vcpu->arch.sie_block); 4988 get_page(vmf->page); 4989 return 0; 4990 } 4991 #endif 4992 return VM_FAULT_SIGBUS; 4993 } 4994 4995 /* Section: memory related */ 4996 int kvm_arch_prepare_memory_region(struct kvm *kvm, 4997 struct kvm_memory_slot *memslot, 4998 const struct kvm_userspace_memory_region *mem, 4999 enum kvm_mr_change change) 5000 { 5001 /* A few sanity checks. We can have memory slots which have to be 5002 located/ended at a segment boundary (1MB). The memory in userland is 5003 ok to be fragmented into various different vmas. It is okay to mmap() 5004 and munmap() stuff in this slot after doing this call at any time */ 5005 5006 if (mem->userspace_addr & 0xffffful) 5007 return -EINVAL; 5008 5009 if (mem->memory_size & 0xffffful) 5010 return -EINVAL; 5011 5012 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 5013 return -EINVAL; 5014 5015 /* When we are protected, we should not change the memory slots */ 5016 if (kvm_s390_pv_get_handle(kvm)) 5017 return -EINVAL; 5018 return 0; 5019 } 5020 5021 void kvm_arch_commit_memory_region(struct kvm *kvm, 5022 const struct kvm_userspace_memory_region *mem, 5023 struct kvm_memory_slot *old, 5024 const struct kvm_memory_slot *new, 5025 enum kvm_mr_change change) 5026 { 5027 int rc = 0; 5028 5029 switch (change) { 5030 case KVM_MR_DELETE: 5031 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5032 old->npages * PAGE_SIZE); 5033 break; 5034 case KVM_MR_MOVE: 5035 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5036 old->npages * PAGE_SIZE); 5037 if (rc) 5038 break; 5039 fallthrough; 5040 case KVM_MR_CREATE: 5041 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 5042 mem->guest_phys_addr, mem->memory_size); 5043 break; 5044 case KVM_MR_FLAGS_ONLY: 5045 break; 5046 default: 5047 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5048 } 5049 if (rc) 5050 pr_warn("failed to commit memory region\n"); 5051 return; 5052 } 5053 5054 static inline unsigned long nonhyp_mask(int i) 5055 { 5056 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5057 5058 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5059 } 5060 5061 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 5062 { 5063 vcpu->valid_wakeup = false; 5064 } 5065 5066 static int __init kvm_s390_init(void) 5067 { 5068 int i; 5069 5070 if (!sclp.has_sief2) { 5071 pr_info("SIE is not available\n"); 5072 return -ENODEV; 5073 } 5074 5075 if (nested && hpage) { 5076 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5077 return -EINVAL; 5078 } 5079 5080 for (i = 0; i < 16; i++) 5081 kvm_s390_fac_base[i] |= 5082 stfle_fac_list[i] & nonhyp_mask(i); 5083 5084 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5085 } 5086 5087 static void __exit kvm_s390_exit(void) 5088 { 5089 kvm_exit(); 5090 } 5091 5092 module_init(kvm_s390_init); 5093 module_exit(kvm_s390_exit); 5094 5095 /* 5096 * Enable autoloading of the kvm module. 5097 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5098 * since x86 takes a different approach. 5099 */ 5100 #include <linux/miscdevice.h> 5101 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5102 MODULE_ALIAS("devname:kvm"); 5103