1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2020 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Christian Ehrhardt <ehrhardt@de.ibm.com> 10 * Jason J. Herne <jjherne@us.ibm.com> 11 */ 12 13 #define KMSG_COMPONENT "kvm-s390" 14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 15 16 #include <linux/compiler.h> 17 #include <linux/err.h> 18 #include <linux/fs.h> 19 #include <linux/hrtimer.h> 20 #include <linux/init.h> 21 #include <linux/kvm.h> 22 #include <linux/kvm_host.h> 23 #include <linux/mman.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/random.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/vmalloc.h> 30 #include <linux/bitmap.h> 31 #include <linux/sched/signal.h> 32 #include <linux/string.h> 33 #include <linux/pgtable.h> 34 #include <linux/mmu_notifier.h> 35 36 #include <asm/asm-offsets.h> 37 #include <asm/lowcore.h> 38 #include <asm/stp.h> 39 #include <asm/gmap.h> 40 #include <asm/nmi.h> 41 #include <asm/switch_to.h> 42 #include <asm/isc.h> 43 #include <asm/sclp.h> 44 #include <asm/cpacf.h> 45 #include <asm/timex.h> 46 #include <asm/ap.h> 47 #include <asm/uv.h> 48 #include <asm/fpu/api.h> 49 #include "kvm-s390.h" 50 #include "gaccess.h" 51 #include "pci.h" 52 53 #define CREATE_TRACE_POINTS 54 #include "trace.h" 55 #include "trace-s390.h" 56 57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 58 #define LOCAL_IRQS 32 59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 60 (KVM_MAX_VCPUS + LOCAL_IRQS)) 61 62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 63 KVM_GENERIC_VM_STATS(), 64 STATS_DESC_COUNTER(VM, inject_io), 65 STATS_DESC_COUNTER(VM, inject_float_mchk), 66 STATS_DESC_COUNTER(VM, inject_pfault_done), 67 STATS_DESC_COUNTER(VM, inject_service_signal), 68 STATS_DESC_COUNTER(VM, inject_virtio), 69 STATS_DESC_COUNTER(VM, aen_forward), 70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse), 71 STATS_DESC_COUNTER(VM, gmap_shadow_create), 72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry), 73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry), 74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry), 75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry), 76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry), 77 }; 78 79 const struct kvm_stats_header kvm_vm_stats_header = { 80 .name_size = KVM_STATS_NAME_SIZE, 81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 82 .id_offset = sizeof(struct kvm_stats_header), 83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 85 sizeof(kvm_vm_stats_desc), 86 }; 87 88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 89 KVM_GENERIC_VCPU_STATS(), 90 STATS_DESC_COUNTER(VCPU, exit_userspace), 91 STATS_DESC_COUNTER(VCPU, exit_null), 92 STATS_DESC_COUNTER(VCPU, exit_external_request), 93 STATS_DESC_COUNTER(VCPU, exit_io_request), 94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt), 95 STATS_DESC_COUNTER(VCPU, exit_stop_request), 96 STATS_DESC_COUNTER(VCPU, exit_validity), 97 STATS_DESC_COUNTER(VCPU, exit_instruction), 98 STATS_DESC_COUNTER(VCPU, exit_pei), 99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal), 100 STATS_DESC_COUNTER(VCPU, instruction_lctl), 101 STATS_DESC_COUNTER(VCPU, instruction_lctlg), 102 STATS_DESC_COUNTER(VCPU, instruction_stctl), 103 STATS_DESC_COUNTER(VCPU, instruction_stctg), 104 STATS_DESC_COUNTER(VCPU, exit_program_interruption), 105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program), 106 STATS_DESC_COUNTER(VCPU, exit_operation_exception), 107 STATS_DESC_COUNTER(VCPU, deliver_ckc), 108 STATS_DESC_COUNTER(VCPU, deliver_cputm), 109 STATS_DESC_COUNTER(VCPU, deliver_external_call), 110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal), 111 STATS_DESC_COUNTER(VCPU, deliver_service_signal), 112 STATS_DESC_COUNTER(VCPU, deliver_virtio), 113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal), 114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal), 115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal), 116 STATS_DESC_COUNTER(VCPU, deliver_program), 117 STATS_DESC_COUNTER(VCPU, deliver_io), 118 STATS_DESC_COUNTER(VCPU, deliver_machine_check), 119 STATS_DESC_COUNTER(VCPU, exit_wait_state), 120 STATS_DESC_COUNTER(VCPU, inject_ckc), 121 STATS_DESC_COUNTER(VCPU, inject_cputm), 122 STATS_DESC_COUNTER(VCPU, inject_external_call), 123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal), 124 STATS_DESC_COUNTER(VCPU, inject_mchk), 125 STATS_DESC_COUNTER(VCPU, inject_pfault_init), 126 STATS_DESC_COUNTER(VCPU, inject_program), 127 STATS_DESC_COUNTER(VCPU, inject_restart), 128 STATS_DESC_COUNTER(VCPU, inject_set_prefix), 129 STATS_DESC_COUNTER(VCPU, inject_stop_signal), 130 STATS_DESC_COUNTER(VCPU, instruction_epsw), 131 STATS_DESC_COUNTER(VCPU, instruction_gs), 132 STATS_DESC_COUNTER(VCPU, instruction_io_other), 133 STATS_DESC_COUNTER(VCPU, instruction_lpsw), 134 STATS_DESC_COUNTER(VCPU, instruction_lpswe), 135 STATS_DESC_COUNTER(VCPU, instruction_pfmf), 136 STATS_DESC_COUNTER(VCPU, instruction_ptff), 137 STATS_DESC_COUNTER(VCPU, instruction_sck), 138 STATS_DESC_COUNTER(VCPU, instruction_sckpf), 139 STATS_DESC_COUNTER(VCPU, instruction_stidp), 140 STATS_DESC_COUNTER(VCPU, instruction_spx), 141 STATS_DESC_COUNTER(VCPU, instruction_stpx), 142 STATS_DESC_COUNTER(VCPU, instruction_stap), 143 STATS_DESC_COUNTER(VCPU, instruction_iske), 144 STATS_DESC_COUNTER(VCPU, instruction_ri), 145 STATS_DESC_COUNTER(VCPU, instruction_rrbe), 146 STATS_DESC_COUNTER(VCPU, instruction_sske), 147 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock), 148 STATS_DESC_COUNTER(VCPU, instruction_stsi), 149 STATS_DESC_COUNTER(VCPU, instruction_stfl), 150 STATS_DESC_COUNTER(VCPU, instruction_tb), 151 STATS_DESC_COUNTER(VCPU, instruction_tpi), 152 STATS_DESC_COUNTER(VCPU, instruction_tprot), 153 STATS_DESC_COUNTER(VCPU, instruction_tsch), 154 STATS_DESC_COUNTER(VCPU, instruction_sie), 155 STATS_DESC_COUNTER(VCPU, instruction_essa), 156 STATS_DESC_COUNTER(VCPU, instruction_sthyi), 157 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense), 158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running), 159 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call), 160 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency), 161 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency), 162 STATS_DESC_COUNTER(VCPU, instruction_sigp_start), 163 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop), 164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status), 165 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status), 166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status), 167 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch), 168 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix), 169 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart), 170 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset), 171 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset), 172 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown), 173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10), 174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44), 175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c), 176 STATS_DESC_COUNTER(VCPU, diag_9c_ignored), 177 STATS_DESC_COUNTER(VCPU, diag_9c_forward), 178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258), 179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308), 180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500), 181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other), 182 STATS_DESC_COUNTER(VCPU, pfault_sync) 183 }; 184 185 const struct kvm_stats_header kvm_vcpu_stats_header = { 186 .name_size = KVM_STATS_NAME_SIZE, 187 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 188 .id_offset = sizeof(struct kvm_stats_header), 189 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 190 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 191 sizeof(kvm_vcpu_stats_desc), 192 }; 193 194 /* allow nested virtualization in KVM (if enabled by user space) */ 195 static int nested; 196 module_param(nested, int, S_IRUGO); 197 MODULE_PARM_DESC(nested, "Nested virtualization support"); 198 199 /* allow 1m huge page guest backing, if !nested */ 200 static int hpage; 201 module_param(hpage, int, 0444); 202 MODULE_PARM_DESC(hpage, "1m huge page backing support"); 203 204 /* maximum percentage of steal time for polling. >100 is treated like 100 */ 205 static u8 halt_poll_max_steal = 10; 206 module_param(halt_poll_max_steal, byte, 0644); 207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling"); 208 209 /* if set to true, the GISA will be initialized and used if available */ 210 static bool use_gisa = true; 211 module_param(use_gisa, bool, 0644); 212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it."); 213 214 /* maximum diag9c forwarding per second */ 215 unsigned int diag9c_forwarding_hz; 216 module_param(diag9c_forwarding_hz, uint, 0644); 217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off"); 218 219 /* 220 * allow asynchronous deinit for protected guests; enable by default since 221 * the feature is opt-in anyway 222 */ 223 static int async_destroy = 1; 224 module_param(async_destroy, int, 0444); 225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests"); 226 227 /* 228 * For now we handle at most 16 double words as this is what the s390 base 229 * kernel handles and stores in the prefix page. If we ever need to go beyond 230 * this, this requires changes to code, but the external uapi can stay. 231 */ 232 #define SIZE_INTERNAL 16 233 234 /* 235 * Base feature mask that defines default mask for facilities. Consists of the 236 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 237 */ 238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 239 /* 240 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 241 * and defines the facilities that can be enabled via a cpu model. 242 */ 243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 244 245 static unsigned long kvm_s390_fac_size(void) 246 { 247 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 249 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 250 sizeof(stfle_fac_list)); 251 252 return SIZE_INTERNAL; 253 } 254 255 /* available cpu features supported by kvm */ 256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 257 /* available subfunctions indicated via query / "test bit" */ 258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 259 260 static struct gmap_notifier gmap_notifier; 261 static struct gmap_notifier vsie_gmap_notifier; 262 debug_info_t *kvm_s390_dbf; 263 debug_info_t *kvm_s390_dbf_uv; 264 265 /* Section: not file related */ 266 /* forward declarations */ 267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 268 unsigned long end); 269 static int sca_switch_to_extended(struct kvm *kvm); 270 271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 272 { 273 u8 delta_idx = 0; 274 275 /* 276 * The TOD jumps by delta, we have to compensate this by adding 277 * -delta to the epoch. 278 */ 279 delta = -delta; 280 281 /* sign-extension - we're adding to signed values below */ 282 if ((s64)delta < 0) 283 delta_idx = -1; 284 285 scb->epoch += delta; 286 if (scb->ecd & ECD_MEF) { 287 scb->epdx += delta_idx; 288 if (scb->epoch < delta) 289 scb->epdx += 1; 290 } 291 } 292 293 /* 294 * This callback is executed during stop_machine(). All CPUs are therefore 295 * temporarily stopped. In order not to change guest behavior, we have to 296 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 297 * so a CPU won't be stopped while calculating with the epoch. 298 */ 299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 300 void *v) 301 { 302 struct kvm *kvm; 303 struct kvm_vcpu *vcpu; 304 unsigned long i; 305 unsigned long long *delta = v; 306 307 list_for_each_entry(kvm, &vm_list, vm_list) { 308 kvm_for_each_vcpu(i, vcpu, kvm) { 309 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 310 if (i == 0) { 311 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 312 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 313 } 314 if (vcpu->arch.cputm_enabled) 315 vcpu->arch.cputm_start += *delta; 316 if (vcpu->arch.vsie_block) 317 kvm_clock_sync_scb(vcpu->arch.vsie_block, 318 *delta); 319 } 320 } 321 return NOTIFY_OK; 322 } 323 324 static struct notifier_block kvm_clock_notifier = { 325 .notifier_call = kvm_clock_sync, 326 }; 327 328 static void allow_cpu_feat(unsigned long nr) 329 { 330 set_bit_inv(nr, kvm_s390_available_cpu_feat); 331 } 332 333 static inline int plo_test_bit(unsigned char nr) 334 { 335 unsigned long function = (unsigned long)nr | 0x100; 336 int cc; 337 338 asm volatile( 339 " lgr 0,%[function]\n" 340 /* Parameter registers are ignored for "test bit" */ 341 " plo 0,0,0,0(0)\n" 342 " ipm %0\n" 343 " srl %0,28\n" 344 : "=d" (cc) 345 : [function] "d" (function) 346 : "cc", "0"); 347 return cc == 0; 348 } 349 350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query) 351 { 352 asm volatile( 353 " lghi 0,0\n" 354 " lgr 1,%[query]\n" 355 /* Parameter registers are ignored */ 356 " .insn rrf,%[opc] << 16,2,4,6,0\n" 357 : 358 : [query] "d" ((unsigned long)query), [opc] "i" (opcode) 359 : "cc", "memory", "0", "1"); 360 } 361 362 #define INSN_SORTL 0xb938 363 #define INSN_DFLTCC 0xb939 364 365 static void __init kvm_s390_cpu_feat_init(void) 366 { 367 int i; 368 369 for (i = 0; i < 256; ++i) { 370 if (plo_test_bit(i)) 371 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 372 } 373 374 if (test_facility(28)) /* TOD-clock steering */ 375 ptff(kvm_s390_available_subfunc.ptff, 376 sizeof(kvm_s390_available_subfunc.ptff), 377 PTFF_QAF); 378 379 if (test_facility(17)) { /* MSA */ 380 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 381 kvm_s390_available_subfunc.kmac); 382 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 383 kvm_s390_available_subfunc.kmc); 384 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 385 kvm_s390_available_subfunc.km); 386 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 387 kvm_s390_available_subfunc.kimd); 388 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 389 kvm_s390_available_subfunc.klmd); 390 } 391 if (test_facility(76)) /* MSA3 */ 392 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 393 kvm_s390_available_subfunc.pckmo); 394 if (test_facility(77)) { /* MSA4 */ 395 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 396 kvm_s390_available_subfunc.kmctr); 397 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 398 kvm_s390_available_subfunc.kmf); 399 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 400 kvm_s390_available_subfunc.kmo); 401 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 402 kvm_s390_available_subfunc.pcc); 403 } 404 if (test_facility(57)) /* MSA5 */ 405 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 406 kvm_s390_available_subfunc.ppno); 407 408 if (test_facility(146)) /* MSA8 */ 409 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 410 kvm_s390_available_subfunc.kma); 411 412 if (test_facility(155)) /* MSA9 */ 413 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *) 414 kvm_s390_available_subfunc.kdsa); 415 416 if (test_facility(150)) /* SORTL */ 417 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl); 418 419 if (test_facility(151)) /* DFLTCC */ 420 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc); 421 422 if (MACHINE_HAS_ESOP) 423 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 424 /* 425 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 426 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 427 */ 428 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 429 !test_facility(3) || !nested) 430 return; 431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 432 if (sclp.has_64bscao) 433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 434 if (sclp.has_siif) 435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 436 if (sclp.has_gpere) 437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 438 if (sclp.has_gsls) 439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 440 if (sclp.has_ib) 441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 442 if (sclp.has_cei) 443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 444 if (sclp.has_ibs) 445 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 446 if (sclp.has_kss) 447 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 448 /* 449 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 450 * all skey handling functions read/set the skey from the PGSTE 451 * instead of the real storage key. 452 * 453 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 454 * pages being detected as preserved although they are resident. 455 * 456 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 457 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 458 * 459 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 460 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 461 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 462 * 463 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 464 * cannot easily shadow the SCA because of the ipte lock. 465 */ 466 } 467 468 static int __init __kvm_s390_init(void) 469 { 470 int rc = -ENOMEM; 471 472 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 473 if (!kvm_s390_dbf) 474 return -ENOMEM; 475 476 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long)); 477 if (!kvm_s390_dbf_uv) 478 goto err_kvm_uv; 479 480 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) || 481 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view)) 482 goto err_debug_view; 483 484 kvm_s390_cpu_feat_init(); 485 486 /* Register floating interrupt controller interface. */ 487 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 488 if (rc) { 489 pr_err("A FLIC registration call failed with rc=%d\n", rc); 490 goto err_flic; 491 } 492 493 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 494 rc = kvm_s390_pci_init(); 495 if (rc) { 496 pr_err("Unable to allocate AIFT for PCI\n"); 497 goto err_pci; 498 } 499 } 500 501 rc = kvm_s390_gib_init(GAL_ISC); 502 if (rc) 503 goto err_gib; 504 505 gmap_notifier.notifier_call = kvm_gmap_notifier; 506 gmap_register_pte_notifier(&gmap_notifier); 507 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 508 gmap_register_pte_notifier(&vsie_gmap_notifier); 509 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 510 &kvm_clock_notifier); 511 512 return 0; 513 514 err_gib: 515 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 516 kvm_s390_pci_exit(); 517 err_pci: 518 err_flic: 519 err_debug_view: 520 debug_unregister(kvm_s390_dbf_uv); 521 err_kvm_uv: 522 debug_unregister(kvm_s390_dbf); 523 return rc; 524 } 525 526 static void __kvm_s390_exit(void) 527 { 528 gmap_unregister_pte_notifier(&gmap_notifier); 529 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 530 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 531 &kvm_clock_notifier); 532 533 kvm_s390_gib_destroy(); 534 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 535 kvm_s390_pci_exit(); 536 debug_unregister(kvm_s390_dbf); 537 debug_unregister(kvm_s390_dbf_uv); 538 } 539 540 /* Section: device related */ 541 long kvm_arch_dev_ioctl(struct file *filp, 542 unsigned int ioctl, unsigned long arg) 543 { 544 if (ioctl == KVM_S390_ENABLE_SIE) 545 return s390_enable_sie(); 546 return -EINVAL; 547 } 548 549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 550 { 551 int r; 552 553 switch (ext) { 554 case KVM_CAP_S390_PSW: 555 case KVM_CAP_S390_GMAP: 556 case KVM_CAP_SYNC_MMU: 557 #ifdef CONFIG_KVM_S390_UCONTROL 558 case KVM_CAP_S390_UCONTROL: 559 #endif 560 case KVM_CAP_ASYNC_PF: 561 case KVM_CAP_SYNC_REGS: 562 case KVM_CAP_ONE_REG: 563 case KVM_CAP_ENABLE_CAP: 564 case KVM_CAP_S390_CSS_SUPPORT: 565 case KVM_CAP_IOEVENTFD: 566 case KVM_CAP_DEVICE_CTRL: 567 case KVM_CAP_S390_IRQCHIP: 568 case KVM_CAP_VM_ATTRIBUTES: 569 case KVM_CAP_MP_STATE: 570 case KVM_CAP_IMMEDIATE_EXIT: 571 case KVM_CAP_S390_INJECT_IRQ: 572 case KVM_CAP_S390_USER_SIGP: 573 case KVM_CAP_S390_USER_STSI: 574 case KVM_CAP_S390_SKEYS: 575 case KVM_CAP_S390_IRQ_STATE: 576 case KVM_CAP_S390_USER_INSTR0: 577 case KVM_CAP_S390_CMMA_MIGRATION: 578 case KVM_CAP_S390_AIS: 579 case KVM_CAP_S390_AIS_MIGRATION: 580 case KVM_CAP_S390_VCPU_RESETS: 581 case KVM_CAP_SET_GUEST_DEBUG: 582 case KVM_CAP_S390_DIAG318: 583 case KVM_CAP_IRQFD_RESAMPLE: 584 r = 1; 585 break; 586 case KVM_CAP_SET_GUEST_DEBUG2: 587 r = KVM_GUESTDBG_VALID_MASK; 588 break; 589 case KVM_CAP_S390_HPAGE_1M: 590 r = 0; 591 if (hpage && !kvm_is_ucontrol(kvm)) 592 r = 1; 593 break; 594 case KVM_CAP_S390_MEM_OP: 595 r = MEM_OP_MAX_SIZE; 596 break; 597 case KVM_CAP_S390_MEM_OP_EXTENSION: 598 /* 599 * Flag bits indicating which extensions are supported. 600 * If r > 0, the base extension must also be supported/indicated, 601 * in order to maintain backwards compatibility. 602 */ 603 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE | 604 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG; 605 break; 606 case KVM_CAP_NR_VCPUS: 607 case KVM_CAP_MAX_VCPUS: 608 case KVM_CAP_MAX_VCPU_ID: 609 r = KVM_S390_BSCA_CPU_SLOTS; 610 if (!kvm_s390_use_sca_entries()) 611 r = KVM_MAX_VCPUS; 612 else if (sclp.has_esca && sclp.has_64bscao) 613 r = KVM_S390_ESCA_CPU_SLOTS; 614 if (ext == KVM_CAP_NR_VCPUS) 615 r = min_t(unsigned int, num_online_cpus(), r); 616 break; 617 case KVM_CAP_S390_COW: 618 r = MACHINE_HAS_ESOP; 619 break; 620 case KVM_CAP_S390_VECTOR_REGISTERS: 621 r = MACHINE_HAS_VX; 622 break; 623 case KVM_CAP_S390_RI: 624 r = test_facility(64); 625 break; 626 case KVM_CAP_S390_GS: 627 r = test_facility(133); 628 break; 629 case KVM_CAP_S390_BPB: 630 r = test_facility(82); 631 break; 632 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE: 633 r = async_destroy && is_prot_virt_host(); 634 break; 635 case KVM_CAP_S390_PROTECTED: 636 r = is_prot_virt_host(); 637 break; 638 case KVM_CAP_S390_PROTECTED_DUMP: { 639 u64 pv_cmds_dump[] = { 640 BIT_UVC_CMD_DUMP_INIT, 641 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE, 642 BIT_UVC_CMD_DUMP_CPU, 643 BIT_UVC_CMD_DUMP_COMPLETE, 644 }; 645 int i; 646 647 r = is_prot_virt_host(); 648 649 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) { 650 if (!test_bit_inv(pv_cmds_dump[i], 651 (unsigned long *)&uv_info.inst_calls_list)) { 652 r = 0; 653 break; 654 } 655 } 656 break; 657 } 658 case KVM_CAP_S390_ZPCI_OP: 659 r = kvm_s390_pci_interp_allowed(); 660 break; 661 case KVM_CAP_S390_CPU_TOPOLOGY: 662 r = test_facility(11); 663 break; 664 default: 665 r = 0; 666 } 667 return r; 668 } 669 670 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 671 { 672 int i; 673 gfn_t cur_gfn, last_gfn; 674 unsigned long gaddr, vmaddr; 675 struct gmap *gmap = kvm->arch.gmap; 676 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES); 677 678 /* Loop over all guest segments */ 679 cur_gfn = memslot->base_gfn; 680 last_gfn = memslot->base_gfn + memslot->npages; 681 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) { 682 gaddr = gfn_to_gpa(cur_gfn); 683 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn); 684 if (kvm_is_error_hva(vmaddr)) 685 continue; 686 687 bitmap_zero(bitmap, _PAGE_ENTRIES); 688 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr); 689 for (i = 0; i < _PAGE_ENTRIES; i++) { 690 if (test_bit(i, bitmap)) 691 mark_page_dirty(kvm, cur_gfn + i); 692 } 693 694 if (fatal_signal_pending(current)) 695 return; 696 cond_resched(); 697 } 698 } 699 700 /* Section: vm related */ 701 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 702 703 /* 704 * Get (and clear) the dirty memory log for a memory slot. 705 */ 706 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 707 struct kvm_dirty_log *log) 708 { 709 int r; 710 unsigned long n; 711 struct kvm_memory_slot *memslot; 712 int is_dirty; 713 714 if (kvm_is_ucontrol(kvm)) 715 return -EINVAL; 716 717 mutex_lock(&kvm->slots_lock); 718 719 r = -EINVAL; 720 if (log->slot >= KVM_USER_MEM_SLOTS) 721 goto out; 722 723 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot); 724 if (r) 725 goto out; 726 727 /* Clear the dirty log */ 728 if (is_dirty) { 729 n = kvm_dirty_bitmap_bytes(memslot); 730 memset(memslot->dirty_bitmap, 0, n); 731 } 732 r = 0; 733 out: 734 mutex_unlock(&kvm->slots_lock); 735 return r; 736 } 737 738 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 739 { 740 unsigned long i; 741 struct kvm_vcpu *vcpu; 742 743 kvm_for_each_vcpu(i, vcpu, kvm) { 744 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 745 } 746 } 747 748 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 749 { 750 int r; 751 752 if (cap->flags) 753 return -EINVAL; 754 755 switch (cap->cap) { 756 case KVM_CAP_S390_IRQCHIP: 757 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 758 kvm->arch.use_irqchip = 1; 759 r = 0; 760 break; 761 case KVM_CAP_S390_USER_SIGP: 762 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 763 kvm->arch.user_sigp = 1; 764 r = 0; 765 break; 766 case KVM_CAP_S390_VECTOR_REGISTERS: 767 mutex_lock(&kvm->lock); 768 if (kvm->created_vcpus) { 769 r = -EBUSY; 770 } else if (MACHINE_HAS_VX) { 771 set_kvm_facility(kvm->arch.model.fac_mask, 129); 772 set_kvm_facility(kvm->arch.model.fac_list, 129); 773 if (test_facility(134)) { 774 set_kvm_facility(kvm->arch.model.fac_mask, 134); 775 set_kvm_facility(kvm->arch.model.fac_list, 134); 776 } 777 if (test_facility(135)) { 778 set_kvm_facility(kvm->arch.model.fac_mask, 135); 779 set_kvm_facility(kvm->arch.model.fac_list, 135); 780 } 781 if (test_facility(148)) { 782 set_kvm_facility(kvm->arch.model.fac_mask, 148); 783 set_kvm_facility(kvm->arch.model.fac_list, 148); 784 } 785 if (test_facility(152)) { 786 set_kvm_facility(kvm->arch.model.fac_mask, 152); 787 set_kvm_facility(kvm->arch.model.fac_list, 152); 788 } 789 if (test_facility(192)) { 790 set_kvm_facility(kvm->arch.model.fac_mask, 192); 791 set_kvm_facility(kvm->arch.model.fac_list, 192); 792 } 793 r = 0; 794 } else 795 r = -EINVAL; 796 mutex_unlock(&kvm->lock); 797 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 798 r ? "(not available)" : "(success)"); 799 break; 800 case KVM_CAP_S390_RI: 801 r = -EINVAL; 802 mutex_lock(&kvm->lock); 803 if (kvm->created_vcpus) { 804 r = -EBUSY; 805 } else if (test_facility(64)) { 806 set_kvm_facility(kvm->arch.model.fac_mask, 64); 807 set_kvm_facility(kvm->arch.model.fac_list, 64); 808 r = 0; 809 } 810 mutex_unlock(&kvm->lock); 811 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 812 r ? "(not available)" : "(success)"); 813 break; 814 case KVM_CAP_S390_AIS: 815 mutex_lock(&kvm->lock); 816 if (kvm->created_vcpus) { 817 r = -EBUSY; 818 } else { 819 set_kvm_facility(kvm->arch.model.fac_mask, 72); 820 set_kvm_facility(kvm->arch.model.fac_list, 72); 821 r = 0; 822 } 823 mutex_unlock(&kvm->lock); 824 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 825 r ? "(not available)" : "(success)"); 826 break; 827 case KVM_CAP_S390_GS: 828 r = -EINVAL; 829 mutex_lock(&kvm->lock); 830 if (kvm->created_vcpus) { 831 r = -EBUSY; 832 } else if (test_facility(133)) { 833 set_kvm_facility(kvm->arch.model.fac_mask, 133); 834 set_kvm_facility(kvm->arch.model.fac_list, 133); 835 r = 0; 836 } 837 mutex_unlock(&kvm->lock); 838 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 839 r ? "(not available)" : "(success)"); 840 break; 841 case KVM_CAP_S390_HPAGE_1M: 842 mutex_lock(&kvm->lock); 843 if (kvm->created_vcpus) 844 r = -EBUSY; 845 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm)) 846 r = -EINVAL; 847 else { 848 r = 0; 849 mmap_write_lock(kvm->mm); 850 kvm->mm->context.allow_gmap_hpage_1m = 1; 851 mmap_write_unlock(kvm->mm); 852 /* 853 * We might have to create fake 4k page 854 * tables. To avoid that the hardware works on 855 * stale PGSTEs, we emulate these instructions. 856 */ 857 kvm->arch.use_skf = 0; 858 kvm->arch.use_pfmfi = 0; 859 } 860 mutex_unlock(&kvm->lock); 861 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s", 862 r ? "(not available)" : "(success)"); 863 break; 864 case KVM_CAP_S390_USER_STSI: 865 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 866 kvm->arch.user_stsi = 1; 867 r = 0; 868 break; 869 case KVM_CAP_S390_USER_INSTR0: 870 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 871 kvm->arch.user_instr0 = 1; 872 icpt_operexc_on_all_vcpus(kvm); 873 r = 0; 874 break; 875 case KVM_CAP_S390_CPU_TOPOLOGY: 876 r = -EINVAL; 877 mutex_lock(&kvm->lock); 878 if (kvm->created_vcpus) { 879 r = -EBUSY; 880 } else if (test_facility(11)) { 881 set_kvm_facility(kvm->arch.model.fac_mask, 11); 882 set_kvm_facility(kvm->arch.model.fac_list, 11); 883 r = 0; 884 } 885 mutex_unlock(&kvm->lock); 886 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s", 887 r ? "(not available)" : "(success)"); 888 break; 889 default: 890 r = -EINVAL; 891 break; 892 } 893 return r; 894 } 895 896 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 897 { 898 int ret; 899 900 switch (attr->attr) { 901 case KVM_S390_VM_MEM_LIMIT_SIZE: 902 ret = 0; 903 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 904 kvm->arch.mem_limit); 905 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 906 ret = -EFAULT; 907 break; 908 default: 909 ret = -ENXIO; 910 break; 911 } 912 return ret; 913 } 914 915 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 916 { 917 int ret; 918 unsigned int idx; 919 switch (attr->attr) { 920 case KVM_S390_VM_MEM_ENABLE_CMMA: 921 ret = -ENXIO; 922 if (!sclp.has_cmma) 923 break; 924 925 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 926 mutex_lock(&kvm->lock); 927 if (kvm->created_vcpus) 928 ret = -EBUSY; 929 else if (kvm->mm->context.allow_gmap_hpage_1m) 930 ret = -EINVAL; 931 else { 932 kvm->arch.use_cmma = 1; 933 /* Not compatible with cmma. */ 934 kvm->arch.use_pfmfi = 0; 935 ret = 0; 936 } 937 mutex_unlock(&kvm->lock); 938 break; 939 case KVM_S390_VM_MEM_CLR_CMMA: 940 ret = -ENXIO; 941 if (!sclp.has_cmma) 942 break; 943 ret = -EINVAL; 944 if (!kvm->arch.use_cmma) 945 break; 946 947 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 948 mutex_lock(&kvm->lock); 949 idx = srcu_read_lock(&kvm->srcu); 950 s390_reset_cmma(kvm->arch.gmap->mm); 951 srcu_read_unlock(&kvm->srcu, idx); 952 mutex_unlock(&kvm->lock); 953 ret = 0; 954 break; 955 case KVM_S390_VM_MEM_LIMIT_SIZE: { 956 unsigned long new_limit; 957 958 if (kvm_is_ucontrol(kvm)) 959 return -EINVAL; 960 961 if (get_user(new_limit, (u64 __user *)attr->addr)) 962 return -EFAULT; 963 964 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 965 new_limit > kvm->arch.mem_limit) 966 return -E2BIG; 967 968 if (!new_limit) 969 return -EINVAL; 970 971 /* gmap_create takes last usable address */ 972 if (new_limit != KVM_S390_NO_MEM_LIMIT) 973 new_limit -= 1; 974 975 ret = -EBUSY; 976 mutex_lock(&kvm->lock); 977 if (!kvm->created_vcpus) { 978 /* gmap_create will round the limit up */ 979 struct gmap *new = gmap_create(current->mm, new_limit); 980 981 if (!new) { 982 ret = -ENOMEM; 983 } else { 984 gmap_remove(kvm->arch.gmap); 985 new->private = kvm; 986 kvm->arch.gmap = new; 987 ret = 0; 988 } 989 } 990 mutex_unlock(&kvm->lock); 991 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 992 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 993 (void *) kvm->arch.gmap->asce); 994 break; 995 } 996 default: 997 ret = -ENXIO; 998 break; 999 } 1000 return ret; 1001 } 1002 1003 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 1004 1005 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm) 1006 { 1007 struct kvm_vcpu *vcpu; 1008 unsigned long i; 1009 1010 kvm_s390_vcpu_block_all(kvm); 1011 1012 kvm_for_each_vcpu(i, vcpu, kvm) { 1013 kvm_s390_vcpu_crypto_setup(vcpu); 1014 /* recreate the shadow crycb by leaving the VSIE handler */ 1015 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1016 } 1017 1018 kvm_s390_vcpu_unblock_all(kvm); 1019 } 1020 1021 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 1022 { 1023 mutex_lock(&kvm->lock); 1024 switch (attr->attr) { 1025 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1026 if (!test_kvm_facility(kvm, 76)) { 1027 mutex_unlock(&kvm->lock); 1028 return -EINVAL; 1029 } 1030 get_random_bytes( 1031 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1032 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1033 kvm->arch.crypto.aes_kw = 1; 1034 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 1035 break; 1036 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1037 if (!test_kvm_facility(kvm, 76)) { 1038 mutex_unlock(&kvm->lock); 1039 return -EINVAL; 1040 } 1041 get_random_bytes( 1042 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1043 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1044 kvm->arch.crypto.dea_kw = 1; 1045 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 1046 break; 1047 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1048 if (!test_kvm_facility(kvm, 76)) { 1049 mutex_unlock(&kvm->lock); 1050 return -EINVAL; 1051 } 1052 kvm->arch.crypto.aes_kw = 0; 1053 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 1054 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1055 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 1056 break; 1057 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1058 if (!test_kvm_facility(kvm, 76)) { 1059 mutex_unlock(&kvm->lock); 1060 return -EINVAL; 1061 } 1062 kvm->arch.crypto.dea_kw = 0; 1063 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 1064 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1065 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 1066 break; 1067 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 1068 if (!ap_instructions_available()) { 1069 mutex_unlock(&kvm->lock); 1070 return -EOPNOTSUPP; 1071 } 1072 kvm->arch.crypto.apie = 1; 1073 break; 1074 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 1075 if (!ap_instructions_available()) { 1076 mutex_unlock(&kvm->lock); 1077 return -EOPNOTSUPP; 1078 } 1079 kvm->arch.crypto.apie = 0; 1080 break; 1081 default: 1082 mutex_unlock(&kvm->lock); 1083 return -ENXIO; 1084 } 1085 1086 kvm_s390_vcpu_crypto_reset_all(kvm); 1087 mutex_unlock(&kvm->lock); 1088 return 0; 1089 } 1090 1091 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu) 1092 { 1093 /* Only set the ECB bits after guest requests zPCI interpretation */ 1094 if (!vcpu->kvm->arch.use_zpci_interp) 1095 return; 1096 1097 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI; 1098 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI; 1099 } 1100 1101 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm) 1102 { 1103 struct kvm_vcpu *vcpu; 1104 unsigned long i; 1105 1106 lockdep_assert_held(&kvm->lock); 1107 1108 if (!kvm_s390_pci_interp_allowed()) 1109 return; 1110 1111 /* 1112 * If host is configured for PCI and the necessary facilities are 1113 * available, turn on interpretation for the life of this guest 1114 */ 1115 kvm->arch.use_zpci_interp = 1; 1116 1117 kvm_s390_vcpu_block_all(kvm); 1118 1119 kvm_for_each_vcpu(i, vcpu, kvm) { 1120 kvm_s390_vcpu_pci_setup(vcpu); 1121 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu); 1122 } 1123 1124 kvm_s390_vcpu_unblock_all(kvm); 1125 } 1126 1127 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 1128 { 1129 unsigned long cx; 1130 struct kvm_vcpu *vcpu; 1131 1132 kvm_for_each_vcpu(cx, vcpu, kvm) 1133 kvm_s390_sync_request(req, vcpu); 1134 } 1135 1136 /* 1137 * Must be called with kvm->srcu held to avoid races on memslots, and with 1138 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 1139 */ 1140 static int kvm_s390_vm_start_migration(struct kvm *kvm) 1141 { 1142 struct kvm_memory_slot *ms; 1143 struct kvm_memslots *slots; 1144 unsigned long ram_pages = 0; 1145 int bkt; 1146 1147 /* migration mode already enabled */ 1148 if (kvm->arch.migration_mode) 1149 return 0; 1150 slots = kvm_memslots(kvm); 1151 if (!slots || kvm_memslots_empty(slots)) 1152 return -EINVAL; 1153 1154 if (!kvm->arch.use_cmma) { 1155 kvm->arch.migration_mode = 1; 1156 return 0; 1157 } 1158 /* mark all the pages in active slots as dirty */ 1159 kvm_for_each_memslot(ms, bkt, slots) { 1160 if (!ms->dirty_bitmap) 1161 return -EINVAL; 1162 /* 1163 * The second half of the bitmap is only used on x86, 1164 * and would be wasted otherwise, so we put it to good 1165 * use here to keep track of the state of the storage 1166 * attributes. 1167 */ 1168 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms)); 1169 ram_pages += ms->npages; 1170 } 1171 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages); 1172 kvm->arch.migration_mode = 1; 1173 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 1174 return 0; 1175 } 1176 1177 /* 1178 * Must be called with kvm->slots_lock to avoid races with ourselves and 1179 * kvm_s390_vm_start_migration. 1180 */ 1181 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 1182 { 1183 /* migration mode already disabled */ 1184 if (!kvm->arch.migration_mode) 1185 return 0; 1186 kvm->arch.migration_mode = 0; 1187 if (kvm->arch.use_cmma) 1188 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 1189 return 0; 1190 } 1191 1192 static int kvm_s390_vm_set_migration(struct kvm *kvm, 1193 struct kvm_device_attr *attr) 1194 { 1195 int res = -ENXIO; 1196 1197 mutex_lock(&kvm->slots_lock); 1198 switch (attr->attr) { 1199 case KVM_S390_VM_MIGRATION_START: 1200 res = kvm_s390_vm_start_migration(kvm); 1201 break; 1202 case KVM_S390_VM_MIGRATION_STOP: 1203 res = kvm_s390_vm_stop_migration(kvm); 1204 break; 1205 default: 1206 break; 1207 } 1208 mutex_unlock(&kvm->slots_lock); 1209 1210 return res; 1211 } 1212 1213 static int kvm_s390_vm_get_migration(struct kvm *kvm, 1214 struct kvm_device_attr *attr) 1215 { 1216 u64 mig = kvm->arch.migration_mode; 1217 1218 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 1219 return -ENXIO; 1220 1221 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 1222 return -EFAULT; 1223 return 0; 1224 } 1225 1226 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod); 1227 1228 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1229 { 1230 struct kvm_s390_vm_tod_clock gtod; 1231 1232 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 1233 return -EFAULT; 1234 1235 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 1236 return -EINVAL; 1237 __kvm_s390_set_tod_clock(kvm, >od); 1238 1239 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 1240 gtod.epoch_idx, gtod.tod); 1241 1242 return 0; 1243 } 1244 1245 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1246 { 1247 u8 gtod_high; 1248 1249 if (copy_from_user(>od_high, (void __user *)attr->addr, 1250 sizeof(gtod_high))) 1251 return -EFAULT; 1252 1253 if (gtod_high != 0) 1254 return -EINVAL; 1255 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 1256 1257 return 0; 1258 } 1259 1260 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1261 { 1262 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1263 1264 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1265 sizeof(gtod.tod))) 1266 return -EFAULT; 1267 1268 __kvm_s390_set_tod_clock(kvm, >od); 1269 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1270 return 0; 1271 } 1272 1273 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1274 { 1275 int ret; 1276 1277 if (attr->flags) 1278 return -EINVAL; 1279 1280 mutex_lock(&kvm->lock); 1281 /* 1282 * For protected guests, the TOD is managed by the ultravisor, so trying 1283 * to change it will never bring the expected results. 1284 */ 1285 if (kvm_s390_pv_is_protected(kvm)) { 1286 ret = -EOPNOTSUPP; 1287 goto out_unlock; 1288 } 1289 1290 switch (attr->attr) { 1291 case KVM_S390_VM_TOD_EXT: 1292 ret = kvm_s390_set_tod_ext(kvm, attr); 1293 break; 1294 case KVM_S390_VM_TOD_HIGH: 1295 ret = kvm_s390_set_tod_high(kvm, attr); 1296 break; 1297 case KVM_S390_VM_TOD_LOW: 1298 ret = kvm_s390_set_tod_low(kvm, attr); 1299 break; 1300 default: 1301 ret = -ENXIO; 1302 break; 1303 } 1304 1305 out_unlock: 1306 mutex_unlock(&kvm->lock); 1307 return ret; 1308 } 1309 1310 static void kvm_s390_get_tod_clock(struct kvm *kvm, 1311 struct kvm_s390_vm_tod_clock *gtod) 1312 { 1313 union tod_clock clk; 1314 1315 preempt_disable(); 1316 1317 store_tod_clock_ext(&clk); 1318 1319 gtod->tod = clk.tod + kvm->arch.epoch; 1320 gtod->epoch_idx = 0; 1321 if (test_kvm_facility(kvm, 139)) { 1322 gtod->epoch_idx = clk.ei + kvm->arch.epdx; 1323 if (gtod->tod < clk.tod) 1324 gtod->epoch_idx += 1; 1325 } 1326 1327 preempt_enable(); 1328 } 1329 1330 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1331 { 1332 struct kvm_s390_vm_tod_clock gtod; 1333 1334 memset(>od, 0, sizeof(gtod)); 1335 kvm_s390_get_tod_clock(kvm, >od); 1336 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1337 return -EFAULT; 1338 1339 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1340 gtod.epoch_idx, gtod.tod); 1341 return 0; 1342 } 1343 1344 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1345 { 1346 u8 gtod_high = 0; 1347 1348 if (copy_to_user((void __user *)attr->addr, >od_high, 1349 sizeof(gtod_high))) 1350 return -EFAULT; 1351 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1352 1353 return 0; 1354 } 1355 1356 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1357 { 1358 u64 gtod; 1359 1360 gtod = kvm_s390_get_tod_clock_fast(kvm); 1361 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1362 return -EFAULT; 1363 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1364 1365 return 0; 1366 } 1367 1368 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1369 { 1370 int ret; 1371 1372 if (attr->flags) 1373 return -EINVAL; 1374 1375 switch (attr->attr) { 1376 case KVM_S390_VM_TOD_EXT: 1377 ret = kvm_s390_get_tod_ext(kvm, attr); 1378 break; 1379 case KVM_S390_VM_TOD_HIGH: 1380 ret = kvm_s390_get_tod_high(kvm, attr); 1381 break; 1382 case KVM_S390_VM_TOD_LOW: 1383 ret = kvm_s390_get_tod_low(kvm, attr); 1384 break; 1385 default: 1386 ret = -ENXIO; 1387 break; 1388 } 1389 return ret; 1390 } 1391 1392 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1393 { 1394 struct kvm_s390_vm_cpu_processor *proc; 1395 u16 lowest_ibc, unblocked_ibc; 1396 int ret = 0; 1397 1398 mutex_lock(&kvm->lock); 1399 if (kvm->created_vcpus) { 1400 ret = -EBUSY; 1401 goto out; 1402 } 1403 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1404 if (!proc) { 1405 ret = -ENOMEM; 1406 goto out; 1407 } 1408 if (!copy_from_user(proc, (void __user *)attr->addr, 1409 sizeof(*proc))) { 1410 kvm->arch.model.cpuid = proc->cpuid; 1411 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1412 unblocked_ibc = sclp.ibc & 0xfff; 1413 if (lowest_ibc && proc->ibc) { 1414 if (proc->ibc > unblocked_ibc) 1415 kvm->arch.model.ibc = unblocked_ibc; 1416 else if (proc->ibc < lowest_ibc) 1417 kvm->arch.model.ibc = lowest_ibc; 1418 else 1419 kvm->arch.model.ibc = proc->ibc; 1420 } 1421 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1422 S390_ARCH_FAC_LIST_SIZE_BYTE); 1423 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1424 kvm->arch.model.ibc, 1425 kvm->arch.model.cpuid); 1426 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1427 kvm->arch.model.fac_list[0], 1428 kvm->arch.model.fac_list[1], 1429 kvm->arch.model.fac_list[2]); 1430 } else 1431 ret = -EFAULT; 1432 kfree(proc); 1433 out: 1434 mutex_unlock(&kvm->lock); 1435 return ret; 1436 } 1437 1438 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1439 struct kvm_device_attr *attr) 1440 { 1441 struct kvm_s390_vm_cpu_feat data; 1442 1443 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1444 return -EFAULT; 1445 if (!bitmap_subset((unsigned long *) data.feat, 1446 kvm_s390_available_cpu_feat, 1447 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1448 return -EINVAL; 1449 1450 mutex_lock(&kvm->lock); 1451 if (kvm->created_vcpus) { 1452 mutex_unlock(&kvm->lock); 1453 return -EBUSY; 1454 } 1455 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1456 mutex_unlock(&kvm->lock); 1457 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1458 data.feat[0], 1459 data.feat[1], 1460 data.feat[2]); 1461 return 0; 1462 } 1463 1464 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1465 struct kvm_device_attr *attr) 1466 { 1467 mutex_lock(&kvm->lock); 1468 if (kvm->created_vcpus) { 1469 mutex_unlock(&kvm->lock); 1470 return -EBUSY; 1471 } 1472 1473 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr, 1474 sizeof(struct kvm_s390_vm_cpu_subfunc))) { 1475 mutex_unlock(&kvm->lock); 1476 return -EFAULT; 1477 } 1478 mutex_unlock(&kvm->lock); 1479 1480 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1484 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1485 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1487 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1488 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1490 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1491 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1493 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1494 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx", 1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1496 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1497 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1499 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1500 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1502 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1503 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1505 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1506 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1508 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1509 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1511 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1512 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1514 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1515 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1517 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1518 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1520 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1521 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1523 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1524 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1526 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1527 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1531 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1532 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1536 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1537 1538 return 0; 1539 } 1540 1541 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \ 1542 ( \ 1543 ((struct kvm_s390_vm_cpu_uv_feat){ \ 1544 .ap = 1, \ 1545 .ap_intr = 1, \ 1546 }) \ 1547 .feat \ 1548 ) 1549 1550 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1551 { 1552 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr; 1553 unsigned long data, filter; 1554 1555 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1556 if (get_user(data, &ptr->feat)) 1557 return -EFAULT; 1558 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS)) 1559 return -EINVAL; 1560 1561 mutex_lock(&kvm->lock); 1562 if (kvm->created_vcpus) { 1563 mutex_unlock(&kvm->lock); 1564 return -EBUSY; 1565 } 1566 kvm->arch.model.uv_feat_guest.feat = data; 1567 mutex_unlock(&kvm->lock); 1568 1569 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data); 1570 1571 return 0; 1572 } 1573 1574 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1575 { 1576 int ret = -ENXIO; 1577 1578 switch (attr->attr) { 1579 case KVM_S390_VM_CPU_PROCESSOR: 1580 ret = kvm_s390_set_processor(kvm, attr); 1581 break; 1582 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1583 ret = kvm_s390_set_processor_feat(kvm, attr); 1584 break; 1585 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1586 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1587 break; 1588 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1589 ret = kvm_s390_set_uv_feat(kvm, attr); 1590 break; 1591 } 1592 return ret; 1593 } 1594 1595 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1596 { 1597 struct kvm_s390_vm_cpu_processor *proc; 1598 int ret = 0; 1599 1600 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT); 1601 if (!proc) { 1602 ret = -ENOMEM; 1603 goto out; 1604 } 1605 proc->cpuid = kvm->arch.model.cpuid; 1606 proc->ibc = kvm->arch.model.ibc; 1607 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1608 S390_ARCH_FAC_LIST_SIZE_BYTE); 1609 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1610 kvm->arch.model.ibc, 1611 kvm->arch.model.cpuid); 1612 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1613 kvm->arch.model.fac_list[0], 1614 kvm->arch.model.fac_list[1], 1615 kvm->arch.model.fac_list[2]); 1616 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1617 ret = -EFAULT; 1618 kfree(proc); 1619 out: 1620 return ret; 1621 } 1622 1623 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1624 { 1625 struct kvm_s390_vm_cpu_machine *mach; 1626 int ret = 0; 1627 1628 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT); 1629 if (!mach) { 1630 ret = -ENOMEM; 1631 goto out; 1632 } 1633 get_cpu_id((struct cpuid *) &mach->cpuid); 1634 mach->ibc = sclp.ibc; 1635 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1636 S390_ARCH_FAC_LIST_SIZE_BYTE); 1637 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list, 1638 sizeof(stfle_fac_list)); 1639 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1640 kvm->arch.model.ibc, 1641 kvm->arch.model.cpuid); 1642 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1643 mach->fac_mask[0], 1644 mach->fac_mask[1], 1645 mach->fac_mask[2]); 1646 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1647 mach->fac_list[0], 1648 mach->fac_list[1], 1649 mach->fac_list[2]); 1650 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1651 ret = -EFAULT; 1652 kfree(mach); 1653 out: 1654 return ret; 1655 } 1656 1657 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1658 struct kvm_device_attr *attr) 1659 { 1660 struct kvm_s390_vm_cpu_feat data; 1661 1662 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1663 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1664 return -EFAULT; 1665 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1666 data.feat[0], 1667 data.feat[1], 1668 data.feat[2]); 1669 return 0; 1670 } 1671 1672 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1673 struct kvm_device_attr *attr) 1674 { 1675 struct kvm_s390_vm_cpu_feat data; 1676 1677 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 1678 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1679 return -EFAULT; 1680 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1681 data.feat[0], 1682 data.feat[1], 1683 data.feat[2]); 1684 return 0; 1685 } 1686 1687 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1688 struct kvm_device_attr *attr) 1689 { 1690 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs, 1691 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1692 return -EFAULT; 1693 1694 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0], 1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1], 1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2], 1698 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]); 1699 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx", 1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0], 1701 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]); 1702 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx", 1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0], 1704 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]); 1705 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx", 1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0], 1707 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]); 1708 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx", 1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0], 1710 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]); 1711 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx", 1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0], 1713 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]); 1714 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx", 1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0], 1716 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]); 1717 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx", 1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0], 1719 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]); 1720 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx", 1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0], 1722 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]); 1723 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx", 1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0], 1725 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]); 1726 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx", 1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0], 1728 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]); 1729 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx", 1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0], 1731 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]); 1732 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx", 1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0], 1734 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]); 1735 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx", 1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0], 1737 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]); 1738 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx", 1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0], 1740 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]); 1741 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0], 1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1], 1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2], 1745 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]); 1746 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0], 1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1], 1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2], 1750 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]); 1751 1752 return 0; 1753 } 1754 1755 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1756 struct kvm_device_attr *attr) 1757 { 1758 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1759 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1760 return -EFAULT; 1761 1762 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0], 1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1], 1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2], 1766 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]); 1767 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx", 1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0], 1769 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]); 1770 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx", 1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0], 1772 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]); 1773 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx", 1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0], 1775 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]); 1776 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx", 1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[0], 1778 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]); 1779 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx", 1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0], 1781 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]); 1782 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx", 1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0], 1784 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]); 1785 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx", 1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0], 1787 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]); 1788 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx", 1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0], 1790 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]); 1791 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx", 1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0], 1793 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]); 1794 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx", 1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0], 1796 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]); 1797 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx", 1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0], 1799 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]); 1800 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx", 1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0], 1802 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]); 1803 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx", 1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0], 1805 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]); 1806 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx", 1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0], 1808 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]); 1809 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0], 1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1], 1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2], 1813 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]); 1814 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx", 1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0], 1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1], 1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2], 1818 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]); 1819 1820 return 0; 1821 } 1822 1823 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1824 { 1825 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1826 unsigned long feat = kvm->arch.model.uv_feat_guest.feat; 1827 1828 if (put_user(feat, &dst->feat)) 1829 return -EFAULT; 1830 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1831 1832 return 0; 1833 } 1834 1835 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr) 1836 { 1837 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr; 1838 unsigned long feat; 1839 1840 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications)); 1841 1842 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK; 1843 if (put_user(feat, &dst->feat)) 1844 return -EFAULT; 1845 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat); 1846 1847 return 0; 1848 } 1849 1850 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1851 { 1852 int ret = -ENXIO; 1853 1854 switch (attr->attr) { 1855 case KVM_S390_VM_CPU_PROCESSOR: 1856 ret = kvm_s390_get_processor(kvm, attr); 1857 break; 1858 case KVM_S390_VM_CPU_MACHINE: 1859 ret = kvm_s390_get_machine(kvm, attr); 1860 break; 1861 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1862 ret = kvm_s390_get_processor_feat(kvm, attr); 1863 break; 1864 case KVM_S390_VM_CPU_MACHINE_FEAT: 1865 ret = kvm_s390_get_machine_feat(kvm, attr); 1866 break; 1867 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1868 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1869 break; 1870 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1871 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1872 break; 1873 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 1874 ret = kvm_s390_get_processor_uv_feat(kvm, attr); 1875 break; 1876 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 1877 ret = kvm_s390_get_machine_uv_feat(kvm, attr); 1878 break; 1879 } 1880 return ret; 1881 } 1882 1883 /** 1884 * kvm_s390_update_topology_change_report - update CPU topology change report 1885 * @kvm: guest KVM description 1886 * @val: set or clear the MTCR bit 1887 * 1888 * Updates the Multiprocessor Topology-Change-Report bit to signal 1889 * the guest with a topology change. 1890 * This is only relevant if the topology facility is present. 1891 * 1892 * The SCA version, bsca or esca, doesn't matter as offset is the same. 1893 */ 1894 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val) 1895 { 1896 union sca_utility new, old; 1897 struct bsca_block *sca; 1898 1899 read_lock(&kvm->arch.sca_lock); 1900 sca = kvm->arch.sca; 1901 do { 1902 old = READ_ONCE(sca->utility); 1903 new = old; 1904 new.mtcr = val; 1905 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val); 1906 read_unlock(&kvm->arch.sca_lock); 1907 } 1908 1909 static int kvm_s390_set_topo_change_indication(struct kvm *kvm, 1910 struct kvm_device_attr *attr) 1911 { 1912 if (!test_kvm_facility(kvm, 11)) 1913 return -ENXIO; 1914 1915 kvm_s390_update_topology_change_report(kvm, !!attr->attr); 1916 return 0; 1917 } 1918 1919 static int kvm_s390_get_topo_change_indication(struct kvm *kvm, 1920 struct kvm_device_attr *attr) 1921 { 1922 u8 topo; 1923 1924 if (!test_kvm_facility(kvm, 11)) 1925 return -ENXIO; 1926 1927 read_lock(&kvm->arch.sca_lock); 1928 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr; 1929 read_unlock(&kvm->arch.sca_lock); 1930 1931 return put_user(topo, (u8 __user *)attr->addr); 1932 } 1933 1934 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1935 { 1936 int ret; 1937 1938 switch (attr->group) { 1939 case KVM_S390_VM_MEM_CTRL: 1940 ret = kvm_s390_set_mem_control(kvm, attr); 1941 break; 1942 case KVM_S390_VM_TOD: 1943 ret = kvm_s390_set_tod(kvm, attr); 1944 break; 1945 case KVM_S390_VM_CPU_MODEL: 1946 ret = kvm_s390_set_cpu_model(kvm, attr); 1947 break; 1948 case KVM_S390_VM_CRYPTO: 1949 ret = kvm_s390_vm_set_crypto(kvm, attr); 1950 break; 1951 case KVM_S390_VM_MIGRATION: 1952 ret = kvm_s390_vm_set_migration(kvm, attr); 1953 break; 1954 case KVM_S390_VM_CPU_TOPOLOGY: 1955 ret = kvm_s390_set_topo_change_indication(kvm, attr); 1956 break; 1957 default: 1958 ret = -ENXIO; 1959 break; 1960 } 1961 1962 return ret; 1963 } 1964 1965 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1966 { 1967 int ret; 1968 1969 switch (attr->group) { 1970 case KVM_S390_VM_MEM_CTRL: 1971 ret = kvm_s390_get_mem_control(kvm, attr); 1972 break; 1973 case KVM_S390_VM_TOD: 1974 ret = kvm_s390_get_tod(kvm, attr); 1975 break; 1976 case KVM_S390_VM_CPU_MODEL: 1977 ret = kvm_s390_get_cpu_model(kvm, attr); 1978 break; 1979 case KVM_S390_VM_MIGRATION: 1980 ret = kvm_s390_vm_get_migration(kvm, attr); 1981 break; 1982 case KVM_S390_VM_CPU_TOPOLOGY: 1983 ret = kvm_s390_get_topo_change_indication(kvm, attr); 1984 break; 1985 default: 1986 ret = -ENXIO; 1987 break; 1988 } 1989 1990 return ret; 1991 } 1992 1993 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1994 { 1995 int ret; 1996 1997 switch (attr->group) { 1998 case KVM_S390_VM_MEM_CTRL: 1999 switch (attr->attr) { 2000 case KVM_S390_VM_MEM_ENABLE_CMMA: 2001 case KVM_S390_VM_MEM_CLR_CMMA: 2002 ret = sclp.has_cmma ? 0 : -ENXIO; 2003 break; 2004 case KVM_S390_VM_MEM_LIMIT_SIZE: 2005 ret = 0; 2006 break; 2007 default: 2008 ret = -ENXIO; 2009 break; 2010 } 2011 break; 2012 case KVM_S390_VM_TOD: 2013 switch (attr->attr) { 2014 case KVM_S390_VM_TOD_LOW: 2015 case KVM_S390_VM_TOD_HIGH: 2016 ret = 0; 2017 break; 2018 default: 2019 ret = -ENXIO; 2020 break; 2021 } 2022 break; 2023 case KVM_S390_VM_CPU_MODEL: 2024 switch (attr->attr) { 2025 case KVM_S390_VM_CPU_PROCESSOR: 2026 case KVM_S390_VM_CPU_MACHINE: 2027 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 2028 case KVM_S390_VM_CPU_MACHINE_FEAT: 2029 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 2030 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 2031 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST: 2032 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST: 2033 ret = 0; 2034 break; 2035 default: 2036 ret = -ENXIO; 2037 break; 2038 } 2039 break; 2040 case KVM_S390_VM_CRYPTO: 2041 switch (attr->attr) { 2042 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 2043 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 2044 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 2045 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 2046 ret = 0; 2047 break; 2048 case KVM_S390_VM_CRYPTO_ENABLE_APIE: 2049 case KVM_S390_VM_CRYPTO_DISABLE_APIE: 2050 ret = ap_instructions_available() ? 0 : -ENXIO; 2051 break; 2052 default: 2053 ret = -ENXIO; 2054 break; 2055 } 2056 break; 2057 case KVM_S390_VM_MIGRATION: 2058 ret = 0; 2059 break; 2060 case KVM_S390_VM_CPU_TOPOLOGY: 2061 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO; 2062 break; 2063 default: 2064 ret = -ENXIO; 2065 break; 2066 } 2067 2068 return ret; 2069 } 2070 2071 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2072 { 2073 uint8_t *keys; 2074 uint64_t hva; 2075 int srcu_idx, i, r = 0; 2076 2077 if (args->flags != 0) 2078 return -EINVAL; 2079 2080 /* Is this guest using storage keys? */ 2081 if (!mm_uses_skeys(current->mm)) 2082 return KVM_S390_GET_SKEYS_NONE; 2083 2084 /* Enforce sane limit on memory allocation */ 2085 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2086 return -EINVAL; 2087 2088 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2089 if (!keys) 2090 return -ENOMEM; 2091 2092 mmap_read_lock(current->mm); 2093 srcu_idx = srcu_read_lock(&kvm->srcu); 2094 for (i = 0; i < args->count; i++) { 2095 hva = gfn_to_hva(kvm, args->start_gfn + i); 2096 if (kvm_is_error_hva(hva)) { 2097 r = -EFAULT; 2098 break; 2099 } 2100 2101 r = get_guest_storage_key(current->mm, hva, &keys[i]); 2102 if (r) 2103 break; 2104 } 2105 srcu_read_unlock(&kvm->srcu, srcu_idx); 2106 mmap_read_unlock(current->mm); 2107 2108 if (!r) { 2109 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 2110 sizeof(uint8_t) * args->count); 2111 if (r) 2112 r = -EFAULT; 2113 } 2114 2115 kvfree(keys); 2116 return r; 2117 } 2118 2119 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 2120 { 2121 uint8_t *keys; 2122 uint64_t hva; 2123 int srcu_idx, i, r = 0; 2124 bool unlocked; 2125 2126 if (args->flags != 0) 2127 return -EINVAL; 2128 2129 /* Enforce sane limit on memory allocation */ 2130 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 2131 return -EINVAL; 2132 2133 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT); 2134 if (!keys) 2135 return -ENOMEM; 2136 2137 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 2138 sizeof(uint8_t) * args->count); 2139 if (r) { 2140 r = -EFAULT; 2141 goto out; 2142 } 2143 2144 /* Enable storage key handling for the guest */ 2145 r = s390_enable_skey(); 2146 if (r) 2147 goto out; 2148 2149 i = 0; 2150 mmap_read_lock(current->mm); 2151 srcu_idx = srcu_read_lock(&kvm->srcu); 2152 while (i < args->count) { 2153 unlocked = false; 2154 hva = gfn_to_hva(kvm, args->start_gfn + i); 2155 if (kvm_is_error_hva(hva)) { 2156 r = -EFAULT; 2157 break; 2158 } 2159 2160 /* Lowest order bit is reserved */ 2161 if (keys[i] & 0x01) { 2162 r = -EINVAL; 2163 break; 2164 } 2165 2166 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 2167 if (r) { 2168 r = fixup_user_fault(current->mm, hva, 2169 FAULT_FLAG_WRITE, &unlocked); 2170 if (r) 2171 break; 2172 } 2173 if (!r) 2174 i++; 2175 } 2176 srcu_read_unlock(&kvm->srcu, srcu_idx); 2177 mmap_read_unlock(current->mm); 2178 out: 2179 kvfree(keys); 2180 return r; 2181 } 2182 2183 /* 2184 * Base address and length must be sent at the start of each block, therefore 2185 * it's cheaper to send some clean data, as long as it's less than the size of 2186 * two longs. 2187 */ 2188 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 2189 /* for consistency */ 2190 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 2191 2192 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2193 u8 *res, unsigned long bufsize) 2194 { 2195 unsigned long pgstev, hva, cur_gfn = args->start_gfn; 2196 2197 args->count = 0; 2198 while (args->count < bufsize) { 2199 hva = gfn_to_hva(kvm, cur_gfn); 2200 /* 2201 * We return an error if the first value was invalid, but we 2202 * return successfully if at least one value was copied. 2203 */ 2204 if (kvm_is_error_hva(hva)) 2205 return args->count ? 0 : -EFAULT; 2206 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2207 pgstev = 0; 2208 res[args->count++] = (pgstev >> 24) & 0x43; 2209 cur_gfn++; 2210 } 2211 2212 return 0; 2213 } 2214 2215 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots, 2216 gfn_t gfn) 2217 { 2218 return ____gfn_to_memslot(slots, gfn, true); 2219 } 2220 2221 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots, 2222 unsigned long cur_gfn) 2223 { 2224 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn); 2225 unsigned long ofs = cur_gfn - ms->base_gfn; 2226 struct rb_node *mnode = &ms->gfn_node[slots->node_idx]; 2227 2228 if (ms->base_gfn + ms->npages <= cur_gfn) { 2229 mnode = rb_next(mnode); 2230 /* If we are above the highest slot, wrap around */ 2231 if (!mnode) 2232 mnode = rb_first(&slots->gfn_tree); 2233 2234 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2235 ofs = 0; 2236 } 2237 2238 if (cur_gfn < ms->base_gfn) 2239 ofs = 0; 2240 2241 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs); 2242 while (ofs >= ms->npages && (mnode = rb_next(mnode))) { 2243 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]); 2244 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages); 2245 } 2246 return ms->base_gfn + ofs; 2247 } 2248 2249 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args, 2250 u8 *res, unsigned long bufsize) 2251 { 2252 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev; 2253 struct kvm_memslots *slots = kvm_memslots(kvm); 2254 struct kvm_memory_slot *ms; 2255 2256 if (unlikely(kvm_memslots_empty(slots))) 2257 return 0; 2258 2259 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn); 2260 ms = gfn_to_memslot(kvm, cur_gfn); 2261 args->count = 0; 2262 args->start_gfn = cur_gfn; 2263 if (!ms) 2264 return 0; 2265 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2266 mem_end = kvm_s390_get_gfn_end(slots); 2267 2268 while (args->count < bufsize) { 2269 hva = gfn_to_hva(kvm, cur_gfn); 2270 if (kvm_is_error_hva(hva)) 2271 return 0; 2272 /* Decrement only if we actually flipped the bit to 0 */ 2273 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms))) 2274 atomic64_dec(&kvm->arch.cmma_dirty_pages); 2275 if (get_pgste(kvm->mm, hva, &pgstev) < 0) 2276 pgstev = 0; 2277 /* Save the value */ 2278 res[args->count++] = (pgstev >> 24) & 0x43; 2279 /* If the next bit is too far away, stop. */ 2280 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE) 2281 return 0; 2282 /* If we reached the previous "next", find the next one */ 2283 if (cur_gfn == next_gfn) 2284 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1); 2285 /* Reached the end of memory or of the buffer, stop */ 2286 if ((next_gfn >= mem_end) || 2287 (next_gfn - args->start_gfn >= bufsize)) 2288 return 0; 2289 cur_gfn++; 2290 /* Reached the end of the current memslot, take the next one. */ 2291 if (cur_gfn - ms->base_gfn >= ms->npages) { 2292 ms = gfn_to_memslot(kvm, cur_gfn); 2293 if (!ms) 2294 return 0; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 /* 2301 * This function searches for the next page with dirty CMMA attributes, and 2302 * saves the attributes in the buffer up to either the end of the buffer or 2303 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 2304 * no trailing clean bytes are saved. 2305 * In case no dirty bits were found, or if CMMA was not enabled or used, the 2306 * output buffer will indicate 0 as length. 2307 */ 2308 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 2309 struct kvm_s390_cmma_log *args) 2310 { 2311 unsigned long bufsize; 2312 int srcu_idx, peek, ret; 2313 u8 *values; 2314 2315 if (!kvm->arch.use_cmma) 2316 return -ENXIO; 2317 /* Invalid/unsupported flags were specified */ 2318 if (args->flags & ~KVM_S390_CMMA_PEEK) 2319 return -EINVAL; 2320 /* Migration mode query, and we are not doing a migration */ 2321 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 2322 if (!peek && !kvm->arch.migration_mode) 2323 return -EINVAL; 2324 /* CMMA is disabled or was not used, or the buffer has length zero */ 2325 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 2326 if (!bufsize || !kvm->mm->context.uses_cmm) { 2327 memset(args, 0, sizeof(*args)); 2328 return 0; 2329 } 2330 /* We are not peeking, and there are no dirty pages */ 2331 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) { 2332 memset(args, 0, sizeof(*args)); 2333 return 0; 2334 } 2335 2336 values = vmalloc(bufsize); 2337 if (!values) 2338 return -ENOMEM; 2339 2340 mmap_read_lock(kvm->mm); 2341 srcu_idx = srcu_read_lock(&kvm->srcu); 2342 if (peek) 2343 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize); 2344 else 2345 ret = kvm_s390_get_cmma(kvm, args, values, bufsize); 2346 srcu_read_unlock(&kvm->srcu, srcu_idx); 2347 mmap_read_unlock(kvm->mm); 2348 2349 if (kvm->arch.migration_mode) 2350 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages); 2351 else 2352 args->remaining = 0; 2353 2354 if (copy_to_user((void __user *)args->values, values, args->count)) 2355 ret = -EFAULT; 2356 2357 vfree(values); 2358 return ret; 2359 } 2360 2361 /* 2362 * This function sets the CMMA attributes for the given pages. If the input 2363 * buffer has zero length, no action is taken, otherwise the attributes are 2364 * set and the mm->context.uses_cmm flag is set. 2365 */ 2366 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 2367 const struct kvm_s390_cmma_log *args) 2368 { 2369 unsigned long hva, mask, pgstev, i; 2370 uint8_t *bits; 2371 int srcu_idx, r = 0; 2372 2373 mask = args->mask; 2374 2375 if (!kvm->arch.use_cmma) 2376 return -ENXIO; 2377 /* invalid/unsupported flags */ 2378 if (args->flags != 0) 2379 return -EINVAL; 2380 /* Enforce sane limit on memory allocation */ 2381 if (args->count > KVM_S390_CMMA_SIZE_MAX) 2382 return -EINVAL; 2383 /* Nothing to do */ 2384 if (args->count == 0) 2385 return 0; 2386 2387 bits = vmalloc(array_size(sizeof(*bits), args->count)); 2388 if (!bits) 2389 return -ENOMEM; 2390 2391 r = copy_from_user(bits, (void __user *)args->values, args->count); 2392 if (r) { 2393 r = -EFAULT; 2394 goto out; 2395 } 2396 2397 mmap_read_lock(kvm->mm); 2398 srcu_idx = srcu_read_lock(&kvm->srcu); 2399 for (i = 0; i < args->count; i++) { 2400 hva = gfn_to_hva(kvm, args->start_gfn + i); 2401 if (kvm_is_error_hva(hva)) { 2402 r = -EFAULT; 2403 break; 2404 } 2405 2406 pgstev = bits[i]; 2407 pgstev = pgstev << 24; 2408 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 2409 set_pgste_bits(kvm->mm, hva, mask, pgstev); 2410 } 2411 srcu_read_unlock(&kvm->srcu, srcu_idx); 2412 mmap_read_unlock(kvm->mm); 2413 2414 if (!kvm->mm->context.uses_cmm) { 2415 mmap_write_lock(kvm->mm); 2416 kvm->mm->context.uses_cmm = 1; 2417 mmap_write_unlock(kvm->mm); 2418 } 2419 out: 2420 vfree(bits); 2421 return r; 2422 } 2423 2424 /** 2425 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to 2426 * non protected. 2427 * @kvm: the VM whose protected vCPUs are to be converted 2428 * @rc: return value for the RC field of the UVC (in case of error) 2429 * @rrc: return value for the RRC field of the UVC (in case of error) 2430 * 2431 * Does not stop in case of error, tries to convert as many 2432 * CPUs as possible. In case of error, the RC and RRC of the last error are 2433 * returned. 2434 * 2435 * Return: 0 in case of success, otherwise -EIO 2436 */ 2437 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2438 { 2439 struct kvm_vcpu *vcpu; 2440 unsigned long i; 2441 u16 _rc, _rrc; 2442 int ret = 0; 2443 2444 /* 2445 * We ignore failures and try to destroy as many CPUs as possible. 2446 * At the same time we must not free the assigned resources when 2447 * this fails, as the ultravisor has still access to that memory. 2448 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak 2449 * behind. 2450 * We want to return the first failure rc and rrc, though. 2451 */ 2452 kvm_for_each_vcpu(i, vcpu, kvm) { 2453 mutex_lock(&vcpu->mutex); 2454 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) { 2455 *rc = _rc; 2456 *rrc = _rrc; 2457 ret = -EIO; 2458 } 2459 mutex_unlock(&vcpu->mutex); 2460 } 2461 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */ 2462 if (use_gisa) 2463 kvm_s390_gisa_enable(kvm); 2464 return ret; 2465 } 2466 2467 /** 2468 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM 2469 * to protected. 2470 * @kvm: the VM whose protected vCPUs are to be converted 2471 * @rc: return value for the RC field of the UVC (in case of error) 2472 * @rrc: return value for the RRC field of the UVC (in case of error) 2473 * 2474 * Tries to undo the conversion in case of error. 2475 * 2476 * Return: 0 in case of success, otherwise -EIO 2477 */ 2478 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc) 2479 { 2480 unsigned long i; 2481 int r = 0; 2482 u16 dummy; 2483 2484 struct kvm_vcpu *vcpu; 2485 2486 /* Disable the GISA if the ultravisor does not support AIV. */ 2487 if (!uv_has_feature(BIT_UV_FEAT_AIV)) 2488 kvm_s390_gisa_disable(kvm); 2489 2490 kvm_for_each_vcpu(i, vcpu, kvm) { 2491 mutex_lock(&vcpu->mutex); 2492 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc); 2493 mutex_unlock(&vcpu->mutex); 2494 if (r) 2495 break; 2496 } 2497 if (r) 2498 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy); 2499 return r; 2500 } 2501 2502 /* 2503 * Here we provide user space with a direct interface to query UV 2504 * related data like UV maxima and available features as well as 2505 * feature specific data. 2506 * 2507 * To facilitate future extension of the data structures we'll try to 2508 * write data up to the maximum requested length. 2509 */ 2510 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info) 2511 { 2512 ssize_t len_min; 2513 2514 switch (info->header.id) { 2515 case KVM_PV_INFO_VM: { 2516 len_min = sizeof(info->header) + sizeof(info->vm); 2517 2518 if (info->header.len_max < len_min) 2519 return -EINVAL; 2520 2521 memcpy(info->vm.inst_calls_list, 2522 uv_info.inst_calls_list, 2523 sizeof(uv_info.inst_calls_list)); 2524 2525 /* It's max cpuid not max cpus, so it's off by one */ 2526 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1; 2527 info->vm.max_guests = uv_info.max_num_sec_conf; 2528 info->vm.max_guest_addr = uv_info.max_sec_stor_addr; 2529 info->vm.feature_indication = uv_info.uv_feature_indications; 2530 2531 return len_min; 2532 } 2533 case KVM_PV_INFO_DUMP: { 2534 len_min = sizeof(info->header) + sizeof(info->dump); 2535 2536 if (info->header.len_max < len_min) 2537 return -EINVAL; 2538 2539 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len; 2540 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len; 2541 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len; 2542 return len_min; 2543 } 2544 default: 2545 return -EINVAL; 2546 } 2547 } 2548 2549 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd, 2550 struct kvm_s390_pv_dmp dmp) 2551 { 2552 int r = -EINVAL; 2553 void __user *result_buff = (void __user *)dmp.buff_addr; 2554 2555 switch (dmp.subcmd) { 2556 case KVM_PV_DUMP_INIT: { 2557 if (kvm->arch.pv.dumping) 2558 break; 2559 2560 /* 2561 * Block SIE entry as concurrent dump UVCs could lead 2562 * to validities. 2563 */ 2564 kvm_s390_vcpu_block_all(kvm); 2565 2566 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2567 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc); 2568 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x", 2569 cmd->rc, cmd->rrc); 2570 if (!r) { 2571 kvm->arch.pv.dumping = true; 2572 } else { 2573 kvm_s390_vcpu_unblock_all(kvm); 2574 r = -EINVAL; 2575 } 2576 break; 2577 } 2578 case KVM_PV_DUMP_CONFIG_STOR_STATE: { 2579 if (!kvm->arch.pv.dumping) 2580 break; 2581 2582 /* 2583 * gaddr is an output parameter since we might stop 2584 * early. As dmp will be copied back in our caller, we 2585 * don't need to do it ourselves. 2586 */ 2587 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len, 2588 &cmd->rc, &cmd->rrc); 2589 break; 2590 } 2591 case KVM_PV_DUMP_COMPLETE: { 2592 if (!kvm->arch.pv.dumping) 2593 break; 2594 2595 r = -EINVAL; 2596 if (dmp.buff_len < uv_info.conf_dump_finalize_len) 2597 break; 2598 2599 r = kvm_s390_pv_dump_complete(kvm, result_buff, 2600 &cmd->rc, &cmd->rrc); 2601 break; 2602 } 2603 default: 2604 r = -ENOTTY; 2605 break; 2606 } 2607 2608 return r; 2609 } 2610 2611 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd) 2612 { 2613 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM); 2614 void __user *argp = (void __user *)cmd->data; 2615 int r = 0; 2616 u16 dummy; 2617 2618 if (need_lock) 2619 mutex_lock(&kvm->lock); 2620 2621 switch (cmd->cmd) { 2622 case KVM_PV_ENABLE: { 2623 r = -EINVAL; 2624 if (kvm_s390_pv_is_protected(kvm)) 2625 break; 2626 2627 /* 2628 * FMT 4 SIE needs esca. As we never switch back to bsca from 2629 * esca, we need no cleanup in the error cases below 2630 */ 2631 r = sca_switch_to_extended(kvm); 2632 if (r) 2633 break; 2634 2635 r = s390_disable_cow_sharing(); 2636 if (r) 2637 break; 2638 2639 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc); 2640 if (r) 2641 break; 2642 2643 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc); 2644 if (r) 2645 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy); 2646 2647 /* we need to block service interrupts from now on */ 2648 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2649 break; 2650 } 2651 case KVM_PV_ASYNC_CLEANUP_PREPARE: 2652 r = -EINVAL; 2653 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy) 2654 break; 2655 2656 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2657 /* 2658 * If a CPU could not be destroyed, destroy VM will also fail. 2659 * There is no point in trying to destroy it. Instead return 2660 * the rc and rrc from the first CPU that failed destroying. 2661 */ 2662 if (r) 2663 break; 2664 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc); 2665 2666 /* no need to block service interrupts any more */ 2667 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2668 break; 2669 case KVM_PV_ASYNC_CLEANUP_PERFORM: 2670 r = -EINVAL; 2671 if (!async_destroy) 2672 break; 2673 /* kvm->lock must not be held; this is asserted inside the function. */ 2674 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc); 2675 break; 2676 case KVM_PV_DISABLE: { 2677 r = -EINVAL; 2678 if (!kvm_s390_pv_is_protected(kvm)) 2679 break; 2680 2681 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc); 2682 /* 2683 * If a CPU could not be destroyed, destroy VM will also fail. 2684 * There is no point in trying to destroy it. Instead return 2685 * the rc and rrc from the first CPU that failed destroying. 2686 */ 2687 if (r) 2688 break; 2689 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc); 2690 2691 /* no need to block service interrupts any more */ 2692 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs); 2693 break; 2694 } 2695 case KVM_PV_SET_SEC_PARMS: { 2696 struct kvm_s390_pv_sec_parm parms = {}; 2697 void *hdr; 2698 2699 r = -EINVAL; 2700 if (!kvm_s390_pv_is_protected(kvm)) 2701 break; 2702 2703 r = -EFAULT; 2704 if (copy_from_user(&parms, argp, sizeof(parms))) 2705 break; 2706 2707 /* Currently restricted to 8KB */ 2708 r = -EINVAL; 2709 if (parms.length > PAGE_SIZE * 2) 2710 break; 2711 2712 r = -ENOMEM; 2713 hdr = vmalloc(parms.length); 2714 if (!hdr) 2715 break; 2716 2717 r = -EFAULT; 2718 if (!copy_from_user(hdr, (void __user *)parms.origin, 2719 parms.length)) 2720 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length, 2721 &cmd->rc, &cmd->rrc); 2722 2723 vfree(hdr); 2724 break; 2725 } 2726 case KVM_PV_UNPACK: { 2727 struct kvm_s390_pv_unp unp = {}; 2728 2729 r = -EINVAL; 2730 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm)) 2731 break; 2732 2733 r = -EFAULT; 2734 if (copy_from_user(&unp, argp, sizeof(unp))) 2735 break; 2736 2737 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak, 2738 &cmd->rc, &cmd->rrc); 2739 break; 2740 } 2741 case KVM_PV_VERIFY: { 2742 r = -EINVAL; 2743 if (!kvm_s390_pv_is_protected(kvm)) 2744 break; 2745 2746 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2747 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc); 2748 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc, 2749 cmd->rrc); 2750 break; 2751 } 2752 case KVM_PV_PREP_RESET: { 2753 r = -EINVAL; 2754 if (!kvm_s390_pv_is_protected(kvm)) 2755 break; 2756 2757 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2758 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc); 2759 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x", 2760 cmd->rc, cmd->rrc); 2761 break; 2762 } 2763 case KVM_PV_UNSHARE_ALL: { 2764 r = -EINVAL; 2765 if (!kvm_s390_pv_is_protected(kvm)) 2766 break; 2767 2768 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm), 2769 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc); 2770 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x", 2771 cmd->rc, cmd->rrc); 2772 break; 2773 } 2774 case KVM_PV_INFO: { 2775 struct kvm_s390_pv_info info = {}; 2776 ssize_t data_len; 2777 2778 /* 2779 * No need to check the VM protection here. 2780 * 2781 * Maybe user space wants to query some of the data 2782 * when the VM is still unprotected. If we see the 2783 * need to fence a new data command we can still 2784 * return an error in the info handler. 2785 */ 2786 2787 r = -EFAULT; 2788 if (copy_from_user(&info, argp, sizeof(info.header))) 2789 break; 2790 2791 r = -EINVAL; 2792 if (info.header.len_max < sizeof(info.header)) 2793 break; 2794 2795 data_len = kvm_s390_handle_pv_info(&info); 2796 if (data_len < 0) { 2797 r = data_len; 2798 break; 2799 } 2800 /* 2801 * If a data command struct is extended (multiple 2802 * times) this can be used to determine how much of it 2803 * is valid. 2804 */ 2805 info.header.len_written = data_len; 2806 2807 r = -EFAULT; 2808 if (copy_to_user(argp, &info, data_len)) 2809 break; 2810 2811 r = 0; 2812 break; 2813 } 2814 case KVM_PV_DUMP: { 2815 struct kvm_s390_pv_dmp dmp; 2816 2817 r = -EINVAL; 2818 if (!kvm_s390_pv_is_protected(kvm)) 2819 break; 2820 2821 r = -EFAULT; 2822 if (copy_from_user(&dmp, argp, sizeof(dmp))) 2823 break; 2824 2825 r = kvm_s390_pv_dmp(kvm, cmd, dmp); 2826 if (r) 2827 break; 2828 2829 if (copy_to_user(argp, &dmp, sizeof(dmp))) { 2830 r = -EFAULT; 2831 break; 2832 } 2833 2834 break; 2835 } 2836 default: 2837 r = -ENOTTY; 2838 } 2839 if (need_lock) 2840 mutex_unlock(&kvm->lock); 2841 2842 return r; 2843 } 2844 2845 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags) 2846 { 2847 if (mop->flags & ~supported_flags || !mop->size) 2848 return -EINVAL; 2849 if (mop->size > MEM_OP_MAX_SIZE) 2850 return -E2BIG; 2851 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) { 2852 if (mop->key > 0xf) 2853 return -EINVAL; 2854 } else { 2855 mop->key = 0; 2856 } 2857 return 0; 2858 } 2859 2860 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2861 { 2862 void __user *uaddr = (void __user *)mop->buf; 2863 enum gacc_mode acc_mode; 2864 void *tmpbuf = NULL; 2865 int r, srcu_idx; 2866 2867 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION | 2868 KVM_S390_MEMOP_F_CHECK_ONLY); 2869 if (r) 2870 return r; 2871 2872 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 2873 tmpbuf = vmalloc(mop->size); 2874 if (!tmpbuf) 2875 return -ENOMEM; 2876 } 2877 2878 srcu_idx = srcu_read_lock(&kvm->srcu); 2879 2880 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2881 r = PGM_ADDRESSING; 2882 goto out_unlock; 2883 } 2884 2885 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE; 2886 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 2887 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key); 2888 goto out_unlock; 2889 } 2890 if (acc_mode == GACC_FETCH) { 2891 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2892 mop->size, GACC_FETCH, mop->key); 2893 if (r) 2894 goto out_unlock; 2895 if (copy_to_user(uaddr, tmpbuf, mop->size)) 2896 r = -EFAULT; 2897 } else { 2898 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 2899 r = -EFAULT; 2900 goto out_unlock; 2901 } 2902 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf, 2903 mop->size, GACC_STORE, mop->key); 2904 } 2905 2906 out_unlock: 2907 srcu_read_unlock(&kvm->srcu, srcu_idx); 2908 2909 vfree(tmpbuf); 2910 return r; 2911 } 2912 2913 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2914 { 2915 void __user *uaddr = (void __user *)mop->buf; 2916 void __user *old_addr = (void __user *)mop->old_addr; 2917 union { 2918 __uint128_t quad; 2919 char raw[sizeof(__uint128_t)]; 2920 } old = { .quad = 0}, new = { .quad = 0 }; 2921 unsigned int off_in_quad = sizeof(new) - mop->size; 2922 int r, srcu_idx; 2923 bool success; 2924 2925 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION); 2926 if (r) 2927 return r; 2928 /* 2929 * This validates off_in_quad. Checking that size is a power 2930 * of two is not necessary, as cmpxchg_guest_abs_with_key 2931 * takes care of that 2932 */ 2933 if (mop->size > sizeof(new)) 2934 return -EINVAL; 2935 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size)) 2936 return -EFAULT; 2937 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size)) 2938 return -EFAULT; 2939 2940 srcu_idx = srcu_read_lock(&kvm->srcu); 2941 2942 if (kvm_is_error_gpa(kvm, mop->gaddr)) { 2943 r = PGM_ADDRESSING; 2944 goto out_unlock; 2945 } 2946 2947 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad, 2948 new.quad, mop->key, &success); 2949 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size)) 2950 r = -EFAULT; 2951 2952 out_unlock: 2953 srcu_read_unlock(&kvm->srcu, srcu_idx); 2954 return r; 2955 } 2956 2957 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop) 2958 { 2959 /* 2960 * This is technically a heuristic only, if the kvm->lock is not 2961 * taken, it is not guaranteed that the vm is/remains non-protected. 2962 * This is ok from a kernel perspective, wrongdoing is detected 2963 * on the access, -EFAULT is returned and the vm may crash the 2964 * next time it accesses the memory in question. 2965 * There is no sane usecase to do switching and a memop on two 2966 * different CPUs at the same time. 2967 */ 2968 if (kvm_s390_pv_get_handle(kvm)) 2969 return -EINVAL; 2970 2971 switch (mop->op) { 2972 case KVM_S390_MEMOP_ABSOLUTE_READ: 2973 case KVM_S390_MEMOP_ABSOLUTE_WRITE: 2974 return kvm_s390_vm_mem_op_abs(kvm, mop); 2975 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG: 2976 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop); 2977 default: 2978 return -EINVAL; 2979 } 2980 } 2981 2982 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) 2983 { 2984 struct kvm *kvm = filp->private_data; 2985 void __user *argp = (void __user *)arg; 2986 struct kvm_device_attr attr; 2987 int r; 2988 2989 switch (ioctl) { 2990 case KVM_S390_INTERRUPT: { 2991 struct kvm_s390_interrupt s390int; 2992 2993 r = -EFAULT; 2994 if (copy_from_user(&s390int, argp, sizeof(s390int))) 2995 break; 2996 r = kvm_s390_inject_vm(kvm, &s390int); 2997 break; 2998 } 2999 case KVM_CREATE_IRQCHIP: { 3000 struct kvm_irq_routing_entry routing; 3001 3002 r = -EINVAL; 3003 if (kvm->arch.use_irqchip) { 3004 /* Set up dummy routing. */ 3005 memset(&routing, 0, sizeof(routing)); 3006 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 3007 } 3008 break; 3009 } 3010 case KVM_SET_DEVICE_ATTR: { 3011 r = -EFAULT; 3012 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3013 break; 3014 r = kvm_s390_vm_set_attr(kvm, &attr); 3015 break; 3016 } 3017 case KVM_GET_DEVICE_ATTR: { 3018 r = -EFAULT; 3019 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3020 break; 3021 r = kvm_s390_vm_get_attr(kvm, &attr); 3022 break; 3023 } 3024 case KVM_HAS_DEVICE_ATTR: { 3025 r = -EFAULT; 3026 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 3027 break; 3028 r = kvm_s390_vm_has_attr(kvm, &attr); 3029 break; 3030 } 3031 case KVM_S390_GET_SKEYS: { 3032 struct kvm_s390_skeys args; 3033 3034 r = -EFAULT; 3035 if (copy_from_user(&args, argp, 3036 sizeof(struct kvm_s390_skeys))) 3037 break; 3038 r = kvm_s390_get_skeys(kvm, &args); 3039 break; 3040 } 3041 case KVM_S390_SET_SKEYS: { 3042 struct kvm_s390_skeys args; 3043 3044 r = -EFAULT; 3045 if (copy_from_user(&args, argp, 3046 sizeof(struct kvm_s390_skeys))) 3047 break; 3048 r = kvm_s390_set_skeys(kvm, &args); 3049 break; 3050 } 3051 case KVM_S390_GET_CMMA_BITS: { 3052 struct kvm_s390_cmma_log args; 3053 3054 r = -EFAULT; 3055 if (copy_from_user(&args, argp, sizeof(args))) 3056 break; 3057 mutex_lock(&kvm->slots_lock); 3058 r = kvm_s390_get_cmma_bits(kvm, &args); 3059 mutex_unlock(&kvm->slots_lock); 3060 if (!r) { 3061 r = copy_to_user(argp, &args, sizeof(args)); 3062 if (r) 3063 r = -EFAULT; 3064 } 3065 break; 3066 } 3067 case KVM_S390_SET_CMMA_BITS: { 3068 struct kvm_s390_cmma_log args; 3069 3070 r = -EFAULT; 3071 if (copy_from_user(&args, argp, sizeof(args))) 3072 break; 3073 mutex_lock(&kvm->slots_lock); 3074 r = kvm_s390_set_cmma_bits(kvm, &args); 3075 mutex_unlock(&kvm->slots_lock); 3076 break; 3077 } 3078 case KVM_S390_PV_COMMAND: { 3079 struct kvm_pv_cmd args; 3080 3081 /* protvirt means user cpu state */ 3082 kvm_s390_set_user_cpu_state_ctrl(kvm); 3083 r = 0; 3084 if (!is_prot_virt_host()) { 3085 r = -EINVAL; 3086 break; 3087 } 3088 if (copy_from_user(&args, argp, sizeof(args))) { 3089 r = -EFAULT; 3090 break; 3091 } 3092 if (args.flags) { 3093 r = -EINVAL; 3094 break; 3095 } 3096 /* must be called without kvm->lock */ 3097 r = kvm_s390_handle_pv(kvm, &args); 3098 if (copy_to_user(argp, &args, sizeof(args))) { 3099 r = -EFAULT; 3100 break; 3101 } 3102 break; 3103 } 3104 case KVM_S390_MEM_OP: { 3105 struct kvm_s390_mem_op mem_op; 3106 3107 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3108 r = kvm_s390_vm_mem_op(kvm, &mem_op); 3109 else 3110 r = -EFAULT; 3111 break; 3112 } 3113 case KVM_S390_ZPCI_OP: { 3114 struct kvm_s390_zpci_op args; 3115 3116 r = -EINVAL; 3117 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3118 break; 3119 if (copy_from_user(&args, argp, sizeof(args))) { 3120 r = -EFAULT; 3121 break; 3122 } 3123 r = kvm_s390_pci_zpci_op(kvm, &args); 3124 break; 3125 } 3126 default: 3127 r = -ENOTTY; 3128 } 3129 3130 return r; 3131 } 3132 3133 static int kvm_s390_apxa_installed(void) 3134 { 3135 struct ap_config_info info; 3136 3137 if (ap_instructions_available()) { 3138 if (ap_qci(&info) == 0) 3139 return info.apxa; 3140 } 3141 3142 return 0; 3143 } 3144 3145 /* 3146 * The format of the crypto control block (CRYCB) is specified in the 3 low 3147 * order bits of the CRYCB designation (CRYCBD) field as follows: 3148 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the 3149 * AP extended addressing (APXA) facility are installed. 3150 * Format 1: The APXA facility is not installed but the MSAX3 facility is. 3151 * Format 2: Both the APXA and MSAX3 facilities are installed 3152 */ 3153 static void kvm_s390_set_crycb_format(struct kvm *kvm) 3154 { 3155 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 3156 3157 /* Clear the CRYCB format bits - i.e., set format 0 by default */ 3158 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK); 3159 3160 /* Check whether MSAX3 is installed */ 3161 if (!test_kvm_facility(kvm, 76)) 3162 return; 3163 3164 if (kvm_s390_apxa_installed()) 3165 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 3166 else 3167 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 3168 } 3169 3170 /* 3171 * kvm_arch_crypto_set_masks 3172 * 3173 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3174 * to be set. 3175 * @apm: the mask identifying the accessible AP adapters 3176 * @aqm: the mask identifying the accessible AP domains 3177 * @adm: the mask identifying the accessible AP control domains 3178 * 3179 * Set the masks that identify the adapters, domains and control domains to 3180 * which the KVM guest is granted access. 3181 * 3182 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3183 * function. 3184 */ 3185 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm, 3186 unsigned long *aqm, unsigned long *adm) 3187 { 3188 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb; 3189 3190 kvm_s390_vcpu_block_all(kvm); 3191 3192 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) { 3193 case CRYCB_FORMAT2: /* APCB1 use 256 bits */ 3194 memcpy(crycb->apcb1.apm, apm, 32); 3195 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx", 3196 apm[0], apm[1], apm[2], apm[3]); 3197 memcpy(crycb->apcb1.aqm, aqm, 32); 3198 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx", 3199 aqm[0], aqm[1], aqm[2], aqm[3]); 3200 memcpy(crycb->apcb1.adm, adm, 32); 3201 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx", 3202 adm[0], adm[1], adm[2], adm[3]); 3203 break; 3204 case CRYCB_FORMAT1: 3205 case CRYCB_FORMAT0: /* Fall through both use APCB0 */ 3206 memcpy(crycb->apcb0.apm, apm, 8); 3207 memcpy(crycb->apcb0.aqm, aqm, 2); 3208 memcpy(crycb->apcb0.adm, adm, 2); 3209 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x", 3210 apm[0], *((unsigned short *)aqm), 3211 *((unsigned short *)adm)); 3212 break; 3213 default: /* Can not happen */ 3214 break; 3215 } 3216 3217 /* recreate the shadow crycb for each vcpu */ 3218 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3219 kvm_s390_vcpu_unblock_all(kvm); 3220 } 3221 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks); 3222 3223 /* 3224 * kvm_arch_crypto_clear_masks 3225 * 3226 * @kvm: pointer to the target guest's KVM struct containing the crypto masks 3227 * to be cleared. 3228 * 3229 * Clear the masks that identify the adapters, domains and control domains to 3230 * which the KVM guest is granted access. 3231 * 3232 * Note: The kvm->lock mutex must be locked by the caller before invoking this 3233 * function. 3234 */ 3235 void kvm_arch_crypto_clear_masks(struct kvm *kvm) 3236 { 3237 kvm_s390_vcpu_block_all(kvm); 3238 3239 memset(&kvm->arch.crypto.crycb->apcb0, 0, 3240 sizeof(kvm->arch.crypto.crycb->apcb0)); 3241 memset(&kvm->arch.crypto.crycb->apcb1, 0, 3242 sizeof(kvm->arch.crypto.crycb->apcb1)); 3243 3244 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:"); 3245 /* recreate the shadow crycb for each vcpu */ 3246 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART); 3247 kvm_s390_vcpu_unblock_all(kvm); 3248 } 3249 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks); 3250 3251 static u64 kvm_s390_get_initial_cpuid(void) 3252 { 3253 struct cpuid cpuid; 3254 3255 get_cpu_id(&cpuid); 3256 cpuid.version = 0xff; 3257 return *((u64 *) &cpuid); 3258 } 3259 3260 static void kvm_s390_crypto_init(struct kvm *kvm) 3261 { 3262 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 3263 kvm_s390_set_crycb_format(kvm); 3264 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem); 3265 3266 if (!test_kvm_facility(kvm, 76)) 3267 return; 3268 3269 /* Enable AES/DEA protected key functions by default */ 3270 kvm->arch.crypto.aes_kw = 1; 3271 kvm->arch.crypto.dea_kw = 1; 3272 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 3273 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 3274 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 3275 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 3276 } 3277 3278 static void sca_dispose(struct kvm *kvm) 3279 { 3280 if (kvm->arch.use_esca) 3281 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 3282 else 3283 free_page((unsigned long)(kvm->arch.sca)); 3284 kvm->arch.sca = NULL; 3285 } 3286 3287 void kvm_arch_free_vm(struct kvm *kvm) 3288 { 3289 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) 3290 kvm_s390_pci_clear_list(kvm); 3291 3292 __kvm_arch_free_vm(kvm); 3293 } 3294 3295 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 3296 { 3297 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT; 3298 int i, rc; 3299 char debug_name[16]; 3300 static unsigned long sca_offset; 3301 3302 rc = -EINVAL; 3303 #ifdef CONFIG_KVM_S390_UCONTROL 3304 if (type & ~KVM_VM_S390_UCONTROL) 3305 goto out_err; 3306 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 3307 goto out_err; 3308 #else 3309 if (type) 3310 goto out_err; 3311 #endif 3312 3313 rc = s390_enable_sie(); 3314 if (rc) 3315 goto out_err; 3316 3317 rc = -ENOMEM; 3318 3319 if (!sclp.has_64bscao) 3320 alloc_flags |= GFP_DMA; 3321 rwlock_init(&kvm->arch.sca_lock); 3322 /* start with basic SCA */ 3323 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 3324 if (!kvm->arch.sca) 3325 goto out_err; 3326 mutex_lock(&kvm_lock); 3327 sca_offset += 16; 3328 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 3329 sca_offset = 0; 3330 kvm->arch.sca = (struct bsca_block *) 3331 ((char *) kvm->arch.sca + sca_offset); 3332 mutex_unlock(&kvm_lock); 3333 3334 sprintf(debug_name, "kvm-%u", current->pid); 3335 3336 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 3337 if (!kvm->arch.dbf) 3338 goto out_err; 3339 3340 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 3341 kvm->arch.sie_page2 = 3342 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA); 3343 if (!kvm->arch.sie_page2) 3344 goto out_err; 3345 3346 kvm->arch.sie_page2->kvm = kvm; 3347 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 3348 3349 for (i = 0; i < kvm_s390_fac_size(); i++) { 3350 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] & 3351 (kvm_s390_fac_base[i] | 3352 kvm_s390_fac_ext[i]); 3353 kvm->arch.model.fac_list[i] = stfle_fac_list[i] & 3354 kvm_s390_fac_base[i]; 3355 } 3356 kvm->arch.model.subfuncs = kvm_s390_available_subfunc; 3357 3358 /* we are always in czam mode - even on pre z14 machines */ 3359 set_kvm_facility(kvm->arch.model.fac_mask, 138); 3360 set_kvm_facility(kvm->arch.model.fac_list, 138); 3361 /* we emulate STHYI in kvm */ 3362 set_kvm_facility(kvm->arch.model.fac_mask, 74); 3363 set_kvm_facility(kvm->arch.model.fac_list, 74); 3364 if (MACHINE_HAS_TLB_GUEST) { 3365 set_kvm_facility(kvm->arch.model.fac_mask, 147); 3366 set_kvm_facility(kvm->arch.model.fac_list, 147); 3367 } 3368 3369 if (css_general_characteristics.aiv && test_facility(65)) 3370 set_kvm_facility(kvm->arch.model.fac_mask, 65); 3371 3372 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 3373 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 3374 3375 kvm->arch.model.uv_feat_guest.feat = 0; 3376 3377 kvm_s390_crypto_init(kvm); 3378 3379 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) { 3380 mutex_lock(&kvm->lock); 3381 kvm_s390_pci_init_list(kvm); 3382 kvm_s390_vcpu_pci_enable_interp(kvm); 3383 mutex_unlock(&kvm->lock); 3384 } 3385 3386 mutex_init(&kvm->arch.float_int.ais_lock); 3387 spin_lock_init(&kvm->arch.float_int.lock); 3388 for (i = 0; i < FIRQ_LIST_COUNT; i++) 3389 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 3390 init_waitqueue_head(&kvm->arch.ipte_wq); 3391 mutex_init(&kvm->arch.ipte_mutex); 3392 3393 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 3394 VM_EVENT(kvm, 3, "vm created with type %lu", type); 3395 3396 if (type & KVM_VM_S390_UCONTROL) { 3397 kvm->arch.gmap = NULL; 3398 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 3399 } else { 3400 if (sclp.hamax == U64_MAX) 3401 kvm->arch.mem_limit = TASK_SIZE_MAX; 3402 else 3403 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 3404 sclp.hamax + 1); 3405 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 3406 if (!kvm->arch.gmap) 3407 goto out_err; 3408 kvm->arch.gmap->private = kvm; 3409 kvm->arch.gmap->pfault_enabled = 0; 3410 } 3411 3412 kvm->arch.use_pfmfi = sclp.has_pfmfi; 3413 kvm->arch.use_skf = sclp.has_skey; 3414 spin_lock_init(&kvm->arch.start_stop_lock); 3415 kvm_s390_vsie_init(kvm); 3416 if (use_gisa) 3417 kvm_s390_gisa_init(kvm); 3418 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup); 3419 kvm->arch.pv.set_aside = NULL; 3420 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 3421 3422 return 0; 3423 out_err: 3424 free_page((unsigned long)kvm->arch.sie_page2); 3425 debug_unregister(kvm->arch.dbf); 3426 sca_dispose(kvm); 3427 KVM_EVENT(3, "creation of vm failed: %d", rc); 3428 return rc; 3429 } 3430 3431 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 3432 { 3433 u16 rc, rrc; 3434 3435 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 3436 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 3437 kvm_s390_clear_local_irqs(vcpu); 3438 kvm_clear_async_pf_completion_queue(vcpu); 3439 if (!kvm_is_ucontrol(vcpu->kvm)) 3440 sca_del_vcpu(vcpu); 3441 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3442 3443 if (kvm_is_ucontrol(vcpu->kvm)) 3444 gmap_remove(vcpu->arch.gmap); 3445 3446 if (vcpu->kvm->arch.use_cmma) 3447 kvm_s390_vcpu_unsetup_cmma(vcpu); 3448 /* We can not hold the vcpu mutex here, we are already dying */ 3449 if (kvm_s390_pv_cpu_get_handle(vcpu)) 3450 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc); 3451 free_page((unsigned long)(vcpu->arch.sie_block)); 3452 } 3453 3454 void kvm_arch_destroy_vm(struct kvm *kvm) 3455 { 3456 u16 rc, rrc; 3457 3458 kvm_destroy_vcpus(kvm); 3459 sca_dispose(kvm); 3460 kvm_s390_gisa_destroy(kvm); 3461 /* 3462 * We are already at the end of life and kvm->lock is not taken. 3463 * This is ok as the file descriptor is closed by now and nobody 3464 * can mess with the pv state. 3465 */ 3466 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc); 3467 /* 3468 * Remove the mmu notifier only when the whole KVM VM is torn down, 3469 * and only if one was registered to begin with. If the VM is 3470 * currently not protected, but has been previously been protected, 3471 * then it's possible that the notifier is still registered. 3472 */ 3473 if (kvm->arch.pv.mmu_notifier.ops) 3474 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm); 3475 3476 debug_unregister(kvm->arch.dbf); 3477 free_page((unsigned long)kvm->arch.sie_page2); 3478 if (!kvm_is_ucontrol(kvm)) 3479 gmap_remove(kvm->arch.gmap); 3480 kvm_s390_destroy_adapters(kvm); 3481 kvm_s390_clear_float_irqs(kvm); 3482 kvm_s390_vsie_destroy(kvm); 3483 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 3484 } 3485 3486 /* Section: vcpu related */ 3487 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 3488 { 3489 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 3490 if (!vcpu->arch.gmap) 3491 return -ENOMEM; 3492 vcpu->arch.gmap->private = vcpu->kvm; 3493 3494 return 0; 3495 } 3496 3497 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 3498 { 3499 if (!kvm_s390_use_sca_entries()) 3500 return; 3501 read_lock(&vcpu->kvm->arch.sca_lock); 3502 if (vcpu->kvm->arch.use_esca) { 3503 struct esca_block *sca = vcpu->kvm->arch.sca; 3504 3505 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3506 sca->cpu[vcpu->vcpu_id].sda = 0; 3507 } else { 3508 struct bsca_block *sca = vcpu->kvm->arch.sca; 3509 3510 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3511 sca->cpu[vcpu->vcpu_id].sda = 0; 3512 } 3513 read_unlock(&vcpu->kvm->arch.sca_lock); 3514 } 3515 3516 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 3517 { 3518 if (!kvm_s390_use_sca_entries()) { 3519 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca); 3520 3521 /* we still need the basic sca for the ipte control */ 3522 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3523 vcpu->arch.sie_block->scaol = sca_phys; 3524 return; 3525 } 3526 read_lock(&vcpu->kvm->arch.sca_lock); 3527 if (vcpu->kvm->arch.use_esca) { 3528 struct esca_block *sca = vcpu->kvm->arch.sca; 3529 phys_addr_t sca_phys = virt_to_phys(sca); 3530 3531 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3532 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3533 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK; 3534 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3535 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 3536 } else { 3537 struct bsca_block *sca = vcpu->kvm->arch.sca; 3538 phys_addr_t sca_phys = virt_to_phys(sca); 3539 3540 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block); 3541 vcpu->arch.sie_block->scaoh = sca_phys >> 32; 3542 vcpu->arch.sie_block->scaol = sca_phys; 3543 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 3544 } 3545 read_unlock(&vcpu->kvm->arch.sca_lock); 3546 } 3547 3548 /* Basic SCA to Extended SCA data copy routines */ 3549 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 3550 { 3551 d->sda = s->sda; 3552 d->sigp_ctrl.c = s->sigp_ctrl.c; 3553 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 3554 } 3555 3556 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 3557 { 3558 int i; 3559 3560 d->ipte_control = s->ipte_control; 3561 d->mcn[0] = s->mcn; 3562 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 3563 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 3564 } 3565 3566 static int sca_switch_to_extended(struct kvm *kvm) 3567 { 3568 struct bsca_block *old_sca = kvm->arch.sca; 3569 struct esca_block *new_sca; 3570 struct kvm_vcpu *vcpu; 3571 unsigned long vcpu_idx; 3572 u32 scaol, scaoh; 3573 phys_addr_t new_sca_phys; 3574 3575 if (kvm->arch.use_esca) 3576 return 0; 3577 3578 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO); 3579 if (!new_sca) 3580 return -ENOMEM; 3581 3582 new_sca_phys = virt_to_phys(new_sca); 3583 scaoh = new_sca_phys >> 32; 3584 scaol = new_sca_phys & ESCA_SCAOL_MASK; 3585 3586 kvm_s390_vcpu_block_all(kvm); 3587 write_lock(&kvm->arch.sca_lock); 3588 3589 sca_copy_b_to_e(new_sca, old_sca); 3590 3591 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 3592 vcpu->arch.sie_block->scaoh = scaoh; 3593 vcpu->arch.sie_block->scaol = scaol; 3594 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 3595 } 3596 kvm->arch.sca = new_sca; 3597 kvm->arch.use_esca = 1; 3598 3599 write_unlock(&kvm->arch.sca_lock); 3600 kvm_s390_vcpu_unblock_all(kvm); 3601 3602 free_page((unsigned long)old_sca); 3603 3604 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 3605 old_sca, kvm->arch.sca); 3606 return 0; 3607 } 3608 3609 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 3610 { 3611 int rc; 3612 3613 if (!kvm_s390_use_sca_entries()) { 3614 if (id < KVM_MAX_VCPUS) 3615 return true; 3616 return false; 3617 } 3618 if (id < KVM_S390_BSCA_CPU_SLOTS) 3619 return true; 3620 if (!sclp.has_esca || !sclp.has_64bscao) 3621 return false; 3622 3623 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 3624 3625 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 3626 } 3627 3628 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3629 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3630 { 3631 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 3632 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3633 vcpu->arch.cputm_start = get_tod_clock_fast(); 3634 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3635 } 3636 3637 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3638 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3639 { 3640 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 3641 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3642 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3643 vcpu->arch.cputm_start = 0; 3644 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3645 } 3646 3647 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3648 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3649 { 3650 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 3651 vcpu->arch.cputm_enabled = true; 3652 __start_cpu_timer_accounting(vcpu); 3653 } 3654 3655 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 3656 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3657 { 3658 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 3659 __stop_cpu_timer_accounting(vcpu); 3660 vcpu->arch.cputm_enabled = false; 3661 } 3662 3663 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3664 { 3665 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3666 __enable_cpu_timer_accounting(vcpu); 3667 preempt_enable(); 3668 } 3669 3670 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 3671 { 3672 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3673 __disable_cpu_timer_accounting(vcpu); 3674 preempt_enable(); 3675 } 3676 3677 /* set the cpu timer - may only be called from the VCPU thread itself */ 3678 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 3679 { 3680 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3681 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 3682 if (vcpu->arch.cputm_enabled) 3683 vcpu->arch.cputm_start = get_tod_clock_fast(); 3684 vcpu->arch.sie_block->cputm = cputm; 3685 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 3686 preempt_enable(); 3687 } 3688 3689 /* update and get the cpu timer - can also be called from other VCPU threads */ 3690 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 3691 { 3692 unsigned int seq; 3693 __u64 value; 3694 3695 if (unlikely(!vcpu->arch.cputm_enabled)) 3696 return vcpu->arch.sie_block->cputm; 3697 3698 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 3699 do { 3700 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 3701 /* 3702 * If the writer would ever execute a read in the critical 3703 * section, e.g. in irq context, we have a deadlock. 3704 */ 3705 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 3706 value = vcpu->arch.sie_block->cputm; 3707 /* if cputm_start is 0, accounting is being started/stopped */ 3708 if (likely(vcpu->arch.cputm_start)) 3709 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 3710 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 3711 preempt_enable(); 3712 return value; 3713 } 3714 3715 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 3716 { 3717 3718 gmap_enable(vcpu->arch.enabled_gmap); 3719 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 3720 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3721 __start_cpu_timer_accounting(vcpu); 3722 vcpu->cpu = cpu; 3723 } 3724 3725 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 3726 { 3727 vcpu->cpu = -1; 3728 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 3729 __stop_cpu_timer_accounting(vcpu); 3730 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 3731 vcpu->arch.enabled_gmap = gmap_get_enabled(); 3732 gmap_disable(vcpu->arch.enabled_gmap); 3733 3734 } 3735 3736 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 3737 { 3738 mutex_lock(&vcpu->kvm->lock); 3739 preempt_disable(); 3740 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 3741 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 3742 preempt_enable(); 3743 mutex_unlock(&vcpu->kvm->lock); 3744 if (!kvm_is_ucontrol(vcpu->kvm)) { 3745 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 3746 sca_add_vcpu(vcpu); 3747 } 3748 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 3749 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3750 /* make vcpu_load load the right gmap on the first trigger */ 3751 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 3752 } 3753 3754 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr) 3755 { 3756 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) && 3757 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo)) 3758 return true; 3759 return false; 3760 } 3761 3762 static bool kvm_has_pckmo_ecc(struct kvm *kvm) 3763 { 3764 /* At least one ECC subfunction must be present */ 3765 return kvm_has_pckmo_subfunc(kvm, 32) || 3766 kvm_has_pckmo_subfunc(kvm, 33) || 3767 kvm_has_pckmo_subfunc(kvm, 34) || 3768 kvm_has_pckmo_subfunc(kvm, 40) || 3769 kvm_has_pckmo_subfunc(kvm, 41); 3770 3771 } 3772 3773 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 3774 { 3775 /* 3776 * If the AP instructions are not being interpreted and the MSAX3 3777 * facility is not configured for the guest, there is nothing to set up. 3778 */ 3779 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76)) 3780 return; 3781 3782 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 3783 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 3784 vcpu->arch.sie_block->eca &= ~ECA_APIE; 3785 vcpu->arch.sie_block->ecd &= ~ECD_ECC; 3786 3787 if (vcpu->kvm->arch.crypto.apie) 3788 vcpu->arch.sie_block->eca |= ECA_APIE; 3789 3790 /* Set up protected key support */ 3791 if (vcpu->kvm->arch.crypto.aes_kw) { 3792 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 3793 /* ecc is also wrapped with AES key */ 3794 if (kvm_has_pckmo_ecc(vcpu->kvm)) 3795 vcpu->arch.sie_block->ecd |= ECD_ECC; 3796 } 3797 3798 if (vcpu->kvm->arch.crypto.dea_kw) 3799 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 3800 } 3801 3802 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 3803 { 3804 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo)); 3805 vcpu->arch.sie_block->cbrlo = 0; 3806 } 3807 3808 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 3809 { 3810 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3811 3812 if (!cbrlo_page) 3813 return -ENOMEM; 3814 3815 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page); 3816 return 0; 3817 } 3818 3819 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 3820 { 3821 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 3822 3823 vcpu->arch.sie_block->ibc = model->ibc; 3824 if (test_kvm_facility(vcpu->kvm, 7)) 3825 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list); 3826 } 3827 3828 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu) 3829 { 3830 int rc = 0; 3831 u16 uvrc, uvrrc; 3832 3833 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 3834 CPUSTAT_SM | 3835 CPUSTAT_STOPPED); 3836 3837 if (test_kvm_facility(vcpu->kvm, 78)) 3838 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 3839 else if (test_kvm_facility(vcpu->kvm, 8)) 3840 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 3841 3842 kvm_s390_vcpu_setup_model(vcpu); 3843 3844 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 3845 if (MACHINE_HAS_ESOP) 3846 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 3847 if (test_kvm_facility(vcpu->kvm, 9)) 3848 vcpu->arch.sie_block->ecb |= ECB_SRSI; 3849 if (test_kvm_facility(vcpu->kvm, 11)) 3850 vcpu->arch.sie_block->ecb |= ECB_PTF; 3851 if (test_kvm_facility(vcpu->kvm, 73)) 3852 vcpu->arch.sie_block->ecb |= ECB_TE; 3853 if (!kvm_is_ucontrol(vcpu->kvm)) 3854 vcpu->arch.sie_block->ecb |= ECB_SPECI; 3855 3856 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 3857 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 3858 if (test_kvm_facility(vcpu->kvm, 130)) 3859 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 3860 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 3861 if (sclp.has_cei) 3862 vcpu->arch.sie_block->eca |= ECA_CEI; 3863 if (sclp.has_ib) 3864 vcpu->arch.sie_block->eca |= ECA_IB; 3865 if (sclp.has_siif) 3866 vcpu->arch.sie_block->eca |= ECA_SII; 3867 if (sclp.has_sigpif) 3868 vcpu->arch.sie_block->eca |= ECA_SIGPI; 3869 if (test_kvm_facility(vcpu->kvm, 129)) { 3870 vcpu->arch.sie_block->eca |= ECA_VX; 3871 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3872 } 3873 if (test_kvm_facility(vcpu->kvm, 139)) 3874 vcpu->arch.sie_block->ecd |= ECD_MEF; 3875 if (test_kvm_facility(vcpu->kvm, 156)) 3876 vcpu->arch.sie_block->ecd |= ECD_ETOKENF; 3877 if (vcpu->arch.sie_block->gd) { 3878 vcpu->arch.sie_block->eca |= ECA_AIV; 3879 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 3880 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 3881 } 3882 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC; 3883 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb); 3884 3885 if (sclp.has_kss) 3886 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 3887 else 3888 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 3889 3890 if (vcpu->kvm->arch.use_cmma) { 3891 rc = kvm_s390_vcpu_setup_cmma(vcpu); 3892 if (rc) 3893 return rc; 3894 } 3895 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3896 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 3897 3898 vcpu->arch.sie_block->hpid = HPID_KVM; 3899 3900 kvm_s390_vcpu_crypto_setup(vcpu); 3901 3902 kvm_s390_vcpu_pci_setup(vcpu); 3903 3904 mutex_lock(&vcpu->kvm->lock); 3905 if (kvm_s390_pv_is_protected(vcpu->kvm)) { 3906 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc); 3907 if (rc) 3908 kvm_s390_vcpu_unsetup_cmma(vcpu); 3909 } 3910 mutex_unlock(&vcpu->kvm->lock); 3911 3912 return rc; 3913 } 3914 3915 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 3916 { 3917 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 3918 return -EINVAL; 3919 return 0; 3920 } 3921 3922 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 3923 { 3924 struct sie_page *sie_page; 3925 int rc; 3926 3927 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 3928 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT); 3929 if (!sie_page) 3930 return -ENOMEM; 3931 3932 vcpu->arch.sie_block = &sie_page->sie_block; 3933 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb); 3934 3935 /* the real guest size will always be smaller than msl */ 3936 vcpu->arch.sie_block->mso = 0; 3937 vcpu->arch.sie_block->msl = sclp.hamax; 3938 3939 vcpu->arch.sie_block->icpua = vcpu->vcpu_id; 3940 spin_lock_init(&vcpu->arch.local_int.lock); 3941 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm); 3942 seqcount_init(&vcpu->arch.cputm_seqcount); 3943 3944 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 3945 kvm_clear_async_pf_completion_queue(vcpu); 3946 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 3947 KVM_SYNC_GPRS | 3948 KVM_SYNC_ACRS | 3949 KVM_SYNC_CRS | 3950 KVM_SYNC_ARCH0 | 3951 KVM_SYNC_PFAULT | 3952 KVM_SYNC_DIAG318; 3953 kvm_s390_set_prefix(vcpu, 0); 3954 if (test_kvm_facility(vcpu->kvm, 64)) 3955 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 3956 if (test_kvm_facility(vcpu->kvm, 82)) 3957 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 3958 if (test_kvm_facility(vcpu->kvm, 133)) 3959 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 3960 if (test_kvm_facility(vcpu->kvm, 156)) 3961 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN; 3962 /* fprs can be synchronized via vrs, even if the guest has no vx. With 3963 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 3964 */ 3965 if (MACHINE_HAS_VX) 3966 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 3967 else 3968 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 3969 3970 if (kvm_is_ucontrol(vcpu->kvm)) { 3971 rc = __kvm_ucontrol_vcpu_init(vcpu); 3972 if (rc) 3973 goto out_free_sie_block; 3974 } 3975 3976 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", 3977 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3978 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block); 3979 3980 rc = kvm_s390_vcpu_setup(vcpu); 3981 if (rc) 3982 goto out_ucontrol_uninit; 3983 3984 kvm_s390_update_topology_change_report(vcpu->kvm, 1); 3985 return 0; 3986 3987 out_ucontrol_uninit: 3988 if (kvm_is_ucontrol(vcpu->kvm)) 3989 gmap_remove(vcpu->arch.gmap); 3990 out_free_sie_block: 3991 free_page((unsigned long)(vcpu->arch.sie_block)); 3992 return rc; 3993 } 3994 3995 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 3996 { 3997 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 3998 return kvm_s390_vcpu_has_irq(vcpu, 0); 3999 } 4000 4001 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 4002 { 4003 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 4004 } 4005 4006 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 4007 { 4008 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4009 exit_sie(vcpu); 4010 } 4011 4012 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 4013 { 4014 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 4015 } 4016 4017 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 4018 { 4019 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4020 exit_sie(vcpu); 4021 } 4022 4023 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu) 4024 { 4025 return atomic_read(&vcpu->arch.sie_block->prog20) & 4026 (PROG_BLOCK_SIE | PROG_REQUEST); 4027 } 4028 4029 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 4030 { 4031 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 4032 } 4033 4034 /* 4035 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running. 4036 * If the CPU is not running (e.g. waiting as idle) the function will 4037 * return immediately. */ 4038 void exit_sie(struct kvm_vcpu *vcpu) 4039 { 4040 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 4041 kvm_s390_vsie_kick(vcpu); 4042 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 4043 cpu_relax(); 4044 } 4045 4046 /* Kick a guest cpu out of SIE to process a request synchronously */ 4047 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 4048 { 4049 __kvm_make_request(req, vcpu); 4050 kvm_s390_vcpu_request(vcpu); 4051 } 4052 4053 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 4054 unsigned long end) 4055 { 4056 struct kvm *kvm = gmap->private; 4057 struct kvm_vcpu *vcpu; 4058 unsigned long prefix; 4059 unsigned long i; 4060 4061 if (gmap_is_shadow(gmap)) 4062 return; 4063 if (start >= 1UL << 31) 4064 /* We are only interested in prefix pages */ 4065 return; 4066 kvm_for_each_vcpu(i, vcpu, kvm) { 4067 /* match against both prefix pages */ 4068 prefix = kvm_s390_get_prefix(vcpu); 4069 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 4070 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 4071 start, end); 4072 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4073 } 4074 } 4075 } 4076 4077 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 4078 { 4079 /* do not poll with more than halt_poll_max_steal percent of steal time */ 4080 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >= 4081 READ_ONCE(halt_poll_max_steal)) { 4082 vcpu->stat.halt_no_poll_steal++; 4083 return true; 4084 } 4085 return false; 4086 } 4087 4088 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 4089 { 4090 /* kvm common code refers to this, but never calls it */ 4091 BUG(); 4092 return 0; 4093 } 4094 4095 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 4096 struct kvm_one_reg *reg) 4097 { 4098 int r = -EINVAL; 4099 4100 switch (reg->id) { 4101 case KVM_REG_S390_TODPR: 4102 r = put_user(vcpu->arch.sie_block->todpr, 4103 (u32 __user *)reg->addr); 4104 break; 4105 case KVM_REG_S390_EPOCHDIFF: 4106 r = put_user(vcpu->arch.sie_block->epoch, 4107 (u64 __user *)reg->addr); 4108 break; 4109 case KVM_REG_S390_CPU_TIMER: 4110 r = put_user(kvm_s390_get_cpu_timer(vcpu), 4111 (u64 __user *)reg->addr); 4112 break; 4113 case KVM_REG_S390_CLOCK_COMP: 4114 r = put_user(vcpu->arch.sie_block->ckc, 4115 (u64 __user *)reg->addr); 4116 break; 4117 case KVM_REG_S390_PFTOKEN: 4118 r = put_user(vcpu->arch.pfault_token, 4119 (u64 __user *)reg->addr); 4120 break; 4121 case KVM_REG_S390_PFCOMPARE: 4122 r = put_user(vcpu->arch.pfault_compare, 4123 (u64 __user *)reg->addr); 4124 break; 4125 case KVM_REG_S390_PFSELECT: 4126 r = put_user(vcpu->arch.pfault_select, 4127 (u64 __user *)reg->addr); 4128 break; 4129 case KVM_REG_S390_PP: 4130 r = put_user(vcpu->arch.sie_block->pp, 4131 (u64 __user *)reg->addr); 4132 break; 4133 case KVM_REG_S390_GBEA: 4134 r = put_user(vcpu->arch.sie_block->gbea, 4135 (u64 __user *)reg->addr); 4136 break; 4137 default: 4138 break; 4139 } 4140 4141 return r; 4142 } 4143 4144 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 4145 struct kvm_one_reg *reg) 4146 { 4147 int r = -EINVAL; 4148 __u64 val; 4149 4150 switch (reg->id) { 4151 case KVM_REG_S390_TODPR: 4152 r = get_user(vcpu->arch.sie_block->todpr, 4153 (u32 __user *)reg->addr); 4154 break; 4155 case KVM_REG_S390_EPOCHDIFF: 4156 r = get_user(vcpu->arch.sie_block->epoch, 4157 (u64 __user *)reg->addr); 4158 break; 4159 case KVM_REG_S390_CPU_TIMER: 4160 r = get_user(val, (u64 __user *)reg->addr); 4161 if (!r) 4162 kvm_s390_set_cpu_timer(vcpu, val); 4163 break; 4164 case KVM_REG_S390_CLOCK_COMP: 4165 r = get_user(vcpu->arch.sie_block->ckc, 4166 (u64 __user *)reg->addr); 4167 break; 4168 case KVM_REG_S390_PFTOKEN: 4169 r = get_user(vcpu->arch.pfault_token, 4170 (u64 __user *)reg->addr); 4171 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4172 kvm_clear_async_pf_completion_queue(vcpu); 4173 break; 4174 case KVM_REG_S390_PFCOMPARE: 4175 r = get_user(vcpu->arch.pfault_compare, 4176 (u64 __user *)reg->addr); 4177 break; 4178 case KVM_REG_S390_PFSELECT: 4179 r = get_user(vcpu->arch.pfault_select, 4180 (u64 __user *)reg->addr); 4181 break; 4182 case KVM_REG_S390_PP: 4183 r = get_user(vcpu->arch.sie_block->pp, 4184 (u64 __user *)reg->addr); 4185 break; 4186 case KVM_REG_S390_GBEA: 4187 r = get_user(vcpu->arch.sie_block->gbea, 4188 (u64 __user *)reg->addr); 4189 break; 4190 default: 4191 break; 4192 } 4193 4194 return r; 4195 } 4196 4197 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu) 4198 { 4199 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI; 4200 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 4201 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb)); 4202 4203 kvm_clear_async_pf_completion_queue(vcpu); 4204 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 4205 kvm_s390_vcpu_stop(vcpu); 4206 kvm_s390_clear_local_irqs(vcpu); 4207 } 4208 4209 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 4210 { 4211 /* Initial reset is a superset of the normal reset */ 4212 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 4213 4214 /* 4215 * This equals initial cpu reset in pop, but we don't switch to ESA. 4216 * We do not only reset the internal data, but also ... 4217 */ 4218 vcpu->arch.sie_block->gpsw.mask = 0; 4219 vcpu->arch.sie_block->gpsw.addr = 0; 4220 kvm_s390_set_prefix(vcpu, 0); 4221 kvm_s390_set_cpu_timer(vcpu, 0); 4222 vcpu->arch.sie_block->ckc = 0; 4223 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr)); 4224 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK; 4225 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK; 4226 4227 /* ... the data in sync regs */ 4228 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs)); 4229 vcpu->run->s.regs.ckc = 0; 4230 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK; 4231 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK; 4232 vcpu->run->psw_addr = 0; 4233 vcpu->run->psw_mask = 0; 4234 vcpu->run->s.regs.todpr = 0; 4235 vcpu->run->s.regs.cputm = 0; 4236 vcpu->run->s.regs.ckc = 0; 4237 vcpu->run->s.regs.pp = 0; 4238 vcpu->run->s.regs.gbea = 1; 4239 vcpu->run->s.regs.fpc = 0; 4240 /* 4241 * Do not reset these registers in the protected case, as some of 4242 * them are overlaid and they are not accessible in this case 4243 * anyway. 4244 */ 4245 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4246 vcpu->arch.sie_block->gbea = 1; 4247 vcpu->arch.sie_block->pp = 0; 4248 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4249 vcpu->arch.sie_block->todpr = 0; 4250 } 4251 } 4252 4253 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu) 4254 { 4255 struct kvm_sync_regs *regs = &vcpu->run->s.regs; 4256 4257 /* Clear reset is a superset of the initial reset */ 4258 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 4259 4260 memset(®s->gprs, 0, sizeof(regs->gprs)); 4261 memset(®s->vrs, 0, sizeof(regs->vrs)); 4262 memset(®s->acrs, 0, sizeof(regs->acrs)); 4263 memset(®s->gscb, 0, sizeof(regs->gscb)); 4264 4265 regs->etoken = 0; 4266 regs->etoken_extension = 0; 4267 } 4268 4269 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4270 { 4271 vcpu_load(vcpu); 4272 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 4273 vcpu_put(vcpu); 4274 return 0; 4275 } 4276 4277 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 4278 { 4279 vcpu_load(vcpu); 4280 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 4281 vcpu_put(vcpu); 4282 return 0; 4283 } 4284 4285 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 4286 struct kvm_sregs *sregs) 4287 { 4288 vcpu_load(vcpu); 4289 4290 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 4291 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 4292 4293 vcpu_put(vcpu); 4294 return 0; 4295 } 4296 4297 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 4298 struct kvm_sregs *sregs) 4299 { 4300 vcpu_load(vcpu); 4301 4302 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 4303 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 4304 4305 vcpu_put(vcpu); 4306 return 0; 4307 } 4308 4309 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4310 { 4311 int ret = 0; 4312 4313 vcpu_load(vcpu); 4314 4315 vcpu->run->s.regs.fpc = fpu->fpc; 4316 if (MACHINE_HAS_VX) 4317 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 4318 (freg_t *) fpu->fprs); 4319 else 4320 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 4321 4322 vcpu_put(vcpu); 4323 return ret; 4324 } 4325 4326 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 4327 { 4328 vcpu_load(vcpu); 4329 4330 /* make sure we have the latest values */ 4331 save_fpu_regs(); 4332 if (MACHINE_HAS_VX) 4333 convert_vx_to_fp((freg_t *) fpu->fprs, 4334 (__vector128 *) vcpu->run->s.regs.vrs); 4335 else 4336 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 4337 fpu->fpc = vcpu->run->s.regs.fpc; 4338 4339 vcpu_put(vcpu); 4340 return 0; 4341 } 4342 4343 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 4344 { 4345 int rc = 0; 4346 4347 if (!is_vcpu_stopped(vcpu)) 4348 rc = -EBUSY; 4349 else { 4350 vcpu->run->psw_mask = psw.mask; 4351 vcpu->run->psw_addr = psw.addr; 4352 } 4353 return rc; 4354 } 4355 4356 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 4357 struct kvm_translation *tr) 4358 { 4359 return -EINVAL; /* not implemented yet */ 4360 } 4361 4362 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 4363 KVM_GUESTDBG_USE_HW_BP | \ 4364 KVM_GUESTDBG_ENABLE) 4365 4366 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 4367 struct kvm_guest_debug *dbg) 4368 { 4369 int rc = 0; 4370 4371 vcpu_load(vcpu); 4372 4373 vcpu->guest_debug = 0; 4374 kvm_s390_clear_bp_data(vcpu); 4375 4376 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 4377 rc = -EINVAL; 4378 goto out; 4379 } 4380 if (!sclp.has_gpere) { 4381 rc = -EINVAL; 4382 goto out; 4383 } 4384 4385 if (dbg->control & KVM_GUESTDBG_ENABLE) { 4386 vcpu->guest_debug = dbg->control; 4387 /* enforce guest PER */ 4388 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 4389 4390 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 4391 rc = kvm_s390_import_bp_data(vcpu, dbg); 4392 } else { 4393 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4394 vcpu->arch.guestdbg.last_bp = 0; 4395 } 4396 4397 if (rc) { 4398 vcpu->guest_debug = 0; 4399 kvm_s390_clear_bp_data(vcpu); 4400 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 4401 } 4402 4403 out: 4404 vcpu_put(vcpu); 4405 return rc; 4406 } 4407 4408 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 4409 struct kvm_mp_state *mp_state) 4410 { 4411 int ret; 4412 4413 vcpu_load(vcpu); 4414 4415 /* CHECK_STOP and LOAD are not supported yet */ 4416 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 4417 KVM_MP_STATE_OPERATING; 4418 4419 vcpu_put(vcpu); 4420 return ret; 4421 } 4422 4423 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 4424 struct kvm_mp_state *mp_state) 4425 { 4426 int rc = 0; 4427 4428 vcpu_load(vcpu); 4429 4430 /* user space knows about this interface - let it control the state */ 4431 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm); 4432 4433 switch (mp_state->mp_state) { 4434 case KVM_MP_STATE_STOPPED: 4435 rc = kvm_s390_vcpu_stop(vcpu); 4436 break; 4437 case KVM_MP_STATE_OPERATING: 4438 rc = kvm_s390_vcpu_start(vcpu); 4439 break; 4440 case KVM_MP_STATE_LOAD: 4441 if (!kvm_s390_pv_cpu_is_protected(vcpu)) { 4442 rc = -ENXIO; 4443 break; 4444 } 4445 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD); 4446 break; 4447 case KVM_MP_STATE_CHECK_STOP: 4448 fallthrough; /* CHECK_STOP and LOAD are not supported yet */ 4449 default: 4450 rc = -ENXIO; 4451 } 4452 4453 vcpu_put(vcpu); 4454 return rc; 4455 } 4456 4457 static bool ibs_enabled(struct kvm_vcpu *vcpu) 4458 { 4459 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 4460 } 4461 4462 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 4463 { 4464 retry: 4465 kvm_s390_vcpu_request_handled(vcpu); 4466 if (!kvm_request_pending(vcpu)) 4467 return 0; 4468 /* 4469 * If the guest prefix changed, re-arm the ipte notifier for the 4470 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 4471 * This ensures that the ipte instruction for this request has 4472 * already finished. We might race against a second unmapper that 4473 * wants to set the blocking bit. Lets just retry the request loop. 4474 */ 4475 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) { 4476 int rc; 4477 rc = gmap_mprotect_notify(vcpu->arch.gmap, 4478 kvm_s390_get_prefix(vcpu), 4479 PAGE_SIZE * 2, PROT_WRITE); 4480 if (rc) { 4481 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu); 4482 return rc; 4483 } 4484 goto retry; 4485 } 4486 4487 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 4488 vcpu->arch.sie_block->ihcpu = 0xffff; 4489 goto retry; 4490 } 4491 4492 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 4493 if (!ibs_enabled(vcpu)) { 4494 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 4495 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 4496 } 4497 goto retry; 4498 } 4499 4500 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 4501 if (ibs_enabled(vcpu)) { 4502 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 4503 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 4504 } 4505 goto retry; 4506 } 4507 4508 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 4509 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 4510 goto retry; 4511 } 4512 4513 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 4514 /* 4515 * Disable CMM virtualization; we will emulate the ESSA 4516 * instruction manually, in order to provide additional 4517 * functionalities needed for live migration. 4518 */ 4519 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 4520 goto retry; 4521 } 4522 4523 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 4524 /* 4525 * Re-enable CMM virtualization if CMMA is available and 4526 * CMM has been used. 4527 */ 4528 if ((vcpu->kvm->arch.use_cmma) && 4529 (vcpu->kvm->mm->context.uses_cmm)) 4530 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 4531 goto retry; 4532 } 4533 4534 /* we left the vsie handler, nothing to do, just clear the request */ 4535 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu); 4536 4537 return 0; 4538 } 4539 4540 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4541 { 4542 struct kvm_vcpu *vcpu; 4543 union tod_clock clk; 4544 unsigned long i; 4545 4546 preempt_disable(); 4547 4548 store_tod_clock_ext(&clk); 4549 4550 kvm->arch.epoch = gtod->tod - clk.tod; 4551 kvm->arch.epdx = 0; 4552 if (test_kvm_facility(kvm, 139)) { 4553 kvm->arch.epdx = gtod->epoch_idx - clk.ei; 4554 if (kvm->arch.epoch > gtod->tod) 4555 kvm->arch.epdx -= 1; 4556 } 4557 4558 kvm_s390_vcpu_block_all(kvm); 4559 kvm_for_each_vcpu(i, vcpu, kvm) { 4560 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 4561 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 4562 } 4563 4564 kvm_s390_vcpu_unblock_all(kvm); 4565 preempt_enable(); 4566 } 4567 4568 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod) 4569 { 4570 if (!mutex_trylock(&kvm->lock)) 4571 return 0; 4572 __kvm_s390_set_tod_clock(kvm, gtod); 4573 mutex_unlock(&kvm->lock); 4574 return 1; 4575 } 4576 4577 /** 4578 * kvm_arch_fault_in_page - fault-in guest page if necessary 4579 * @vcpu: The corresponding virtual cpu 4580 * @gpa: Guest physical address 4581 * @writable: Whether the page should be writable or not 4582 * 4583 * Make sure that a guest page has been faulted-in on the host. 4584 * 4585 * Return: Zero on success, negative error code otherwise. 4586 */ 4587 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 4588 { 4589 return gmap_fault(vcpu->arch.gmap, gpa, 4590 writable ? FAULT_FLAG_WRITE : 0); 4591 } 4592 4593 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 4594 unsigned long token) 4595 { 4596 struct kvm_s390_interrupt inti; 4597 struct kvm_s390_irq irq; 4598 4599 if (start_token) { 4600 irq.u.ext.ext_params2 = token; 4601 irq.type = KVM_S390_INT_PFAULT_INIT; 4602 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 4603 } else { 4604 inti.type = KVM_S390_INT_PFAULT_DONE; 4605 inti.parm64 = token; 4606 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 4607 } 4608 } 4609 4610 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 4611 struct kvm_async_pf *work) 4612 { 4613 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 4614 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 4615 4616 return true; 4617 } 4618 4619 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 4620 struct kvm_async_pf *work) 4621 { 4622 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 4623 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 4624 } 4625 4626 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 4627 struct kvm_async_pf *work) 4628 { 4629 /* s390 will always inject the page directly */ 4630 } 4631 4632 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 4633 { 4634 /* 4635 * s390 will always inject the page directly, 4636 * but we still want check_async_completion to cleanup 4637 */ 4638 return true; 4639 } 4640 4641 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 4642 { 4643 hva_t hva; 4644 struct kvm_arch_async_pf arch; 4645 4646 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4647 return false; 4648 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 4649 vcpu->arch.pfault_compare) 4650 return false; 4651 if (psw_extint_disabled(vcpu)) 4652 return false; 4653 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 4654 return false; 4655 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK)) 4656 return false; 4657 if (!vcpu->arch.gmap->pfault_enabled) 4658 return false; 4659 4660 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 4661 hva += current->thread.gmap_addr & ~PAGE_MASK; 4662 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 4663 return false; 4664 4665 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 4666 } 4667 4668 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 4669 { 4670 int rc, cpuflags; 4671 4672 /* 4673 * On s390 notifications for arriving pages will be delivered directly 4674 * to the guest but the house keeping for completed pfaults is 4675 * handled outside the worker. 4676 */ 4677 kvm_check_async_pf_completion(vcpu); 4678 4679 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 4680 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 4681 4682 if (need_resched()) 4683 schedule(); 4684 4685 if (!kvm_is_ucontrol(vcpu->kvm)) { 4686 rc = kvm_s390_deliver_pending_interrupts(vcpu); 4687 if (rc || guestdbg_exit_pending(vcpu)) 4688 return rc; 4689 } 4690 4691 rc = kvm_s390_handle_requests(vcpu); 4692 if (rc) 4693 return rc; 4694 4695 if (guestdbg_enabled(vcpu)) { 4696 kvm_s390_backup_guest_per_regs(vcpu); 4697 kvm_s390_patch_guest_per_regs(vcpu); 4698 } 4699 4700 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask); 4701 4702 vcpu->arch.sie_block->icptcode = 0; 4703 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 4704 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 4705 trace_kvm_s390_sie_enter(vcpu, cpuflags); 4706 4707 return 0; 4708 } 4709 4710 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 4711 { 4712 struct kvm_s390_pgm_info pgm_info = { 4713 .code = PGM_ADDRESSING, 4714 }; 4715 u8 opcode, ilen; 4716 int rc; 4717 4718 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 4719 trace_kvm_s390_sie_fault(vcpu); 4720 4721 /* 4722 * We want to inject an addressing exception, which is defined as a 4723 * suppressing or terminating exception. However, since we came here 4724 * by a DAT access exception, the PSW still points to the faulting 4725 * instruction since DAT exceptions are nullifying. So we've got 4726 * to look up the current opcode to get the length of the instruction 4727 * to be able to forward the PSW. 4728 */ 4729 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 4730 ilen = insn_length(opcode); 4731 if (rc < 0) { 4732 return rc; 4733 } else if (rc) { 4734 /* Instruction-Fetching Exceptions - we can't detect the ilen. 4735 * Forward by arbitrary ilc, injection will take care of 4736 * nullification if necessary. 4737 */ 4738 pgm_info = vcpu->arch.pgm; 4739 ilen = 4; 4740 } 4741 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 4742 kvm_s390_forward_psw(vcpu, ilen); 4743 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 4744 } 4745 4746 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 4747 { 4748 struct mcck_volatile_info *mcck_info; 4749 struct sie_page *sie_page; 4750 4751 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 4752 vcpu->arch.sie_block->icptcode); 4753 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 4754 4755 if (guestdbg_enabled(vcpu)) 4756 kvm_s390_restore_guest_per_regs(vcpu); 4757 4758 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 4759 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 4760 4761 if (exit_reason == -EINTR) { 4762 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 4763 sie_page = container_of(vcpu->arch.sie_block, 4764 struct sie_page, sie_block); 4765 mcck_info = &sie_page->mcck_info; 4766 kvm_s390_reinject_machine_check(vcpu, mcck_info); 4767 return 0; 4768 } 4769 4770 if (vcpu->arch.sie_block->icptcode > 0) { 4771 int rc = kvm_handle_sie_intercept(vcpu); 4772 4773 if (rc != -EOPNOTSUPP) 4774 return rc; 4775 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 4776 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 4777 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 4778 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 4779 return -EREMOTE; 4780 } else if (exit_reason != -EFAULT) { 4781 vcpu->stat.exit_null++; 4782 return 0; 4783 } else if (kvm_is_ucontrol(vcpu->kvm)) { 4784 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 4785 vcpu->run->s390_ucontrol.trans_exc_code = 4786 current->thread.gmap_addr; 4787 vcpu->run->s390_ucontrol.pgm_code = 0x10; 4788 return -EREMOTE; 4789 } else if (current->thread.gmap_pfault) { 4790 trace_kvm_s390_major_guest_pfault(vcpu); 4791 current->thread.gmap_pfault = 0; 4792 if (kvm_arch_setup_async_pf(vcpu)) 4793 return 0; 4794 vcpu->stat.pfault_sync++; 4795 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 4796 } 4797 return vcpu_post_run_fault_in_sie(vcpu); 4798 } 4799 4800 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK) 4801 static int __vcpu_run(struct kvm_vcpu *vcpu) 4802 { 4803 int rc, exit_reason; 4804 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block; 4805 4806 /* 4807 * We try to hold kvm->srcu during most of vcpu_run (except when run- 4808 * ning the guest), so that memslots (and other stuff) are protected 4809 */ 4810 kvm_vcpu_srcu_read_lock(vcpu); 4811 4812 do { 4813 rc = vcpu_pre_run(vcpu); 4814 if (rc || guestdbg_exit_pending(vcpu)) 4815 break; 4816 4817 kvm_vcpu_srcu_read_unlock(vcpu); 4818 /* 4819 * As PF_VCPU will be used in fault handler, between 4820 * guest_enter and guest_exit should be no uaccess. 4821 */ 4822 local_irq_disable(); 4823 guest_enter_irqoff(); 4824 __disable_cpu_timer_accounting(vcpu); 4825 local_irq_enable(); 4826 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4827 memcpy(sie_page->pv_grregs, 4828 vcpu->run->s.regs.gprs, 4829 sizeof(sie_page->pv_grregs)); 4830 } 4831 if (test_cpu_flag(CIF_FPU)) 4832 load_fpu_regs(); 4833 exit_reason = sie64a(vcpu->arch.sie_block, 4834 vcpu->run->s.regs.gprs); 4835 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 4836 memcpy(vcpu->run->s.regs.gprs, 4837 sie_page->pv_grregs, 4838 sizeof(sie_page->pv_grregs)); 4839 /* 4840 * We're not allowed to inject interrupts on intercepts 4841 * that leave the guest state in an "in-between" state 4842 * where the next SIE entry will do a continuation. 4843 * Fence interrupts in our "internal" PSW. 4844 */ 4845 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR || 4846 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) { 4847 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 4848 } 4849 } 4850 local_irq_disable(); 4851 __enable_cpu_timer_accounting(vcpu); 4852 guest_exit_irqoff(); 4853 local_irq_enable(); 4854 kvm_vcpu_srcu_read_lock(vcpu); 4855 4856 rc = vcpu_post_run(vcpu, exit_reason); 4857 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 4858 4859 kvm_vcpu_srcu_read_unlock(vcpu); 4860 return rc; 4861 } 4862 4863 static void sync_regs_fmt2(struct kvm_vcpu *vcpu) 4864 { 4865 struct kvm_run *kvm_run = vcpu->run; 4866 struct runtime_instr_cb *riccb; 4867 struct gs_cb *gscb; 4868 4869 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 4870 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 4871 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 4872 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 4873 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4874 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 4875 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 4876 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 4877 } 4878 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 4879 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 4880 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 4881 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 4882 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 4883 kvm_clear_async_pf_completion_queue(vcpu); 4884 } 4885 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) { 4886 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318; 4887 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc; 4888 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc); 4889 } 4890 /* 4891 * If userspace sets the riccb (e.g. after migration) to a valid state, 4892 * we should enable RI here instead of doing the lazy enablement. 4893 */ 4894 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 4895 test_kvm_facility(vcpu->kvm, 64) && 4896 riccb->v && 4897 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 4898 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 4899 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 4900 } 4901 /* 4902 * If userspace sets the gscb (e.g. after migration) to non-zero, 4903 * we should enable GS here instead of doing the lazy enablement. 4904 */ 4905 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 4906 test_kvm_facility(vcpu->kvm, 133) && 4907 gscb->gssm && 4908 !vcpu->arch.gs_enabled) { 4909 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 4910 vcpu->arch.sie_block->ecb |= ECB_GS; 4911 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 4912 vcpu->arch.gs_enabled = 1; 4913 } 4914 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 4915 test_kvm_facility(vcpu->kvm, 82)) { 4916 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 4917 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 4918 } 4919 if (MACHINE_HAS_GS) { 4920 preempt_disable(); 4921 __ctl_set_bit(2, 4); 4922 if (current->thread.gs_cb) { 4923 vcpu->arch.host_gscb = current->thread.gs_cb; 4924 save_gs_cb(vcpu->arch.host_gscb); 4925 } 4926 if (vcpu->arch.gs_enabled) { 4927 current->thread.gs_cb = (struct gs_cb *) 4928 &vcpu->run->s.regs.gscb; 4929 restore_gs_cb(current->thread.gs_cb); 4930 } 4931 preempt_enable(); 4932 } 4933 /* SIE will load etoken directly from SDNX and therefore kvm_run */ 4934 } 4935 4936 static void sync_regs(struct kvm_vcpu *vcpu) 4937 { 4938 struct kvm_run *kvm_run = vcpu->run; 4939 4940 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 4941 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 4942 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 4943 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 4944 /* some control register changes require a tlb flush */ 4945 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 4946 } 4947 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 4948 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 4949 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 4950 } 4951 save_access_regs(vcpu->arch.host_acrs); 4952 restore_access_regs(vcpu->run->s.regs.acrs); 4953 /* save host (userspace) fprs/vrs */ 4954 save_fpu_regs(); 4955 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 4956 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 4957 if (MACHINE_HAS_VX) 4958 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 4959 else 4960 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 4961 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 4962 if (test_fp_ctl(current->thread.fpu.fpc)) 4963 /* User space provided an invalid FPC, let's clear it */ 4964 current->thread.fpu.fpc = 0; 4965 4966 /* Sync fmt2 only data */ 4967 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) { 4968 sync_regs_fmt2(vcpu); 4969 } else { 4970 /* 4971 * In several places we have to modify our internal view to 4972 * not do things that are disallowed by the ultravisor. For 4973 * example we must not inject interrupts after specific exits 4974 * (e.g. 112 prefix page not secure). We do this by turning 4975 * off the machine check, external and I/O interrupt bits 4976 * of our PSW copy. To avoid getting validity intercepts, we 4977 * do only accept the condition code from userspace. 4978 */ 4979 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC; 4980 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask & 4981 PSW_MASK_CC; 4982 } 4983 4984 kvm_run->kvm_dirty_regs = 0; 4985 } 4986 4987 static void store_regs_fmt2(struct kvm_vcpu *vcpu) 4988 { 4989 struct kvm_run *kvm_run = vcpu->run; 4990 4991 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 4992 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 4993 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 4994 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 4995 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val; 4996 if (MACHINE_HAS_GS) { 4997 preempt_disable(); 4998 __ctl_set_bit(2, 4); 4999 if (vcpu->arch.gs_enabled) 5000 save_gs_cb(current->thread.gs_cb); 5001 current->thread.gs_cb = vcpu->arch.host_gscb; 5002 restore_gs_cb(vcpu->arch.host_gscb); 5003 if (!vcpu->arch.host_gscb) 5004 __ctl_clear_bit(2, 4); 5005 vcpu->arch.host_gscb = NULL; 5006 preempt_enable(); 5007 } 5008 /* SIE will save etoken directly into SDNX and therefore kvm_run */ 5009 } 5010 5011 static void store_regs(struct kvm_vcpu *vcpu) 5012 { 5013 struct kvm_run *kvm_run = vcpu->run; 5014 5015 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 5016 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 5017 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 5018 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 5019 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 5020 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 5021 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 5022 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 5023 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 5024 save_access_regs(vcpu->run->s.regs.acrs); 5025 restore_access_regs(vcpu->arch.host_acrs); 5026 /* Save guest register state */ 5027 save_fpu_regs(); 5028 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5029 /* Restore will be done lazily at return */ 5030 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 5031 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 5032 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) 5033 store_regs_fmt2(vcpu); 5034 } 5035 5036 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 5037 { 5038 struct kvm_run *kvm_run = vcpu->run; 5039 int rc; 5040 5041 /* 5042 * Running a VM while dumping always has the potential to 5043 * produce inconsistent dump data. But for PV vcpus a SIE 5044 * entry while dumping could also lead to a fatal validity 5045 * intercept which we absolutely want to avoid. 5046 */ 5047 if (vcpu->kvm->arch.pv.dumping) 5048 return -EINVAL; 5049 5050 if (kvm_run->immediate_exit) 5051 return -EINTR; 5052 5053 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS || 5054 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS) 5055 return -EINVAL; 5056 5057 vcpu_load(vcpu); 5058 5059 if (guestdbg_exit_pending(vcpu)) { 5060 kvm_s390_prepare_debug_exit(vcpu); 5061 rc = 0; 5062 goto out; 5063 } 5064 5065 kvm_sigset_activate(vcpu); 5066 5067 /* 5068 * no need to check the return value of vcpu_start as it can only have 5069 * an error for protvirt, but protvirt means user cpu state 5070 */ 5071 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 5072 kvm_s390_vcpu_start(vcpu); 5073 } else if (is_vcpu_stopped(vcpu)) { 5074 pr_err_ratelimited("can't run stopped vcpu %d\n", 5075 vcpu->vcpu_id); 5076 rc = -EINVAL; 5077 goto out; 5078 } 5079 5080 sync_regs(vcpu); 5081 enable_cpu_timer_accounting(vcpu); 5082 5083 might_fault(); 5084 rc = __vcpu_run(vcpu); 5085 5086 if (signal_pending(current) && !rc) { 5087 kvm_run->exit_reason = KVM_EXIT_INTR; 5088 rc = -EINTR; 5089 } 5090 5091 if (guestdbg_exit_pending(vcpu) && !rc) { 5092 kvm_s390_prepare_debug_exit(vcpu); 5093 rc = 0; 5094 } 5095 5096 if (rc == -EREMOTE) { 5097 /* userspace support is needed, kvm_run has been prepared */ 5098 rc = 0; 5099 } 5100 5101 disable_cpu_timer_accounting(vcpu); 5102 store_regs(vcpu); 5103 5104 kvm_sigset_deactivate(vcpu); 5105 5106 vcpu->stat.exit_userspace++; 5107 out: 5108 vcpu_put(vcpu); 5109 return rc; 5110 } 5111 5112 /* 5113 * store status at address 5114 * we use have two special cases: 5115 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 5116 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 5117 */ 5118 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 5119 { 5120 unsigned char archmode = 1; 5121 freg_t fprs[NUM_FPRS]; 5122 unsigned int px; 5123 u64 clkcomp, cputm; 5124 int rc; 5125 5126 px = kvm_s390_get_prefix(vcpu); 5127 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 5128 if (write_guest_abs(vcpu, 163, &archmode, 1)) 5129 return -EFAULT; 5130 gpa = 0; 5131 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 5132 if (write_guest_real(vcpu, 163, &archmode, 1)) 5133 return -EFAULT; 5134 gpa = px; 5135 } else 5136 gpa -= __LC_FPREGS_SAVE_AREA; 5137 5138 /* manually convert vector registers if necessary */ 5139 if (MACHINE_HAS_VX) { 5140 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 5141 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5142 fprs, 128); 5143 } else { 5144 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 5145 vcpu->run->s.regs.fprs, 128); 5146 } 5147 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 5148 vcpu->run->s.regs.gprs, 128); 5149 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 5150 &vcpu->arch.sie_block->gpsw, 16); 5151 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 5152 &px, 4); 5153 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 5154 &vcpu->run->s.regs.fpc, 4); 5155 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 5156 &vcpu->arch.sie_block->todpr, 4); 5157 cputm = kvm_s390_get_cpu_timer(vcpu); 5158 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 5159 &cputm, 8); 5160 clkcomp = vcpu->arch.sie_block->ckc >> 8; 5161 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 5162 &clkcomp, 8); 5163 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 5164 &vcpu->run->s.regs.acrs, 64); 5165 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 5166 &vcpu->arch.sie_block->gcr, 128); 5167 return rc ? -EFAULT : 0; 5168 } 5169 5170 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 5171 { 5172 /* 5173 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 5174 * switch in the run ioctl. Let's update our copies before we save 5175 * it into the save area 5176 */ 5177 save_fpu_regs(); 5178 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 5179 save_access_regs(vcpu->run->s.regs.acrs); 5180 5181 return kvm_s390_store_status_unloaded(vcpu, addr); 5182 } 5183 5184 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5185 { 5186 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 5187 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 5188 } 5189 5190 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 5191 { 5192 unsigned long i; 5193 struct kvm_vcpu *vcpu; 5194 5195 kvm_for_each_vcpu(i, vcpu, kvm) { 5196 __disable_ibs_on_vcpu(vcpu); 5197 } 5198 } 5199 5200 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 5201 { 5202 if (!sclp.has_ibs) 5203 return; 5204 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 5205 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 5206 } 5207 5208 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 5209 { 5210 int i, online_vcpus, r = 0, started_vcpus = 0; 5211 5212 if (!is_vcpu_stopped(vcpu)) 5213 return 0; 5214 5215 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 5216 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5217 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5218 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5219 5220 /* Let's tell the UV that we want to change into the operating state */ 5221 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5222 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR); 5223 if (r) { 5224 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5225 return r; 5226 } 5227 } 5228 5229 for (i = 0; i < online_vcpus; i++) { 5230 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i))) 5231 started_vcpus++; 5232 } 5233 5234 if (started_vcpus == 0) { 5235 /* we're the only active VCPU -> speed it up */ 5236 __enable_ibs_on_vcpu(vcpu); 5237 } else if (started_vcpus == 1) { 5238 /* 5239 * As we are starting a second VCPU, we have to disable 5240 * the IBS facility on all VCPUs to remove potentially 5241 * outstanding ENABLE requests. 5242 */ 5243 __disable_ibs_on_all_vcpus(vcpu->kvm); 5244 } 5245 5246 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 5247 /* 5248 * The real PSW might have changed due to a RESTART interpreted by the 5249 * ultravisor. We block all interrupts and let the next sie exit 5250 * refresh our view. 5251 */ 5252 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5253 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK; 5254 /* 5255 * Another VCPU might have used IBS while we were offline. 5256 * Let's play safe and flush the VCPU at startup. 5257 */ 5258 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5259 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5260 return 0; 5261 } 5262 5263 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 5264 { 5265 int i, online_vcpus, r = 0, started_vcpus = 0; 5266 struct kvm_vcpu *started_vcpu = NULL; 5267 5268 if (is_vcpu_stopped(vcpu)) 5269 return 0; 5270 5271 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 5272 /* Only one cpu at a time may enter/leave the STOPPED state. */ 5273 spin_lock(&vcpu->kvm->arch.start_stop_lock); 5274 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 5275 5276 /* Let's tell the UV that we want to change into the stopped state */ 5277 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5278 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP); 5279 if (r) { 5280 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5281 return r; 5282 } 5283 } 5284 5285 /* 5286 * Set the VCPU to STOPPED and THEN clear the interrupt flag, 5287 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders 5288 * have been fully processed. This will ensure that the VCPU 5289 * is kept BUSY if another VCPU is inquiring with SIGP SENSE. 5290 */ 5291 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 5292 kvm_s390_clear_stop_irq(vcpu); 5293 5294 __disable_ibs_on_vcpu(vcpu); 5295 5296 for (i = 0; i < online_vcpus; i++) { 5297 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i); 5298 5299 if (!is_vcpu_stopped(tmp)) { 5300 started_vcpus++; 5301 started_vcpu = tmp; 5302 } 5303 } 5304 5305 if (started_vcpus == 1) { 5306 /* 5307 * As we only have one VCPU left, we want to enable the 5308 * IBS facility for that VCPU to speed it up. 5309 */ 5310 __enable_ibs_on_vcpu(started_vcpu); 5311 } 5312 5313 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 5314 return 0; 5315 } 5316 5317 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5318 struct kvm_enable_cap *cap) 5319 { 5320 int r; 5321 5322 if (cap->flags) 5323 return -EINVAL; 5324 5325 switch (cap->cap) { 5326 case KVM_CAP_S390_CSS_SUPPORT: 5327 if (!vcpu->kvm->arch.css_support) { 5328 vcpu->kvm->arch.css_support = 1; 5329 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 5330 trace_kvm_s390_enable_css(vcpu->kvm); 5331 } 5332 r = 0; 5333 break; 5334 default: 5335 r = -EINVAL; 5336 break; 5337 } 5338 return r; 5339 } 5340 5341 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu, 5342 struct kvm_s390_mem_op *mop) 5343 { 5344 void __user *uaddr = (void __user *)mop->buf; 5345 void *sida_addr; 5346 int r = 0; 5347 5348 if (mop->flags || !mop->size) 5349 return -EINVAL; 5350 if (mop->size + mop->sida_offset < mop->size) 5351 return -EINVAL; 5352 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block)) 5353 return -E2BIG; 5354 if (!kvm_s390_pv_cpu_is_protected(vcpu)) 5355 return -EINVAL; 5356 5357 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset; 5358 5359 switch (mop->op) { 5360 case KVM_S390_MEMOP_SIDA_READ: 5361 if (copy_to_user(uaddr, sida_addr, mop->size)) 5362 r = -EFAULT; 5363 5364 break; 5365 case KVM_S390_MEMOP_SIDA_WRITE: 5366 if (copy_from_user(sida_addr, uaddr, mop->size)) 5367 r = -EFAULT; 5368 break; 5369 } 5370 return r; 5371 } 5372 5373 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu, 5374 struct kvm_s390_mem_op *mop) 5375 { 5376 void __user *uaddr = (void __user *)mop->buf; 5377 enum gacc_mode acc_mode; 5378 void *tmpbuf = NULL; 5379 int r; 5380 5381 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION | 5382 KVM_S390_MEMOP_F_CHECK_ONLY | 5383 KVM_S390_MEMOP_F_SKEY_PROTECTION); 5384 if (r) 5385 return r; 5386 if (mop->ar >= NUM_ACRS) 5387 return -EINVAL; 5388 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5389 return -EINVAL; 5390 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 5391 tmpbuf = vmalloc(mop->size); 5392 if (!tmpbuf) 5393 return -ENOMEM; 5394 } 5395 5396 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE; 5397 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 5398 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, 5399 acc_mode, mop->key); 5400 goto out_inject; 5401 } 5402 if (acc_mode == GACC_FETCH) { 5403 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5404 mop->size, mop->key); 5405 if (r) 5406 goto out_inject; 5407 if (copy_to_user(uaddr, tmpbuf, mop->size)) { 5408 r = -EFAULT; 5409 goto out_free; 5410 } 5411 } else { 5412 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 5413 r = -EFAULT; 5414 goto out_free; 5415 } 5416 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf, 5417 mop->size, mop->key); 5418 } 5419 5420 out_inject: 5421 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 5422 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 5423 5424 out_free: 5425 vfree(tmpbuf); 5426 return r; 5427 } 5428 5429 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu, 5430 struct kvm_s390_mem_op *mop) 5431 { 5432 int r, srcu_idx; 5433 5434 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 5435 5436 switch (mop->op) { 5437 case KVM_S390_MEMOP_LOGICAL_READ: 5438 case KVM_S390_MEMOP_LOGICAL_WRITE: 5439 r = kvm_s390_vcpu_mem_op(vcpu, mop); 5440 break; 5441 case KVM_S390_MEMOP_SIDA_READ: 5442 case KVM_S390_MEMOP_SIDA_WRITE: 5443 /* we are locked against sida going away by the vcpu->mutex */ 5444 r = kvm_s390_vcpu_sida_op(vcpu, mop); 5445 break; 5446 default: 5447 r = -EINVAL; 5448 } 5449 5450 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 5451 return r; 5452 } 5453 5454 long kvm_arch_vcpu_async_ioctl(struct file *filp, 5455 unsigned int ioctl, unsigned long arg) 5456 { 5457 struct kvm_vcpu *vcpu = filp->private_data; 5458 void __user *argp = (void __user *)arg; 5459 int rc; 5460 5461 switch (ioctl) { 5462 case KVM_S390_IRQ: { 5463 struct kvm_s390_irq s390irq; 5464 5465 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 5466 return -EFAULT; 5467 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5468 break; 5469 } 5470 case KVM_S390_INTERRUPT: { 5471 struct kvm_s390_interrupt s390int; 5472 struct kvm_s390_irq s390irq = {}; 5473 5474 if (copy_from_user(&s390int, argp, sizeof(s390int))) 5475 return -EFAULT; 5476 if (s390int_to_s390irq(&s390int, &s390irq)) 5477 return -EINVAL; 5478 rc = kvm_s390_inject_vcpu(vcpu, &s390irq); 5479 break; 5480 } 5481 default: 5482 rc = -ENOIOCTLCMD; 5483 break; 5484 } 5485 5486 /* 5487 * To simplify single stepping of userspace-emulated instructions, 5488 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see 5489 * should_handle_per_ifetch()). However, if userspace emulation injects 5490 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens 5491 * after (and not before) the interrupt delivery. 5492 */ 5493 if (!rc) 5494 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; 5495 5496 return rc; 5497 } 5498 5499 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu, 5500 struct kvm_pv_cmd *cmd) 5501 { 5502 struct kvm_s390_pv_dmp dmp; 5503 void *data; 5504 int ret; 5505 5506 /* Dump initialization is a prerequisite */ 5507 if (!vcpu->kvm->arch.pv.dumping) 5508 return -EINVAL; 5509 5510 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp))) 5511 return -EFAULT; 5512 5513 /* We only handle this subcmd right now */ 5514 if (dmp.subcmd != KVM_PV_DUMP_CPU) 5515 return -EINVAL; 5516 5517 /* CPU dump length is the same as create cpu storage donation. */ 5518 if (dmp.buff_len != uv_info.guest_cpu_stor_len) 5519 return -EINVAL; 5520 5521 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL); 5522 if (!data) 5523 return -ENOMEM; 5524 5525 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc); 5526 5527 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x", 5528 vcpu->vcpu_id, cmd->rc, cmd->rrc); 5529 5530 if (ret) 5531 ret = -EINVAL; 5532 5533 /* On success copy over the dump data */ 5534 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len)) 5535 ret = -EFAULT; 5536 5537 kvfree(data); 5538 return ret; 5539 } 5540 5541 long kvm_arch_vcpu_ioctl(struct file *filp, 5542 unsigned int ioctl, unsigned long arg) 5543 { 5544 struct kvm_vcpu *vcpu = filp->private_data; 5545 void __user *argp = (void __user *)arg; 5546 int idx; 5547 long r; 5548 u16 rc, rrc; 5549 5550 vcpu_load(vcpu); 5551 5552 switch (ioctl) { 5553 case KVM_S390_STORE_STATUS: 5554 idx = srcu_read_lock(&vcpu->kvm->srcu); 5555 r = kvm_s390_store_status_unloaded(vcpu, arg); 5556 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5557 break; 5558 case KVM_S390_SET_INITIAL_PSW: { 5559 psw_t psw; 5560 5561 r = -EFAULT; 5562 if (copy_from_user(&psw, argp, sizeof(psw))) 5563 break; 5564 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 5565 break; 5566 } 5567 case KVM_S390_CLEAR_RESET: 5568 r = 0; 5569 kvm_arch_vcpu_ioctl_clear_reset(vcpu); 5570 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5571 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5572 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc); 5573 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x", 5574 rc, rrc); 5575 } 5576 break; 5577 case KVM_S390_INITIAL_RESET: 5578 r = 0; 5579 kvm_arch_vcpu_ioctl_initial_reset(vcpu); 5580 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5581 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5582 UVC_CMD_CPU_RESET_INITIAL, 5583 &rc, &rrc); 5584 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x", 5585 rc, rrc); 5586 } 5587 break; 5588 case KVM_S390_NORMAL_RESET: 5589 r = 0; 5590 kvm_arch_vcpu_ioctl_normal_reset(vcpu); 5591 if (kvm_s390_pv_cpu_is_protected(vcpu)) { 5592 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu), 5593 UVC_CMD_CPU_RESET, &rc, &rrc); 5594 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x", 5595 rc, rrc); 5596 } 5597 break; 5598 case KVM_SET_ONE_REG: 5599 case KVM_GET_ONE_REG: { 5600 struct kvm_one_reg reg; 5601 r = -EINVAL; 5602 if (kvm_s390_pv_cpu_is_protected(vcpu)) 5603 break; 5604 r = -EFAULT; 5605 if (copy_from_user(®, argp, sizeof(reg))) 5606 break; 5607 if (ioctl == KVM_SET_ONE_REG) 5608 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 5609 else 5610 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 5611 break; 5612 } 5613 #ifdef CONFIG_KVM_S390_UCONTROL 5614 case KVM_S390_UCAS_MAP: { 5615 struct kvm_s390_ucas_mapping ucasmap; 5616 5617 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5618 r = -EFAULT; 5619 break; 5620 } 5621 5622 if (!kvm_is_ucontrol(vcpu->kvm)) { 5623 r = -EINVAL; 5624 break; 5625 } 5626 5627 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 5628 ucasmap.vcpu_addr, ucasmap.length); 5629 break; 5630 } 5631 case KVM_S390_UCAS_UNMAP: { 5632 struct kvm_s390_ucas_mapping ucasmap; 5633 5634 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 5635 r = -EFAULT; 5636 break; 5637 } 5638 5639 if (!kvm_is_ucontrol(vcpu->kvm)) { 5640 r = -EINVAL; 5641 break; 5642 } 5643 5644 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 5645 ucasmap.length); 5646 break; 5647 } 5648 #endif 5649 case KVM_S390_VCPU_FAULT: { 5650 r = gmap_fault(vcpu->arch.gmap, arg, 0); 5651 break; 5652 } 5653 case KVM_ENABLE_CAP: 5654 { 5655 struct kvm_enable_cap cap; 5656 r = -EFAULT; 5657 if (copy_from_user(&cap, argp, sizeof(cap))) 5658 break; 5659 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5660 break; 5661 } 5662 case KVM_S390_MEM_OP: { 5663 struct kvm_s390_mem_op mem_op; 5664 5665 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 5666 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op); 5667 else 5668 r = -EFAULT; 5669 break; 5670 } 5671 case KVM_S390_SET_IRQ_STATE: { 5672 struct kvm_s390_irq_state irq_state; 5673 5674 r = -EFAULT; 5675 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5676 break; 5677 if (irq_state.len > VCPU_IRQS_MAX_BUF || 5678 irq_state.len == 0 || 5679 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 5680 r = -EINVAL; 5681 break; 5682 } 5683 /* do not use irq_state.flags, it will break old QEMUs */ 5684 r = kvm_s390_set_irq_state(vcpu, 5685 (void __user *) irq_state.buf, 5686 irq_state.len); 5687 break; 5688 } 5689 case KVM_S390_GET_IRQ_STATE: { 5690 struct kvm_s390_irq_state irq_state; 5691 5692 r = -EFAULT; 5693 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 5694 break; 5695 if (irq_state.len == 0) { 5696 r = -EINVAL; 5697 break; 5698 } 5699 /* do not use irq_state.flags, it will break old QEMUs */ 5700 r = kvm_s390_get_irq_state(vcpu, 5701 (__u8 __user *) irq_state.buf, 5702 irq_state.len); 5703 break; 5704 } 5705 case KVM_S390_PV_CPU_COMMAND: { 5706 struct kvm_pv_cmd cmd; 5707 5708 r = -EINVAL; 5709 if (!is_prot_virt_host()) 5710 break; 5711 5712 r = -EFAULT; 5713 if (copy_from_user(&cmd, argp, sizeof(cmd))) 5714 break; 5715 5716 r = -EINVAL; 5717 if (cmd.flags) 5718 break; 5719 5720 /* We only handle this cmd right now */ 5721 if (cmd.cmd != KVM_PV_DUMP) 5722 break; 5723 5724 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd); 5725 5726 /* Always copy over UV rc / rrc data */ 5727 if (copy_to_user((__u8 __user *)argp, &cmd.rc, 5728 sizeof(cmd.rc) + sizeof(cmd.rrc))) 5729 r = -EFAULT; 5730 break; 5731 } 5732 default: 5733 r = -ENOTTY; 5734 } 5735 5736 vcpu_put(vcpu); 5737 return r; 5738 } 5739 5740 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5741 { 5742 #ifdef CONFIG_KVM_S390_UCONTROL 5743 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 5744 && (kvm_is_ucontrol(vcpu->kvm))) { 5745 vmf->page = virt_to_page(vcpu->arch.sie_block); 5746 get_page(vmf->page); 5747 return 0; 5748 } 5749 #endif 5750 return VM_FAULT_SIGBUS; 5751 } 5752 5753 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm) 5754 { 5755 return true; 5756 } 5757 5758 /* Section: memory related */ 5759 int kvm_arch_prepare_memory_region(struct kvm *kvm, 5760 const struct kvm_memory_slot *old, 5761 struct kvm_memory_slot *new, 5762 enum kvm_mr_change change) 5763 { 5764 gpa_t size; 5765 5766 /* When we are protected, we should not change the memory slots */ 5767 if (kvm_s390_pv_get_handle(kvm)) 5768 return -EINVAL; 5769 5770 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) { 5771 /* 5772 * A few sanity checks. We can have memory slots which have to be 5773 * located/ended at a segment boundary (1MB). The memory in userland is 5774 * ok to be fragmented into various different vmas. It is okay to mmap() 5775 * and munmap() stuff in this slot after doing this call at any time 5776 */ 5777 5778 if (new->userspace_addr & 0xffffful) 5779 return -EINVAL; 5780 5781 size = new->npages * PAGE_SIZE; 5782 if (size & 0xffffful) 5783 return -EINVAL; 5784 5785 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit) 5786 return -EINVAL; 5787 } 5788 5789 if (!kvm->arch.migration_mode) 5790 return 0; 5791 5792 /* 5793 * Turn off migration mode when: 5794 * - userspace creates a new memslot with dirty logging off, 5795 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and 5796 * dirty logging is turned off. 5797 * Migration mode expects dirty page logging being enabled to store 5798 * its dirty bitmap. 5799 */ 5800 if (change != KVM_MR_DELETE && 5801 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) 5802 WARN(kvm_s390_vm_stop_migration(kvm), 5803 "Failed to stop migration mode"); 5804 5805 return 0; 5806 } 5807 5808 void kvm_arch_commit_memory_region(struct kvm *kvm, 5809 struct kvm_memory_slot *old, 5810 const struct kvm_memory_slot *new, 5811 enum kvm_mr_change change) 5812 { 5813 int rc = 0; 5814 5815 switch (change) { 5816 case KVM_MR_DELETE: 5817 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5818 old->npages * PAGE_SIZE); 5819 break; 5820 case KVM_MR_MOVE: 5821 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE, 5822 old->npages * PAGE_SIZE); 5823 if (rc) 5824 break; 5825 fallthrough; 5826 case KVM_MR_CREATE: 5827 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr, 5828 new->base_gfn * PAGE_SIZE, 5829 new->npages * PAGE_SIZE); 5830 break; 5831 case KVM_MR_FLAGS_ONLY: 5832 break; 5833 default: 5834 WARN(1, "Unknown KVM MR CHANGE: %d\n", change); 5835 } 5836 if (rc) 5837 pr_warn("failed to commit memory region\n"); 5838 return; 5839 } 5840 5841 static inline unsigned long nonhyp_mask(int i) 5842 { 5843 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 5844 5845 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 5846 } 5847 5848 static int __init kvm_s390_init(void) 5849 { 5850 int i, r; 5851 5852 if (!sclp.has_sief2) { 5853 pr_info("SIE is not available\n"); 5854 return -ENODEV; 5855 } 5856 5857 if (nested && hpage) { 5858 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n"); 5859 return -EINVAL; 5860 } 5861 5862 for (i = 0; i < 16; i++) 5863 kvm_s390_fac_base[i] |= 5864 stfle_fac_list[i] & nonhyp_mask(i); 5865 5866 r = __kvm_s390_init(); 5867 if (r) 5868 return r; 5869 5870 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE); 5871 if (r) { 5872 __kvm_s390_exit(); 5873 return r; 5874 } 5875 return 0; 5876 } 5877 5878 static void __exit kvm_s390_exit(void) 5879 { 5880 kvm_exit(); 5881 5882 __kvm_s390_exit(); 5883 } 5884 5885 module_init(kvm_s390_init); 5886 module_exit(kvm_s390_exit); 5887 5888 /* 5889 * Enable autoloading of the kvm module. 5890 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 5891 * since x86 takes a different approach. 5892 */ 5893 #include <linux/miscdevice.h> 5894 MODULE_ALIAS_MISCDEV(KVM_MINOR); 5895 MODULE_ALIAS("devname:kvm"); 5896