1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * hosting IBM Z kernel virtual machines (s390x) 4 * 5 * Copyright IBM Corp. 2008, 2018 6 * 7 * Author(s): Carsten Otte <cotte@de.ibm.com> 8 * Christian Borntraeger <borntraeger@de.ibm.com> 9 * Heiko Carstens <heiko.carstens@de.ibm.com> 10 * Christian Ehrhardt <ehrhardt@de.ibm.com> 11 * Jason J. Herne <jjherne@us.ibm.com> 12 */ 13 14 #include <linux/compiler.h> 15 #include <linux/err.h> 16 #include <linux/fs.h> 17 #include <linux/hrtimer.h> 18 #include <linux/init.h> 19 #include <linux/kvm.h> 20 #include <linux/kvm_host.h> 21 #include <linux/mman.h> 22 #include <linux/module.h> 23 #include <linux/moduleparam.h> 24 #include <linux/random.h> 25 #include <linux/slab.h> 26 #include <linux/timer.h> 27 #include <linux/vmalloc.h> 28 #include <linux/bitmap.h> 29 #include <linux/sched/signal.h> 30 #include <linux/string.h> 31 32 #include <asm/asm-offsets.h> 33 #include <asm/lowcore.h> 34 #include <asm/stp.h> 35 #include <asm/pgtable.h> 36 #include <asm/gmap.h> 37 #include <asm/nmi.h> 38 #include <asm/switch_to.h> 39 #include <asm/isc.h> 40 #include <asm/sclp.h> 41 #include <asm/cpacf.h> 42 #include <asm/timex.h> 43 #include "kvm-s390.h" 44 #include "gaccess.h" 45 46 #define KMSG_COMPONENT "kvm-s390" 47 #undef pr_fmt 48 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt 49 50 #define CREATE_TRACE_POINTS 51 #include "trace.h" 52 #include "trace-s390.h" 53 54 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */ 55 #define LOCAL_IRQS 32 56 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \ 57 (KVM_MAX_VCPUS + LOCAL_IRQS)) 58 59 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 60 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 61 62 struct kvm_stats_debugfs_item debugfs_entries[] = { 63 { "userspace_handled", VCPU_STAT(exit_userspace) }, 64 { "exit_null", VCPU_STAT(exit_null) }, 65 { "exit_validity", VCPU_STAT(exit_validity) }, 66 { "exit_stop_request", VCPU_STAT(exit_stop_request) }, 67 { "exit_external_request", VCPU_STAT(exit_external_request) }, 68 { "exit_io_request", VCPU_STAT(exit_io_request) }, 69 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) }, 70 { "exit_instruction", VCPU_STAT(exit_instruction) }, 71 { "exit_pei", VCPU_STAT(exit_pei) }, 72 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) }, 73 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) }, 74 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) }, 75 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 76 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 77 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 78 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 79 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) }, 80 { "instruction_lctl", VCPU_STAT(instruction_lctl) }, 81 { "instruction_stctl", VCPU_STAT(instruction_stctl) }, 82 { "instruction_stctg", VCPU_STAT(instruction_stctg) }, 83 { "deliver_ckc", VCPU_STAT(deliver_ckc) }, 84 { "deliver_cputm", VCPU_STAT(deliver_cputm) }, 85 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) }, 86 { "deliver_external_call", VCPU_STAT(deliver_external_call) }, 87 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) }, 88 { "deliver_virtio", VCPU_STAT(deliver_virtio) }, 89 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) }, 90 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) }, 91 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) }, 92 { "deliver_program", VCPU_STAT(deliver_program) }, 93 { "deliver_io", VCPU_STAT(deliver_io) }, 94 { "deliver_machine_check", VCPU_STAT(deliver_machine_check) }, 95 { "exit_wait_state", VCPU_STAT(exit_wait_state) }, 96 { "inject_ckc", VCPU_STAT(inject_ckc) }, 97 { "inject_cputm", VCPU_STAT(inject_cputm) }, 98 { "inject_external_call", VCPU_STAT(inject_external_call) }, 99 { "inject_float_mchk", VM_STAT(inject_float_mchk) }, 100 { "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) }, 101 { "inject_io", VM_STAT(inject_io) }, 102 { "inject_mchk", VCPU_STAT(inject_mchk) }, 103 { "inject_pfault_done", VM_STAT(inject_pfault_done) }, 104 { "inject_program", VCPU_STAT(inject_program) }, 105 { "inject_restart", VCPU_STAT(inject_restart) }, 106 { "inject_service_signal", VM_STAT(inject_service_signal) }, 107 { "inject_set_prefix", VCPU_STAT(inject_set_prefix) }, 108 { "inject_stop_signal", VCPU_STAT(inject_stop_signal) }, 109 { "inject_pfault_init", VCPU_STAT(inject_pfault_init) }, 110 { "inject_virtio", VM_STAT(inject_virtio) }, 111 { "instruction_epsw", VCPU_STAT(instruction_epsw) }, 112 { "instruction_gs", VCPU_STAT(instruction_gs) }, 113 { "instruction_io_other", VCPU_STAT(instruction_io_other) }, 114 { "instruction_lpsw", VCPU_STAT(instruction_lpsw) }, 115 { "instruction_lpswe", VCPU_STAT(instruction_lpswe) }, 116 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) }, 117 { "instruction_ptff", VCPU_STAT(instruction_ptff) }, 118 { "instruction_stidp", VCPU_STAT(instruction_stidp) }, 119 { "instruction_sck", VCPU_STAT(instruction_sck) }, 120 { "instruction_sckpf", VCPU_STAT(instruction_sckpf) }, 121 { "instruction_spx", VCPU_STAT(instruction_spx) }, 122 { "instruction_stpx", VCPU_STAT(instruction_stpx) }, 123 { "instruction_stap", VCPU_STAT(instruction_stap) }, 124 { "instruction_iske", VCPU_STAT(instruction_iske) }, 125 { "instruction_ri", VCPU_STAT(instruction_ri) }, 126 { "instruction_rrbe", VCPU_STAT(instruction_rrbe) }, 127 { "instruction_sske", VCPU_STAT(instruction_sske) }, 128 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) }, 129 { "instruction_essa", VCPU_STAT(instruction_essa) }, 130 { "instruction_stsi", VCPU_STAT(instruction_stsi) }, 131 { "instruction_stfl", VCPU_STAT(instruction_stfl) }, 132 { "instruction_tb", VCPU_STAT(instruction_tb) }, 133 { "instruction_tpi", VCPU_STAT(instruction_tpi) }, 134 { "instruction_tprot", VCPU_STAT(instruction_tprot) }, 135 { "instruction_tsch", VCPU_STAT(instruction_tsch) }, 136 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, 137 { "instruction_sie", VCPU_STAT(instruction_sie) }, 138 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, 139 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, 140 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, 141 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) }, 142 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) }, 143 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) }, 144 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) }, 145 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) }, 146 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) }, 147 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) }, 148 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) }, 149 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) }, 150 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) }, 151 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) }, 152 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) }, 153 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) }, 154 { "instruction_diag_10", VCPU_STAT(diagnose_10) }, 155 { "instruction_diag_44", VCPU_STAT(diagnose_44) }, 156 { "instruction_diag_9c", VCPU_STAT(diagnose_9c) }, 157 { "instruction_diag_258", VCPU_STAT(diagnose_258) }, 158 { "instruction_diag_308", VCPU_STAT(diagnose_308) }, 159 { "instruction_diag_500", VCPU_STAT(diagnose_500) }, 160 { "instruction_diag_other", VCPU_STAT(diagnose_other) }, 161 { NULL } 162 }; 163 164 struct kvm_s390_tod_clock_ext { 165 __u8 epoch_idx; 166 __u64 tod; 167 __u8 reserved[7]; 168 } __packed; 169 170 /* allow nested virtualization in KVM (if enabled by user space) */ 171 static int nested; 172 module_param(nested, int, S_IRUGO); 173 MODULE_PARM_DESC(nested, "Nested virtualization support"); 174 175 176 /* 177 * For now we handle at most 16 double words as this is what the s390 base 178 * kernel handles and stores in the prefix page. If we ever need to go beyond 179 * this, this requires changes to code, but the external uapi can stay. 180 */ 181 #define SIZE_INTERNAL 16 182 183 /* 184 * Base feature mask that defines default mask for facilities. Consists of the 185 * defines in FACILITIES_KVM and the non-hypervisor managed bits. 186 */ 187 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM }; 188 /* 189 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL 190 * and defines the facilities that can be enabled via a cpu model. 191 */ 192 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL }; 193 194 static unsigned long kvm_s390_fac_size(void) 195 { 196 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64); 197 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64); 198 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) > 199 sizeof(S390_lowcore.stfle_fac_list)); 200 201 return SIZE_INTERNAL; 202 } 203 204 /* available cpu features supported by kvm */ 205 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); 206 /* available subfunctions indicated via query / "test bit" */ 207 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; 208 209 static struct gmap_notifier gmap_notifier; 210 static struct gmap_notifier vsie_gmap_notifier; 211 debug_info_t *kvm_s390_dbf; 212 213 /* Section: not file related */ 214 int kvm_arch_hardware_enable(void) 215 { 216 /* every s390 is virtualization enabled ;-) */ 217 return 0; 218 } 219 220 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 221 unsigned long end); 222 223 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta) 224 { 225 u8 delta_idx = 0; 226 227 /* 228 * The TOD jumps by delta, we have to compensate this by adding 229 * -delta to the epoch. 230 */ 231 delta = -delta; 232 233 /* sign-extension - we're adding to signed values below */ 234 if ((s64)delta < 0) 235 delta_idx = -1; 236 237 scb->epoch += delta; 238 if (scb->ecd & ECD_MEF) { 239 scb->epdx += delta_idx; 240 if (scb->epoch < delta) 241 scb->epdx += 1; 242 } 243 } 244 245 /* 246 * This callback is executed during stop_machine(). All CPUs are therefore 247 * temporarily stopped. In order not to change guest behavior, we have to 248 * disable preemption whenever we touch the epoch of kvm and the VCPUs, 249 * so a CPU won't be stopped while calculating with the epoch. 250 */ 251 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, 252 void *v) 253 { 254 struct kvm *kvm; 255 struct kvm_vcpu *vcpu; 256 int i; 257 unsigned long long *delta = v; 258 259 list_for_each_entry(kvm, &vm_list, vm_list) { 260 kvm_for_each_vcpu(i, vcpu, kvm) { 261 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta); 262 if (i == 0) { 263 kvm->arch.epoch = vcpu->arch.sie_block->epoch; 264 kvm->arch.epdx = vcpu->arch.sie_block->epdx; 265 } 266 if (vcpu->arch.cputm_enabled) 267 vcpu->arch.cputm_start += *delta; 268 if (vcpu->arch.vsie_block) 269 kvm_clock_sync_scb(vcpu->arch.vsie_block, 270 *delta); 271 } 272 } 273 return NOTIFY_OK; 274 } 275 276 static struct notifier_block kvm_clock_notifier = { 277 .notifier_call = kvm_clock_sync, 278 }; 279 280 int kvm_arch_hardware_setup(void) 281 { 282 gmap_notifier.notifier_call = kvm_gmap_notifier; 283 gmap_register_pte_notifier(&gmap_notifier); 284 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier; 285 gmap_register_pte_notifier(&vsie_gmap_notifier); 286 atomic_notifier_chain_register(&s390_epoch_delta_notifier, 287 &kvm_clock_notifier); 288 return 0; 289 } 290 291 void kvm_arch_hardware_unsetup(void) 292 { 293 gmap_unregister_pte_notifier(&gmap_notifier); 294 gmap_unregister_pte_notifier(&vsie_gmap_notifier); 295 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, 296 &kvm_clock_notifier); 297 } 298 299 static void allow_cpu_feat(unsigned long nr) 300 { 301 set_bit_inv(nr, kvm_s390_available_cpu_feat); 302 } 303 304 static inline int plo_test_bit(unsigned char nr) 305 { 306 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100; 307 int cc; 308 309 asm volatile( 310 /* Parameter registers are ignored for "test bit" */ 311 " plo 0,0,0,0(0)\n" 312 " ipm %0\n" 313 " srl %0,28\n" 314 : "=d" (cc) 315 : "d" (r0) 316 : "cc"); 317 return cc == 0; 318 } 319 320 static void kvm_s390_cpu_feat_init(void) 321 { 322 int i; 323 324 for (i = 0; i < 256; ++i) { 325 if (plo_test_bit(i)) 326 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7); 327 } 328 329 if (test_facility(28)) /* TOD-clock steering */ 330 ptff(kvm_s390_available_subfunc.ptff, 331 sizeof(kvm_s390_available_subfunc.ptff), 332 PTFF_QAF); 333 334 if (test_facility(17)) { /* MSA */ 335 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *) 336 kvm_s390_available_subfunc.kmac); 337 __cpacf_query(CPACF_KMC, (cpacf_mask_t *) 338 kvm_s390_available_subfunc.kmc); 339 __cpacf_query(CPACF_KM, (cpacf_mask_t *) 340 kvm_s390_available_subfunc.km); 341 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *) 342 kvm_s390_available_subfunc.kimd); 343 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *) 344 kvm_s390_available_subfunc.klmd); 345 } 346 if (test_facility(76)) /* MSA3 */ 347 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *) 348 kvm_s390_available_subfunc.pckmo); 349 if (test_facility(77)) { /* MSA4 */ 350 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *) 351 kvm_s390_available_subfunc.kmctr); 352 __cpacf_query(CPACF_KMF, (cpacf_mask_t *) 353 kvm_s390_available_subfunc.kmf); 354 __cpacf_query(CPACF_KMO, (cpacf_mask_t *) 355 kvm_s390_available_subfunc.kmo); 356 __cpacf_query(CPACF_PCC, (cpacf_mask_t *) 357 kvm_s390_available_subfunc.pcc); 358 } 359 if (test_facility(57)) /* MSA5 */ 360 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *) 361 kvm_s390_available_subfunc.ppno); 362 363 if (test_facility(146)) /* MSA8 */ 364 __cpacf_query(CPACF_KMA, (cpacf_mask_t *) 365 kvm_s390_available_subfunc.kma); 366 367 if (MACHINE_HAS_ESOP) 368 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); 369 /* 370 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow), 371 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing). 372 */ 373 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao || 374 !test_facility(3) || !nested) 375 return; 376 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2); 377 if (sclp.has_64bscao) 378 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO); 379 if (sclp.has_siif) 380 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF); 381 if (sclp.has_gpere) 382 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE); 383 if (sclp.has_gsls) 384 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS); 385 if (sclp.has_ib) 386 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB); 387 if (sclp.has_cei) 388 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI); 389 if (sclp.has_ibs) 390 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS); 391 if (sclp.has_kss) 392 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS); 393 /* 394 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make 395 * all skey handling functions read/set the skey from the PGSTE 396 * instead of the real storage key. 397 * 398 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make 399 * pages being detected as preserved although they are resident. 400 * 401 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will 402 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY. 403 * 404 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and 405 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be 406 * correctly shadowed. We can do that for the PGSTE but not for PTE.I. 407 * 408 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We 409 * cannot easily shadow the SCA because of the ipte lock. 410 */ 411 } 412 413 int kvm_arch_init(void *opaque) 414 { 415 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long)); 416 if (!kvm_s390_dbf) 417 return -ENOMEM; 418 419 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) { 420 debug_unregister(kvm_s390_dbf); 421 return -ENOMEM; 422 } 423 424 kvm_s390_cpu_feat_init(); 425 426 /* Register floating interrupt controller interface. */ 427 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC); 428 } 429 430 void kvm_arch_exit(void) 431 { 432 debug_unregister(kvm_s390_dbf); 433 } 434 435 /* Section: device related */ 436 long kvm_arch_dev_ioctl(struct file *filp, 437 unsigned int ioctl, unsigned long arg) 438 { 439 if (ioctl == KVM_S390_ENABLE_SIE) 440 return s390_enable_sie(); 441 return -EINVAL; 442 } 443 444 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 445 { 446 int r; 447 448 switch (ext) { 449 case KVM_CAP_S390_PSW: 450 case KVM_CAP_S390_GMAP: 451 case KVM_CAP_SYNC_MMU: 452 #ifdef CONFIG_KVM_S390_UCONTROL 453 case KVM_CAP_S390_UCONTROL: 454 #endif 455 case KVM_CAP_ASYNC_PF: 456 case KVM_CAP_SYNC_REGS: 457 case KVM_CAP_ONE_REG: 458 case KVM_CAP_ENABLE_CAP: 459 case KVM_CAP_S390_CSS_SUPPORT: 460 case KVM_CAP_IOEVENTFD: 461 case KVM_CAP_DEVICE_CTRL: 462 case KVM_CAP_ENABLE_CAP_VM: 463 case KVM_CAP_S390_IRQCHIP: 464 case KVM_CAP_VM_ATTRIBUTES: 465 case KVM_CAP_MP_STATE: 466 case KVM_CAP_IMMEDIATE_EXIT: 467 case KVM_CAP_S390_INJECT_IRQ: 468 case KVM_CAP_S390_USER_SIGP: 469 case KVM_CAP_S390_USER_STSI: 470 case KVM_CAP_S390_SKEYS: 471 case KVM_CAP_S390_IRQ_STATE: 472 case KVM_CAP_S390_USER_INSTR0: 473 case KVM_CAP_S390_CMMA_MIGRATION: 474 case KVM_CAP_S390_AIS: 475 case KVM_CAP_S390_AIS_MIGRATION: 476 r = 1; 477 break; 478 case KVM_CAP_S390_MEM_OP: 479 r = MEM_OP_MAX_SIZE; 480 break; 481 case KVM_CAP_NR_VCPUS: 482 case KVM_CAP_MAX_VCPUS: 483 r = KVM_S390_BSCA_CPU_SLOTS; 484 if (!kvm_s390_use_sca_entries()) 485 r = KVM_MAX_VCPUS; 486 else if (sclp.has_esca && sclp.has_64bscao) 487 r = KVM_S390_ESCA_CPU_SLOTS; 488 break; 489 case KVM_CAP_NR_MEMSLOTS: 490 r = KVM_USER_MEM_SLOTS; 491 break; 492 case KVM_CAP_S390_COW: 493 r = MACHINE_HAS_ESOP; 494 break; 495 case KVM_CAP_S390_VECTOR_REGISTERS: 496 r = MACHINE_HAS_VX; 497 break; 498 case KVM_CAP_S390_RI: 499 r = test_facility(64); 500 break; 501 case KVM_CAP_S390_GS: 502 r = test_facility(133); 503 break; 504 case KVM_CAP_S390_BPB: 505 r = test_facility(82); 506 break; 507 default: 508 r = 0; 509 } 510 return r; 511 } 512 513 static void kvm_s390_sync_dirty_log(struct kvm *kvm, 514 struct kvm_memory_slot *memslot) 515 { 516 gfn_t cur_gfn, last_gfn; 517 unsigned long address; 518 struct gmap *gmap = kvm->arch.gmap; 519 520 /* Loop over all guest pages */ 521 last_gfn = memslot->base_gfn + memslot->npages; 522 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) { 523 address = gfn_to_hva_memslot(memslot, cur_gfn); 524 525 if (test_and_clear_guest_dirty(gmap->mm, address)) 526 mark_page_dirty(kvm, cur_gfn); 527 if (fatal_signal_pending(current)) 528 return; 529 cond_resched(); 530 } 531 } 532 533 /* Section: vm related */ 534 static void sca_del_vcpu(struct kvm_vcpu *vcpu); 535 536 /* 537 * Get (and clear) the dirty memory log for a memory slot. 538 */ 539 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, 540 struct kvm_dirty_log *log) 541 { 542 int r; 543 unsigned long n; 544 struct kvm_memslots *slots; 545 struct kvm_memory_slot *memslot; 546 int is_dirty = 0; 547 548 if (kvm_is_ucontrol(kvm)) 549 return -EINVAL; 550 551 mutex_lock(&kvm->slots_lock); 552 553 r = -EINVAL; 554 if (log->slot >= KVM_USER_MEM_SLOTS) 555 goto out; 556 557 slots = kvm_memslots(kvm); 558 memslot = id_to_memslot(slots, log->slot); 559 r = -ENOENT; 560 if (!memslot->dirty_bitmap) 561 goto out; 562 563 kvm_s390_sync_dirty_log(kvm, memslot); 564 r = kvm_get_dirty_log(kvm, log, &is_dirty); 565 if (r) 566 goto out; 567 568 /* Clear the dirty log */ 569 if (is_dirty) { 570 n = kvm_dirty_bitmap_bytes(memslot); 571 memset(memslot->dirty_bitmap, 0, n); 572 } 573 r = 0; 574 out: 575 mutex_unlock(&kvm->slots_lock); 576 return r; 577 } 578 579 static void icpt_operexc_on_all_vcpus(struct kvm *kvm) 580 { 581 unsigned int i; 582 struct kvm_vcpu *vcpu; 583 584 kvm_for_each_vcpu(i, vcpu, kvm) { 585 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu); 586 } 587 } 588 589 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap) 590 { 591 int r; 592 593 if (cap->flags) 594 return -EINVAL; 595 596 switch (cap->cap) { 597 case KVM_CAP_S390_IRQCHIP: 598 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP"); 599 kvm->arch.use_irqchip = 1; 600 r = 0; 601 break; 602 case KVM_CAP_S390_USER_SIGP: 603 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP"); 604 kvm->arch.user_sigp = 1; 605 r = 0; 606 break; 607 case KVM_CAP_S390_VECTOR_REGISTERS: 608 mutex_lock(&kvm->lock); 609 if (kvm->created_vcpus) { 610 r = -EBUSY; 611 } else if (MACHINE_HAS_VX) { 612 set_kvm_facility(kvm->arch.model.fac_mask, 129); 613 set_kvm_facility(kvm->arch.model.fac_list, 129); 614 if (test_facility(134)) { 615 set_kvm_facility(kvm->arch.model.fac_mask, 134); 616 set_kvm_facility(kvm->arch.model.fac_list, 134); 617 } 618 if (test_facility(135)) { 619 set_kvm_facility(kvm->arch.model.fac_mask, 135); 620 set_kvm_facility(kvm->arch.model.fac_list, 135); 621 } 622 r = 0; 623 } else 624 r = -EINVAL; 625 mutex_unlock(&kvm->lock); 626 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s", 627 r ? "(not available)" : "(success)"); 628 break; 629 case KVM_CAP_S390_RI: 630 r = -EINVAL; 631 mutex_lock(&kvm->lock); 632 if (kvm->created_vcpus) { 633 r = -EBUSY; 634 } else if (test_facility(64)) { 635 set_kvm_facility(kvm->arch.model.fac_mask, 64); 636 set_kvm_facility(kvm->arch.model.fac_list, 64); 637 r = 0; 638 } 639 mutex_unlock(&kvm->lock); 640 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s", 641 r ? "(not available)" : "(success)"); 642 break; 643 case KVM_CAP_S390_AIS: 644 mutex_lock(&kvm->lock); 645 if (kvm->created_vcpus) { 646 r = -EBUSY; 647 } else { 648 set_kvm_facility(kvm->arch.model.fac_mask, 72); 649 set_kvm_facility(kvm->arch.model.fac_list, 72); 650 r = 0; 651 } 652 mutex_unlock(&kvm->lock); 653 VM_EVENT(kvm, 3, "ENABLE: AIS %s", 654 r ? "(not available)" : "(success)"); 655 break; 656 case KVM_CAP_S390_GS: 657 r = -EINVAL; 658 mutex_lock(&kvm->lock); 659 if (kvm->created_vcpus) { 660 r = -EBUSY; 661 } else if (test_facility(133)) { 662 set_kvm_facility(kvm->arch.model.fac_mask, 133); 663 set_kvm_facility(kvm->arch.model.fac_list, 133); 664 r = 0; 665 } 666 mutex_unlock(&kvm->lock); 667 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s", 668 r ? "(not available)" : "(success)"); 669 break; 670 case KVM_CAP_S390_USER_STSI: 671 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI"); 672 kvm->arch.user_stsi = 1; 673 r = 0; 674 break; 675 case KVM_CAP_S390_USER_INSTR0: 676 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0"); 677 kvm->arch.user_instr0 = 1; 678 icpt_operexc_on_all_vcpus(kvm); 679 r = 0; 680 break; 681 default: 682 r = -EINVAL; 683 break; 684 } 685 return r; 686 } 687 688 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 689 { 690 int ret; 691 692 switch (attr->attr) { 693 case KVM_S390_VM_MEM_LIMIT_SIZE: 694 ret = 0; 695 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes", 696 kvm->arch.mem_limit); 697 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr)) 698 ret = -EFAULT; 699 break; 700 default: 701 ret = -ENXIO; 702 break; 703 } 704 return ret; 705 } 706 707 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr) 708 { 709 int ret; 710 unsigned int idx; 711 switch (attr->attr) { 712 case KVM_S390_VM_MEM_ENABLE_CMMA: 713 ret = -ENXIO; 714 if (!sclp.has_cmma) 715 break; 716 717 ret = -EBUSY; 718 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support"); 719 mutex_lock(&kvm->lock); 720 if (!kvm->created_vcpus) { 721 kvm->arch.use_cmma = 1; 722 /* Not compatible with cmma. */ 723 kvm->arch.use_pfmfi = 0; 724 ret = 0; 725 } 726 mutex_unlock(&kvm->lock); 727 break; 728 case KVM_S390_VM_MEM_CLR_CMMA: 729 ret = -ENXIO; 730 if (!sclp.has_cmma) 731 break; 732 ret = -EINVAL; 733 if (!kvm->arch.use_cmma) 734 break; 735 736 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states"); 737 mutex_lock(&kvm->lock); 738 idx = srcu_read_lock(&kvm->srcu); 739 s390_reset_cmma(kvm->arch.gmap->mm); 740 srcu_read_unlock(&kvm->srcu, idx); 741 mutex_unlock(&kvm->lock); 742 ret = 0; 743 break; 744 case KVM_S390_VM_MEM_LIMIT_SIZE: { 745 unsigned long new_limit; 746 747 if (kvm_is_ucontrol(kvm)) 748 return -EINVAL; 749 750 if (get_user(new_limit, (u64 __user *)attr->addr)) 751 return -EFAULT; 752 753 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT && 754 new_limit > kvm->arch.mem_limit) 755 return -E2BIG; 756 757 if (!new_limit) 758 return -EINVAL; 759 760 /* gmap_create takes last usable address */ 761 if (new_limit != KVM_S390_NO_MEM_LIMIT) 762 new_limit -= 1; 763 764 ret = -EBUSY; 765 mutex_lock(&kvm->lock); 766 if (!kvm->created_vcpus) { 767 /* gmap_create will round the limit up */ 768 struct gmap *new = gmap_create(current->mm, new_limit); 769 770 if (!new) { 771 ret = -ENOMEM; 772 } else { 773 gmap_remove(kvm->arch.gmap); 774 new->private = kvm; 775 kvm->arch.gmap = new; 776 ret = 0; 777 } 778 } 779 mutex_unlock(&kvm->lock); 780 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit); 781 VM_EVENT(kvm, 3, "New guest asce: 0x%pK", 782 (void *) kvm->arch.gmap->asce); 783 break; 784 } 785 default: 786 ret = -ENXIO; 787 break; 788 } 789 return ret; 790 } 791 792 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu); 793 794 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr) 795 { 796 struct kvm_vcpu *vcpu; 797 int i; 798 799 if (!test_kvm_facility(kvm, 76)) 800 return -EINVAL; 801 802 mutex_lock(&kvm->lock); 803 switch (attr->attr) { 804 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 805 get_random_bytes( 806 kvm->arch.crypto.crycb->aes_wrapping_key_mask, 807 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 808 kvm->arch.crypto.aes_kw = 1; 809 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support"); 810 break; 811 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 812 get_random_bytes( 813 kvm->arch.crypto.crycb->dea_wrapping_key_mask, 814 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 815 kvm->arch.crypto.dea_kw = 1; 816 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support"); 817 break; 818 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 819 kvm->arch.crypto.aes_kw = 0; 820 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0, 821 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 822 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support"); 823 break; 824 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 825 kvm->arch.crypto.dea_kw = 0; 826 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0, 827 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 828 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support"); 829 break; 830 default: 831 mutex_unlock(&kvm->lock); 832 return -ENXIO; 833 } 834 835 kvm_for_each_vcpu(i, vcpu, kvm) { 836 kvm_s390_vcpu_crypto_setup(vcpu); 837 exit_sie(vcpu); 838 } 839 mutex_unlock(&kvm->lock); 840 return 0; 841 } 842 843 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req) 844 { 845 int cx; 846 struct kvm_vcpu *vcpu; 847 848 kvm_for_each_vcpu(cx, vcpu, kvm) 849 kvm_s390_sync_request(req, vcpu); 850 } 851 852 /* 853 * Must be called with kvm->srcu held to avoid races on memslots, and with 854 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration. 855 */ 856 static int kvm_s390_vm_start_migration(struct kvm *kvm) 857 { 858 struct kvm_s390_migration_state *mgs; 859 struct kvm_memory_slot *ms; 860 /* should be the only one */ 861 struct kvm_memslots *slots; 862 unsigned long ram_pages; 863 int slotnr; 864 865 /* migration mode already enabled */ 866 if (kvm->arch.migration_state) 867 return 0; 868 869 slots = kvm_memslots(kvm); 870 if (!slots || !slots->used_slots) 871 return -EINVAL; 872 873 mgs = kzalloc(sizeof(*mgs), GFP_KERNEL); 874 if (!mgs) 875 return -ENOMEM; 876 kvm->arch.migration_state = mgs; 877 878 if (kvm->arch.use_cmma) { 879 /* 880 * Get the first slot. They are reverse sorted by base_gfn, so 881 * the first slot is also the one at the end of the address 882 * space. We have verified above that at least one slot is 883 * present. 884 */ 885 ms = slots->memslots; 886 /* round up so we only use full longs */ 887 ram_pages = roundup(ms->base_gfn + ms->npages, BITS_PER_LONG); 888 /* allocate enough bytes to store all the bits */ 889 mgs->pgste_bitmap = vmalloc(ram_pages / 8); 890 if (!mgs->pgste_bitmap) { 891 kfree(mgs); 892 kvm->arch.migration_state = NULL; 893 return -ENOMEM; 894 } 895 896 mgs->bitmap_size = ram_pages; 897 atomic64_set(&mgs->dirty_pages, ram_pages); 898 /* mark all the pages in active slots as dirty */ 899 for (slotnr = 0; slotnr < slots->used_slots; slotnr++) { 900 ms = slots->memslots + slotnr; 901 bitmap_set(mgs->pgste_bitmap, ms->base_gfn, ms->npages); 902 } 903 904 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION); 905 } 906 return 0; 907 } 908 909 /* 910 * Must be called with kvm->slots_lock to avoid races with ourselves and 911 * kvm_s390_vm_start_migration. 912 */ 913 static int kvm_s390_vm_stop_migration(struct kvm *kvm) 914 { 915 struct kvm_s390_migration_state *mgs; 916 917 /* migration mode already disabled */ 918 if (!kvm->arch.migration_state) 919 return 0; 920 mgs = kvm->arch.migration_state; 921 kvm->arch.migration_state = NULL; 922 923 if (kvm->arch.use_cmma) { 924 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION); 925 /* We have to wait for the essa emulation to finish */ 926 synchronize_srcu(&kvm->srcu); 927 vfree(mgs->pgste_bitmap); 928 } 929 kfree(mgs); 930 return 0; 931 } 932 933 static int kvm_s390_vm_set_migration(struct kvm *kvm, 934 struct kvm_device_attr *attr) 935 { 936 int res = -ENXIO; 937 938 mutex_lock(&kvm->slots_lock); 939 switch (attr->attr) { 940 case KVM_S390_VM_MIGRATION_START: 941 res = kvm_s390_vm_start_migration(kvm); 942 break; 943 case KVM_S390_VM_MIGRATION_STOP: 944 res = kvm_s390_vm_stop_migration(kvm); 945 break; 946 default: 947 break; 948 } 949 mutex_unlock(&kvm->slots_lock); 950 951 return res; 952 } 953 954 static int kvm_s390_vm_get_migration(struct kvm *kvm, 955 struct kvm_device_attr *attr) 956 { 957 u64 mig = (kvm->arch.migration_state != NULL); 958 959 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS) 960 return -ENXIO; 961 962 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig))) 963 return -EFAULT; 964 return 0; 965 } 966 967 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 968 { 969 struct kvm_s390_vm_tod_clock gtod; 970 971 if (copy_from_user(>od, (void __user *)attr->addr, sizeof(gtod))) 972 return -EFAULT; 973 974 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx) 975 return -EINVAL; 976 kvm_s390_set_tod_clock(kvm, >od); 977 978 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx", 979 gtod.epoch_idx, gtod.tod); 980 981 return 0; 982 } 983 984 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 985 { 986 u8 gtod_high; 987 988 if (copy_from_user(>od_high, (void __user *)attr->addr, 989 sizeof(gtod_high))) 990 return -EFAULT; 991 992 if (gtod_high != 0) 993 return -EINVAL; 994 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high); 995 996 return 0; 997 } 998 999 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1000 { 1001 struct kvm_s390_vm_tod_clock gtod = { 0 }; 1002 1003 if (copy_from_user(>od.tod, (void __user *)attr->addr, 1004 sizeof(gtod.tod))) 1005 return -EFAULT; 1006 1007 kvm_s390_set_tod_clock(kvm, >od); 1008 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod); 1009 return 0; 1010 } 1011 1012 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1013 { 1014 int ret; 1015 1016 if (attr->flags) 1017 return -EINVAL; 1018 1019 switch (attr->attr) { 1020 case KVM_S390_VM_TOD_EXT: 1021 ret = kvm_s390_set_tod_ext(kvm, attr); 1022 break; 1023 case KVM_S390_VM_TOD_HIGH: 1024 ret = kvm_s390_set_tod_high(kvm, attr); 1025 break; 1026 case KVM_S390_VM_TOD_LOW: 1027 ret = kvm_s390_set_tod_low(kvm, attr); 1028 break; 1029 default: 1030 ret = -ENXIO; 1031 break; 1032 } 1033 return ret; 1034 } 1035 1036 static void kvm_s390_get_tod_clock_ext(struct kvm *kvm, 1037 struct kvm_s390_vm_tod_clock *gtod) 1038 { 1039 struct kvm_s390_tod_clock_ext htod; 1040 1041 preempt_disable(); 1042 1043 get_tod_clock_ext((char *)&htod); 1044 1045 gtod->tod = htod.tod + kvm->arch.epoch; 1046 gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx; 1047 1048 if (gtod->tod < htod.tod) 1049 gtod->epoch_idx += 1; 1050 1051 preempt_enable(); 1052 } 1053 1054 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr) 1055 { 1056 struct kvm_s390_vm_tod_clock gtod; 1057 1058 memset(>od, 0, sizeof(gtod)); 1059 1060 if (test_kvm_facility(kvm, 139)) 1061 kvm_s390_get_tod_clock_ext(kvm, >od); 1062 else 1063 gtod.tod = kvm_s390_get_tod_clock_fast(kvm); 1064 1065 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1066 return -EFAULT; 1067 1068 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx", 1069 gtod.epoch_idx, gtod.tod); 1070 return 0; 1071 } 1072 1073 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr) 1074 { 1075 u8 gtod_high = 0; 1076 1077 if (copy_to_user((void __user *)attr->addr, >od_high, 1078 sizeof(gtod_high))) 1079 return -EFAULT; 1080 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high); 1081 1082 return 0; 1083 } 1084 1085 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr) 1086 { 1087 u64 gtod; 1088 1089 gtod = kvm_s390_get_tod_clock_fast(kvm); 1090 if (copy_to_user((void __user *)attr->addr, >od, sizeof(gtod))) 1091 return -EFAULT; 1092 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod); 1093 1094 return 0; 1095 } 1096 1097 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr) 1098 { 1099 int ret; 1100 1101 if (attr->flags) 1102 return -EINVAL; 1103 1104 switch (attr->attr) { 1105 case KVM_S390_VM_TOD_EXT: 1106 ret = kvm_s390_get_tod_ext(kvm, attr); 1107 break; 1108 case KVM_S390_VM_TOD_HIGH: 1109 ret = kvm_s390_get_tod_high(kvm, attr); 1110 break; 1111 case KVM_S390_VM_TOD_LOW: 1112 ret = kvm_s390_get_tod_low(kvm, attr); 1113 break; 1114 default: 1115 ret = -ENXIO; 1116 break; 1117 } 1118 return ret; 1119 } 1120 1121 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1122 { 1123 struct kvm_s390_vm_cpu_processor *proc; 1124 u16 lowest_ibc, unblocked_ibc; 1125 int ret = 0; 1126 1127 mutex_lock(&kvm->lock); 1128 if (kvm->created_vcpus) { 1129 ret = -EBUSY; 1130 goto out; 1131 } 1132 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 1133 if (!proc) { 1134 ret = -ENOMEM; 1135 goto out; 1136 } 1137 if (!copy_from_user(proc, (void __user *)attr->addr, 1138 sizeof(*proc))) { 1139 kvm->arch.model.cpuid = proc->cpuid; 1140 lowest_ibc = sclp.ibc >> 16 & 0xfff; 1141 unblocked_ibc = sclp.ibc & 0xfff; 1142 if (lowest_ibc && proc->ibc) { 1143 if (proc->ibc > unblocked_ibc) 1144 kvm->arch.model.ibc = unblocked_ibc; 1145 else if (proc->ibc < lowest_ibc) 1146 kvm->arch.model.ibc = lowest_ibc; 1147 else 1148 kvm->arch.model.ibc = proc->ibc; 1149 } 1150 memcpy(kvm->arch.model.fac_list, proc->fac_list, 1151 S390_ARCH_FAC_LIST_SIZE_BYTE); 1152 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1153 kvm->arch.model.ibc, 1154 kvm->arch.model.cpuid); 1155 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1156 kvm->arch.model.fac_list[0], 1157 kvm->arch.model.fac_list[1], 1158 kvm->arch.model.fac_list[2]); 1159 } else 1160 ret = -EFAULT; 1161 kfree(proc); 1162 out: 1163 mutex_unlock(&kvm->lock); 1164 return ret; 1165 } 1166 1167 static int kvm_s390_set_processor_feat(struct kvm *kvm, 1168 struct kvm_device_attr *attr) 1169 { 1170 struct kvm_s390_vm_cpu_feat data; 1171 1172 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data))) 1173 return -EFAULT; 1174 if (!bitmap_subset((unsigned long *) data.feat, 1175 kvm_s390_available_cpu_feat, 1176 KVM_S390_VM_CPU_FEAT_NR_BITS)) 1177 return -EINVAL; 1178 1179 mutex_lock(&kvm->lock); 1180 if (kvm->created_vcpus) { 1181 mutex_unlock(&kvm->lock); 1182 return -EBUSY; 1183 } 1184 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat, 1185 KVM_S390_VM_CPU_FEAT_NR_BITS); 1186 mutex_unlock(&kvm->lock); 1187 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1188 data.feat[0], 1189 data.feat[1], 1190 data.feat[2]); 1191 return 0; 1192 } 1193 1194 static int kvm_s390_set_processor_subfunc(struct kvm *kvm, 1195 struct kvm_device_attr *attr) 1196 { 1197 /* 1198 * Once supported by kernel + hw, we have to store the subfunctions 1199 * in kvm->arch and remember that user space configured them. 1200 */ 1201 return -ENXIO; 1202 } 1203 1204 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1205 { 1206 int ret = -ENXIO; 1207 1208 switch (attr->attr) { 1209 case KVM_S390_VM_CPU_PROCESSOR: 1210 ret = kvm_s390_set_processor(kvm, attr); 1211 break; 1212 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1213 ret = kvm_s390_set_processor_feat(kvm, attr); 1214 break; 1215 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1216 ret = kvm_s390_set_processor_subfunc(kvm, attr); 1217 break; 1218 } 1219 return ret; 1220 } 1221 1222 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr) 1223 { 1224 struct kvm_s390_vm_cpu_processor *proc; 1225 int ret = 0; 1226 1227 proc = kzalloc(sizeof(*proc), GFP_KERNEL); 1228 if (!proc) { 1229 ret = -ENOMEM; 1230 goto out; 1231 } 1232 proc->cpuid = kvm->arch.model.cpuid; 1233 proc->ibc = kvm->arch.model.ibc; 1234 memcpy(&proc->fac_list, kvm->arch.model.fac_list, 1235 S390_ARCH_FAC_LIST_SIZE_BYTE); 1236 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx", 1237 kvm->arch.model.ibc, 1238 kvm->arch.model.cpuid); 1239 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1240 kvm->arch.model.fac_list[0], 1241 kvm->arch.model.fac_list[1], 1242 kvm->arch.model.fac_list[2]); 1243 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc))) 1244 ret = -EFAULT; 1245 kfree(proc); 1246 out: 1247 return ret; 1248 } 1249 1250 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr) 1251 { 1252 struct kvm_s390_vm_cpu_machine *mach; 1253 int ret = 0; 1254 1255 mach = kzalloc(sizeof(*mach), GFP_KERNEL); 1256 if (!mach) { 1257 ret = -ENOMEM; 1258 goto out; 1259 } 1260 get_cpu_id((struct cpuid *) &mach->cpuid); 1261 mach->ibc = sclp.ibc; 1262 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask, 1263 S390_ARCH_FAC_LIST_SIZE_BYTE); 1264 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list, 1265 sizeof(S390_lowcore.stfle_fac_list)); 1266 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx", 1267 kvm->arch.model.ibc, 1268 kvm->arch.model.cpuid); 1269 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx", 1270 mach->fac_mask[0], 1271 mach->fac_mask[1], 1272 mach->fac_mask[2]); 1273 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx", 1274 mach->fac_list[0], 1275 mach->fac_list[1], 1276 mach->fac_list[2]); 1277 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach))) 1278 ret = -EFAULT; 1279 kfree(mach); 1280 out: 1281 return ret; 1282 } 1283 1284 static int kvm_s390_get_processor_feat(struct kvm *kvm, 1285 struct kvm_device_attr *attr) 1286 { 1287 struct kvm_s390_vm_cpu_feat data; 1288 1289 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat, 1290 KVM_S390_VM_CPU_FEAT_NR_BITS); 1291 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1292 return -EFAULT; 1293 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1294 data.feat[0], 1295 data.feat[1], 1296 data.feat[2]); 1297 return 0; 1298 } 1299 1300 static int kvm_s390_get_machine_feat(struct kvm *kvm, 1301 struct kvm_device_attr *attr) 1302 { 1303 struct kvm_s390_vm_cpu_feat data; 1304 1305 bitmap_copy((unsigned long *) data.feat, 1306 kvm_s390_available_cpu_feat, 1307 KVM_S390_VM_CPU_FEAT_NR_BITS); 1308 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data))) 1309 return -EFAULT; 1310 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx", 1311 data.feat[0], 1312 data.feat[1], 1313 data.feat[2]); 1314 return 0; 1315 } 1316 1317 static int kvm_s390_get_processor_subfunc(struct kvm *kvm, 1318 struct kvm_device_attr *attr) 1319 { 1320 /* 1321 * Once we can actually configure subfunctions (kernel + hw support), 1322 * we have to check if they were already set by user space, if so copy 1323 * them from kvm->arch. 1324 */ 1325 return -ENXIO; 1326 } 1327 1328 static int kvm_s390_get_machine_subfunc(struct kvm *kvm, 1329 struct kvm_device_attr *attr) 1330 { 1331 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc, 1332 sizeof(struct kvm_s390_vm_cpu_subfunc))) 1333 return -EFAULT; 1334 return 0; 1335 } 1336 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr) 1337 { 1338 int ret = -ENXIO; 1339 1340 switch (attr->attr) { 1341 case KVM_S390_VM_CPU_PROCESSOR: 1342 ret = kvm_s390_get_processor(kvm, attr); 1343 break; 1344 case KVM_S390_VM_CPU_MACHINE: 1345 ret = kvm_s390_get_machine(kvm, attr); 1346 break; 1347 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1348 ret = kvm_s390_get_processor_feat(kvm, attr); 1349 break; 1350 case KVM_S390_VM_CPU_MACHINE_FEAT: 1351 ret = kvm_s390_get_machine_feat(kvm, attr); 1352 break; 1353 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1354 ret = kvm_s390_get_processor_subfunc(kvm, attr); 1355 break; 1356 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1357 ret = kvm_s390_get_machine_subfunc(kvm, attr); 1358 break; 1359 } 1360 return ret; 1361 } 1362 1363 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1364 { 1365 int ret; 1366 1367 switch (attr->group) { 1368 case KVM_S390_VM_MEM_CTRL: 1369 ret = kvm_s390_set_mem_control(kvm, attr); 1370 break; 1371 case KVM_S390_VM_TOD: 1372 ret = kvm_s390_set_tod(kvm, attr); 1373 break; 1374 case KVM_S390_VM_CPU_MODEL: 1375 ret = kvm_s390_set_cpu_model(kvm, attr); 1376 break; 1377 case KVM_S390_VM_CRYPTO: 1378 ret = kvm_s390_vm_set_crypto(kvm, attr); 1379 break; 1380 case KVM_S390_VM_MIGRATION: 1381 ret = kvm_s390_vm_set_migration(kvm, attr); 1382 break; 1383 default: 1384 ret = -ENXIO; 1385 break; 1386 } 1387 1388 return ret; 1389 } 1390 1391 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1392 { 1393 int ret; 1394 1395 switch (attr->group) { 1396 case KVM_S390_VM_MEM_CTRL: 1397 ret = kvm_s390_get_mem_control(kvm, attr); 1398 break; 1399 case KVM_S390_VM_TOD: 1400 ret = kvm_s390_get_tod(kvm, attr); 1401 break; 1402 case KVM_S390_VM_CPU_MODEL: 1403 ret = kvm_s390_get_cpu_model(kvm, attr); 1404 break; 1405 case KVM_S390_VM_MIGRATION: 1406 ret = kvm_s390_vm_get_migration(kvm, attr); 1407 break; 1408 default: 1409 ret = -ENXIO; 1410 break; 1411 } 1412 1413 return ret; 1414 } 1415 1416 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr) 1417 { 1418 int ret; 1419 1420 switch (attr->group) { 1421 case KVM_S390_VM_MEM_CTRL: 1422 switch (attr->attr) { 1423 case KVM_S390_VM_MEM_ENABLE_CMMA: 1424 case KVM_S390_VM_MEM_CLR_CMMA: 1425 ret = sclp.has_cmma ? 0 : -ENXIO; 1426 break; 1427 case KVM_S390_VM_MEM_LIMIT_SIZE: 1428 ret = 0; 1429 break; 1430 default: 1431 ret = -ENXIO; 1432 break; 1433 } 1434 break; 1435 case KVM_S390_VM_TOD: 1436 switch (attr->attr) { 1437 case KVM_S390_VM_TOD_LOW: 1438 case KVM_S390_VM_TOD_HIGH: 1439 ret = 0; 1440 break; 1441 default: 1442 ret = -ENXIO; 1443 break; 1444 } 1445 break; 1446 case KVM_S390_VM_CPU_MODEL: 1447 switch (attr->attr) { 1448 case KVM_S390_VM_CPU_PROCESSOR: 1449 case KVM_S390_VM_CPU_MACHINE: 1450 case KVM_S390_VM_CPU_PROCESSOR_FEAT: 1451 case KVM_S390_VM_CPU_MACHINE_FEAT: 1452 case KVM_S390_VM_CPU_MACHINE_SUBFUNC: 1453 ret = 0; 1454 break; 1455 /* configuring subfunctions is not supported yet */ 1456 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC: 1457 default: 1458 ret = -ENXIO; 1459 break; 1460 } 1461 break; 1462 case KVM_S390_VM_CRYPTO: 1463 switch (attr->attr) { 1464 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW: 1465 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW: 1466 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW: 1467 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW: 1468 ret = 0; 1469 break; 1470 default: 1471 ret = -ENXIO; 1472 break; 1473 } 1474 break; 1475 case KVM_S390_VM_MIGRATION: 1476 ret = 0; 1477 break; 1478 default: 1479 ret = -ENXIO; 1480 break; 1481 } 1482 1483 return ret; 1484 } 1485 1486 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1487 { 1488 uint8_t *keys; 1489 uint64_t hva; 1490 int srcu_idx, i, r = 0; 1491 1492 if (args->flags != 0) 1493 return -EINVAL; 1494 1495 /* Is this guest using storage keys? */ 1496 if (!mm_use_skey(current->mm)) 1497 return KVM_S390_GET_SKEYS_NONE; 1498 1499 /* Enforce sane limit on memory allocation */ 1500 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1501 return -EINVAL; 1502 1503 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1504 if (!keys) 1505 return -ENOMEM; 1506 1507 down_read(¤t->mm->mmap_sem); 1508 srcu_idx = srcu_read_lock(&kvm->srcu); 1509 for (i = 0; i < args->count; i++) { 1510 hva = gfn_to_hva(kvm, args->start_gfn + i); 1511 if (kvm_is_error_hva(hva)) { 1512 r = -EFAULT; 1513 break; 1514 } 1515 1516 r = get_guest_storage_key(current->mm, hva, &keys[i]); 1517 if (r) 1518 break; 1519 } 1520 srcu_read_unlock(&kvm->srcu, srcu_idx); 1521 up_read(¤t->mm->mmap_sem); 1522 1523 if (!r) { 1524 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys, 1525 sizeof(uint8_t) * args->count); 1526 if (r) 1527 r = -EFAULT; 1528 } 1529 1530 kvfree(keys); 1531 return r; 1532 } 1533 1534 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args) 1535 { 1536 uint8_t *keys; 1537 uint64_t hva; 1538 int srcu_idx, i, r = 0; 1539 1540 if (args->flags != 0) 1541 return -EINVAL; 1542 1543 /* Enforce sane limit on memory allocation */ 1544 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX) 1545 return -EINVAL; 1546 1547 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL); 1548 if (!keys) 1549 return -ENOMEM; 1550 1551 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr, 1552 sizeof(uint8_t) * args->count); 1553 if (r) { 1554 r = -EFAULT; 1555 goto out; 1556 } 1557 1558 /* Enable storage key handling for the guest */ 1559 r = s390_enable_skey(); 1560 if (r) 1561 goto out; 1562 1563 down_read(¤t->mm->mmap_sem); 1564 srcu_idx = srcu_read_lock(&kvm->srcu); 1565 for (i = 0; i < args->count; i++) { 1566 hva = gfn_to_hva(kvm, args->start_gfn + i); 1567 if (kvm_is_error_hva(hva)) { 1568 r = -EFAULT; 1569 break; 1570 } 1571 1572 /* Lowest order bit is reserved */ 1573 if (keys[i] & 0x01) { 1574 r = -EINVAL; 1575 break; 1576 } 1577 1578 r = set_guest_storage_key(current->mm, hva, keys[i], 0); 1579 if (r) 1580 break; 1581 } 1582 srcu_read_unlock(&kvm->srcu, srcu_idx); 1583 up_read(¤t->mm->mmap_sem); 1584 out: 1585 kvfree(keys); 1586 return r; 1587 } 1588 1589 /* 1590 * Base address and length must be sent at the start of each block, therefore 1591 * it's cheaper to send some clean data, as long as it's less than the size of 1592 * two longs. 1593 */ 1594 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *)) 1595 /* for consistency */ 1596 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX) 1597 1598 /* 1599 * This function searches for the next page with dirty CMMA attributes, and 1600 * saves the attributes in the buffer up to either the end of the buffer or 1601 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found; 1602 * no trailing clean bytes are saved. 1603 * In case no dirty bits were found, or if CMMA was not enabled or used, the 1604 * output buffer will indicate 0 as length. 1605 */ 1606 static int kvm_s390_get_cmma_bits(struct kvm *kvm, 1607 struct kvm_s390_cmma_log *args) 1608 { 1609 struct kvm_s390_migration_state *s = kvm->arch.migration_state; 1610 unsigned long bufsize, hva, pgstev, i, next, cur; 1611 int srcu_idx, peek, r = 0, rr; 1612 u8 *res; 1613 1614 cur = args->start_gfn; 1615 i = next = pgstev = 0; 1616 1617 if (unlikely(!kvm->arch.use_cmma)) 1618 return -ENXIO; 1619 /* Invalid/unsupported flags were specified */ 1620 if (args->flags & ~KVM_S390_CMMA_PEEK) 1621 return -EINVAL; 1622 /* Migration mode query, and we are not doing a migration */ 1623 peek = !!(args->flags & KVM_S390_CMMA_PEEK); 1624 if (!peek && !s) 1625 return -EINVAL; 1626 /* CMMA is disabled or was not used, or the buffer has length zero */ 1627 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX); 1628 if (!bufsize || !kvm->mm->context.uses_cmm) { 1629 memset(args, 0, sizeof(*args)); 1630 return 0; 1631 } 1632 1633 if (!peek) { 1634 /* We are not peeking, and there are no dirty pages */ 1635 if (!atomic64_read(&s->dirty_pages)) { 1636 memset(args, 0, sizeof(*args)); 1637 return 0; 1638 } 1639 cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 1640 args->start_gfn); 1641 if (cur >= s->bitmap_size) /* nothing found, loop back */ 1642 cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 0); 1643 if (cur >= s->bitmap_size) { /* again! (very unlikely) */ 1644 memset(args, 0, sizeof(*args)); 1645 return 0; 1646 } 1647 next = find_next_bit(s->pgste_bitmap, s->bitmap_size, cur + 1); 1648 } 1649 1650 res = vmalloc(bufsize); 1651 if (!res) 1652 return -ENOMEM; 1653 1654 args->start_gfn = cur; 1655 1656 down_read(&kvm->mm->mmap_sem); 1657 srcu_idx = srcu_read_lock(&kvm->srcu); 1658 while (i < bufsize) { 1659 hva = gfn_to_hva(kvm, cur); 1660 if (kvm_is_error_hva(hva)) { 1661 r = -EFAULT; 1662 break; 1663 } 1664 /* decrement only if we actually flipped the bit to 0 */ 1665 if (!peek && test_and_clear_bit(cur, s->pgste_bitmap)) 1666 atomic64_dec(&s->dirty_pages); 1667 r = get_pgste(kvm->mm, hva, &pgstev); 1668 if (r < 0) 1669 pgstev = 0; 1670 /* save the value */ 1671 res[i++] = (pgstev >> 24) & 0x43; 1672 /* 1673 * if the next bit is too far away, stop. 1674 * if we reached the previous "next", find the next one 1675 */ 1676 if (!peek) { 1677 if (next > cur + KVM_S390_MAX_BIT_DISTANCE) 1678 break; 1679 if (cur == next) 1680 next = find_next_bit(s->pgste_bitmap, 1681 s->bitmap_size, cur + 1); 1682 /* reached the end of the bitmap or of the buffer, stop */ 1683 if ((next >= s->bitmap_size) || 1684 (next >= args->start_gfn + bufsize)) 1685 break; 1686 } 1687 cur++; 1688 } 1689 srcu_read_unlock(&kvm->srcu, srcu_idx); 1690 up_read(&kvm->mm->mmap_sem); 1691 args->count = i; 1692 args->remaining = s ? atomic64_read(&s->dirty_pages) : 0; 1693 1694 rr = copy_to_user((void __user *)args->values, res, args->count); 1695 if (rr) 1696 r = -EFAULT; 1697 1698 vfree(res); 1699 return r; 1700 } 1701 1702 /* 1703 * This function sets the CMMA attributes for the given pages. If the input 1704 * buffer has zero length, no action is taken, otherwise the attributes are 1705 * set and the mm->context.uses_cmm flag is set. 1706 */ 1707 static int kvm_s390_set_cmma_bits(struct kvm *kvm, 1708 const struct kvm_s390_cmma_log *args) 1709 { 1710 unsigned long hva, mask, pgstev, i; 1711 uint8_t *bits; 1712 int srcu_idx, r = 0; 1713 1714 mask = args->mask; 1715 1716 if (!kvm->arch.use_cmma) 1717 return -ENXIO; 1718 /* invalid/unsupported flags */ 1719 if (args->flags != 0) 1720 return -EINVAL; 1721 /* Enforce sane limit on memory allocation */ 1722 if (args->count > KVM_S390_CMMA_SIZE_MAX) 1723 return -EINVAL; 1724 /* Nothing to do */ 1725 if (args->count == 0) 1726 return 0; 1727 1728 bits = vmalloc(sizeof(*bits) * args->count); 1729 if (!bits) 1730 return -ENOMEM; 1731 1732 r = copy_from_user(bits, (void __user *)args->values, args->count); 1733 if (r) { 1734 r = -EFAULT; 1735 goto out; 1736 } 1737 1738 down_read(&kvm->mm->mmap_sem); 1739 srcu_idx = srcu_read_lock(&kvm->srcu); 1740 for (i = 0; i < args->count; i++) { 1741 hva = gfn_to_hva(kvm, args->start_gfn + i); 1742 if (kvm_is_error_hva(hva)) { 1743 r = -EFAULT; 1744 break; 1745 } 1746 1747 pgstev = bits[i]; 1748 pgstev = pgstev << 24; 1749 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT; 1750 set_pgste_bits(kvm->mm, hva, mask, pgstev); 1751 } 1752 srcu_read_unlock(&kvm->srcu, srcu_idx); 1753 up_read(&kvm->mm->mmap_sem); 1754 1755 if (!kvm->mm->context.uses_cmm) { 1756 down_write(&kvm->mm->mmap_sem); 1757 kvm->mm->context.uses_cmm = 1; 1758 up_write(&kvm->mm->mmap_sem); 1759 } 1760 out: 1761 vfree(bits); 1762 return r; 1763 } 1764 1765 long kvm_arch_vm_ioctl(struct file *filp, 1766 unsigned int ioctl, unsigned long arg) 1767 { 1768 struct kvm *kvm = filp->private_data; 1769 void __user *argp = (void __user *)arg; 1770 struct kvm_device_attr attr; 1771 int r; 1772 1773 switch (ioctl) { 1774 case KVM_S390_INTERRUPT: { 1775 struct kvm_s390_interrupt s390int; 1776 1777 r = -EFAULT; 1778 if (copy_from_user(&s390int, argp, sizeof(s390int))) 1779 break; 1780 r = kvm_s390_inject_vm(kvm, &s390int); 1781 break; 1782 } 1783 case KVM_ENABLE_CAP: { 1784 struct kvm_enable_cap cap; 1785 r = -EFAULT; 1786 if (copy_from_user(&cap, argp, sizeof(cap))) 1787 break; 1788 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 1789 break; 1790 } 1791 case KVM_CREATE_IRQCHIP: { 1792 struct kvm_irq_routing_entry routing; 1793 1794 r = -EINVAL; 1795 if (kvm->arch.use_irqchip) { 1796 /* Set up dummy routing. */ 1797 memset(&routing, 0, sizeof(routing)); 1798 r = kvm_set_irq_routing(kvm, &routing, 0, 0); 1799 } 1800 break; 1801 } 1802 case KVM_SET_DEVICE_ATTR: { 1803 r = -EFAULT; 1804 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1805 break; 1806 r = kvm_s390_vm_set_attr(kvm, &attr); 1807 break; 1808 } 1809 case KVM_GET_DEVICE_ATTR: { 1810 r = -EFAULT; 1811 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1812 break; 1813 r = kvm_s390_vm_get_attr(kvm, &attr); 1814 break; 1815 } 1816 case KVM_HAS_DEVICE_ATTR: { 1817 r = -EFAULT; 1818 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 1819 break; 1820 r = kvm_s390_vm_has_attr(kvm, &attr); 1821 break; 1822 } 1823 case KVM_S390_GET_SKEYS: { 1824 struct kvm_s390_skeys args; 1825 1826 r = -EFAULT; 1827 if (copy_from_user(&args, argp, 1828 sizeof(struct kvm_s390_skeys))) 1829 break; 1830 r = kvm_s390_get_skeys(kvm, &args); 1831 break; 1832 } 1833 case KVM_S390_SET_SKEYS: { 1834 struct kvm_s390_skeys args; 1835 1836 r = -EFAULT; 1837 if (copy_from_user(&args, argp, 1838 sizeof(struct kvm_s390_skeys))) 1839 break; 1840 r = kvm_s390_set_skeys(kvm, &args); 1841 break; 1842 } 1843 case KVM_S390_GET_CMMA_BITS: { 1844 struct kvm_s390_cmma_log args; 1845 1846 r = -EFAULT; 1847 if (copy_from_user(&args, argp, sizeof(args))) 1848 break; 1849 mutex_lock(&kvm->slots_lock); 1850 r = kvm_s390_get_cmma_bits(kvm, &args); 1851 mutex_unlock(&kvm->slots_lock); 1852 if (!r) { 1853 r = copy_to_user(argp, &args, sizeof(args)); 1854 if (r) 1855 r = -EFAULT; 1856 } 1857 break; 1858 } 1859 case KVM_S390_SET_CMMA_BITS: { 1860 struct kvm_s390_cmma_log args; 1861 1862 r = -EFAULT; 1863 if (copy_from_user(&args, argp, sizeof(args))) 1864 break; 1865 mutex_lock(&kvm->slots_lock); 1866 r = kvm_s390_set_cmma_bits(kvm, &args); 1867 mutex_unlock(&kvm->slots_lock); 1868 break; 1869 } 1870 default: 1871 r = -ENOTTY; 1872 } 1873 1874 return r; 1875 } 1876 1877 static int kvm_s390_query_ap_config(u8 *config) 1878 { 1879 u32 fcn_code = 0x04000000UL; 1880 u32 cc = 0; 1881 1882 memset(config, 0, 128); 1883 asm volatile( 1884 "lgr 0,%1\n" 1885 "lgr 2,%2\n" 1886 ".long 0xb2af0000\n" /* PQAP(QCI) */ 1887 "0: ipm %0\n" 1888 "srl %0,28\n" 1889 "1:\n" 1890 EX_TABLE(0b, 1b) 1891 : "+r" (cc) 1892 : "r" (fcn_code), "r" (config) 1893 : "cc", "0", "2", "memory" 1894 ); 1895 1896 return cc; 1897 } 1898 1899 static int kvm_s390_apxa_installed(void) 1900 { 1901 u8 config[128]; 1902 int cc; 1903 1904 if (test_facility(12)) { 1905 cc = kvm_s390_query_ap_config(config); 1906 1907 if (cc) 1908 pr_err("PQAP(QCI) failed with cc=%d", cc); 1909 else 1910 return config[0] & 0x40; 1911 } 1912 1913 return 0; 1914 } 1915 1916 static void kvm_s390_set_crycb_format(struct kvm *kvm) 1917 { 1918 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb; 1919 1920 if (kvm_s390_apxa_installed()) 1921 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2; 1922 else 1923 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1; 1924 } 1925 1926 static u64 kvm_s390_get_initial_cpuid(void) 1927 { 1928 struct cpuid cpuid; 1929 1930 get_cpu_id(&cpuid); 1931 cpuid.version = 0xff; 1932 return *((u64 *) &cpuid); 1933 } 1934 1935 static void kvm_s390_crypto_init(struct kvm *kvm) 1936 { 1937 if (!test_kvm_facility(kvm, 76)) 1938 return; 1939 1940 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb; 1941 kvm_s390_set_crycb_format(kvm); 1942 1943 /* Enable AES/DEA protected key functions by default */ 1944 kvm->arch.crypto.aes_kw = 1; 1945 kvm->arch.crypto.dea_kw = 1; 1946 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 1947 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask)); 1948 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 1949 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask)); 1950 } 1951 1952 static void sca_dispose(struct kvm *kvm) 1953 { 1954 if (kvm->arch.use_esca) 1955 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block)); 1956 else 1957 free_page((unsigned long)(kvm->arch.sca)); 1958 kvm->arch.sca = NULL; 1959 } 1960 1961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 1962 { 1963 gfp_t alloc_flags = GFP_KERNEL; 1964 int i, rc; 1965 char debug_name[16]; 1966 static unsigned long sca_offset; 1967 1968 rc = -EINVAL; 1969 #ifdef CONFIG_KVM_S390_UCONTROL 1970 if (type & ~KVM_VM_S390_UCONTROL) 1971 goto out_err; 1972 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN))) 1973 goto out_err; 1974 #else 1975 if (type) 1976 goto out_err; 1977 #endif 1978 1979 rc = s390_enable_sie(); 1980 if (rc) 1981 goto out_err; 1982 1983 rc = -ENOMEM; 1984 1985 kvm->arch.use_esca = 0; /* start with basic SCA */ 1986 if (!sclp.has_64bscao) 1987 alloc_flags |= GFP_DMA; 1988 rwlock_init(&kvm->arch.sca_lock); 1989 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags); 1990 if (!kvm->arch.sca) 1991 goto out_err; 1992 spin_lock(&kvm_lock); 1993 sca_offset += 16; 1994 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE) 1995 sca_offset = 0; 1996 kvm->arch.sca = (struct bsca_block *) 1997 ((char *) kvm->arch.sca + sca_offset); 1998 spin_unlock(&kvm_lock); 1999 2000 sprintf(debug_name, "kvm-%u", current->pid); 2001 2002 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long)); 2003 if (!kvm->arch.dbf) 2004 goto out_err; 2005 2006 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096); 2007 kvm->arch.sie_page2 = 2008 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA); 2009 if (!kvm->arch.sie_page2) 2010 goto out_err; 2011 2012 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list; 2013 2014 for (i = 0; i < kvm_s390_fac_size(); i++) { 2015 kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] & 2016 (kvm_s390_fac_base[i] | 2017 kvm_s390_fac_ext[i]); 2018 kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] & 2019 kvm_s390_fac_base[i]; 2020 } 2021 2022 /* we are always in czam mode - even on pre z14 machines */ 2023 set_kvm_facility(kvm->arch.model.fac_mask, 138); 2024 set_kvm_facility(kvm->arch.model.fac_list, 138); 2025 /* we emulate STHYI in kvm */ 2026 set_kvm_facility(kvm->arch.model.fac_mask, 74); 2027 set_kvm_facility(kvm->arch.model.fac_list, 74); 2028 if (MACHINE_HAS_TLB_GUEST) { 2029 set_kvm_facility(kvm->arch.model.fac_mask, 147); 2030 set_kvm_facility(kvm->arch.model.fac_list, 147); 2031 } 2032 2033 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid(); 2034 kvm->arch.model.ibc = sclp.ibc & 0x0fff; 2035 2036 kvm_s390_crypto_init(kvm); 2037 2038 mutex_init(&kvm->arch.float_int.ais_lock); 2039 kvm->arch.float_int.simm = 0; 2040 kvm->arch.float_int.nimm = 0; 2041 spin_lock_init(&kvm->arch.float_int.lock); 2042 for (i = 0; i < FIRQ_LIST_COUNT; i++) 2043 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]); 2044 init_waitqueue_head(&kvm->arch.ipte_wq); 2045 mutex_init(&kvm->arch.ipte_mutex); 2046 2047 debug_register_view(kvm->arch.dbf, &debug_sprintf_view); 2048 VM_EVENT(kvm, 3, "vm created with type %lu", type); 2049 2050 if (type & KVM_VM_S390_UCONTROL) { 2051 kvm->arch.gmap = NULL; 2052 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT; 2053 } else { 2054 if (sclp.hamax == U64_MAX) 2055 kvm->arch.mem_limit = TASK_SIZE_MAX; 2056 else 2057 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX, 2058 sclp.hamax + 1); 2059 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1); 2060 if (!kvm->arch.gmap) 2061 goto out_err; 2062 kvm->arch.gmap->private = kvm; 2063 kvm->arch.gmap->pfault_enabled = 0; 2064 } 2065 2066 kvm->arch.css_support = 0; 2067 kvm->arch.use_irqchip = 0; 2068 kvm->arch.use_pfmfi = sclp.has_pfmfi; 2069 kvm->arch.epoch = 0; 2070 2071 spin_lock_init(&kvm->arch.start_stop_lock); 2072 kvm_s390_vsie_init(kvm); 2073 kvm_s390_gisa_init(kvm); 2074 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); 2075 2076 return 0; 2077 out_err: 2078 free_page((unsigned long)kvm->arch.sie_page2); 2079 debug_unregister(kvm->arch.dbf); 2080 sca_dispose(kvm); 2081 KVM_EVENT(3, "creation of vm failed: %d", rc); 2082 return rc; 2083 } 2084 2085 bool kvm_arch_has_vcpu_debugfs(void) 2086 { 2087 return false; 2088 } 2089 2090 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) 2091 { 2092 return 0; 2093 } 2094 2095 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 2096 { 2097 VCPU_EVENT(vcpu, 3, "%s", "free cpu"); 2098 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id); 2099 kvm_s390_clear_local_irqs(vcpu); 2100 kvm_clear_async_pf_completion_queue(vcpu); 2101 if (!kvm_is_ucontrol(vcpu->kvm)) 2102 sca_del_vcpu(vcpu); 2103 2104 if (kvm_is_ucontrol(vcpu->kvm)) 2105 gmap_remove(vcpu->arch.gmap); 2106 2107 if (vcpu->kvm->arch.use_cmma) 2108 kvm_s390_vcpu_unsetup_cmma(vcpu); 2109 free_page((unsigned long)(vcpu->arch.sie_block)); 2110 2111 kvm_vcpu_uninit(vcpu); 2112 kmem_cache_free(kvm_vcpu_cache, vcpu); 2113 } 2114 2115 static void kvm_free_vcpus(struct kvm *kvm) 2116 { 2117 unsigned int i; 2118 struct kvm_vcpu *vcpu; 2119 2120 kvm_for_each_vcpu(i, vcpu, kvm) 2121 kvm_arch_vcpu_destroy(vcpu); 2122 2123 mutex_lock(&kvm->lock); 2124 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) 2125 kvm->vcpus[i] = NULL; 2126 2127 atomic_set(&kvm->online_vcpus, 0); 2128 mutex_unlock(&kvm->lock); 2129 } 2130 2131 void kvm_arch_destroy_vm(struct kvm *kvm) 2132 { 2133 kvm_free_vcpus(kvm); 2134 sca_dispose(kvm); 2135 debug_unregister(kvm->arch.dbf); 2136 kvm_s390_gisa_destroy(kvm); 2137 free_page((unsigned long)kvm->arch.sie_page2); 2138 if (!kvm_is_ucontrol(kvm)) 2139 gmap_remove(kvm->arch.gmap); 2140 kvm_s390_destroy_adapters(kvm); 2141 kvm_s390_clear_float_irqs(kvm); 2142 kvm_s390_vsie_destroy(kvm); 2143 if (kvm->arch.migration_state) { 2144 vfree(kvm->arch.migration_state->pgste_bitmap); 2145 kfree(kvm->arch.migration_state); 2146 } 2147 KVM_EVENT(3, "vm 0x%pK destroyed", kvm); 2148 } 2149 2150 /* Section: vcpu related */ 2151 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) 2152 { 2153 vcpu->arch.gmap = gmap_create(current->mm, -1UL); 2154 if (!vcpu->arch.gmap) 2155 return -ENOMEM; 2156 vcpu->arch.gmap->private = vcpu->kvm; 2157 2158 return 0; 2159 } 2160 2161 static void sca_del_vcpu(struct kvm_vcpu *vcpu) 2162 { 2163 if (!kvm_s390_use_sca_entries()) 2164 return; 2165 read_lock(&vcpu->kvm->arch.sca_lock); 2166 if (vcpu->kvm->arch.use_esca) { 2167 struct esca_block *sca = vcpu->kvm->arch.sca; 2168 2169 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2170 sca->cpu[vcpu->vcpu_id].sda = 0; 2171 } else { 2172 struct bsca_block *sca = vcpu->kvm->arch.sca; 2173 2174 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2175 sca->cpu[vcpu->vcpu_id].sda = 0; 2176 } 2177 read_unlock(&vcpu->kvm->arch.sca_lock); 2178 } 2179 2180 static void sca_add_vcpu(struct kvm_vcpu *vcpu) 2181 { 2182 if (!kvm_s390_use_sca_entries()) { 2183 struct bsca_block *sca = vcpu->kvm->arch.sca; 2184 2185 /* we still need the basic sca for the ipte control */ 2186 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2187 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2188 return; 2189 } 2190 read_lock(&vcpu->kvm->arch.sca_lock); 2191 if (vcpu->kvm->arch.use_esca) { 2192 struct esca_block *sca = vcpu->kvm->arch.sca; 2193 2194 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2195 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2196 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU; 2197 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2198 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn); 2199 } else { 2200 struct bsca_block *sca = vcpu->kvm->arch.sca; 2201 2202 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block; 2203 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32); 2204 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca; 2205 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn); 2206 } 2207 read_unlock(&vcpu->kvm->arch.sca_lock); 2208 } 2209 2210 /* Basic SCA to Extended SCA data copy routines */ 2211 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s) 2212 { 2213 d->sda = s->sda; 2214 d->sigp_ctrl.c = s->sigp_ctrl.c; 2215 d->sigp_ctrl.scn = s->sigp_ctrl.scn; 2216 } 2217 2218 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s) 2219 { 2220 int i; 2221 2222 d->ipte_control = s->ipte_control; 2223 d->mcn[0] = s->mcn; 2224 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++) 2225 sca_copy_entry(&d->cpu[i], &s->cpu[i]); 2226 } 2227 2228 static int sca_switch_to_extended(struct kvm *kvm) 2229 { 2230 struct bsca_block *old_sca = kvm->arch.sca; 2231 struct esca_block *new_sca; 2232 struct kvm_vcpu *vcpu; 2233 unsigned int vcpu_idx; 2234 u32 scaol, scaoh; 2235 2236 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO); 2237 if (!new_sca) 2238 return -ENOMEM; 2239 2240 scaoh = (u32)((u64)(new_sca) >> 32); 2241 scaol = (u32)(u64)(new_sca) & ~0x3fU; 2242 2243 kvm_s390_vcpu_block_all(kvm); 2244 write_lock(&kvm->arch.sca_lock); 2245 2246 sca_copy_b_to_e(new_sca, old_sca); 2247 2248 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) { 2249 vcpu->arch.sie_block->scaoh = scaoh; 2250 vcpu->arch.sie_block->scaol = scaol; 2251 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA; 2252 } 2253 kvm->arch.sca = new_sca; 2254 kvm->arch.use_esca = 1; 2255 2256 write_unlock(&kvm->arch.sca_lock); 2257 kvm_s390_vcpu_unblock_all(kvm); 2258 2259 free_page((unsigned long)old_sca); 2260 2261 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)", 2262 old_sca, kvm->arch.sca); 2263 return 0; 2264 } 2265 2266 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id) 2267 { 2268 int rc; 2269 2270 if (!kvm_s390_use_sca_entries()) { 2271 if (id < KVM_MAX_VCPUS) 2272 return true; 2273 return false; 2274 } 2275 if (id < KVM_S390_BSCA_CPU_SLOTS) 2276 return true; 2277 if (!sclp.has_esca || !sclp.has_64bscao) 2278 return false; 2279 2280 mutex_lock(&kvm->lock); 2281 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm); 2282 mutex_unlock(&kvm->lock); 2283 2284 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS; 2285 } 2286 2287 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) 2288 { 2289 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 2290 kvm_clear_async_pf_completion_queue(vcpu); 2291 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX | 2292 KVM_SYNC_GPRS | 2293 KVM_SYNC_ACRS | 2294 KVM_SYNC_CRS | 2295 KVM_SYNC_ARCH0 | 2296 KVM_SYNC_PFAULT; 2297 kvm_s390_set_prefix(vcpu, 0); 2298 if (test_kvm_facility(vcpu->kvm, 64)) 2299 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB; 2300 if (test_kvm_facility(vcpu->kvm, 82)) 2301 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC; 2302 if (test_kvm_facility(vcpu->kvm, 133)) 2303 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB; 2304 /* fprs can be synchronized via vrs, even if the guest has no vx. With 2305 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format. 2306 */ 2307 if (MACHINE_HAS_VX) 2308 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS; 2309 else 2310 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS; 2311 2312 if (kvm_is_ucontrol(vcpu->kvm)) 2313 return __kvm_ucontrol_vcpu_init(vcpu); 2314 2315 return 0; 2316 } 2317 2318 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2319 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2320 { 2321 WARN_ON_ONCE(vcpu->arch.cputm_start != 0); 2322 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2323 vcpu->arch.cputm_start = get_tod_clock_fast(); 2324 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2325 } 2326 2327 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2328 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2329 { 2330 WARN_ON_ONCE(vcpu->arch.cputm_start == 0); 2331 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2332 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start; 2333 vcpu->arch.cputm_start = 0; 2334 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2335 } 2336 2337 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2338 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2339 { 2340 WARN_ON_ONCE(vcpu->arch.cputm_enabled); 2341 vcpu->arch.cputm_enabled = true; 2342 __start_cpu_timer_accounting(vcpu); 2343 } 2344 2345 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */ 2346 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2347 { 2348 WARN_ON_ONCE(!vcpu->arch.cputm_enabled); 2349 __stop_cpu_timer_accounting(vcpu); 2350 vcpu->arch.cputm_enabled = false; 2351 } 2352 2353 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2354 { 2355 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2356 __enable_cpu_timer_accounting(vcpu); 2357 preempt_enable(); 2358 } 2359 2360 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu) 2361 { 2362 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2363 __disable_cpu_timer_accounting(vcpu); 2364 preempt_enable(); 2365 } 2366 2367 /* set the cpu timer - may only be called from the VCPU thread itself */ 2368 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm) 2369 { 2370 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2371 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount); 2372 if (vcpu->arch.cputm_enabled) 2373 vcpu->arch.cputm_start = get_tod_clock_fast(); 2374 vcpu->arch.sie_block->cputm = cputm; 2375 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount); 2376 preempt_enable(); 2377 } 2378 2379 /* update and get the cpu timer - can also be called from other VCPU threads */ 2380 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu) 2381 { 2382 unsigned int seq; 2383 __u64 value; 2384 2385 if (unlikely(!vcpu->arch.cputm_enabled)) 2386 return vcpu->arch.sie_block->cputm; 2387 2388 preempt_disable(); /* protect from TOD sync and vcpu_load/put */ 2389 do { 2390 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount); 2391 /* 2392 * If the writer would ever execute a read in the critical 2393 * section, e.g. in irq context, we have a deadlock. 2394 */ 2395 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu); 2396 value = vcpu->arch.sie_block->cputm; 2397 /* if cputm_start is 0, accounting is being started/stopped */ 2398 if (likely(vcpu->arch.cputm_start)) 2399 value -= get_tod_clock_fast() - vcpu->arch.cputm_start; 2400 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1)); 2401 preempt_enable(); 2402 return value; 2403 } 2404 2405 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2406 { 2407 2408 gmap_enable(vcpu->arch.enabled_gmap); 2409 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING); 2410 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 2411 __start_cpu_timer_accounting(vcpu); 2412 vcpu->cpu = cpu; 2413 } 2414 2415 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2416 { 2417 vcpu->cpu = -1; 2418 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) 2419 __stop_cpu_timer_accounting(vcpu); 2420 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING); 2421 vcpu->arch.enabled_gmap = gmap_get_enabled(); 2422 gmap_disable(vcpu->arch.enabled_gmap); 2423 2424 } 2425 2426 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu) 2427 { 2428 /* this equals initial cpu reset in pop, but we don't switch to ESA */ 2429 vcpu->arch.sie_block->gpsw.mask = 0UL; 2430 vcpu->arch.sie_block->gpsw.addr = 0UL; 2431 kvm_s390_set_prefix(vcpu, 0); 2432 kvm_s390_set_cpu_timer(vcpu, 0); 2433 vcpu->arch.sie_block->ckc = 0UL; 2434 vcpu->arch.sie_block->todpr = 0; 2435 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64)); 2436 vcpu->arch.sie_block->gcr[0] = 0xE0UL; 2437 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL; 2438 /* make sure the new fpc will be lazily loaded */ 2439 save_fpu_regs(); 2440 current->thread.fpu.fpc = 0; 2441 vcpu->arch.sie_block->gbea = 1; 2442 vcpu->arch.sie_block->pp = 0; 2443 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 2444 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID; 2445 kvm_clear_async_pf_completion_queue(vcpu); 2446 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) 2447 kvm_s390_vcpu_stop(vcpu); 2448 kvm_s390_clear_local_irqs(vcpu); 2449 } 2450 2451 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 2452 { 2453 mutex_lock(&vcpu->kvm->lock); 2454 preempt_disable(); 2455 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch; 2456 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx; 2457 preempt_enable(); 2458 mutex_unlock(&vcpu->kvm->lock); 2459 if (!kvm_is_ucontrol(vcpu->kvm)) { 2460 vcpu->arch.gmap = vcpu->kvm->arch.gmap; 2461 sca_add_vcpu(vcpu); 2462 } 2463 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0) 2464 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 2465 /* make vcpu_load load the right gmap on the first trigger */ 2466 vcpu->arch.enabled_gmap = vcpu->arch.gmap; 2467 } 2468 2469 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) 2470 { 2471 if (!test_kvm_facility(vcpu->kvm, 76)) 2472 return; 2473 2474 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA); 2475 2476 if (vcpu->kvm->arch.crypto.aes_kw) 2477 vcpu->arch.sie_block->ecb3 |= ECB3_AES; 2478 if (vcpu->kvm->arch.crypto.dea_kw) 2479 vcpu->arch.sie_block->ecb3 |= ECB3_DEA; 2480 2481 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd; 2482 } 2483 2484 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu) 2485 { 2486 free_page(vcpu->arch.sie_block->cbrlo); 2487 vcpu->arch.sie_block->cbrlo = 0; 2488 } 2489 2490 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu) 2491 { 2492 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL); 2493 if (!vcpu->arch.sie_block->cbrlo) 2494 return -ENOMEM; 2495 return 0; 2496 } 2497 2498 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu) 2499 { 2500 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model; 2501 2502 vcpu->arch.sie_block->ibc = model->ibc; 2503 if (test_kvm_facility(vcpu->kvm, 7)) 2504 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list; 2505 } 2506 2507 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) 2508 { 2509 int rc = 0; 2510 2511 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH | 2512 CPUSTAT_SM | 2513 CPUSTAT_STOPPED); 2514 2515 if (test_kvm_facility(vcpu->kvm, 78)) 2516 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2); 2517 else if (test_kvm_facility(vcpu->kvm, 8)) 2518 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED); 2519 2520 kvm_s390_vcpu_setup_model(vcpu); 2521 2522 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */ 2523 if (MACHINE_HAS_ESOP) 2524 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT; 2525 if (test_kvm_facility(vcpu->kvm, 9)) 2526 vcpu->arch.sie_block->ecb |= ECB_SRSI; 2527 if (test_kvm_facility(vcpu->kvm, 73)) 2528 vcpu->arch.sie_block->ecb |= ECB_TE; 2529 2530 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi) 2531 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI; 2532 if (test_kvm_facility(vcpu->kvm, 130)) 2533 vcpu->arch.sie_block->ecb2 |= ECB2_IEP; 2534 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI; 2535 if (sclp.has_cei) 2536 vcpu->arch.sie_block->eca |= ECA_CEI; 2537 if (sclp.has_ib) 2538 vcpu->arch.sie_block->eca |= ECA_IB; 2539 if (sclp.has_siif) 2540 vcpu->arch.sie_block->eca |= ECA_SII; 2541 if (sclp.has_sigpif) 2542 vcpu->arch.sie_block->eca |= ECA_SIGPI; 2543 if (test_kvm_facility(vcpu->kvm, 129)) { 2544 vcpu->arch.sie_block->eca |= ECA_VX; 2545 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 2546 } 2547 if (test_kvm_facility(vcpu->kvm, 139)) 2548 vcpu->arch.sie_block->ecd |= ECD_MEF; 2549 2550 if (vcpu->arch.sie_block->gd) { 2551 vcpu->arch.sie_block->eca |= ECA_AIV; 2552 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u", 2553 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id); 2554 } 2555 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx) 2556 | SDNXC; 2557 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb; 2558 2559 if (sclp.has_kss) 2560 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS); 2561 else 2562 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE; 2563 2564 if (vcpu->kvm->arch.use_cmma) { 2565 rc = kvm_s390_vcpu_setup_cmma(vcpu); 2566 if (rc) 2567 return rc; 2568 } 2569 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2570 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup; 2571 2572 kvm_s390_vcpu_crypto_setup(vcpu); 2573 2574 return rc; 2575 } 2576 2577 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, 2578 unsigned int id) 2579 { 2580 struct kvm_vcpu *vcpu; 2581 struct sie_page *sie_page; 2582 int rc = -EINVAL; 2583 2584 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id)) 2585 goto out; 2586 2587 rc = -ENOMEM; 2588 2589 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 2590 if (!vcpu) 2591 goto out; 2592 2593 BUILD_BUG_ON(sizeof(struct sie_page) != 4096); 2594 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL); 2595 if (!sie_page) 2596 goto out_free_cpu; 2597 2598 vcpu->arch.sie_block = &sie_page->sie_block; 2599 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb; 2600 2601 /* the real guest size will always be smaller than msl */ 2602 vcpu->arch.sie_block->mso = 0; 2603 vcpu->arch.sie_block->msl = sclp.hamax; 2604 2605 vcpu->arch.sie_block->icpua = id; 2606 spin_lock_init(&vcpu->arch.local_int.lock); 2607 vcpu->arch.sie_block->gd = (u32)(u64)kvm->arch.gisa; 2608 if (vcpu->arch.sie_block->gd && sclp.has_gisaf) 2609 vcpu->arch.sie_block->gd |= GISA_FORMAT1; 2610 seqcount_init(&vcpu->arch.cputm_seqcount); 2611 2612 rc = kvm_vcpu_init(vcpu, kvm, id); 2613 if (rc) 2614 goto out_free_sie_block; 2615 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu, 2616 vcpu->arch.sie_block); 2617 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block); 2618 2619 return vcpu; 2620 out_free_sie_block: 2621 free_page((unsigned long)(vcpu->arch.sie_block)); 2622 out_free_cpu: 2623 kmem_cache_free(kvm_vcpu_cache, vcpu); 2624 out: 2625 return ERR_PTR(rc); 2626 } 2627 2628 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 2629 { 2630 return kvm_s390_vcpu_has_irq(vcpu, 0); 2631 } 2632 2633 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 2634 { 2635 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE); 2636 } 2637 2638 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu) 2639 { 2640 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2641 exit_sie(vcpu); 2642 } 2643 2644 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu) 2645 { 2646 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20); 2647 } 2648 2649 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu) 2650 { 2651 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2652 exit_sie(vcpu); 2653 } 2654 2655 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu) 2656 { 2657 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20); 2658 } 2659 2660 /* 2661 * Kick a guest cpu out of SIE and wait until SIE is not running. 2662 * If the CPU is not running (e.g. waiting as idle) the function will 2663 * return immediately. */ 2664 void exit_sie(struct kvm_vcpu *vcpu) 2665 { 2666 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT); 2667 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE) 2668 cpu_relax(); 2669 } 2670 2671 /* Kick a guest cpu out of SIE to process a request synchronously */ 2672 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) 2673 { 2674 kvm_make_request(req, vcpu); 2675 kvm_s390_vcpu_request(vcpu); 2676 } 2677 2678 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start, 2679 unsigned long end) 2680 { 2681 struct kvm *kvm = gmap->private; 2682 struct kvm_vcpu *vcpu; 2683 unsigned long prefix; 2684 int i; 2685 2686 if (gmap_is_shadow(gmap)) 2687 return; 2688 if (start >= 1UL << 31) 2689 /* We are only interested in prefix pages */ 2690 return; 2691 kvm_for_each_vcpu(i, vcpu, kvm) { 2692 /* match against both prefix pages */ 2693 prefix = kvm_s390_get_prefix(vcpu); 2694 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) { 2695 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx", 2696 start, end); 2697 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); 2698 } 2699 } 2700 } 2701 2702 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 2703 { 2704 /* kvm common code refers to this, but never calls it */ 2705 BUG(); 2706 return 0; 2707 } 2708 2709 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, 2710 struct kvm_one_reg *reg) 2711 { 2712 int r = -EINVAL; 2713 2714 switch (reg->id) { 2715 case KVM_REG_S390_TODPR: 2716 r = put_user(vcpu->arch.sie_block->todpr, 2717 (u32 __user *)reg->addr); 2718 break; 2719 case KVM_REG_S390_EPOCHDIFF: 2720 r = put_user(vcpu->arch.sie_block->epoch, 2721 (u64 __user *)reg->addr); 2722 break; 2723 case KVM_REG_S390_CPU_TIMER: 2724 r = put_user(kvm_s390_get_cpu_timer(vcpu), 2725 (u64 __user *)reg->addr); 2726 break; 2727 case KVM_REG_S390_CLOCK_COMP: 2728 r = put_user(vcpu->arch.sie_block->ckc, 2729 (u64 __user *)reg->addr); 2730 break; 2731 case KVM_REG_S390_PFTOKEN: 2732 r = put_user(vcpu->arch.pfault_token, 2733 (u64 __user *)reg->addr); 2734 break; 2735 case KVM_REG_S390_PFCOMPARE: 2736 r = put_user(vcpu->arch.pfault_compare, 2737 (u64 __user *)reg->addr); 2738 break; 2739 case KVM_REG_S390_PFSELECT: 2740 r = put_user(vcpu->arch.pfault_select, 2741 (u64 __user *)reg->addr); 2742 break; 2743 case KVM_REG_S390_PP: 2744 r = put_user(vcpu->arch.sie_block->pp, 2745 (u64 __user *)reg->addr); 2746 break; 2747 case KVM_REG_S390_GBEA: 2748 r = put_user(vcpu->arch.sie_block->gbea, 2749 (u64 __user *)reg->addr); 2750 break; 2751 default: 2752 break; 2753 } 2754 2755 return r; 2756 } 2757 2758 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, 2759 struct kvm_one_reg *reg) 2760 { 2761 int r = -EINVAL; 2762 __u64 val; 2763 2764 switch (reg->id) { 2765 case KVM_REG_S390_TODPR: 2766 r = get_user(vcpu->arch.sie_block->todpr, 2767 (u32 __user *)reg->addr); 2768 break; 2769 case KVM_REG_S390_EPOCHDIFF: 2770 r = get_user(vcpu->arch.sie_block->epoch, 2771 (u64 __user *)reg->addr); 2772 break; 2773 case KVM_REG_S390_CPU_TIMER: 2774 r = get_user(val, (u64 __user *)reg->addr); 2775 if (!r) 2776 kvm_s390_set_cpu_timer(vcpu, val); 2777 break; 2778 case KVM_REG_S390_CLOCK_COMP: 2779 r = get_user(vcpu->arch.sie_block->ckc, 2780 (u64 __user *)reg->addr); 2781 break; 2782 case KVM_REG_S390_PFTOKEN: 2783 r = get_user(vcpu->arch.pfault_token, 2784 (u64 __user *)reg->addr); 2785 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 2786 kvm_clear_async_pf_completion_queue(vcpu); 2787 break; 2788 case KVM_REG_S390_PFCOMPARE: 2789 r = get_user(vcpu->arch.pfault_compare, 2790 (u64 __user *)reg->addr); 2791 break; 2792 case KVM_REG_S390_PFSELECT: 2793 r = get_user(vcpu->arch.pfault_select, 2794 (u64 __user *)reg->addr); 2795 break; 2796 case KVM_REG_S390_PP: 2797 r = get_user(vcpu->arch.sie_block->pp, 2798 (u64 __user *)reg->addr); 2799 break; 2800 case KVM_REG_S390_GBEA: 2801 r = get_user(vcpu->arch.sie_block->gbea, 2802 (u64 __user *)reg->addr); 2803 break; 2804 default: 2805 break; 2806 } 2807 2808 return r; 2809 } 2810 2811 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu) 2812 { 2813 kvm_s390_vcpu_initial_reset(vcpu); 2814 return 0; 2815 } 2816 2817 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2818 { 2819 vcpu_load(vcpu); 2820 memcpy(&vcpu->run->s.regs.gprs, ®s->gprs, sizeof(regs->gprs)); 2821 vcpu_put(vcpu); 2822 return 0; 2823 } 2824 2825 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 2826 { 2827 vcpu_load(vcpu); 2828 memcpy(®s->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs)); 2829 vcpu_put(vcpu); 2830 return 0; 2831 } 2832 2833 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 2834 struct kvm_sregs *sregs) 2835 { 2836 vcpu_load(vcpu); 2837 2838 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs)); 2839 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs)); 2840 2841 vcpu_put(vcpu); 2842 return 0; 2843 } 2844 2845 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 2846 struct kvm_sregs *sregs) 2847 { 2848 vcpu_load(vcpu); 2849 2850 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs)); 2851 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs)); 2852 2853 vcpu_put(vcpu); 2854 return 0; 2855 } 2856 2857 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2858 { 2859 int ret = 0; 2860 2861 vcpu_load(vcpu); 2862 2863 if (test_fp_ctl(fpu->fpc)) { 2864 ret = -EINVAL; 2865 goto out; 2866 } 2867 vcpu->run->s.regs.fpc = fpu->fpc; 2868 if (MACHINE_HAS_VX) 2869 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs, 2870 (freg_t *) fpu->fprs); 2871 else 2872 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs)); 2873 2874 out: 2875 vcpu_put(vcpu); 2876 return ret; 2877 } 2878 2879 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 2880 { 2881 vcpu_load(vcpu); 2882 2883 /* make sure we have the latest values */ 2884 save_fpu_regs(); 2885 if (MACHINE_HAS_VX) 2886 convert_vx_to_fp((freg_t *) fpu->fprs, 2887 (__vector128 *) vcpu->run->s.regs.vrs); 2888 else 2889 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs)); 2890 fpu->fpc = vcpu->run->s.regs.fpc; 2891 2892 vcpu_put(vcpu); 2893 return 0; 2894 } 2895 2896 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw) 2897 { 2898 int rc = 0; 2899 2900 if (!is_vcpu_stopped(vcpu)) 2901 rc = -EBUSY; 2902 else { 2903 vcpu->run->psw_mask = psw.mask; 2904 vcpu->run->psw_addr = psw.addr; 2905 } 2906 return rc; 2907 } 2908 2909 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 2910 struct kvm_translation *tr) 2911 { 2912 return -EINVAL; /* not implemented yet */ 2913 } 2914 2915 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \ 2916 KVM_GUESTDBG_USE_HW_BP | \ 2917 KVM_GUESTDBG_ENABLE) 2918 2919 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 2920 struct kvm_guest_debug *dbg) 2921 { 2922 int rc = 0; 2923 2924 vcpu_load(vcpu); 2925 2926 vcpu->guest_debug = 0; 2927 kvm_s390_clear_bp_data(vcpu); 2928 2929 if (dbg->control & ~VALID_GUESTDBG_FLAGS) { 2930 rc = -EINVAL; 2931 goto out; 2932 } 2933 if (!sclp.has_gpere) { 2934 rc = -EINVAL; 2935 goto out; 2936 } 2937 2938 if (dbg->control & KVM_GUESTDBG_ENABLE) { 2939 vcpu->guest_debug = dbg->control; 2940 /* enforce guest PER */ 2941 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P); 2942 2943 if (dbg->control & KVM_GUESTDBG_USE_HW_BP) 2944 rc = kvm_s390_import_bp_data(vcpu, dbg); 2945 } else { 2946 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 2947 vcpu->arch.guestdbg.last_bp = 0; 2948 } 2949 2950 if (rc) { 2951 vcpu->guest_debug = 0; 2952 kvm_s390_clear_bp_data(vcpu); 2953 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P); 2954 } 2955 2956 out: 2957 vcpu_put(vcpu); 2958 return rc; 2959 } 2960 2961 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 2962 struct kvm_mp_state *mp_state) 2963 { 2964 int ret; 2965 2966 vcpu_load(vcpu); 2967 2968 /* CHECK_STOP and LOAD are not supported yet */ 2969 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED : 2970 KVM_MP_STATE_OPERATING; 2971 2972 vcpu_put(vcpu); 2973 return ret; 2974 } 2975 2976 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 2977 struct kvm_mp_state *mp_state) 2978 { 2979 int rc = 0; 2980 2981 vcpu_load(vcpu); 2982 2983 /* user space knows about this interface - let it control the state */ 2984 vcpu->kvm->arch.user_cpu_state_ctrl = 1; 2985 2986 switch (mp_state->mp_state) { 2987 case KVM_MP_STATE_STOPPED: 2988 kvm_s390_vcpu_stop(vcpu); 2989 break; 2990 case KVM_MP_STATE_OPERATING: 2991 kvm_s390_vcpu_start(vcpu); 2992 break; 2993 case KVM_MP_STATE_LOAD: 2994 case KVM_MP_STATE_CHECK_STOP: 2995 /* fall through - CHECK_STOP and LOAD are not supported yet */ 2996 default: 2997 rc = -ENXIO; 2998 } 2999 3000 vcpu_put(vcpu); 3001 return rc; 3002 } 3003 3004 static bool ibs_enabled(struct kvm_vcpu *vcpu) 3005 { 3006 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS); 3007 } 3008 3009 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) 3010 { 3011 retry: 3012 kvm_s390_vcpu_request_handled(vcpu); 3013 if (!kvm_request_pending(vcpu)) 3014 return 0; 3015 /* 3016 * We use MMU_RELOAD just to re-arm the ipte notifier for the 3017 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock. 3018 * This ensures that the ipte instruction for this request has 3019 * already finished. We might race against a second unmapper that 3020 * wants to set the blocking bit. Lets just retry the request loop. 3021 */ 3022 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { 3023 int rc; 3024 rc = gmap_mprotect_notify(vcpu->arch.gmap, 3025 kvm_s390_get_prefix(vcpu), 3026 PAGE_SIZE * 2, PROT_WRITE); 3027 if (rc) { 3028 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu); 3029 return rc; 3030 } 3031 goto retry; 3032 } 3033 3034 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 3035 vcpu->arch.sie_block->ihcpu = 0xffff; 3036 goto retry; 3037 } 3038 3039 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) { 3040 if (!ibs_enabled(vcpu)) { 3041 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1); 3042 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS); 3043 } 3044 goto retry; 3045 } 3046 3047 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) { 3048 if (ibs_enabled(vcpu)) { 3049 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0); 3050 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS); 3051 } 3052 goto retry; 3053 } 3054 3055 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) { 3056 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC; 3057 goto retry; 3058 } 3059 3060 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) { 3061 /* 3062 * Disable CMM virtualization; we will emulate the ESSA 3063 * instruction manually, in order to provide additional 3064 * functionalities needed for live migration. 3065 */ 3066 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA; 3067 goto retry; 3068 } 3069 3070 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) { 3071 /* 3072 * Re-enable CMM virtualization if CMMA is available and 3073 * CMM has been used. 3074 */ 3075 if ((vcpu->kvm->arch.use_cmma) && 3076 (vcpu->kvm->mm->context.uses_cmm)) 3077 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA; 3078 goto retry; 3079 } 3080 3081 /* nothing to do, just clear the request */ 3082 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 3083 3084 return 0; 3085 } 3086 3087 void kvm_s390_set_tod_clock(struct kvm *kvm, 3088 const struct kvm_s390_vm_tod_clock *gtod) 3089 { 3090 struct kvm_vcpu *vcpu; 3091 struct kvm_s390_tod_clock_ext htod; 3092 int i; 3093 3094 mutex_lock(&kvm->lock); 3095 preempt_disable(); 3096 3097 get_tod_clock_ext((char *)&htod); 3098 3099 kvm->arch.epoch = gtod->tod - htod.tod; 3100 kvm->arch.epdx = 0; 3101 if (test_kvm_facility(kvm, 139)) { 3102 kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx; 3103 if (kvm->arch.epoch > gtod->tod) 3104 kvm->arch.epdx -= 1; 3105 } 3106 3107 kvm_s390_vcpu_block_all(kvm); 3108 kvm_for_each_vcpu(i, vcpu, kvm) { 3109 vcpu->arch.sie_block->epoch = kvm->arch.epoch; 3110 vcpu->arch.sie_block->epdx = kvm->arch.epdx; 3111 } 3112 3113 kvm_s390_vcpu_unblock_all(kvm); 3114 preempt_enable(); 3115 mutex_unlock(&kvm->lock); 3116 } 3117 3118 /** 3119 * kvm_arch_fault_in_page - fault-in guest page if necessary 3120 * @vcpu: The corresponding virtual cpu 3121 * @gpa: Guest physical address 3122 * @writable: Whether the page should be writable or not 3123 * 3124 * Make sure that a guest page has been faulted-in on the host. 3125 * 3126 * Return: Zero on success, negative error code otherwise. 3127 */ 3128 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable) 3129 { 3130 return gmap_fault(vcpu->arch.gmap, gpa, 3131 writable ? FAULT_FLAG_WRITE : 0); 3132 } 3133 3134 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token, 3135 unsigned long token) 3136 { 3137 struct kvm_s390_interrupt inti; 3138 struct kvm_s390_irq irq; 3139 3140 if (start_token) { 3141 irq.u.ext.ext_params2 = token; 3142 irq.type = KVM_S390_INT_PFAULT_INIT; 3143 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq)); 3144 } else { 3145 inti.type = KVM_S390_INT_PFAULT_DONE; 3146 inti.parm64 = token; 3147 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti)); 3148 } 3149 } 3150 3151 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 3152 struct kvm_async_pf *work) 3153 { 3154 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token); 3155 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token); 3156 } 3157 3158 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 3159 struct kvm_async_pf *work) 3160 { 3161 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token); 3162 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token); 3163 } 3164 3165 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, 3166 struct kvm_async_pf *work) 3167 { 3168 /* s390 will always inject the page directly */ 3169 } 3170 3171 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) 3172 { 3173 /* 3174 * s390 will always inject the page directly, 3175 * but we still want check_async_completion to cleanup 3176 */ 3177 return true; 3178 } 3179 3180 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu) 3181 { 3182 hva_t hva; 3183 struct kvm_arch_async_pf arch; 3184 int rc; 3185 3186 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3187 return 0; 3188 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) != 3189 vcpu->arch.pfault_compare) 3190 return 0; 3191 if (psw_extint_disabled(vcpu)) 3192 return 0; 3193 if (kvm_s390_vcpu_has_irq(vcpu, 0)) 3194 return 0; 3195 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul)) 3196 return 0; 3197 if (!vcpu->arch.gmap->pfault_enabled) 3198 return 0; 3199 3200 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr)); 3201 hva += current->thread.gmap_addr & ~PAGE_MASK; 3202 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8)) 3203 return 0; 3204 3205 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch); 3206 return rc; 3207 } 3208 3209 static int vcpu_pre_run(struct kvm_vcpu *vcpu) 3210 { 3211 int rc, cpuflags; 3212 3213 /* 3214 * On s390 notifications for arriving pages will be delivered directly 3215 * to the guest but the house keeping for completed pfaults is 3216 * handled outside the worker. 3217 */ 3218 kvm_check_async_pf_completion(vcpu); 3219 3220 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14]; 3221 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15]; 3222 3223 if (need_resched()) 3224 schedule(); 3225 3226 if (test_cpu_flag(CIF_MCCK_PENDING)) 3227 s390_handle_mcck(); 3228 3229 if (!kvm_is_ucontrol(vcpu->kvm)) { 3230 rc = kvm_s390_deliver_pending_interrupts(vcpu); 3231 if (rc) 3232 return rc; 3233 } 3234 3235 rc = kvm_s390_handle_requests(vcpu); 3236 if (rc) 3237 return rc; 3238 3239 if (guestdbg_enabled(vcpu)) { 3240 kvm_s390_backup_guest_per_regs(vcpu); 3241 kvm_s390_patch_guest_per_regs(vcpu); 3242 } 3243 3244 vcpu->arch.sie_block->icptcode = 0; 3245 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags); 3246 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags); 3247 trace_kvm_s390_sie_enter(vcpu, cpuflags); 3248 3249 return 0; 3250 } 3251 3252 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu) 3253 { 3254 struct kvm_s390_pgm_info pgm_info = { 3255 .code = PGM_ADDRESSING, 3256 }; 3257 u8 opcode, ilen; 3258 int rc; 3259 3260 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction"); 3261 trace_kvm_s390_sie_fault(vcpu); 3262 3263 /* 3264 * We want to inject an addressing exception, which is defined as a 3265 * suppressing or terminating exception. However, since we came here 3266 * by a DAT access exception, the PSW still points to the faulting 3267 * instruction since DAT exceptions are nullifying. So we've got 3268 * to look up the current opcode to get the length of the instruction 3269 * to be able to forward the PSW. 3270 */ 3271 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1); 3272 ilen = insn_length(opcode); 3273 if (rc < 0) { 3274 return rc; 3275 } else if (rc) { 3276 /* Instruction-Fetching Exceptions - we can't detect the ilen. 3277 * Forward by arbitrary ilc, injection will take care of 3278 * nullification if necessary. 3279 */ 3280 pgm_info = vcpu->arch.pgm; 3281 ilen = 4; 3282 } 3283 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID; 3284 kvm_s390_forward_psw(vcpu, ilen); 3285 return kvm_s390_inject_prog_irq(vcpu, &pgm_info); 3286 } 3287 3288 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason) 3289 { 3290 struct mcck_volatile_info *mcck_info; 3291 struct sie_page *sie_page; 3292 3293 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d", 3294 vcpu->arch.sie_block->icptcode); 3295 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode); 3296 3297 if (guestdbg_enabled(vcpu)) 3298 kvm_s390_restore_guest_per_regs(vcpu); 3299 3300 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14; 3301 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15; 3302 3303 if (exit_reason == -EINTR) { 3304 VCPU_EVENT(vcpu, 3, "%s", "machine check"); 3305 sie_page = container_of(vcpu->arch.sie_block, 3306 struct sie_page, sie_block); 3307 mcck_info = &sie_page->mcck_info; 3308 kvm_s390_reinject_machine_check(vcpu, mcck_info); 3309 return 0; 3310 } 3311 3312 if (vcpu->arch.sie_block->icptcode > 0) { 3313 int rc = kvm_handle_sie_intercept(vcpu); 3314 3315 if (rc != -EOPNOTSUPP) 3316 return rc; 3317 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC; 3318 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode; 3319 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa; 3320 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb; 3321 return -EREMOTE; 3322 } else if (exit_reason != -EFAULT) { 3323 vcpu->stat.exit_null++; 3324 return 0; 3325 } else if (kvm_is_ucontrol(vcpu->kvm)) { 3326 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL; 3327 vcpu->run->s390_ucontrol.trans_exc_code = 3328 current->thread.gmap_addr; 3329 vcpu->run->s390_ucontrol.pgm_code = 0x10; 3330 return -EREMOTE; 3331 } else if (current->thread.gmap_pfault) { 3332 trace_kvm_s390_major_guest_pfault(vcpu); 3333 current->thread.gmap_pfault = 0; 3334 if (kvm_arch_setup_async_pf(vcpu)) 3335 return 0; 3336 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1); 3337 } 3338 return vcpu_post_run_fault_in_sie(vcpu); 3339 } 3340 3341 static int __vcpu_run(struct kvm_vcpu *vcpu) 3342 { 3343 int rc, exit_reason; 3344 3345 /* 3346 * We try to hold kvm->srcu during most of vcpu_run (except when run- 3347 * ning the guest), so that memslots (and other stuff) are protected 3348 */ 3349 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3350 3351 do { 3352 rc = vcpu_pre_run(vcpu); 3353 if (rc) 3354 break; 3355 3356 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 3357 /* 3358 * As PF_VCPU will be used in fault handler, between 3359 * guest_enter and guest_exit should be no uaccess. 3360 */ 3361 local_irq_disable(); 3362 guest_enter_irqoff(); 3363 __disable_cpu_timer_accounting(vcpu); 3364 local_irq_enable(); 3365 exit_reason = sie64a(vcpu->arch.sie_block, 3366 vcpu->run->s.regs.gprs); 3367 local_irq_disable(); 3368 __enable_cpu_timer_accounting(vcpu); 3369 guest_exit_irqoff(); 3370 local_irq_enable(); 3371 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3372 3373 rc = vcpu_post_run(vcpu, exit_reason); 3374 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc); 3375 3376 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); 3377 return rc; 3378 } 3379 3380 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3381 { 3382 struct runtime_instr_cb *riccb; 3383 struct gs_cb *gscb; 3384 3385 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb; 3386 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb; 3387 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask; 3388 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr; 3389 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX) 3390 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix); 3391 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) { 3392 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128); 3393 /* some control register changes require a tlb flush */ 3394 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3395 } 3396 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) { 3397 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm); 3398 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc; 3399 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr; 3400 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp; 3401 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea; 3402 } 3403 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) { 3404 vcpu->arch.pfault_token = kvm_run->s.regs.pft; 3405 vcpu->arch.pfault_select = kvm_run->s.regs.pfs; 3406 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc; 3407 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID) 3408 kvm_clear_async_pf_completion_queue(vcpu); 3409 } 3410 /* 3411 * If userspace sets the riccb (e.g. after migration) to a valid state, 3412 * we should enable RI here instead of doing the lazy enablement. 3413 */ 3414 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) && 3415 test_kvm_facility(vcpu->kvm, 64) && 3416 riccb->v && 3417 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) { 3418 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)"); 3419 vcpu->arch.sie_block->ecb3 |= ECB3_RI; 3420 } 3421 /* 3422 * If userspace sets the gscb (e.g. after migration) to non-zero, 3423 * we should enable GS here instead of doing the lazy enablement. 3424 */ 3425 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) && 3426 test_kvm_facility(vcpu->kvm, 133) && 3427 gscb->gssm && 3428 !vcpu->arch.gs_enabled) { 3429 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)"); 3430 vcpu->arch.sie_block->ecb |= ECB_GS; 3431 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT; 3432 vcpu->arch.gs_enabled = 1; 3433 } 3434 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) && 3435 test_kvm_facility(vcpu->kvm, 82)) { 3436 vcpu->arch.sie_block->fpf &= ~FPF_BPBC; 3437 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0; 3438 } 3439 save_access_regs(vcpu->arch.host_acrs); 3440 restore_access_regs(vcpu->run->s.regs.acrs); 3441 /* save host (userspace) fprs/vrs */ 3442 save_fpu_regs(); 3443 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc; 3444 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs; 3445 if (MACHINE_HAS_VX) 3446 current->thread.fpu.regs = vcpu->run->s.regs.vrs; 3447 else 3448 current->thread.fpu.regs = vcpu->run->s.regs.fprs; 3449 current->thread.fpu.fpc = vcpu->run->s.regs.fpc; 3450 if (test_fp_ctl(current->thread.fpu.fpc)) 3451 /* User space provided an invalid FPC, let's clear it */ 3452 current->thread.fpu.fpc = 0; 3453 if (MACHINE_HAS_GS) { 3454 preempt_disable(); 3455 __ctl_set_bit(2, 4); 3456 if (current->thread.gs_cb) { 3457 vcpu->arch.host_gscb = current->thread.gs_cb; 3458 save_gs_cb(vcpu->arch.host_gscb); 3459 } 3460 if (vcpu->arch.gs_enabled) { 3461 current->thread.gs_cb = (struct gs_cb *) 3462 &vcpu->run->s.regs.gscb; 3463 restore_gs_cb(current->thread.gs_cb); 3464 } 3465 preempt_enable(); 3466 } 3467 3468 kvm_run->kvm_dirty_regs = 0; 3469 } 3470 3471 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3472 { 3473 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask; 3474 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr; 3475 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu); 3476 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128); 3477 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu); 3478 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc; 3479 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr; 3480 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp; 3481 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea; 3482 kvm_run->s.regs.pft = vcpu->arch.pfault_token; 3483 kvm_run->s.regs.pfs = vcpu->arch.pfault_select; 3484 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare; 3485 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC; 3486 save_access_regs(vcpu->run->s.regs.acrs); 3487 restore_access_regs(vcpu->arch.host_acrs); 3488 /* Save guest register state */ 3489 save_fpu_regs(); 3490 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 3491 /* Restore will be done lazily at return */ 3492 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc; 3493 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs; 3494 if (MACHINE_HAS_GS) { 3495 __ctl_set_bit(2, 4); 3496 if (vcpu->arch.gs_enabled) 3497 save_gs_cb(current->thread.gs_cb); 3498 preempt_disable(); 3499 current->thread.gs_cb = vcpu->arch.host_gscb; 3500 restore_gs_cb(vcpu->arch.host_gscb); 3501 preempt_enable(); 3502 if (!vcpu->arch.host_gscb) 3503 __ctl_clear_bit(2, 4); 3504 vcpu->arch.host_gscb = NULL; 3505 } 3506 3507 } 3508 3509 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) 3510 { 3511 int rc; 3512 3513 if (kvm_run->immediate_exit) 3514 return -EINTR; 3515 3516 vcpu_load(vcpu); 3517 3518 if (guestdbg_exit_pending(vcpu)) { 3519 kvm_s390_prepare_debug_exit(vcpu); 3520 rc = 0; 3521 goto out; 3522 } 3523 3524 kvm_sigset_activate(vcpu); 3525 3526 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) { 3527 kvm_s390_vcpu_start(vcpu); 3528 } else if (is_vcpu_stopped(vcpu)) { 3529 pr_err_ratelimited("can't run stopped vcpu %d\n", 3530 vcpu->vcpu_id); 3531 rc = -EINVAL; 3532 goto out; 3533 } 3534 3535 sync_regs(vcpu, kvm_run); 3536 enable_cpu_timer_accounting(vcpu); 3537 3538 might_fault(); 3539 rc = __vcpu_run(vcpu); 3540 3541 if (signal_pending(current) && !rc) { 3542 kvm_run->exit_reason = KVM_EXIT_INTR; 3543 rc = -EINTR; 3544 } 3545 3546 if (guestdbg_exit_pending(vcpu) && !rc) { 3547 kvm_s390_prepare_debug_exit(vcpu); 3548 rc = 0; 3549 } 3550 3551 if (rc == -EREMOTE) { 3552 /* userspace support is needed, kvm_run has been prepared */ 3553 rc = 0; 3554 } 3555 3556 disable_cpu_timer_accounting(vcpu); 3557 store_regs(vcpu, kvm_run); 3558 3559 kvm_sigset_deactivate(vcpu); 3560 3561 vcpu->stat.exit_userspace++; 3562 out: 3563 vcpu_put(vcpu); 3564 return rc; 3565 } 3566 3567 /* 3568 * store status at address 3569 * we use have two special cases: 3570 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit 3571 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix 3572 */ 3573 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa) 3574 { 3575 unsigned char archmode = 1; 3576 freg_t fprs[NUM_FPRS]; 3577 unsigned int px; 3578 u64 clkcomp, cputm; 3579 int rc; 3580 3581 px = kvm_s390_get_prefix(vcpu); 3582 if (gpa == KVM_S390_STORE_STATUS_NOADDR) { 3583 if (write_guest_abs(vcpu, 163, &archmode, 1)) 3584 return -EFAULT; 3585 gpa = 0; 3586 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) { 3587 if (write_guest_real(vcpu, 163, &archmode, 1)) 3588 return -EFAULT; 3589 gpa = px; 3590 } else 3591 gpa -= __LC_FPREGS_SAVE_AREA; 3592 3593 /* manually convert vector registers if necessary */ 3594 if (MACHINE_HAS_VX) { 3595 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs); 3596 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 3597 fprs, 128); 3598 } else { 3599 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA, 3600 vcpu->run->s.regs.fprs, 128); 3601 } 3602 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA, 3603 vcpu->run->s.regs.gprs, 128); 3604 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA, 3605 &vcpu->arch.sie_block->gpsw, 16); 3606 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA, 3607 &px, 4); 3608 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA, 3609 &vcpu->run->s.regs.fpc, 4); 3610 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA, 3611 &vcpu->arch.sie_block->todpr, 4); 3612 cputm = kvm_s390_get_cpu_timer(vcpu); 3613 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA, 3614 &cputm, 8); 3615 clkcomp = vcpu->arch.sie_block->ckc >> 8; 3616 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA, 3617 &clkcomp, 8); 3618 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA, 3619 &vcpu->run->s.regs.acrs, 64); 3620 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA, 3621 &vcpu->arch.sie_block->gcr, 128); 3622 return rc ? -EFAULT : 0; 3623 } 3624 3625 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr) 3626 { 3627 /* 3628 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy 3629 * switch in the run ioctl. Let's update our copies before we save 3630 * it into the save area 3631 */ 3632 save_fpu_regs(); 3633 vcpu->run->s.regs.fpc = current->thread.fpu.fpc; 3634 save_access_regs(vcpu->run->s.regs.acrs); 3635 3636 return kvm_s390_store_status_unloaded(vcpu, addr); 3637 } 3638 3639 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3640 { 3641 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu); 3642 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu); 3643 } 3644 3645 static void __disable_ibs_on_all_vcpus(struct kvm *kvm) 3646 { 3647 unsigned int i; 3648 struct kvm_vcpu *vcpu; 3649 3650 kvm_for_each_vcpu(i, vcpu, kvm) { 3651 __disable_ibs_on_vcpu(vcpu); 3652 } 3653 } 3654 3655 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu) 3656 { 3657 if (!sclp.has_ibs) 3658 return; 3659 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu); 3660 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu); 3661 } 3662 3663 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu) 3664 { 3665 int i, online_vcpus, started_vcpus = 0; 3666 3667 if (!is_vcpu_stopped(vcpu)) 3668 return; 3669 3670 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1); 3671 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3672 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3673 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3674 3675 for (i = 0; i < online_vcpus; i++) { 3676 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) 3677 started_vcpus++; 3678 } 3679 3680 if (started_vcpus == 0) { 3681 /* we're the only active VCPU -> speed it up */ 3682 __enable_ibs_on_vcpu(vcpu); 3683 } else if (started_vcpus == 1) { 3684 /* 3685 * As we are starting a second VCPU, we have to disable 3686 * the IBS facility on all VCPUs to remove potentially 3687 * oustanding ENABLE requests. 3688 */ 3689 __disable_ibs_on_all_vcpus(vcpu->kvm); 3690 } 3691 3692 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED); 3693 /* 3694 * Another VCPU might have used IBS while we were offline. 3695 * Let's play safe and flush the VCPU at startup. 3696 */ 3697 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 3698 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3699 return; 3700 } 3701 3702 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu) 3703 { 3704 int i, online_vcpus, started_vcpus = 0; 3705 struct kvm_vcpu *started_vcpu = NULL; 3706 3707 if (is_vcpu_stopped(vcpu)) 3708 return; 3709 3710 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0); 3711 /* Only one cpu at a time may enter/leave the STOPPED state. */ 3712 spin_lock(&vcpu->kvm->arch.start_stop_lock); 3713 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus); 3714 3715 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */ 3716 kvm_s390_clear_stop_irq(vcpu); 3717 3718 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED); 3719 __disable_ibs_on_vcpu(vcpu); 3720 3721 for (i = 0; i < online_vcpus; i++) { 3722 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) { 3723 started_vcpus++; 3724 started_vcpu = vcpu->kvm->vcpus[i]; 3725 } 3726 } 3727 3728 if (started_vcpus == 1) { 3729 /* 3730 * As we only have one VCPU left, we want to enable the 3731 * IBS facility for that VCPU to speed it up. 3732 */ 3733 __enable_ibs_on_vcpu(started_vcpu); 3734 } 3735 3736 spin_unlock(&vcpu->kvm->arch.start_stop_lock); 3737 return; 3738 } 3739 3740 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3741 struct kvm_enable_cap *cap) 3742 { 3743 int r; 3744 3745 if (cap->flags) 3746 return -EINVAL; 3747 3748 switch (cap->cap) { 3749 case KVM_CAP_S390_CSS_SUPPORT: 3750 if (!vcpu->kvm->arch.css_support) { 3751 vcpu->kvm->arch.css_support = 1; 3752 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support"); 3753 trace_kvm_s390_enable_css(vcpu->kvm); 3754 } 3755 r = 0; 3756 break; 3757 default: 3758 r = -EINVAL; 3759 break; 3760 } 3761 return r; 3762 } 3763 3764 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu, 3765 struct kvm_s390_mem_op *mop) 3766 { 3767 void __user *uaddr = (void __user *)mop->buf; 3768 void *tmpbuf = NULL; 3769 int r, srcu_idx; 3770 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION 3771 | KVM_S390_MEMOP_F_CHECK_ONLY; 3772 3773 if (mop->flags & ~supported_flags) 3774 return -EINVAL; 3775 3776 if (mop->size > MEM_OP_MAX_SIZE) 3777 return -E2BIG; 3778 3779 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) { 3780 tmpbuf = vmalloc(mop->size); 3781 if (!tmpbuf) 3782 return -ENOMEM; 3783 } 3784 3785 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); 3786 3787 switch (mop->op) { 3788 case KVM_S390_MEMOP_LOGICAL_READ: 3789 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3790 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3791 mop->size, GACC_FETCH); 3792 break; 3793 } 3794 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3795 if (r == 0) { 3796 if (copy_to_user(uaddr, tmpbuf, mop->size)) 3797 r = -EFAULT; 3798 } 3799 break; 3800 case KVM_S390_MEMOP_LOGICAL_WRITE: 3801 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) { 3802 r = check_gva_range(vcpu, mop->gaddr, mop->ar, 3803 mop->size, GACC_STORE); 3804 break; 3805 } 3806 if (copy_from_user(tmpbuf, uaddr, mop->size)) { 3807 r = -EFAULT; 3808 break; 3809 } 3810 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size); 3811 break; 3812 default: 3813 r = -EINVAL; 3814 } 3815 3816 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx); 3817 3818 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0) 3819 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm); 3820 3821 vfree(tmpbuf); 3822 return r; 3823 } 3824 3825 long kvm_arch_vcpu_async_ioctl(struct file *filp, 3826 unsigned int ioctl, unsigned long arg) 3827 { 3828 struct kvm_vcpu *vcpu = filp->private_data; 3829 void __user *argp = (void __user *)arg; 3830 3831 switch (ioctl) { 3832 case KVM_S390_IRQ: { 3833 struct kvm_s390_irq s390irq; 3834 3835 if (copy_from_user(&s390irq, argp, sizeof(s390irq))) 3836 return -EFAULT; 3837 return kvm_s390_inject_vcpu(vcpu, &s390irq); 3838 } 3839 case KVM_S390_INTERRUPT: { 3840 struct kvm_s390_interrupt s390int; 3841 struct kvm_s390_irq s390irq; 3842 3843 if (copy_from_user(&s390int, argp, sizeof(s390int))) 3844 return -EFAULT; 3845 if (s390int_to_s390irq(&s390int, &s390irq)) 3846 return -EINVAL; 3847 return kvm_s390_inject_vcpu(vcpu, &s390irq); 3848 } 3849 } 3850 return -ENOIOCTLCMD; 3851 } 3852 3853 long kvm_arch_vcpu_ioctl(struct file *filp, 3854 unsigned int ioctl, unsigned long arg) 3855 { 3856 struct kvm_vcpu *vcpu = filp->private_data; 3857 void __user *argp = (void __user *)arg; 3858 int idx; 3859 long r; 3860 3861 vcpu_load(vcpu); 3862 3863 switch (ioctl) { 3864 case KVM_S390_STORE_STATUS: 3865 idx = srcu_read_lock(&vcpu->kvm->srcu); 3866 r = kvm_s390_vcpu_store_status(vcpu, arg); 3867 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3868 break; 3869 case KVM_S390_SET_INITIAL_PSW: { 3870 psw_t psw; 3871 3872 r = -EFAULT; 3873 if (copy_from_user(&psw, argp, sizeof(psw))) 3874 break; 3875 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw); 3876 break; 3877 } 3878 case KVM_S390_INITIAL_RESET: 3879 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu); 3880 break; 3881 case KVM_SET_ONE_REG: 3882 case KVM_GET_ONE_REG: { 3883 struct kvm_one_reg reg; 3884 r = -EFAULT; 3885 if (copy_from_user(®, argp, sizeof(reg))) 3886 break; 3887 if (ioctl == KVM_SET_ONE_REG) 3888 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, ®); 3889 else 3890 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, ®); 3891 break; 3892 } 3893 #ifdef CONFIG_KVM_S390_UCONTROL 3894 case KVM_S390_UCAS_MAP: { 3895 struct kvm_s390_ucas_mapping ucasmap; 3896 3897 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3898 r = -EFAULT; 3899 break; 3900 } 3901 3902 if (!kvm_is_ucontrol(vcpu->kvm)) { 3903 r = -EINVAL; 3904 break; 3905 } 3906 3907 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr, 3908 ucasmap.vcpu_addr, ucasmap.length); 3909 break; 3910 } 3911 case KVM_S390_UCAS_UNMAP: { 3912 struct kvm_s390_ucas_mapping ucasmap; 3913 3914 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) { 3915 r = -EFAULT; 3916 break; 3917 } 3918 3919 if (!kvm_is_ucontrol(vcpu->kvm)) { 3920 r = -EINVAL; 3921 break; 3922 } 3923 3924 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr, 3925 ucasmap.length); 3926 break; 3927 } 3928 #endif 3929 case KVM_S390_VCPU_FAULT: { 3930 r = gmap_fault(vcpu->arch.gmap, arg, 0); 3931 break; 3932 } 3933 case KVM_ENABLE_CAP: 3934 { 3935 struct kvm_enable_cap cap; 3936 r = -EFAULT; 3937 if (copy_from_user(&cap, argp, sizeof(cap))) 3938 break; 3939 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3940 break; 3941 } 3942 case KVM_S390_MEM_OP: { 3943 struct kvm_s390_mem_op mem_op; 3944 3945 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0) 3946 r = kvm_s390_guest_mem_op(vcpu, &mem_op); 3947 else 3948 r = -EFAULT; 3949 break; 3950 } 3951 case KVM_S390_SET_IRQ_STATE: { 3952 struct kvm_s390_irq_state irq_state; 3953 3954 r = -EFAULT; 3955 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3956 break; 3957 if (irq_state.len > VCPU_IRQS_MAX_BUF || 3958 irq_state.len == 0 || 3959 irq_state.len % sizeof(struct kvm_s390_irq) > 0) { 3960 r = -EINVAL; 3961 break; 3962 } 3963 /* do not use irq_state.flags, it will break old QEMUs */ 3964 r = kvm_s390_set_irq_state(vcpu, 3965 (void __user *) irq_state.buf, 3966 irq_state.len); 3967 break; 3968 } 3969 case KVM_S390_GET_IRQ_STATE: { 3970 struct kvm_s390_irq_state irq_state; 3971 3972 r = -EFAULT; 3973 if (copy_from_user(&irq_state, argp, sizeof(irq_state))) 3974 break; 3975 if (irq_state.len == 0) { 3976 r = -EINVAL; 3977 break; 3978 } 3979 /* do not use irq_state.flags, it will break old QEMUs */ 3980 r = kvm_s390_get_irq_state(vcpu, 3981 (__u8 __user *) irq_state.buf, 3982 irq_state.len); 3983 break; 3984 } 3985 default: 3986 r = -ENOTTY; 3987 } 3988 3989 vcpu_put(vcpu); 3990 return r; 3991 } 3992 3993 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3994 { 3995 #ifdef CONFIG_KVM_S390_UCONTROL 3996 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET) 3997 && (kvm_is_ucontrol(vcpu->kvm))) { 3998 vmf->page = virt_to_page(vcpu->arch.sie_block); 3999 get_page(vmf->page); 4000 return 0; 4001 } 4002 #endif 4003 return VM_FAULT_SIGBUS; 4004 } 4005 4006 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot, 4007 unsigned long npages) 4008 { 4009 return 0; 4010 } 4011 4012 /* Section: memory related */ 4013 int kvm_arch_prepare_memory_region(struct kvm *kvm, 4014 struct kvm_memory_slot *memslot, 4015 const struct kvm_userspace_memory_region *mem, 4016 enum kvm_mr_change change) 4017 { 4018 /* A few sanity checks. We can have memory slots which have to be 4019 located/ended at a segment boundary (1MB). The memory in userland is 4020 ok to be fragmented into various different vmas. It is okay to mmap() 4021 and munmap() stuff in this slot after doing this call at any time */ 4022 4023 if (mem->userspace_addr & 0xffffful) 4024 return -EINVAL; 4025 4026 if (mem->memory_size & 0xffffful) 4027 return -EINVAL; 4028 4029 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit) 4030 return -EINVAL; 4031 4032 return 0; 4033 } 4034 4035 void kvm_arch_commit_memory_region(struct kvm *kvm, 4036 const struct kvm_userspace_memory_region *mem, 4037 const struct kvm_memory_slot *old, 4038 const struct kvm_memory_slot *new, 4039 enum kvm_mr_change change) 4040 { 4041 int rc; 4042 4043 /* If the basics of the memslot do not change, we do not want 4044 * to update the gmap. Every update causes several unnecessary 4045 * segment translation exceptions. This is usually handled just 4046 * fine by the normal fault handler + gmap, but it will also 4047 * cause faults on the prefix page of running guest CPUs. 4048 */ 4049 if (old->userspace_addr == mem->userspace_addr && 4050 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr && 4051 old->npages * PAGE_SIZE == mem->memory_size) 4052 return; 4053 4054 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr, 4055 mem->guest_phys_addr, mem->memory_size); 4056 if (rc) 4057 pr_warn("failed to commit memory region\n"); 4058 return; 4059 } 4060 4061 static inline unsigned long nonhyp_mask(int i) 4062 { 4063 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30; 4064 4065 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4); 4066 } 4067 4068 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) 4069 { 4070 vcpu->valid_wakeup = false; 4071 } 4072 4073 static int __init kvm_s390_init(void) 4074 { 4075 int i; 4076 4077 if (!sclp.has_sief2) { 4078 pr_info("SIE not available\n"); 4079 return -ENODEV; 4080 } 4081 4082 for (i = 0; i < 16; i++) 4083 kvm_s390_fac_base[i] |= 4084 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i); 4085 4086 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); 4087 } 4088 4089 static void __exit kvm_s390_exit(void) 4090 { 4091 kvm_exit(); 4092 } 4093 4094 module_init(kvm_s390_init); 4095 module_exit(kvm_s390_exit); 4096 4097 /* 4098 * Enable autoloading of the kvm module. 4099 * Note that we add the module alias here instead of virt/kvm/kvm_main.c 4100 * since x86 takes a different approach. 4101 */ 4102 #include <linux/miscdevice.h> 4103 MODULE_ALIAS_MISCDEV(KVM_MINOR); 4104 MODULE_ALIAS("devname:kvm"); 4105