xref: /openbmc/linux/arch/s390/kvm/kvm-s390.c (revision bc5aa3a0)
1 /*
2  * hosting zSeries kernel virtual machines
3  *
4  * Copyright IBM Corp. 2008, 2009
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License (version 2 only)
8  * as published by the Free Software Foundation.
9  *
10  *    Author(s): Carsten Otte <cotte@de.ibm.com>
11  *               Christian Borntraeger <borntraeger@de.ibm.com>
12  *               Heiko Carstens <heiko.carstens@de.ibm.com>
13  *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14  *               Jason J. Herne <jjherne@us.ibm.com>
15  */
16 
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/lowcore.h>
33 #include <asm/stp.h>
34 #include <asm/pgtable.h>
35 #include <asm/gmap.h>
36 #include <asm/nmi.h>
37 #include <asm/switch_to.h>
38 #include <asm/isc.h>
39 #include <asm/sclp.h>
40 #include <asm/cpacf.h>
41 #include <asm/timex.h>
42 #include "kvm-s390.h"
43 #include "gaccess.h"
44 
45 #define KMSG_COMPONENT "kvm-s390"
46 #undef pr_fmt
47 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
48 
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51 #include "trace-s390.h"
52 
53 #define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 #define LOCAL_IRQS 32
55 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
56 			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57 
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59 
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61 	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62 	{ "exit_null", VCPU_STAT(exit_null) },
63 	{ "exit_validity", VCPU_STAT(exit_validity) },
64 	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
65 	{ "exit_external_request", VCPU_STAT(exit_external_request) },
66 	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 	{ "exit_instruction", VCPU_STAT(exit_instruction) },
68 	{ "exit_pei", VCPU_STAT(exit_pei) },
69 	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
70 	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71 	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74 	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77 	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
79 	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
80 	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81 	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
83 	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
84 	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
85 	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
86 	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
87 	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
88 	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
89 	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
91 	{ "instruction_spx", VCPU_STAT(instruction_spx) },
92 	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
93 	{ "instruction_stap", VCPU_STAT(instruction_stap) },
94 	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95 	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
97 	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
98 	{ "instruction_essa", VCPU_STAT(instruction_essa) },
99 	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
100 	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
101 	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
102 	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103 	{ "instruction_sie", VCPU_STAT(instruction_sie) },
104 	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105 	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106 	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107 	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
109 	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110 	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
112 	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113 	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
115 	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
116 	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
118 	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
119 	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120 	{ "diagnose_10", VCPU_STAT(diagnose_10) },
121 	{ "diagnose_44", VCPU_STAT(diagnose_44) },
122 	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 	{ "diagnose_258", VCPU_STAT(diagnose_258) },
124 	{ "diagnose_308", VCPU_STAT(diagnose_308) },
125 	{ "diagnose_500", VCPU_STAT(diagnose_500) },
126 	{ NULL }
127 };
128 
129 /* allow nested virtualization in KVM (if enabled by user space) */
130 static int nested;
131 module_param(nested, int, S_IRUGO);
132 MODULE_PARM_DESC(nested, "Nested virtualization support");
133 
134 /* upper facilities limit for kvm */
135 unsigned long kvm_s390_fac_list_mask[16] = {
136 	0xffe6000000000000UL,
137 	0x005e000000000000UL,
138 };
139 
140 unsigned long kvm_s390_fac_list_mask_size(void)
141 {
142 	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
143 	return ARRAY_SIZE(kvm_s390_fac_list_mask);
144 }
145 
146 /* available cpu features supported by kvm */
147 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
148 /* available subfunctions indicated via query / "test bit" */
149 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
150 
151 static struct gmap_notifier gmap_notifier;
152 static struct gmap_notifier vsie_gmap_notifier;
153 debug_info_t *kvm_s390_dbf;
154 
155 /* Section: not file related */
156 int kvm_arch_hardware_enable(void)
157 {
158 	/* every s390 is virtualization enabled ;-) */
159 	return 0;
160 }
161 
162 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
163 			      unsigned long end);
164 
165 /*
166  * This callback is executed during stop_machine(). All CPUs are therefore
167  * temporarily stopped. In order not to change guest behavior, we have to
168  * disable preemption whenever we touch the epoch of kvm and the VCPUs,
169  * so a CPU won't be stopped while calculating with the epoch.
170  */
171 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
172 			  void *v)
173 {
174 	struct kvm *kvm;
175 	struct kvm_vcpu *vcpu;
176 	int i;
177 	unsigned long long *delta = v;
178 
179 	list_for_each_entry(kvm, &vm_list, vm_list) {
180 		kvm->arch.epoch -= *delta;
181 		kvm_for_each_vcpu(i, vcpu, kvm) {
182 			vcpu->arch.sie_block->epoch -= *delta;
183 			if (vcpu->arch.cputm_enabled)
184 				vcpu->arch.cputm_start += *delta;
185 			if (vcpu->arch.vsie_block)
186 				vcpu->arch.vsie_block->epoch -= *delta;
187 		}
188 	}
189 	return NOTIFY_OK;
190 }
191 
192 static struct notifier_block kvm_clock_notifier = {
193 	.notifier_call = kvm_clock_sync,
194 };
195 
196 int kvm_arch_hardware_setup(void)
197 {
198 	gmap_notifier.notifier_call = kvm_gmap_notifier;
199 	gmap_register_pte_notifier(&gmap_notifier);
200 	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
201 	gmap_register_pte_notifier(&vsie_gmap_notifier);
202 	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
203 				       &kvm_clock_notifier);
204 	return 0;
205 }
206 
207 void kvm_arch_hardware_unsetup(void)
208 {
209 	gmap_unregister_pte_notifier(&gmap_notifier);
210 	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
211 	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
212 					 &kvm_clock_notifier);
213 }
214 
215 static void allow_cpu_feat(unsigned long nr)
216 {
217 	set_bit_inv(nr, kvm_s390_available_cpu_feat);
218 }
219 
220 static inline int plo_test_bit(unsigned char nr)
221 {
222 	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
223 	int cc = 3; /* subfunction not available */
224 
225 	asm volatile(
226 		/* Parameter registers are ignored for "test bit" */
227 		"	plo	0,0,0,0(0)\n"
228 		"	ipm	%0\n"
229 		"	srl	%0,28\n"
230 		: "=d" (cc)
231 		: "d" (r0)
232 		: "cc");
233 	return cc == 0;
234 }
235 
236 static void kvm_s390_cpu_feat_init(void)
237 {
238 	int i;
239 
240 	for (i = 0; i < 256; ++i) {
241 		if (plo_test_bit(i))
242 			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
243 	}
244 
245 	if (test_facility(28)) /* TOD-clock steering */
246 		ptff(kvm_s390_available_subfunc.ptff,
247 		     sizeof(kvm_s390_available_subfunc.ptff),
248 		     PTFF_QAF);
249 
250 	if (test_facility(17)) { /* MSA */
251 		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
252 		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
253 		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
254 		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
255 		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
256 	}
257 	if (test_facility(76)) /* MSA3 */
258 		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
259 	if (test_facility(77)) { /* MSA4 */
260 		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
261 		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
262 		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
263 		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
264 	}
265 	if (test_facility(57)) /* MSA5 */
266 		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);
267 
268 	if (MACHINE_HAS_ESOP)
269 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
270 	/*
271 	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
272 	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
273 	 */
274 	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
275 	    !test_facility(3) || !nested)
276 		return;
277 	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
278 	if (sclp.has_64bscao)
279 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
280 	if (sclp.has_siif)
281 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
282 	if (sclp.has_gpere)
283 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
284 	if (sclp.has_gsls)
285 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
286 	if (sclp.has_ib)
287 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
288 	if (sclp.has_cei)
289 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
290 	if (sclp.has_ibs)
291 		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
292 	/*
293 	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
294 	 * all skey handling functions read/set the skey from the PGSTE
295 	 * instead of the real storage key.
296 	 *
297 	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
298 	 * pages being detected as preserved although they are resident.
299 	 *
300 	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
301 	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
302 	 *
303 	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
304 	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
305 	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
306 	 *
307 	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
308 	 * cannot easily shadow the SCA because of the ipte lock.
309 	 */
310 }
311 
312 int kvm_arch_init(void *opaque)
313 {
314 	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
315 	if (!kvm_s390_dbf)
316 		return -ENOMEM;
317 
318 	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
319 		debug_unregister(kvm_s390_dbf);
320 		return -ENOMEM;
321 	}
322 
323 	kvm_s390_cpu_feat_init();
324 
325 	/* Register floating interrupt controller interface. */
326 	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
327 }
328 
329 void kvm_arch_exit(void)
330 {
331 	debug_unregister(kvm_s390_dbf);
332 }
333 
334 /* Section: device related */
335 long kvm_arch_dev_ioctl(struct file *filp,
336 			unsigned int ioctl, unsigned long arg)
337 {
338 	if (ioctl == KVM_S390_ENABLE_SIE)
339 		return s390_enable_sie();
340 	return -EINVAL;
341 }
342 
343 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
344 {
345 	int r;
346 
347 	switch (ext) {
348 	case KVM_CAP_S390_PSW:
349 	case KVM_CAP_S390_GMAP:
350 	case KVM_CAP_SYNC_MMU:
351 #ifdef CONFIG_KVM_S390_UCONTROL
352 	case KVM_CAP_S390_UCONTROL:
353 #endif
354 	case KVM_CAP_ASYNC_PF:
355 	case KVM_CAP_SYNC_REGS:
356 	case KVM_CAP_ONE_REG:
357 	case KVM_CAP_ENABLE_CAP:
358 	case KVM_CAP_S390_CSS_SUPPORT:
359 	case KVM_CAP_IOEVENTFD:
360 	case KVM_CAP_DEVICE_CTRL:
361 	case KVM_CAP_ENABLE_CAP_VM:
362 	case KVM_CAP_S390_IRQCHIP:
363 	case KVM_CAP_VM_ATTRIBUTES:
364 	case KVM_CAP_MP_STATE:
365 	case KVM_CAP_S390_INJECT_IRQ:
366 	case KVM_CAP_S390_USER_SIGP:
367 	case KVM_CAP_S390_USER_STSI:
368 	case KVM_CAP_S390_SKEYS:
369 	case KVM_CAP_S390_IRQ_STATE:
370 	case KVM_CAP_S390_USER_INSTR0:
371 		r = 1;
372 		break;
373 	case KVM_CAP_S390_MEM_OP:
374 		r = MEM_OP_MAX_SIZE;
375 		break;
376 	case KVM_CAP_NR_VCPUS:
377 	case KVM_CAP_MAX_VCPUS:
378 		r = KVM_S390_BSCA_CPU_SLOTS;
379 		if (sclp.has_esca && sclp.has_64bscao)
380 			r = KVM_S390_ESCA_CPU_SLOTS;
381 		break;
382 	case KVM_CAP_NR_MEMSLOTS:
383 		r = KVM_USER_MEM_SLOTS;
384 		break;
385 	case KVM_CAP_S390_COW:
386 		r = MACHINE_HAS_ESOP;
387 		break;
388 	case KVM_CAP_S390_VECTOR_REGISTERS:
389 		r = MACHINE_HAS_VX;
390 		break;
391 	case KVM_CAP_S390_RI:
392 		r = test_facility(64);
393 		break;
394 	default:
395 		r = 0;
396 	}
397 	return r;
398 }
399 
400 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
401 					struct kvm_memory_slot *memslot)
402 {
403 	gfn_t cur_gfn, last_gfn;
404 	unsigned long address;
405 	struct gmap *gmap = kvm->arch.gmap;
406 
407 	/* Loop over all guest pages */
408 	last_gfn = memslot->base_gfn + memslot->npages;
409 	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
410 		address = gfn_to_hva_memslot(memslot, cur_gfn);
411 
412 		if (test_and_clear_guest_dirty(gmap->mm, address))
413 			mark_page_dirty(kvm, cur_gfn);
414 		if (fatal_signal_pending(current))
415 			return;
416 		cond_resched();
417 	}
418 }
419 
420 /* Section: vm related */
421 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
422 
423 /*
424  * Get (and clear) the dirty memory log for a memory slot.
425  */
426 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
427 			       struct kvm_dirty_log *log)
428 {
429 	int r;
430 	unsigned long n;
431 	struct kvm_memslots *slots;
432 	struct kvm_memory_slot *memslot;
433 	int is_dirty = 0;
434 
435 	mutex_lock(&kvm->slots_lock);
436 
437 	r = -EINVAL;
438 	if (log->slot >= KVM_USER_MEM_SLOTS)
439 		goto out;
440 
441 	slots = kvm_memslots(kvm);
442 	memslot = id_to_memslot(slots, log->slot);
443 	r = -ENOENT;
444 	if (!memslot->dirty_bitmap)
445 		goto out;
446 
447 	kvm_s390_sync_dirty_log(kvm, memslot);
448 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
449 	if (r)
450 		goto out;
451 
452 	/* Clear the dirty log */
453 	if (is_dirty) {
454 		n = kvm_dirty_bitmap_bytes(memslot);
455 		memset(memslot->dirty_bitmap, 0, n);
456 	}
457 	r = 0;
458 out:
459 	mutex_unlock(&kvm->slots_lock);
460 	return r;
461 }
462 
463 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
464 {
465 	unsigned int i;
466 	struct kvm_vcpu *vcpu;
467 
468 	kvm_for_each_vcpu(i, vcpu, kvm) {
469 		kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
470 	}
471 }
472 
473 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
474 {
475 	int r;
476 
477 	if (cap->flags)
478 		return -EINVAL;
479 
480 	switch (cap->cap) {
481 	case KVM_CAP_S390_IRQCHIP:
482 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
483 		kvm->arch.use_irqchip = 1;
484 		r = 0;
485 		break;
486 	case KVM_CAP_S390_USER_SIGP:
487 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
488 		kvm->arch.user_sigp = 1;
489 		r = 0;
490 		break;
491 	case KVM_CAP_S390_VECTOR_REGISTERS:
492 		mutex_lock(&kvm->lock);
493 		if (kvm->created_vcpus) {
494 			r = -EBUSY;
495 		} else if (MACHINE_HAS_VX) {
496 			set_kvm_facility(kvm->arch.model.fac_mask, 129);
497 			set_kvm_facility(kvm->arch.model.fac_list, 129);
498 			r = 0;
499 		} else
500 			r = -EINVAL;
501 		mutex_unlock(&kvm->lock);
502 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
503 			 r ? "(not available)" : "(success)");
504 		break;
505 	case KVM_CAP_S390_RI:
506 		r = -EINVAL;
507 		mutex_lock(&kvm->lock);
508 		if (kvm->created_vcpus) {
509 			r = -EBUSY;
510 		} else if (test_facility(64)) {
511 			set_kvm_facility(kvm->arch.model.fac_mask, 64);
512 			set_kvm_facility(kvm->arch.model.fac_list, 64);
513 			r = 0;
514 		}
515 		mutex_unlock(&kvm->lock);
516 		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
517 			 r ? "(not available)" : "(success)");
518 		break;
519 	case KVM_CAP_S390_USER_STSI:
520 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
521 		kvm->arch.user_stsi = 1;
522 		r = 0;
523 		break;
524 	case KVM_CAP_S390_USER_INSTR0:
525 		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
526 		kvm->arch.user_instr0 = 1;
527 		icpt_operexc_on_all_vcpus(kvm);
528 		r = 0;
529 		break;
530 	default:
531 		r = -EINVAL;
532 		break;
533 	}
534 	return r;
535 }
536 
537 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
538 {
539 	int ret;
540 
541 	switch (attr->attr) {
542 	case KVM_S390_VM_MEM_LIMIT_SIZE:
543 		ret = 0;
544 		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
545 			 kvm->arch.mem_limit);
546 		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
547 			ret = -EFAULT;
548 		break;
549 	default:
550 		ret = -ENXIO;
551 		break;
552 	}
553 	return ret;
554 }
555 
556 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
557 {
558 	int ret;
559 	unsigned int idx;
560 	switch (attr->attr) {
561 	case KVM_S390_VM_MEM_ENABLE_CMMA:
562 		ret = -ENXIO;
563 		if (!sclp.has_cmma)
564 			break;
565 
566 		ret = -EBUSY;
567 		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
568 		mutex_lock(&kvm->lock);
569 		if (!kvm->created_vcpus) {
570 			kvm->arch.use_cmma = 1;
571 			ret = 0;
572 		}
573 		mutex_unlock(&kvm->lock);
574 		break;
575 	case KVM_S390_VM_MEM_CLR_CMMA:
576 		ret = -ENXIO;
577 		if (!sclp.has_cmma)
578 			break;
579 		ret = -EINVAL;
580 		if (!kvm->arch.use_cmma)
581 			break;
582 
583 		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
584 		mutex_lock(&kvm->lock);
585 		idx = srcu_read_lock(&kvm->srcu);
586 		s390_reset_cmma(kvm->arch.gmap->mm);
587 		srcu_read_unlock(&kvm->srcu, idx);
588 		mutex_unlock(&kvm->lock);
589 		ret = 0;
590 		break;
591 	case KVM_S390_VM_MEM_LIMIT_SIZE: {
592 		unsigned long new_limit;
593 
594 		if (kvm_is_ucontrol(kvm))
595 			return -EINVAL;
596 
597 		if (get_user(new_limit, (u64 __user *)attr->addr))
598 			return -EFAULT;
599 
600 		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
601 		    new_limit > kvm->arch.mem_limit)
602 			return -E2BIG;
603 
604 		if (!new_limit)
605 			return -EINVAL;
606 
607 		/* gmap_create takes last usable address */
608 		if (new_limit != KVM_S390_NO_MEM_LIMIT)
609 			new_limit -= 1;
610 
611 		ret = -EBUSY;
612 		mutex_lock(&kvm->lock);
613 		if (!kvm->created_vcpus) {
614 			/* gmap_create will round the limit up */
615 			struct gmap *new = gmap_create(current->mm, new_limit);
616 
617 			if (!new) {
618 				ret = -ENOMEM;
619 			} else {
620 				gmap_remove(kvm->arch.gmap);
621 				new->private = kvm;
622 				kvm->arch.gmap = new;
623 				ret = 0;
624 			}
625 		}
626 		mutex_unlock(&kvm->lock);
627 		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
628 		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
629 			 (void *) kvm->arch.gmap->asce);
630 		break;
631 	}
632 	default:
633 		ret = -ENXIO;
634 		break;
635 	}
636 	return ret;
637 }
638 
639 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
640 
641 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
642 {
643 	struct kvm_vcpu *vcpu;
644 	int i;
645 
646 	if (!test_kvm_facility(kvm, 76))
647 		return -EINVAL;
648 
649 	mutex_lock(&kvm->lock);
650 	switch (attr->attr) {
651 	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
652 		get_random_bytes(
653 			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
654 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
655 		kvm->arch.crypto.aes_kw = 1;
656 		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
657 		break;
658 	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
659 		get_random_bytes(
660 			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
661 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
662 		kvm->arch.crypto.dea_kw = 1;
663 		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
664 		break;
665 	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
666 		kvm->arch.crypto.aes_kw = 0;
667 		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
668 			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
669 		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
670 		break;
671 	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
672 		kvm->arch.crypto.dea_kw = 0;
673 		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
674 			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
675 		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
676 		break;
677 	default:
678 		mutex_unlock(&kvm->lock);
679 		return -ENXIO;
680 	}
681 
682 	kvm_for_each_vcpu(i, vcpu, kvm) {
683 		kvm_s390_vcpu_crypto_setup(vcpu);
684 		exit_sie(vcpu);
685 	}
686 	mutex_unlock(&kvm->lock);
687 	return 0;
688 }
689 
690 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
691 {
692 	u8 gtod_high;
693 
694 	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
695 					   sizeof(gtod_high)))
696 		return -EFAULT;
697 
698 	if (gtod_high != 0)
699 		return -EINVAL;
700 	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
701 
702 	return 0;
703 }
704 
705 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
706 {
707 	u64 gtod;
708 
709 	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
710 		return -EFAULT;
711 
712 	kvm_s390_set_tod_clock(kvm, gtod);
713 	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
714 	return 0;
715 }
716 
717 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
718 {
719 	int ret;
720 
721 	if (attr->flags)
722 		return -EINVAL;
723 
724 	switch (attr->attr) {
725 	case KVM_S390_VM_TOD_HIGH:
726 		ret = kvm_s390_set_tod_high(kvm, attr);
727 		break;
728 	case KVM_S390_VM_TOD_LOW:
729 		ret = kvm_s390_set_tod_low(kvm, attr);
730 		break;
731 	default:
732 		ret = -ENXIO;
733 		break;
734 	}
735 	return ret;
736 }
737 
738 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
739 {
740 	u8 gtod_high = 0;
741 
742 	if (copy_to_user((void __user *)attr->addr, &gtod_high,
743 					 sizeof(gtod_high)))
744 		return -EFAULT;
745 	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
746 
747 	return 0;
748 }
749 
750 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
751 {
752 	u64 gtod;
753 
754 	gtod = kvm_s390_get_tod_clock_fast(kvm);
755 	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
756 		return -EFAULT;
757 	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
758 
759 	return 0;
760 }
761 
762 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
763 {
764 	int ret;
765 
766 	if (attr->flags)
767 		return -EINVAL;
768 
769 	switch (attr->attr) {
770 	case KVM_S390_VM_TOD_HIGH:
771 		ret = kvm_s390_get_tod_high(kvm, attr);
772 		break;
773 	case KVM_S390_VM_TOD_LOW:
774 		ret = kvm_s390_get_tod_low(kvm, attr);
775 		break;
776 	default:
777 		ret = -ENXIO;
778 		break;
779 	}
780 	return ret;
781 }
782 
783 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
784 {
785 	struct kvm_s390_vm_cpu_processor *proc;
786 	u16 lowest_ibc, unblocked_ibc;
787 	int ret = 0;
788 
789 	mutex_lock(&kvm->lock);
790 	if (kvm->created_vcpus) {
791 		ret = -EBUSY;
792 		goto out;
793 	}
794 	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
795 	if (!proc) {
796 		ret = -ENOMEM;
797 		goto out;
798 	}
799 	if (!copy_from_user(proc, (void __user *)attr->addr,
800 			    sizeof(*proc))) {
801 		kvm->arch.model.cpuid = proc->cpuid;
802 		lowest_ibc = sclp.ibc >> 16 & 0xfff;
803 		unblocked_ibc = sclp.ibc & 0xfff;
804 		if (lowest_ibc && proc->ibc) {
805 			if (proc->ibc > unblocked_ibc)
806 				kvm->arch.model.ibc = unblocked_ibc;
807 			else if (proc->ibc < lowest_ibc)
808 				kvm->arch.model.ibc = lowest_ibc;
809 			else
810 				kvm->arch.model.ibc = proc->ibc;
811 		}
812 		memcpy(kvm->arch.model.fac_list, proc->fac_list,
813 		       S390_ARCH_FAC_LIST_SIZE_BYTE);
814 	} else
815 		ret = -EFAULT;
816 	kfree(proc);
817 out:
818 	mutex_unlock(&kvm->lock);
819 	return ret;
820 }
821 
822 static int kvm_s390_set_processor_feat(struct kvm *kvm,
823 				       struct kvm_device_attr *attr)
824 {
825 	struct kvm_s390_vm_cpu_feat data;
826 	int ret = -EBUSY;
827 
828 	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
829 		return -EFAULT;
830 	if (!bitmap_subset((unsigned long *) data.feat,
831 			   kvm_s390_available_cpu_feat,
832 			   KVM_S390_VM_CPU_FEAT_NR_BITS))
833 		return -EINVAL;
834 
835 	mutex_lock(&kvm->lock);
836 	if (!atomic_read(&kvm->online_vcpus)) {
837 		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
838 			    KVM_S390_VM_CPU_FEAT_NR_BITS);
839 		ret = 0;
840 	}
841 	mutex_unlock(&kvm->lock);
842 	return ret;
843 }
844 
845 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
846 					  struct kvm_device_attr *attr)
847 {
848 	/*
849 	 * Once supported by kernel + hw, we have to store the subfunctions
850 	 * in kvm->arch and remember that user space configured them.
851 	 */
852 	return -ENXIO;
853 }
854 
855 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
856 {
857 	int ret = -ENXIO;
858 
859 	switch (attr->attr) {
860 	case KVM_S390_VM_CPU_PROCESSOR:
861 		ret = kvm_s390_set_processor(kvm, attr);
862 		break;
863 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
864 		ret = kvm_s390_set_processor_feat(kvm, attr);
865 		break;
866 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
867 		ret = kvm_s390_set_processor_subfunc(kvm, attr);
868 		break;
869 	}
870 	return ret;
871 }
872 
873 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
874 {
875 	struct kvm_s390_vm_cpu_processor *proc;
876 	int ret = 0;
877 
878 	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
879 	if (!proc) {
880 		ret = -ENOMEM;
881 		goto out;
882 	}
883 	proc->cpuid = kvm->arch.model.cpuid;
884 	proc->ibc = kvm->arch.model.ibc;
885 	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
886 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
887 	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
888 		ret = -EFAULT;
889 	kfree(proc);
890 out:
891 	return ret;
892 }
893 
894 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
895 {
896 	struct kvm_s390_vm_cpu_machine *mach;
897 	int ret = 0;
898 
899 	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
900 	if (!mach) {
901 		ret = -ENOMEM;
902 		goto out;
903 	}
904 	get_cpu_id((struct cpuid *) &mach->cpuid);
905 	mach->ibc = sclp.ibc;
906 	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
907 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
908 	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
909 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
910 	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
911 		ret = -EFAULT;
912 	kfree(mach);
913 out:
914 	return ret;
915 }
916 
917 static int kvm_s390_get_processor_feat(struct kvm *kvm,
918 				       struct kvm_device_attr *attr)
919 {
920 	struct kvm_s390_vm_cpu_feat data;
921 
922 	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
923 		    KVM_S390_VM_CPU_FEAT_NR_BITS);
924 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
925 		return -EFAULT;
926 	return 0;
927 }
928 
929 static int kvm_s390_get_machine_feat(struct kvm *kvm,
930 				     struct kvm_device_attr *attr)
931 {
932 	struct kvm_s390_vm_cpu_feat data;
933 
934 	bitmap_copy((unsigned long *) data.feat,
935 		    kvm_s390_available_cpu_feat,
936 		    KVM_S390_VM_CPU_FEAT_NR_BITS);
937 	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
938 		return -EFAULT;
939 	return 0;
940 }
941 
942 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
943 					  struct kvm_device_attr *attr)
944 {
945 	/*
946 	 * Once we can actually configure subfunctions (kernel + hw support),
947 	 * we have to check if they were already set by user space, if so copy
948 	 * them from kvm->arch.
949 	 */
950 	return -ENXIO;
951 }
952 
953 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
954 					struct kvm_device_attr *attr)
955 {
956 	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
957 	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
958 		return -EFAULT;
959 	return 0;
960 }
961 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
962 {
963 	int ret = -ENXIO;
964 
965 	switch (attr->attr) {
966 	case KVM_S390_VM_CPU_PROCESSOR:
967 		ret = kvm_s390_get_processor(kvm, attr);
968 		break;
969 	case KVM_S390_VM_CPU_MACHINE:
970 		ret = kvm_s390_get_machine(kvm, attr);
971 		break;
972 	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
973 		ret = kvm_s390_get_processor_feat(kvm, attr);
974 		break;
975 	case KVM_S390_VM_CPU_MACHINE_FEAT:
976 		ret = kvm_s390_get_machine_feat(kvm, attr);
977 		break;
978 	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
979 		ret = kvm_s390_get_processor_subfunc(kvm, attr);
980 		break;
981 	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
982 		ret = kvm_s390_get_machine_subfunc(kvm, attr);
983 		break;
984 	}
985 	return ret;
986 }
987 
988 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
989 {
990 	int ret;
991 
992 	switch (attr->group) {
993 	case KVM_S390_VM_MEM_CTRL:
994 		ret = kvm_s390_set_mem_control(kvm, attr);
995 		break;
996 	case KVM_S390_VM_TOD:
997 		ret = kvm_s390_set_tod(kvm, attr);
998 		break;
999 	case KVM_S390_VM_CPU_MODEL:
1000 		ret = kvm_s390_set_cpu_model(kvm, attr);
1001 		break;
1002 	case KVM_S390_VM_CRYPTO:
1003 		ret = kvm_s390_vm_set_crypto(kvm, attr);
1004 		break;
1005 	default:
1006 		ret = -ENXIO;
1007 		break;
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1014 {
1015 	int ret;
1016 
1017 	switch (attr->group) {
1018 	case KVM_S390_VM_MEM_CTRL:
1019 		ret = kvm_s390_get_mem_control(kvm, attr);
1020 		break;
1021 	case KVM_S390_VM_TOD:
1022 		ret = kvm_s390_get_tod(kvm, attr);
1023 		break;
1024 	case KVM_S390_VM_CPU_MODEL:
1025 		ret = kvm_s390_get_cpu_model(kvm, attr);
1026 		break;
1027 	default:
1028 		ret = -ENXIO;
1029 		break;
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1036 {
1037 	int ret;
1038 
1039 	switch (attr->group) {
1040 	case KVM_S390_VM_MEM_CTRL:
1041 		switch (attr->attr) {
1042 		case KVM_S390_VM_MEM_ENABLE_CMMA:
1043 		case KVM_S390_VM_MEM_CLR_CMMA:
1044 			ret = sclp.has_cmma ? 0 : -ENXIO;
1045 			break;
1046 		case KVM_S390_VM_MEM_LIMIT_SIZE:
1047 			ret = 0;
1048 			break;
1049 		default:
1050 			ret = -ENXIO;
1051 			break;
1052 		}
1053 		break;
1054 	case KVM_S390_VM_TOD:
1055 		switch (attr->attr) {
1056 		case KVM_S390_VM_TOD_LOW:
1057 		case KVM_S390_VM_TOD_HIGH:
1058 			ret = 0;
1059 			break;
1060 		default:
1061 			ret = -ENXIO;
1062 			break;
1063 		}
1064 		break;
1065 	case KVM_S390_VM_CPU_MODEL:
1066 		switch (attr->attr) {
1067 		case KVM_S390_VM_CPU_PROCESSOR:
1068 		case KVM_S390_VM_CPU_MACHINE:
1069 		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1070 		case KVM_S390_VM_CPU_MACHINE_FEAT:
1071 		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1072 			ret = 0;
1073 			break;
1074 		/* configuring subfunctions is not supported yet */
1075 		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1076 		default:
1077 			ret = -ENXIO;
1078 			break;
1079 		}
1080 		break;
1081 	case KVM_S390_VM_CRYPTO:
1082 		switch (attr->attr) {
1083 		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1084 		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1085 		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1086 		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1087 			ret = 0;
1088 			break;
1089 		default:
1090 			ret = -ENXIO;
1091 			break;
1092 		}
1093 		break;
1094 	default:
1095 		ret = -ENXIO;
1096 		break;
1097 	}
1098 
1099 	return ret;
1100 }
1101 
1102 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1103 {
1104 	uint8_t *keys;
1105 	uint64_t hva;
1106 	int i, r = 0;
1107 
1108 	if (args->flags != 0)
1109 		return -EINVAL;
1110 
1111 	/* Is this guest using storage keys? */
1112 	if (!mm_use_skey(current->mm))
1113 		return KVM_S390_GET_SKEYS_NONE;
1114 
1115 	/* Enforce sane limit on memory allocation */
1116 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1117 		return -EINVAL;
1118 
1119 	keys = kmalloc_array(args->count, sizeof(uint8_t),
1120 			     GFP_KERNEL | __GFP_NOWARN);
1121 	if (!keys)
1122 		keys = vmalloc(sizeof(uint8_t) * args->count);
1123 	if (!keys)
1124 		return -ENOMEM;
1125 
1126 	down_read(&current->mm->mmap_sem);
1127 	for (i = 0; i < args->count; i++) {
1128 		hva = gfn_to_hva(kvm, args->start_gfn + i);
1129 		if (kvm_is_error_hva(hva)) {
1130 			r = -EFAULT;
1131 			break;
1132 		}
1133 
1134 		r = get_guest_storage_key(current->mm, hva, &keys[i]);
1135 		if (r)
1136 			break;
1137 	}
1138 	up_read(&current->mm->mmap_sem);
1139 
1140 	if (!r) {
1141 		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1142 				 sizeof(uint8_t) * args->count);
1143 		if (r)
1144 			r = -EFAULT;
1145 	}
1146 
1147 	kvfree(keys);
1148 	return r;
1149 }
1150 
1151 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1152 {
1153 	uint8_t *keys;
1154 	uint64_t hva;
1155 	int i, r = 0;
1156 
1157 	if (args->flags != 0)
1158 		return -EINVAL;
1159 
1160 	/* Enforce sane limit on memory allocation */
1161 	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1162 		return -EINVAL;
1163 
1164 	keys = kmalloc_array(args->count, sizeof(uint8_t),
1165 			     GFP_KERNEL | __GFP_NOWARN);
1166 	if (!keys)
1167 		keys = vmalloc(sizeof(uint8_t) * args->count);
1168 	if (!keys)
1169 		return -ENOMEM;
1170 
1171 	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1172 			   sizeof(uint8_t) * args->count);
1173 	if (r) {
1174 		r = -EFAULT;
1175 		goto out;
1176 	}
1177 
1178 	/* Enable storage key handling for the guest */
1179 	r = s390_enable_skey();
1180 	if (r)
1181 		goto out;
1182 
1183 	down_read(&current->mm->mmap_sem);
1184 	for (i = 0; i < args->count; i++) {
1185 		hva = gfn_to_hva(kvm, args->start_gfn + i);
1186 		if (kvm_is_error_hva(hva)) {
1187 			r = -EFAULT;
1188 			break;
1189 		}
1190 
1191 		/* Lowest order bit is reserved */
1192 		if (keys[i] & 0x01) {
1193 			r = -EINVAL;
1194 			break;
1195 		}
1196 
1197 		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1198 		if (r)
1199 			break;
1200 	}
1201 	up_read(&current->mm->mmap_sem);
1202 out:
1203 	kvfree(keys);
1204 	return r;
1205 }
1206 
1207 long kvm_arch_vm_ioctl(struct file *filp,
1208 		       unsigned int ioctl, unsigned long arg)
1209 {
1210 	struct kvm *kvm = filp->private_data;
1211 	void __user *argp = (void __user *)arg;
1212 	struct kvm_device_attr attr;
1213 	int r;
1214 
1215 	switch (ioctl) {
1216 	case KVM_S390_INTERRUPT: {
1217 		struct kvm_s390_interrupt s390int;
1218 
1219 		r = -EFAULT;
1220 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
1221 			break;
1222 		r = kvm_s390_inject_vm(kvm, &s390int);
1223 		break;
1224 	}
1225 	case KVM_ENABLE_CAP: {
1226 		struct kvm_enable_cap cap;
1227 		r = -EFAULT;
1228 		if (copy_from_user(&cap, argp, sizeof(cap)))
1229 			break;
1230 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1231 		break;
1232 	}
1233 	case KVM_CREATE_IRQCHIP: {
1234 		struct kvm_irq_routing_entry routing;
1235 
1236 		r = -EINVAL;
1237 		if (kvm->arch.use_irqchip) {
1238 			/* Set up dummy routing. */
1239 			memset(&routing, 0, sizeof(routing));
1240 			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1241 		}
1242 		break;
1243 	}
1244 	case KVM_SET_DEVICE_ATTR: {
1245 		r = -EFAULT;
1246 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1247 			break;
1248 		r = kvm_s390_vm_set_attr(kvm, &attr);
1249 		break;
1250 	}
1251 	case KVM_GET_DEVICE_ATTR: {
1252 		r = -EFAULT;
1253 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1254 			break;
1255 		r = kvm_s390_vm_get_attr(kvm, &attr);
1256 		break;
1257 	}
1258 	case KVM_HAS_DEVICE_ATTR: {
1259 		r = -EFAULT;
1260 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1261 			break;
1262 		r = kvm_s390_vm_has_attr(kvm, &attr);
1263 		break;
1264 	}
1265 	case KVM_S390_GET_SKEYS: {
1266 		struct kvm_s390_skeys args;
1267 
1268 		r = -EFAULT;
1269 		if (copy_from_user(&args, argp,
1270 				   sizeof(struct kvm_s390_skeys)))
1271 			break;
1272 		r = kvm_s390_get_skeys(kvm, &args);
1273 		break;
1274 	}
1275 	case KVM_S390_SET_SKEYS: {
1276 		struct kvm_s390_skeys args;
1277 
1278 		r = -EFAULT;
1279 		if (copy_from_user(&args, argp,
1280 				   sizeof(struct kvm_s390_skeys)))
1281 			break;
1282 		r = kvm_s390_set_skeys(kvm, &args);
1283 		break;
1284 	}
1285 	default:
1286 		r = -ENOTTY;
1287 	}
1288 
1289 	return r;
1290 }
1291 
1292 static int kvm_s390_query_ap_config(u8 *config)
1293 {
1294 	u32 fcn_code = 0x04000000UL;
1295 	u32 cc = 0;
1296 
1297 	memset(config, 0, 128);
1298 	asm volatile(
1299 		"lgr 0,%1\n"
1300 		"lgr 2,%2\n"
1301 		".long 0xb2af0000\n"		/* PQAP(QCI) */
1302 		"0: ipm %0\n"
1303 		"srl %0,28\n"
1304 		"1:\n"
1305 		EX_TABLE(0b, 1b)
1306 		: "+r" (cc)
1307 		: "r" (fcn_code), "r" (config)
1308 		: "cc", "0", "2", "memory"
1309 	);
1310 
1311 	return cc;
1312 }
1313 
1314 static int kvm_s390_apxa_installed(void)
1315 {
1316 	u8 config[128];
1317 	int cc;
1318 
1319 	if (test_facility(12)) {
1320 		cc = kvm_s390_query_ap_config(config);
1321 
1322 		if (cc)
1323 			pr_err("PQAP(QCI) failed with cc=%d", cc);
1324 		else
1325 			return config[0] & 0x40;
1326 	}
1327 
1328 	return 0;
1329 }
1330 
1331 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1332 {
1333 	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1334 
1335 	if (kvm_s390_apxa_installed())
1336 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1337 	else
1338 		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1339 }
1340 
1341 static u64 kvm_s390_get_initial_cpuid(void)
1342 {
1343 	struct cpuid cpuid;
1344 
1345 	get_cpu_id(&cpuid);
1346 	cpuid.version = 0xff;
1347 	return *((u64 *) &cpuid);
1348 }
1349 
1350 static void kvm_s390_crypto_init(struct kvm *kvm)
1351 {
1352 	if (!test_kvm_facility(kvm, 76))
1353 		return;
1354 
1355 	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1356 	kvm_s390_set_crycb_format(kvm);
1357 
1358 	/* Enable AES/DEA protected key functions by default */
1359 	kvm->arch.crypto.aes_kw = 1;
1360 	kvm->arch.crypto.dea_kw = 1;
1361 	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1362 			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1363 	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1364 			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1365 }
1366 
1367 static void sca_dispose(struct kvm *kvm)
1368 {
1369 	if (kvm->arch.use_esca)
1370 		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1371 	else
1372 		free_page((unsigned long)(kvm->arch.sca));
1373 	kvm->arch.sca = NULL;
1374 }
1375 
1376 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1377 {
1378 	gfp_t alloc_flags = GFP_KERNEL;
1379 	int i, rc;
1380 	char debug_name[16];
1381 	static unsigned long sca_offset;
1382 
1383 	rc = -EINVAL;
1384 #ifdef CONFIG_KVM_S390_UCONTROL
1385 	if (type & ~KVM_VM_S390_UCONTROL)
1386 		goto out_err;
1387 	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1388 		goto out_err;
1389 #else
1390 	if (type)
1391 		goto out_err;
1392 #endif
1393 
1394 	rc = s390_enable_sie();
1395 	if (rc)
1396 		goto out_err;
1397 
1398 	rc = -ENOMEM;
1399 
1400 	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);
1401 
1402 	kvm->arch.use_esca = 0; /* start with basic SCA */
1403 	if (!sclp.has_64bscao)
1404 		alloc_flags |= GFP_DMA;
1405 	rwlock_init(&kvm->arch.sca_lock);
1406 	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1407 	if (!kvm->arch.sca)
1408 		goto out_err;
1409 	spin_lock(&kvm_lock);
1410 	sca_offset += 16;
1411 	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1412 		sca_offset = 0;
1413 	kvm->arch.sca = (struct bsca_block *)
1414 			((char *) kvm->arch.sca + sca_offset);
1415 	spin_unlock(&kvm_lock);
1416 
1417 	sprintf(debug_name, "kvm-%u", current->pid);
1418 
1419 	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1420 	if (!kvm->arch.dbf)
1421 		goto out_err;
1422 
1423 	kvm->arch.sie_page2 =
1424 	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1425 	if (!kvm->arch.sie_page2)
1426 		goto out_err;
1427 
1428 	/* Populate the facility mask initially. */
1429 	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1430 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1431 	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1432 		if (i < kvm_s390_fac_list_mask_size())
1433 			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1434 		else
1435 			kvm->arch.model.fac_mask[i] = 0UL;
1436 	}
1437 
1438 	/* Populate the facility list initially. */
1439 	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
1440 	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1441 	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1442 
1443 	set_kvm_facility(kvm->arch.model.fac_mask, 74);
1444 	set_kvm_facility(kvm->arch.model.fac_list, 74);
1445 
1446 	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1447 	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1448 
1449 	kvm_s390_crypto_init(kvm);
1450 
1451 	spin_lock_init(&kvm->arch.float_int.lock);
1452 	for (i = 0; i < FIRQ_LIST_COUNT; i++)
1453 		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1454 	init_waitqueue_head(&kvm->arch.ipte_wq);
1455 	mutex_init(&kvm->arch.ipte_mutex);
1456 
1457 	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1458 	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1459 
1460 	if (type & KVM_VM_S390_UCONTROL) {
1461 		kvm->arch.gmap = NULL;
1462 		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1463 	} else {
1464 		if (sclp.hamax == U64_MAX)
1465 			kvm->arch.mem_limit = TASK_MAX_SIZE;
1466 		else
1467 			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1468 						    sclp.hamax + 1);
1469 		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1470 		if (!kvm->arch.gmap)
1471 			goto out_err;
1472 		kvm->arch.gmap->private = kvm;
1473 		kvm->arch.gmap->pfault_enabled = 0;
1474 	}
1475 
1476 	kvm->arch.css_support = 0;
1477 	kvm->arch.use_irqchip = 0;
1478 	kvm->arch.epoch = 0;
1479 
1480 	spin_lock_init(&kvm->arch.start_stop_lock);
1481 	kvm_s390_vsie_init(kvm);
1482 	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1483 
1484 	return 0;
1485 out_err:
1486 	free_page((unsigned long)kvm->arch.sie_page2);
1487 	debug_unregister(kvm->arch.dbf);
1488 	sca_dispose(kvm);
1489 	KVM_EVENT(3, "creation of vm failed: %d", rc);
1490 	return rc;
1491 }
1492 
1493 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1494 {
1495 	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1496 	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1497 	kvm_s390_clear_local_irqs(vcpu);
1498 	kvm_clear_async_pf_completion_queue(vcpu);
1499 	if (!kvm_is_ucontrol(vcpu->kvm))
1500 		sca_del_vcpu(vcpu);
1501 
1502 	if (kvm_is_ucontrol(vcpu->kvm))
1503 		gmap_remove(vcpu->arch.gmap);
1504 
1505 	if (vcpu->kvm->arch.use_cmma)
1506 		kvm_s390_vcpu_unsetup_cmma(vcpu);
1507 	free_page((unsigned long)(vcpu->arch.sie_block));
1508 
1509 	kvm_vcpu_uninit(vcpu);
1510 	kmem_cache_free(kvm_vcpu_cache, vcpu);
1511 }
1512 
1513 static void kvm_free_vcpus(struct kvm *kvm)
1514 {
1515 	unsigned int i;
1516 	struct kvm_vcpu *vcpu;
1517 
1518 	kvm_for_each_vcpu(i, vcpu, kvm)
1519 		kvm_arch_vcpu_destroy(vcpu);
1520 
1521 	mutex_lock(&kvm->lock);
1522 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1523 		kvm->vcpus[i] = NULL;
1524 
1525 	atomic_set(&kvm->online_vcpus, 0);
1526 	mutex_unlock(&kvm->lock);
1527 }
1528 
1529 void kvm_arch_destroy_vm(struct kvm *kvm)
1530 {
1531 	kvm_free_vcpus(kvm);
1532 	sca_dispose(kvm);
1533 	debug_unregister(kvm->arch.dbf);
1534 	free_page((unsigned long)kvm->arch.sie_page2);
1535 	if (!kvm_is_ucontrol(kvm))
1536 		gmap_remove(kvm->arch.gmap);
1537 	kvm_s390_destroy_adapters(kvm);
1538 	kvm_s390_clear_float_irqs(kvm);
1539 	kvm_s390_vsie_destroy(kvm);
1540 	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1541 }
1542 
1543 /* Section: vcpu related */
1544 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1545 {
1546 	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1547 	if (!vcpu->arch.gmap)
1548 		return -ENOMEM;
1549 	vcpu->arch.gmap->private = vcpu->kvm;
1550 
1551 	return 0;
1552 }
1553 
1554 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1555 {
1556 	read_lock(&vcpu->kvm->arch.sca_lock);
1557 	if (vcpu->kvm->arch.use_esca) {
1558 		struct esca_block *sca = vcpu->kvm->arch.sca;
1559 
1560 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1561 		sca->cpu[vcpu->vcpu_id].sda = 0;
1562 	} else {
1563 		struct bsca_block *sca = vcpu->kvm->arch.sca;
1564 
1565 		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1566 		sca->cpu[vcpu->vcpu_id].sda = 0;
1567 	}
1568 	read_unlock(&vcpu->kvm->arch.sca_lock);
1569 }
1570 
1571 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1572 {
1573 	read_lock(&vcpu->kvm->arch.sca_lock);
1574 	if (vcpu->kvm->arch.use_esca) {
1575 		struct esca_block *sca = vcpu->kvm->arch.sca;
1576 
1577 		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1578 		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1579 		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1580 		vcpu->arch.sie_block->ecb2 |= 0x04U;
1581 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1582 	} else {
1583 		struct bsca_block *sca = vcpu->kvm->arch.sca;
1584 
1585 		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1586 		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1587 		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1588 		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1589 	}
1590 	read_unlock(&vcpu->kvm->arch.sca_lock);
1591 }
1592 
1593 /* Basic SCA to Extended SCA data copy routines */
1594 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1595 {
1596 	d->sda = s->sda;
1597 	d->sigp_ctrl.c = s->sigp_ctrl.c;
1598 	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1599 }
1600 
1601 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1602 {
1603 	int i;
1604 
1605 	d->ipte_control = s->ipte_control;
1606 	d->mcn[0] = s->mcn;
1607 	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1608 		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1609 }
1610 
1611 static int sca_switch_to_extended(struct kvm *kvm)
1612 {
1613 	struct bsca_block *old_sca = kvm->arch.sca;
1614 	struct esca_block *new_sca;
1615 	struct kvm_vcpu *vcpu;
1616 	unsigned int vcpu_idx;
1617 	u32 scaol, scaoh;
1618 
1619 	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1620 	if (!new_sca)
1621 		return -ENOMEM;
1622 
1623 	scaoh = (u32)((u64)(new_sca) >> 32);
1624 	scaol = (u32)(u64)(new_sca) & ~0x3fU;
1625 
1626 	kvm_s390_vcpu_block_all(kvm);
1627 	write_lock(&kvm->arch.sca_lock);
1628 
1629 	sca_copy_b_to_e(new_sca, old_sca);
1630 
1631 	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1632 		vcpu->arch.sie_block->scaoh = scaoh;
1633 		vcpu->arch.sie_block->scaol = scaol;
1634 		vcpu->arch.sie_block->ecb2 |= 0x04U;
1635 	}
1636 	kvm->arch.sca = new_sca;
1637 	kvm->arch.use_esca = 1;
1638 
1639 	write_unlock(&kvm->arch.sca_lock);
1640 	kvm_s390_vcpu_unblock_all(kvm);
1641 
1642 	free_page((unsigned long)old_sca);
1643 
1644 	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1645 		 old_sca, kvm->arch.sca);
1646 	return 0;
1647 }
1648 
1649 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1650 {
1651 	int rc;
1652 
1653 	if (id < KVM_S390_BSCA_CPU_SLOTS)
1654 		return true;
1655 	if (!sclp.has_esca || !sclp.has_64bscao)
1656 		return false;
1657 
1658 	mutex_lock(&kvm->lock);
1659 	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1660 	mutex_unlock(&kvm->lock);
1661 
1662 	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1663 }
1664 
1665 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1666 {
1667 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1668 	kvm_clear_async_pf_completion_queue(vcpu);
1669 	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1670 				    KVM_SYNC_GPRS |
1671 				    KVM_SYNC_ACRS |
1672 				    KVM_SYNC_CRS |
1673 				    KVM_SYNC_ARCH0 |
1674 				    KVM_SYNC_PFAULT;
1675 	kvm_s390_set_prefix(vcpu, 0);
1676 	if (test_kvm_facility(vcpu->kvm, 64))
1677 		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1678 	/* fprs can be synchronized via vrs, even if the guest has no vx. With
1679 	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
1680 	 */
1681 	if (MACHINE_HAS_VX)
1682 		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1683 	else
1684 		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1685 
1686 	if (kvm_is_ucontrol(vcpu->kvm))
1687 		return __kvm_ucontrol_vcpu_init(vcpu);
1688 
1689 	return 0;
1690 }
1691 
1692 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1693 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1694 {
1695 	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1696 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1697 	vcpu->arch.cputm_start = get_tod_clock_fast();
1698 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1699 }
1700 
1701 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1702 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1703 {
1704 	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1705 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1706 	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1707 	vcpu->arch.cputm_start = 0;
1708 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1709 }
1710 
1711 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1712 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1713 {
1714 	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
1715 	vcpu->arch.cputm_enabled = true;
1716 	__start_cpu_timer_accounting(vcpu);
1717 }
1718 
1719 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1720 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1721 {
1722 	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
1723 	__stop_cpu_timer_accounting(vcpu);
1724 	vcpu->arch.cputm_enabled = false;
1725 }
1726 
1727 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1728 {
1729 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1730 	__enable_cpu_timer_accounting(vcpu);
1731 	preempt_enable();
1732 }
1733 
1734 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1735 {
1736 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1737 	__disable_cpu_timer_accounting(vcpu);
1738 	preempt_enable();
1739 }
1740 
1741 /* set the cpu timer - may only be called from the VCPU thread itself */
1742 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
1743 {
1744 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1745 	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1746 	if (vcpu->arch.cputm_enabled)
1747 		vcpu->arch.cputm_start = get_tod_clock_fast();
1748 	vcpu->arch.sie_block->cputm = cputm;
1749 	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1750 	preempt_enable();
1751 }
1752 
1753 /* update and get the cpu timer - can also be called from other VCPU threads */
1754 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
1755 {
1756 	unsigned int seq;
1757 	__u64 value;
1758 
1759 	if (unlikely(!vcpu->arch.cputm_enabled))
1760 		return vcpu->arch.sie_block->cputm;
1761 
1762 	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1763 	do {
1764 		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
1765 		/*
1766 		 * If the writer would ever execute a read in the critical
1767 		 * section, e.g. in irq context, we have a deadlock.
1768 		 */
1769 		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
1770 		value = vcpu->arch.sie_block->cputm;
1771 		/* if cputm_start is 0, accounting is being started/stopped */
1772 		if (likely(vcpu->arch.cputm_start))
1773 			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1774 	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
1775 	preempt_enable();
1776 	return value;
1777 }
1778 
1779 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1780 {
1781 	/* Save host register state */
1782 	save_fpu_regs();
1783 	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
1784 	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1785 
1786 	if (MACHINE_HAS_VX)
1787 		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
1788 	else
1789 		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1790 	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1791 	if (test_fp_ctl(current->thread.fpu.fpc))
1792 		/* User space provided an invalid FPC, let's clear it */
1793 		current->thread.fpu.fpc = 0;
1794 
1795 	save_access_regs(vcpu->arch.host_acrs);
1796 	restore_access_regs(vcpu->run->s.regs.acrs);
1797 	gmap_enable(vcpu->arch.enabled_gmap);
1798 	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1799 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1800 		__start_cpu_timer_accounting(vcpu);
1801 	vcpu->cpu = cpu;
1802 }
1803 
1804 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1805 {
1806 	vcpu->cpu = -1;
1807 	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1808 		__stop_cpu_timer_accounting(vcpu);
1809 	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1810 	vcpu->arch.enabled_gmap = gmap_get_enabled();
1811 	gmap_disable(vcpu->arch.enabled_gmap);
1812 
1813 	/* Save guest register state */
1814 	save_fpu_regs();
1815 	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1816 
1817 	/* Restore host register state */
1818 	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
1819 	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1820 
1821 	save_access_regs(vcpu->run->s.regs.acrs);
1822 	restore_access_regs(vcpu->arch.host_acrs);
1823 }
1824 
1825 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1826 {
1827 	/* this equals initial cpu reset in pop, but we don't switch to ESA */
1828 	vcpu->arch.sie_block->gpsw.mask = 0UL;
1829 	vcpu->arch.sie_block->gpsw.addr = 0UL;
1830 	kvm_s390_set_prefix(vcpu, 0);
1831 	kvm_s390_set_cpu_timer(vcpu, 0);
1832 	vcpu->arch.sie_block->ckc       = 0UL;
1833 	vcpu->arch.sie_block->todpr     = 0;
1834 	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1835 	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
1836 	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1837 	/* make sure the new fpc will be lazily loaded */
1838 	save_fpu_regs();
1839 	current->thread.fpu.fpc = 0;
1840 	vcpu->arch.sie_block->gbea = 1;
1841 	vcpu->arch.sie_block->pp = 0;
1842 	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1843 	kvm_clear_async_pf_completion_queue(vcpu);
1844 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1845 		kvm_s390_vcpu_stop(vcpu);
1846 	kvm_s390_clear_local_irqs(vcpu);
1847 }
1848 
1849 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1850 {
1851 	mutex_lock(&vcpu->kvm->lock);
1852 	preempt_disable();
1853 	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1854 	preempt_enable();
1855 	mutex_unlock(&vcpu->kvm->lock);
1856 	if (!kvm_is_ucontrol(vcpu->kvm)) {
1857 		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1858 		sca_add_vcpu(vcpu);
1859 	}
1860 	if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
1861 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1862 	/* make vcpu_load load the right gmap on the first trigger */
1863 	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1864 }
1865 
1866 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1867 {
1868 	if (!test_kvm_facility(vcpu->kvm, 76))
1869 		return;
1870 
1871 	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1872 
1873 	if (vcpu->kvm->arch.crypto.aes_kw)
1874 		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1875 	if (vcpu->kvm->arch.crypto.dea_kw)
1876 		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1877 
1878 	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1879 }
1880 
1881 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1882 {
1883 	free_page(vcpu->arch.sie_block->cbrlo);
1884 	vcpu->arch.sie_block->cbrlo = 0;
1885 }
1886 
1887 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1888 {
1889 	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1890 	if (!vcpu->arch.sie_block->cbrlo)
1891 		return -ENOMEM;
1892 
1893 	vcpu->arch.sie_block->ecb2 |= 0x80;
1894 	vcpu->arch.sie_block->ecb2 &= ~0x08;
1895 	return 0;
1896 }
1897 
1898 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1899 {
1900 	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1901 
1902 	vcpu->arch.sie_block->ibc = model->ibc;
1903 	if (test_kvm_facility(vcpu->kvm, 7))
1904 		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1905 }
1906 
1907 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1908 {
1909 	int rc = 0;
1910 
1911 	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1912 						    CPUSTAT_SM |
1913 						    CPUSTAT_STOPPED);
1914 
1915 	if (test_kvm_facility(vcpu->kvm, 78))
1916 		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1917 	else if (test_kvm_facility(vcpu->kvm, 8))
1918 		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1919 
1920 	kvm_s390_vcpu_setup_model(vcpu);
1921 
1922 	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
1923 	if (MACHINE_HAS_ESOP)
1924 		vcpu->arch.sie_block->ecb |= 0x02;
1925 	if (test_kvm_facility(vcpu->kvm, 9))
1926 		vcpu->arch.sie_block->ecb |= 0x04;
1927 	if (test_kvm_facility(vcpu->kvm, 73))
1928 		vcpu->arch.sie_block->ecb |= 0x10;
1929 
1930 	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1931 		vcpu->arch.sie_block->ecb2 |= 0x08;
1932 	vcpu->arch.sie_block->eca = 0x1002000U;
1933 	if (sclp.has_cei)
1934 		vcpu->arch.sie_block->eca |= 0x80000000U;
1935 	if (sclp.has_ib)
1936 		vcpu->arch.sie_block->eca |= 0x40000000U;
1937 	if (sclp.has_siif)
1938 		vcpu->arch.sie_block->eca |= 1;
1939 	if (sclp.has_sigpif)
1940 		vcpu->arch.sie_block->eca |= 0x10000000U;
1941 	if (test_kvm_facility(vcpu->kvm, 64))
1942 		vcpu->arch.sie_block->ecb3 |= 0x01;
1943 	if (test_kvm_facility(vcpu->kvm, 129)) {
1944 		vcpu->arch.sie_block->eca |= 0x00020000;
1945 		vcpu->arch.sie_block->ecd |= 0x20000000;
1946 	}
1947 	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1948 	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1949 
1950 	if (vcpu->kvm->arch.use_cmma) {
1951 		rc = kvm_s390_vcpu_setup_cmma(vcpu);
1952 		if (rc)
1953 			return rc;
1954 	}
1955 	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1956 	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1957 
1958 	kvm_s390_vcpu_crypto_setup(vcpu);
1959 
1960 	return rc;
1961 }
1962 
1963 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1964 				      unsigned int id)
1965 {
1966 	struct kvm_vcpu *vcpu;
1967 	struct sie_page *sie_page;
1968 	int rc = -EINVAL;
1969 
1970 	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1971 		goto out;
1972 
1973 	rc = -ENOMEM;
1974 
1975 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1976 	if (!vcpu)
1977 		goto out;
1978 
1979 	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1980 	if (!sie_page)
1981 		goto out_free_cpu;
1982 
1983 	vcpu->arch.sie_block = &sie_page->sie_block;
1984 	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1985 
1986 	/* the real guest size will always be smaller than msl */
1987 	vcpu->arch.sie_block->mso = 0;
1988 	vcpu->arch.sie_block->msl = sclp.hamax;
1989 
1990 	vcpu->arch.sie_block->icpua = id;
1991 	spin_lock_init(&vcpu->arch.local_int.lock);
1992 	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1993 	vcpu->arch.local_int.wq = &vcpu->wq;
1994 	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1995 	seqcount_init(&vcpu->arch.cputm_seqcount);
1996 
1997 	rc = kvm_vcpu_init(vcpu, kvm, id);
1998 	if (rc)
1999 		goto out_free_sie_block;
2000 	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2001 		 vcpu->arch.sie_block);
2002 	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2003 
2004 	return vcpu;
2005 out_free_sie_block:
2006 	free_page((unsigned long)(vcpu->arch.sie_block));
2007 out_free_cpu:
2008 	kmem_cache_free(kvm_vcpu_cache, vcpu);
2009 out:
2010 	return ERR_PTR(rc);
2011 }
2012 
2013 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
2014 {
2015 	return kvm_s390_vcpu_has_irq(vcpu, 0);
2016 }
2017 
2018 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2019 {
2020 	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2021 	exit_sie(vcpu);
2022 }
2023 
2024 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2025 {
2026 	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2027 }
2028 
2029 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
2030 {
2031 	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2032 	exit_sie(vcpu);
2033 }
2034 
2035 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
2036 {
2037 	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2038 }
2039 
2040 /*
2041  * Kick a guest cpu out of SIE and wait until SIE is not running.
2042  * If the CPU is not running (e.g. waiting as idle) the function will
2043  * return immediately. */
2044 void exit_sie(struct kvm_vcpu *vcpu)
2045 {
2046 	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2047 	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
2048 		cpu_relax();
2049 }
2050 
2051 /* Kick a guest cpu out of SIE to process a request synchronously */
2052 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2053 {
2054 	kvm_make_request(req, vcpu);
2055 	kvm_s390_vcpu_request(vcpu);
2056 }
2057 
2058 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
2059 			      unsigned long end)
2060 {
2061 	struct kvm *kvm = gmap->private;
2062 	struct kvm_vcpu *vcpu;
2063 	unsigned long prefix;
2064 	int i;
2065 
2066 	if (gmap_is_shadow(gmap))
2067 		return;
2068 	if (start >= 1UL << 31)
2069 		/* We are only interested in prefix pages */
2070 		return;
2071 	kvm_for_each_vcpu(i, vcpu, kvm) {
2072 		/* match against both prefix pages */
2073 		prefix = kvm_s390_get_prefix(vcpu);
2074 		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
2075 			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
2076 				   start, end);
2077 			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2078 		}
2079 	}
2080 }
2081 
2082 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
2083 {
2084 	/* kvm common code refers to this, but never calls it */
2085 	BUG();
2086 	return 0;
2087 }
2088 
2089 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
2090 					   struct kvm_one_reg *reg)
2091 {
2092 	int r = -EINVAL;
2093 
2094 	switch (reg->id) {
2095 	case KVM_REG_S390_TODPR:
2096 		r = put_user(vcpu->arch.sie_block->todpr,
2097 			     (u32 __user *)reg->addr);
2098 		break;
2099 	case KVM_REG_S390_EPOCHDIFF:
2100 		r = put_user(vcpu->arch.sie_block->epoch,
2101 			     (u64 __user *)reg->addr);
2102 		break;
2103 	case KVM_REG_S390_CPU_TIMER:
2104 		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2105 			     (u64 __user *)reg->addr);
2106 		break;
2107 	case KVM_REG_S390_CLOCK_COMP:
2108 		r = put_user(vcpu->arch.sie_block->ckc,
2109 			     (u64 __user *)reg->addr);
2110 		break;
2111 	case KVM_REG_S390_PFTOKEN:
2112 		r = put_user(vcpu->arch.pfault_token,
2113 			     (u64 __user *)reg->addr);
2114 		break;
2115 	case KVM_REG_S390_PFCOMPARE:
2116 		r = put_user(vcpu->arch.pfault_compare,
2117 			     (u64 __user *)reg->addr);
2118 		break;
2119 	case KVM_REG_S390_PFSELECT:
2120 		r = put_user(vcpu->arch.pfault_select,
2121 			     (u64 __user *)reg->addr);
2122 		break;
2123 	case KVM_REG_S390_PP:
2124 		r = put_user(vcpu->arch.sie_block->pp,
2125 			     (u64 __user *)reg->addr);
2126 		break;
2127 	case KVM_REG_S390_GBEA:
2128 		r = put_user(vcpu->arch.sie_block->gbea,
2129 			     (u64 __user *)reg->addr);
2130 		break;
2131 	default:
2132 		break;
2133 	}
2134 
2135 	return r;
2136 }
2137 
2138 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
2139 					   struct kvm_one_reg *reg)
2140 {
2141 	int r = -EINVAL;
2142 	__u64 val;
2143 
2144 	switch (reg->id) {
2145 	case KVM_REG_S390_TODPR:
2146 		r = get_user(vcpu->arch.sie_block->todpr,
2147 			     (u32 __user *)reg->addr);
2148 		break;
2149 	case KVM_REG_S390_EPOCHDIFF:
2150 		r = get_user(vcpu->arch.sie_block->epoch,
2151 			     (u64 __user *)reg->addr);
2152 		break;
2153 	case KVM_REG_S390_CPU_TIMER:
2154 		r = get_user(val, (u64 __user *)reg->addr);
2155 		if (!r)
2156 			kvm_s390_set_cpu_timer(vcpu, val);
2157 		break;
2158 	case KVM_REG_S390_CLOCK_COMP:
2159 		r = get_user(vcpu->arch.sie_block->ckc,
2160 			     (u64 __user *)reg->addr);
2161 		break;
2162 	case KVM_REG_S390_PFTOKEN:
2163 		r = get_user(vcpu->arch.pfault_token,
2164 			     (u64 __user *)reg->addr);
2165 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2166 			kvm_clear_async_pf_completion_queue(vcpu);
2167 		break;
2168 	case KVM_REG_S390_PFCOMPARE:
2169 		r = get_user(vcpu->arch.pfault_compare,
2170 			     (u64 __user *)reg->addr);
2171 		break;
2172 	case KVM_REG_S390_PFSELECT:
2173 		r = get_user(vcpu->arch.pfault_select,
2174 			     (u64 __user *)reg->addr);
2175 		break;
2176 	case KVM_REG_S390_PP:
2177 		r = get_user(vcpu->arch.sie_block->pp,
2178 			     (u64 __user *)reg->addr);
2179 		break;
2180 	case KVM_REG_S390_GBEA:
2181 		r = get_user(vcpu->arch.sie_block->gbea,
2182 			     (u64 __user *)reg->addr);
2183 		break;
2184 	default:
2185 		break;
2186 	}
2187 
2188 	return r;
2189 }
2190 
2191 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
2192 {
2193 	kvm_s390_vcpu_initial_reset(vcpu);
2194 	return 0;
2195 }
2196 
2197 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2198 {
2199 	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2200 	return 0;
2201 }
2202 
2203 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2204 {
2205 	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2206 	return 0;
2207 }
2208 
2209 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2210 				  struct kvm_sregs *sregs)
2211 {
2212 	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2213 	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2214 	restore_access_regs(vcpu->run->s.regs.acrs);
2215 	return 0;
2216 }
2217 
2218 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2219 				  struct kvm_sregs *sregs)
2220 {
2221 	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2222 	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2223 	return 0;
2224 }
2225 
2226 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2227 {
2228 	/* make sure the new values will be lazily loaded */
2229 	save_fpu_regs();
2230 	if (test_fp_ctl(fpu->fpc))
2231 		return -EINVAL;
2232 	current->thread.fpu.fpc = fpu->fpc;
2233 	if (MACHINE_HAS_VX)
2234 		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
2235 	else
2236 		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2237 	return 0;
2238 }
2239 
2240 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2241 {
2242 	/* make sure we have the latest values */
2243 	save_fpu_regs();
2244 	if (MACHINE_HAS_VX)
2245 		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
2246 	else
2247 		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
2248 	fpu->fpc = current->thread.fpu.fpc;
2249 	return 0;
2250 }
2251 
2252 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
2253 {
2254 	int rc = 0;
2255 
2256 	if (!is_vcpu_stopped(vcpu))
2257 		rc = -EBUSY;
2258 	else {
2259 		vcpu->run->psw_mask = psw.mask;
2260 		vcpu->run->psw_addr = psw.addr;
2261 	}
2262 	return rc;
2263 }
2264 
2265 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2266 				  struct kvm_translation *tr)
2267 {
2268 	return -EINVAL; /* not implemented yet */
2269 }
2270 
2271 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
2272 			      KVM_GUESTDBG_USE_HW_BP | \
2273 			      KVM_GUESTDBG_ENABLE)
2274 
2275 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
2276 					struct kvm_guest_debug *dbg)
2277 {
2278 	int rc = 0;
2279 
2280 	vcpu->guest_debug = 0;
2281 	kvm_s390_clear_bp_data(vcpu);
2282 
2283 	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2284 		return -EINVAL;
2285 	if (!sclp.has_gpere)
2286 		return -EINVAL;
2287 
2288 	if (dbg->control & KVM_GUESTDBG_ENABLE) {
2289 		vcpu->guest_debug = dbg->control;
2290 		/* enforce guest PER */
2291 		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2292 
2293 		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
2294 			rc = kvm_s390_import_bp_data(vcpu, dbg);
2295 	} else {
2296 		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2297 		vcpu->arch.guestdbg.last_bp = 0;
2298 	}
2299 
2300 	if (rc) {
2301 		vcpu->guest_debug = 0;
2302 		kvm_s390_clear_bp_data(vcpu);
2303 		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2304 	}
2305 
2306 	return rc;
2307 }
2308 
2309 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2310 				    struct kvm_mp_state *mp_state)
2311 {
2312 	/* CHECK_STOP and LOAD are not supported yet */
2313 	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
2314 				       KVM_MP_STATE_OPERATING;
2315 }
2316 
2317 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2318 				    struct kvm_mp_state *mp_state)
2319 {
2320 	int rc = 0;
2321 
2322 	/* user space knows about this interface - let it control the state */
2323 	vcpu->kvm->arch.user_cpu_state_ctrl = 1;
2324 
2325 	switch (mp_state->mp_state) {
2326 	case KVM_MP_STATE_STOPPED:
2327 		kvm_s390_vcpu_stop(vcpu);
2328 		break;
2329 	case KVM_MP_STATE_OPERATING:
2330 		kvm_s390_vcpu_start(vcpu);
2331 		break;
2332 	case KVM_MP_STATE_LOAD:
2333 	case KVM_MP_STATE_CHECK_STOP:
2334 		/* fall through - CHECK_STOP and LOAD are not supported yet */
2335 	default:
2336 		rc = -ENXIO;
2337 	}
2338 
2339 	return rc;
2340 }
2341 
2342 static bool ibs_enabled(struct kvm_vcpu *vcpu)
2343 {
2344 	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
2345 }
2346 
2347 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
2348 {
2349 retry:
2350 	kvm_s390_vcpu_request_handled(vcpu);
2351 	if (!vcpu->requests)
2352 		return 0;
2353 	/*
2354 	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2355 	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2356 	 * This ensures that the ipte instruction for this request has
2357 	 * already finished. We might race against a second unmapper that
2358 	 * wants to set the blocking bit. Lets just retry the request loop.
2359 	 */
2360 	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2361 		int rc;
2362 		rc = gmap_mprotect_notify(vcpu->arch.gmap,
2363 					  kvm_s390_get_prefix(vcpu),
2364 					  PAGE_SIZE * 2, PROT_WRITE);
2365 		if (rc) {
2366 			kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2367 			return rc;
2368 		}
2369 		goto retry;
2370 	}
2371 
2372 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2373 		vcpu->arch.sie_block->ihcpu = 0xffff;
2374 		goto retry;
2375 	}
2376 
2377 	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2378 		if (!ibs_enabled(vcpu)) {
2379 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2380 			atomic_or(CPUSTAT_IBS,
2381 					&vcpu->arch.sie_block->cpuflags);
2382 		}
2383 		goto retry;
2384 	}
2385 
2386 	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2387 		if (ibs_enabled(vcpu)) {
2388 			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2389 			atomic_andnot(CPUSTAT_IBS,
2390 					  &vcpu->arch.sie_block->cpuflags);
2391 		}
2392 		goto retry;
2393 	}
2394 
2395 	if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
2396 		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2397 		goto retry;
2398 	}
2399 
2400 	/* nothing to do, just clear the request */
2401 	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2402 
2403 	return 0;
2404 }
2405 
2406 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2407 {
2408 	struct kvm_vcpu *vcpu;
2409 	int i;
2410 
2411 	mutex_lock(&kvm->lock);
2412 	preempt_disable();
2413 	kvm->arch.epoch = tod - get_tod_clock();
2414 	kvm_s390_vcpu_block_all(kvm);
2415 	kvm_for_each_vcpu(i, vcpu, kvm)
2416 		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2417 	kvm_s390_vcpu_unblock_all(kvm);
2418 	preempt_enable();
2419 	mutex_unlock(&kvm->lock);
2420 }
2421 
2422 /**
2423  * kvm_arch_fault_in_page - fault-in guest page if necessary
2424  * @vcpu: The corresponding virtual cpu
2425  * @gpa: Guest physical address
2426  * @writable: Whether the page should be writable or not
2427  *
2428  * Make sure that a guest page has been faulted-in on the host.
2429  *
2430  * Return: Zero on success, negative error code otherwise.
2431  */
2432 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2433 {
2434 	return gmap_fault(vcpu->arch.gmap, gpa,
2435 			  writable ? FAULT_FLAG_WRITE : 0);
2436 }
2437 
2438 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2439 				      unsigned long token)
2440 {
2441 	struct kvm_s390_interrupt inti;
2442 	struct kvm_s390_irq irq;
2443 
2444 	if (start_token) {
2445 		irq.u.ext.ext_params2 = token;
2446 		irq.type = KVM_S390_INT_PFAULT_INIT;
2447 		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2448 	} else {
2449 		inti.type = KVM_S390_INT_PFAULT_DONE;
2450 		inti.parm64 = token;
2451 		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2452 	}
2453 }
2454 
2455 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2456 				     struct kvm_async_pf *work)
2457 {
2458 	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2459 	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2460 }
2461 
2462 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2463 				 struct kvm_async_pf *work)
2464 {
2465 	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2466 	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2467 }
2468 
2469 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2470 			       struct kvm_async_pf *work)
2471 {
2472 	/* s390 will always inject the page directly */
2473 }
2474 
2475 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2476 {
2477 	/*
2478 	 * s390 will always inject the page directly,
2479 	 * but we still want check_async_completion to cleanup
2480 	 */
2481 	return true;
2482 }
2483 
2484 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2485 {
2486 	hva_t hva;
2487 	struct kvm_arch_async_pf arch;
2488 	int rc;
2489 
2490 	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2491 		return 0;
2492 	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2493 	    vcpu->arch.pfault_compare)
2494 		return 0;
2495 	if (psw_extint_disabled(vcpu))
2496 		return 0;
2497 	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2498 		return 0;
2499 	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2500 		return 0;
2501 	if (!vcpu->arch.gmap->pfault_enabled)
2502 		return 0;
2503 
2504 	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2505 	hva += current->thread.gmap_addr & ~PAGE_MASK;
2506 	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2507 		return 0;
2508 
2509 	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2510 	return rc;
2511 }
2512 
2513 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2514 {
2515 	int rc, cpuflags;
2516 
2517 	/*
2518 	 * On s390 notifications for arriving pages will be delivered directly
2519 	 * to the guest but the house keeping for completed pfaults is
2520 	 * handled outside the worker.
2521 	 */
2522 	kvm_check_async_pf_completion(vcpu);
2523 
2524 	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2525 	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2526 
2527 	if (need_resched())
2528 		schedule();
2529 
2530 	if (test_cpu_flag(CIF_MCCK_PENDING))
2531 		s390_handle_mcck();
2532 
2533 	if (!kvm_is_ucontrol(vcpu->kvm)) {
2534 		rc = kvm_s390_deliver_pending_interrupts(vcpu);
2535 		if (rc)
2536 			return rc;
2537 	}
2538 
2539 	rc = kvm_s390_handle_requests(vcpu);
2540 	if (rc)
2541 		return rc;
2542 
2543 	if (guestdbg_enabled(vcpu)) {
2544 		kvm_s390_backup_guest_per_regs(vcpu);
2545 		kvm_s390_patch_guest_per_regs(vcpu);
2546 	}
2547 
2548 	vcpu->arch.sie_block->icptcode = 0;
2549 	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2550 	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2551 	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2552 
2553 	return 0;
2554 }
2555 
2556 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2557 {
2558 	struct kvm_s390_pgm_info pgm_info = {
2559 		.code = PGM_ADDRESSING,
2560 	};
2561 	u8 opcode, ilen;
2562 	int rc;
2563 
2564 	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2565 	trace_kvm_s390_sie_fault(vcpu);
2566 
2567 	/*
2568 	 * We want to inject an addressing exception, which is defined as a
2569 	 * suppressing or terminating exception. However, since we came here
2570 	 * by a DAT access exception, the PSW still points to the faulting
2571 	 * instruction since DAT exceptions are nullifying. So we've got
2572 	 * to look up the current opcode to get the length of the instruction
2573 	 * to be able to forward the PSW.
2574 	 */
2575 	rc = read_guest_instr(vcpu, &opcode, 1);
2576 	ilen = insn_length(opcode);
2577 	if (rc < 0) {
2578 		return rc;
2579 	} else if (rc) {
2580 		/* Instruction-Fetching Exceptions - we can't detect the ilen.
2581 		 * Forward by arbitrary ilc, injection will take care of
2582 		 * nullification if necessary.
2583 		 */
2584 		pgm_info = vcpu->arch.pgm;
2585 		ilen = 4;
2586 	}
2587 	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
2588 	kvm_s390_forward_psw(vcpu, ilen);
2589 	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2590 }
2591 
2592 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2593 {
2594 	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2595 		   vcpu->arch.sie_block->icptcode);
2596 	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2597 
2598 	if (guestdbg_enabled(vcpu))
2599 		kvm_s390_restore_guest_per_regs(vcpu);
2600 
2601 	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2602 	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2603 
2604 	if (vcpu->arch.sie_block->icptcode > 0) {
2605 		int rc = kvm_handle_sie_intercept(vcpu);
2606 
2607 		if (rc != -EOPNOTSUPP)
2608 			return rc;
2609 		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2610 		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2611 		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2612 		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2613 		return -EREMOTE;
2614 	} else if (exit_reason != -EFAULT) {
2615 		vcpu->stat.exit_null++;
2616 		return 0;
2617 	} else if (kvm_is_ucontrol(vcpu->kvm)) {
2618 		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2619 		vcpu->run->s390_ucontrol.trans_exc_code =
2620 						current->thread.gmap_addr;
2621 		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2622 		return -EREMOTE;
2623 	} else if (current->thread.gmap_pfault) {
2624 		trace_kvm_s390_major_guest_pfault(vcpu);
2625 		current->thread.gmap_pfault = 0;
2626 		if (kvm_arch_setup_async_pf(vcpu))
2627 			return 0;
2628 		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2629 	}
2630 	return vcpu_post_run_fault_in_sie(vcpu);
2631 }
2632 
2633 static int __vcpu_run(struct kvm_vcpu *vcpu)
2634 {
2635 	int rc, exit_reason;
2636 
2637 	/*
2638 	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2639 	 * ning the guest), so that memslots (and other stuff) are protected
2640 	 */
2641 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2642 
2643 	do {
2644 		rc = vcpu_pre_run(vcpu);
2645 		if (rc)
2646 			break;
2647 
2648 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2649 		/*
2650 		 * As PF_VCPU will be used in fault handler, between
2651 		 * guest_enter and guest_exit should be no uaccess.
2652 		 */
2653 		local_irq_disable();
2654 		guest_enter_irqoff();
2655 		__disable_cpu_timer_accounting(vcpu);
2656 		local_irq_enable();
2657 		exit_reason = sie64a(vcpu->arch.sie_block,
2658 				     vcpu->run->s.regs.gprs);
2659 		local_irq_disable();
2660 		__enable_cpu_timer_accounting(vcpu);
2661 		guest_exit_irqoff();
2662 		local_irq_enable();
2663 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2664 
2665 		rc = vcpu_post_run(vcpu, exit_reason);
2666 	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2667 
2668 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2669 	return rc;
2670 }
2671 
2672 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2673 {
2674 	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2675 	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2676 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2677 		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2678 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2679 		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2680 		/* some control register changes require a tlb flush */
2681 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2682 	}
2683 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2684 		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2685 		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2686 		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2687 		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2688 		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2689 	}
2690 	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2691 		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2692 		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2693 		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2694 		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2695 			kvm_clear_async_pf_completion_queue(vcpu);
2696 	}
2697 	kvm_run->kvm_dirty_regs = 0;
2698 }
2699 
2700 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2701 {
2702 	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2703 	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2704 	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2705 	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2706 	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2707 	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2708 	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2709 	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2710 	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2711 	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2712 	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2713 	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2714 }
2715 
2716 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2717 {
2718 	int rc;
2719 	sigset_t sigsaved;
2720 
2721 	if (guestdbg_exit_pending(vcpu)) {
2722 		kvm_s390_prepare_debug_exit(vcpu);
2723 		return 0;
2724 	}
2725 
2726 	if (vcpu->sigset_active)
2727 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2728 
2729 	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2730 		kvm_s390_vcpu_start(vcpu);
2731 	} else if (is_vcpu_stopped(vcpu)) {
2732 		pr_err_ratelimited("can't run stopped vcpu %d\n",
2733 				   vcpu->vcpu_id);
2734 		return -EINVAL;
2735 	}
2736 
2737 	sync_regs(vcpu, kvm_run);
2738 	enable_cpu_timer_accounting(vcpu);
2739 
2740 	might_fault();
2741 	rc = __vcpu_run(vcpu);
2742 
2743 	if (signal_pending(current) && !rc) {
2744 		kvm_run->exit_reason = KVM_EXIT_INTR;
2745 		rc = -EINTR;
2746 	}
2747 
2748 	if (guestdbg_exit_pending(vcpu) && !rc)  {
2749 		kvm_s390_prepare_debug_exit(vcpu);
2750 		rc = 0;
2751 	}
2752 
2753 	if (rc == -EREMOTE) {
2754 		/* userspace support is needed, kvm_run has been prepared */
2755 		rc = 0;
2756 	}
2757 
2758 	disable_cpu_timer_accounting(vcpu);
2759 	store_regs(vcpu, kvm_run);
2760 
2761 	if (vcpu->sigset_active)
2762 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2763 
2764 	vcpu->stat.exit_userspace++;
2765 	return rc;
2766 }
2767 
2768 /*
2769  * store status at address
2770  * we use have two special cases:
2771  * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2772  * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2773  */
2774 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2775 {
2776 	unsigned char archmode = 1;
2777 	freg_t fprs[NUM_FPRS];
2778 	unsigned int px;
2779 	u64 clkcomp, cputm;
2780 	int rc;
2781 
2782 	px = kvm_s390_get_prefix(vcpu);
2783 	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2784 		if (write_guest_abs(vcpu, 163, &archmode, 1))
2785 			return -EFAULT;
2786 		gpa = 0;
2787 	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2788 		if (write_guest_real(vcpu, 163, &archmode, 1))
2789 			return -EFAULT;
2790 		gpa = px;
2791 	} else
2792 		gpa -= __LC_FPREGS_SAVE_AREA;
2793 
2794 	/* manually convert vector registers if necessary */
2795 	if (MACHINE_HAS_VX) {
2796 		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2797 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2798 				     fprs, 128);
2799 	} else {
2800 		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2801 				     vcpu->run->s.regs.fprs, 128);
2802 	}
2803 	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2804 			      vcpu->run->s.regs.gprs, 128);
2805 	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2806 			      &vcpu->arch.sie_block->gpsw, 16);
2807 	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2808 			      &px, 4);
2809 	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2810 			      &vcpu->run->s.regs.fpc, 4);
2811 	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2812 			      &vcpu->arch.sie_block->todpr, 4);
2813 	cputm = kvm_s390_get_cpu_timer(vcpu);
2814 	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2815 			      &cputm, 8);
2816 	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2817 	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2818 			      &clkcomp, 8);
2819 	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2820 			      &vcpu->run->s.regs.acrs, 64);
2821 	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2822 			      &vcpu->arch.sie_block->gcr, 128);
2823 	return rc ? -EFAULT : 0;
2824 }
2825 
2826 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2827 {
2828 	/*
2829 	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2830 	 * copying in vcpu load/put. Lets update our copies before we save
2831 	 * it into the save area
2832 	 */
2833 	save_fpu_regs();
2834 	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2835 	save_access_regs(vcpu->run->s.regs.acrs);
2836 
2837 	return kvm_s390_store_status_unloaded(vcpu, addr);
2838 }
2839 
2840 /*
2841  * store additional status at address
2842  */
2843 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2844 					unsigned long gpa)
2845 {
2846 	/* Only bits 0-53 are used for address formation */
2847 	if (!(gpa & ~0x3ff))
2848 		return 0;
2849 
2850 	return write_guest_abs(vcpu, gpa & ~0x3ff,
2851 			       (void *)&vcpu->run->s.regs.vrs, 512);
2852 }
2853 
2854 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2855 {
2856 	if (!test_kvm_facility(vcpu->kvm, 129))
2857 		return 0;
2858 
2859 	/*
2860 	 * The guest VXRS are in the host VXRs due to the lazy
2861 	 * copying in vcpu load/put. We can simply call save_fpu_regs()
2862 	 * to save the current register state because we are in the
2863 	 * middle of a load/put cycle.
2864 	 *
2865 	 * Let's update our copies before we save it into the save area.
2866 	 */
2867 	save_fpu_regs();
2868 
2869 	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2870 }
2871 
2872 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2873 {
2874 	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2875 	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2876 }
2877 
2878 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2879 {
2880 	unsigned int i;
2881 	struct kvm_vcpu *vcpu;
2882 
2883 	kvm_for_each_vcpu(i, vcpu, kvm) {
2884 		__disable_ibs_on_vcpu(vcpu);
2885 	}
2886 }
2887 
2888 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2889 {
2890 	if (!sclp.has_ibs)
2891 		return;
2892 	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2893 	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2894 }
2895 
2896 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2897 {
2898 	int i, online_vcpus, started_vcpus = 0;
2899 
2900 	if (!is_vcpu_stopped(vcpu))
2901 		return;
2902 
2903 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2904 	/* Only one cpu at a time may enter/leave the STOPPED state. */
2905 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2906 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2907 
2908 	for (i = 0; i < online_vcpus; i++) {
2909 		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2910 			started_vcpus++;
2911 	}
2912 
2913 	if (started_vcpus == 0) {
2914 		/* we're the only active VCPU -> speed it up */
2915 		__enable_ibs_on_vcpu(vcpu);
2916 	} else if (started_vcpus == 1) {
2917 		/*
2918 		 * As we are starting a second VCPU, we have to disable
2919 		 * the IBS facility on all VCPUs to remove potentially
2920 		 * oustanding ENABLE requests.
2921 		 */
2922 		__disable_ibs_on_all_vcpus(vcpu->kvm);
2923 	}
2924 
2925 	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2926 	/*
2927 	 * Another VCPU might have used IBS while we were offline.
2928 	 * Let's play safe and flush the VCPU at startup.
2929 	 */
2930 	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2931 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2932 	return;
2933 }
2934 
2935 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2936 {
2937 	int i, online_vcpus, started_vcpus = 0;
2938 	struct kvm_vcpu *started_vcpu = NULL;
2939 
2940 	if (is_vcpu_stopped(vcpu))
2941 		return;
2942 
2943 	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2944 	/* Only one cpu at a time may enter/leave the STOPPED state. */
2945 	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2946 	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2947 
2948 	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2949 	kvm_s390_clear_stop_irq(vcpu);
2950 
2951 	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2952 	__disable_ibs_on_vcpu(vcpu);
2953 
2954 	for (i = 0; i < online_vcpus; i++) {
2955 		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2956 			started_vcpus++;
2957 			started_vcpu = vcpu->kvm->vcpus[i];
2958 		}
2959 	}
2960 
2961 	if (started_vcpus == 1) {
2962 		/*
2963 		 * As we only have one VCPU left, we want to enable the
2964 		 * IBS facility for that VCPU to speed it up.
2965 		 */
2966 		__enable_ibs_on_vcpu(started_vcpu);
2967 	}
2968 
2969 	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2970 	return;
2971 }
2972 
2973 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2974 				     struct kvm_enable_cap *cap)
2975 {
2976 	int r;
2977 
2978 	if (cap->flags)
2979 		return -EINVAL;
2980 
2981 	switch (cap->cap) {
2982 	case KVM_CAP_S390_CSS_SUPPORT:
2983 		if (!vcpu->kvm->arch.css_support) {
2984 			vcpu->kvm->arch.css_support = 1;
2985 			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2986 			trace_kvm_s390_enable_css(vcpu->kvm);
2987 		}
2988 		r = 0;
2989 		break;
2990 	default:
2991 		r = -EINVAL;
2992 		break;
2993 	}
2994 	return r;
2995 }
2996 
2997 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2998 				  struct kvm_s390_mem_op *mop)
2999 {
3000 	void __user *uaddr = (void __user *)mop->buf;
3001 	void *tmpbuf = NULL;
3002 	int r, srcu_idx;
3003 	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
3004 				    | KVM_S390_MEMOP_F_CHECK_ONLY;
3005 
3006 	if (mop->flags & ~supported_flags)
3007 		return -EINVAL;
3008 
3009 	if (mop->size > MEM_OP_MAX_SIZE)
3010 		return -E2BIG;
3011 
3012 	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
3013 		tmpbuf = vmalloc(mop->size);
3014 		if (!tmpbuf)
3015 			return -ENOMEM;
3016 	}
3017 
3018 	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3019 
3020 	switch (mop->op) {
3021 	case KVM_S390_MEMOP_LOGICAL_READ:
3022 		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3023 			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3024 					    mop->size, GACC_FETCH);
3025 			break;
3026 		}
3027 		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3028 		if (r == 0) {
3029 			if (copy_to_user(uaddr, tmpbuf, mop->size))
3030 				r = -EFAULT;
3031 		}
3032 		break;
3033 	case KVM_S390_MEMOP_LOGICAL_WRITE:
3034 		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3035 			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3036 					    mop->size, GACC_STORE);
3037 			break;
3038 		}
3039 		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
3040 			r = -EFAULT;
3041 			break;
3042 		}
3043 		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3044 		break;
3045 	default:
3046 		r = -EINVAL;
3047 	}
3048 
3049 	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3050 
3051 	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
3052 		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
3053 
3054 	vfree(tmpbuf);
3055 	return r;
3056 }
3057 
3058 long kvm_arch_vcpu_ioctl(struct file *filp,
3059 			 unsigned int ioctl, unsigned long arg)
3060 {
3061 	struct kvm_vcpu *vcpu = filp->private_data;
3062 	void __user *argp = (void __user *)arg;
3063 	int idx;
3064 	long r;
3065 
3066 	switch (ioctl) {
3067 	case KVM_S390_IRQ: {
3068 		struct kvm_s390_irq s390irq;
3069 
3070 		r = -EFAULT;
3071 		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3072 			break;
3073 		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3074 		break;
3075 	}
3076 	case KVM_S390_INTERRUPT: {
3077 		struct kvm_s390_interrupt s390int;
3078 		struct kvm_s390_irq s390irq;
3079 
3080 		r = -EFAULT;
3081 		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3082 			break;
3083 		if (s390int_to_s390irq(&s390int, &s390irq))
3084 			return -EINVAL;
3085 		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3086 		break;
3087 	}
3088 	case KVM_S390_STORE_STATUS:
3089 		idx = srcu_read_lock(&vcpu->kvm->srcu);
3090 		r = kvm_s390_vcpu_store_status(vcpu, arg);
3091 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3092 		break;
3093 	case KVM_S390_SET_INITIAL_PSW: {
3094 		psw_t psw;
3095 
3096 		r = -EFAULT;
3097 		if (copy_from_user(&psw, argp, sizeof(psw)))
3098 			break;
3099 		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
3100 		break;
3101 	}
3102 	case KVM_S390_INITIAL_RESET:
3103 		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3104 		break;
3105 	case KVM_SET_ONE_REG:
3106 	case KVM_GET_ONE_REG: {
3107 		struct kvm_one_reg reg;
3108 		r = -EFAULT;
3109 		if (copy_from_user(&reg, argp, sizeof(reg)))
3110 			break;
3111 		if (ioctl == KVM_SET_ONE_REG)
3112 			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
3113 		else
3114 			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
3115 		break;
3116 	}
3117 #ifdef CONFIG_KVM_S390_UCONTROL
3118 	case KVM_S390_UCAS_MAP: {
3119 		struct kvm_s390_ucas_mapping ucasmap;
3120 
3121 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3122 			r = -EFAULT;
3123 			break;
3124 		}
3125 
3126 		if (!kvm_is_ucontrol(vcpu->kvm)) {
3127 			r = -EINVAL;
3128 			break;
3129 		}
3130 
3131 		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
3132 				     ucasmap.vcpu_addr, ucasmap.length);
3133 		break;
3134 	}
3135 	case KVM_S390_UCAS_UNMAP: {
3136 		struct kvm_s390_ucas_mapping ucasmap;
3137 
3138 		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3139 			r = -EFAULT;
3140 			break;
3141 		}
3142 
3143 		if (!kvm_is_ucontrol(vcpu->kvm)) {
3144 			r = -EINVAL;
3145 			break;
3146 		}
3147 
3148 		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
3149 			ucasmap.length);
3150 		break;
3151 	}
3152 #endif
3153 	case KVM_S390_VCPU_FAULT: {
3154 		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3155 		break;
3156 	}
3157 	case KVM_ENABLE_CAP:
3158 	{
3159 		struct kvm_enable_cap cap;
3160 		r = -EFAULT;
3161 		if (copy_from_user(&cap, argp, sizeof(cap)))
3162 			break;
3163 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3164 		break;
3165 	}
3166 	case KVM_S390_MEM_OP: {
3167 		struct kvm_s390_mem_op mem_op;
3168 
3169 		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3170 			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
3171 		else
3172 			r = -EFAULT;
3173 		break;
3174 	}
3175 	case KVM_S390_SET_IRQ_STATE: {
3176 		struct kvm_s390_irq_state irq_state;
3177 
3178 		r = -EFAULT;
3179 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3180 			break;
3181 		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
3182 		    irq_state.len == 0 ||
3183 		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
3184 			r = -EINVAL;
3185 			break;
3186 		}
3187 		r = kvm_s390_set_irq_state(vcpu,
3188 					   (void __user *) irq_state.buf,
3189 					   irq_state.len);
3190 		break;
3191 	}
3192 	case KVM_S390_GET_IRQ_STATE: {
3193 		struct kvm_s390_irq_state irq_state;
3194 
3195 		r = -EFAULT;
3196 		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3197 			break;
3198 		if (irq_state.len == 0) {
3199 			r = -EINVAL;
3200 			break;
3201 		}
3202 		r = kvm_s390_get_irq_state(vcpu,
3203 					   (__u8 __user *)  irq_state.buf,
3204 					   irq_state.len);
3205 		break;
3206 	}
3207 	default:
3208 		r = -ENOTTY;
3209 	}
3210 	return r;
3211 }
3212 
3213 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3214 {
3215 #ifdef CONFIG_KVM_S390_UCONTROL
3216 	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
3217 		 && (kvm_is_ucontrol(vcpu->kvm))) {
3218 		vmf->page = virt_to_page(vcpu->arch.sie_block);
3219 		get_page(vmf->page);
3220 		return 0;
3221 	}
3222 #endif
3223 	return VM_FAULT_SIGBUS;
3224 }
3225 
3226 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
3227 			    unsigned long npages)
3228 {
3229 	return 0;
3230 }
3231 
3232 /* Section: memory related */
3233 int kvm_arch_prepare_memory_region(struct kvm *kvm,
3234 				   struct kvm_memory_slot *memslot,
3235 				   const struct kvm_userspace_memory_region *mem,
3236 				   enum kvm_mr_change change)
3237 {
3238 	/* A few sanity checks. We can have memory slots which have to be
3239 	   located/ended at a segment boundary (1MB). The memory in userland is
3240 	   ok to be fragmented into various different vmas. It is okay to mmap()
3241 	   and munmap() stuff in this slot after doing this call at any time */
3242 
3243 	if (mem->userspace_addr & 0xffffful)
3244 		return -EINVAL;
3245 
3246 	if (mem->memory_size & 0xffffful)
3247 		return -EINVAL;
3248 
3249 	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
3250 		return -EINVAL;
3251 
3252 	return 0;
3253 }
3254 
3255 void kvm_arch_commit_memory_region(struct kvm *kvm,
3256 				const struct kvm_userspace_memory_region *mem,
3257 				const struct kvm_memory_slot *old,
3258 				const struct kvm_memory_slot *new,
3259 				enum kvm_mr_change change)
3260 {
3261 	int rc;
3262 
3263 	/* If the basics of the memslot do not change, we do not want
3264 	 * to update the gmap. Every update causes several unnecessary
3265 	 * segment translation exceptions. This is usually handled just
3266 	 * fine by the normal fault handler + gmap, but it will also
3267 	 * cause faults on the prefix page of running guest CPUs.
3268 	 */
3269 	if (old->userspace_addr == mem->userspace_addr &&
3270 	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
3271 	    old->npages * PAGE_SIZE == mem->memory_size)
3272 		return;
3273 
3274 	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
3275 		mem->guest_phys_addr, mem->memory_size);
3276 	if (rc)
3277 		pr_warn("failed to commit memory region\n");
3278 	return;
3279 }
3280 
3281 static inline unsigned long nonhyp_mask(int i)
3282 {
3283 	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
3284 
3285 	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
3286 }
3287 
3288 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
3289 {
3290 	vcpu->valid_wakeup = false;
3291 }
3292 
3293 static int __init kvm_s390_init(void)
3294 {
3295 	int i;
3296 
3297 	if (!sclp.has_sief2) {
3298 		pr_info("SIE not available\n");
3299 		return -ENODEV;
3300 	}
3301 
3302 	for (i = 0; i < 16; i++)
3303 		kvm_s390_fac_list_mask[i] |=
3304 			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
3305 
3306 	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3307 }
3308 
3309 static void __exit kvm_s390_exit(void)
3310 {
3311 	kvm_exit();
3312 }
3313 
3314 module_init(kvm_s390_init);
3315 module_exit(kvm_s390_exit);
3316 
3317 /*
3318  * Enable autoloading of the kvm module.
3319  * Note that we add the module alias here instead of virt/kvm/kvm_main.c
3320  * since x86 takes a different approach.
3321  */
3322 #include <linux/miscdevice.h>
3323 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3324 MODULE_ALIAS("devname:kvm");
3325